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Abstract: Coded aperture X-ray computed tomography (CT) has the potential to revolutionize
X-ray tomography systems in medical imaging and air and rail transit security - both areas of
global importance. It allows either a reduced set of measurements in X-ray CT without degrada-
tion in image reconstruction, or measure multiplexed X-rays to simplify the sensing geometry.
Measurement reduction is of particular interest in medical imaging to reduce radiation, and
airport security often imposes practical constraints leading to limited angle geometries. Coded
aperture compressive X-ray CT places a coded aperture pattern in front of the X-ray source in
order to obtain patterned projections onto a detector. Compressive sensing (CS) reconstruction
algorithms are then used to recover the image. To date, the coded illumination patterns used in
conventional CT systems have been random. This paper addresses the code optimization prob-
lem for general tomography imaging based on the point spread function (PSF) of the system,
which is used as a measure of the sensing matrix quality which connects to the restricted isom-
etry property (RIP) and coherence of the sensing matrix. The methods presented are general,
simple to use, and can be easily extended to other imaging systems. Simulations are presented
where the peak signal to noise ratios (PSNR) of the reconstructed images using optimized coded
apertures exhibit significant gain over those attained by random coded apertures. Additionally,
results using real X-ray tomography projections are presented.
c© 2017 Optical Society of America

OCIS codes: (110.7440) X-ray imaging; (340.0340) X-ray optics; (340.7430) X-ray coded apertures; (170.1630) Coded
aperture imaging; (110.6955) Tomographic imaging.
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1. Introduction

X-ray tomography has become essential in medical imaging, airport security, and industrial
testing. The filtered back-projection algorithm (FBP) is the algorithm of choice for image re-
construction given its speed. However, irregular geometries of scanners and missing projection
data produce artifacts and noise that make the reconstructions obtained with the FBP inade-
quate for diagnosis [1]. Furthermore, the numerous projections needed to obtain a high-quality
reconstruction in medical X-ray computed tomography (CT) lead to high levels of radiation
dose; thus, strategies to reduce the number of measurements are critical. Image estimation from
incomplete data has been extensively researched since the introduction of CT [2]. Sparsity-
promoting and total variation regularization algorithms have been recently used to alleviate the
ill-posed inverse problem, obtaining better image reconstructions [3]. Most strategies, however,
rely on optimizing the hardware settings by lowering the number of angles at which projections
are taken [4]. These approaches, however, fall short when the number of measurements is further
reduced leading to artifacts in the reconstructions. Brady et al. provide a study on how structured
illumination can overcome these limitations while potentially reducing radiation exposure, de-
creasing the required number of detectors, and the acquisition time [5]. Particularly, the latter is
achieved when using coded apertures in conjunction with multiplexed illumination, that is, the
simultaneous illumination of the object using multiple sources. The acquisition time is reduced
given that projections from more than one source may be acquired in a single step. Tomographic
imaging using structured illumination was first introduced by Smith et al. in the 1980’s [6]. How-
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ever, it was not further studied until the introduction of compressive sensing (CS) algorithms,
which provided a strong mathematical framework to solve the resulting ill-posed problem. For
instance, K. Choi et al. introduced coded aperture X-ray tomosynthesis, which outperforms
sparse regularization due to the direct acquisition of compressive measurements [7]. Similarly,
in [8], Kaganovsky et al. introduced subsampling strategies for transmission tomography in
medical CT scanner geometries. These systems require coded apertures placed either, in front of
the X-ray source to create structured X-ray bundles that interrogate the object, or at the detector
to block the X-ray projections in some fashion. Interestingly, it was shown in [8] that randomly
subsampling the detectors in each view angle presents the reconstructions with the lowest error.
However, such strategy for coded aperture design relied on random coded apertures, which is
suboptimal, as it does not exploit the structure of the sensing matrix of the system. Cuadros et al.
proposed an optimization approach to design the structure of the coded apertures in a multiple
source compressive X-ray tomosynthesis imaging system based on a uniform energy criteria
on the voxels and detector elements, so that the object was uniformly sensed and the elements
of the detector plane uniformly sensed the information [9, 10]. This approach for code opti-
mization, however, cannot be applied directly to compressive X-ray CT in circular geometries
since the characteristics of the underlying sensing matrix are radically different. Furthermore,
the mathematical analysis of uniform sensing with respect to the restricted isometry property
(RIP) and the coherence of the sensing matrix was not established. Besides the coded aperture
optimization work for tomosynthesis in [9,10], there has been only one attempt to design coded
apertures for conventional X-ray CT systems. This approach introduced by Mojica et al. in [11]
aims to optimize the coded apertures for a multiple shot CT system, where the coded apertures
are modified multiple times per each view angle. Their formulation is based on reducing the
mutual coherence of a high-resolution CT system matrix whose dimensions are constrained to
be squared and invertible, which in most practical CT systems is not realistic [1]. Furthermore,
their analysis aims at reducing the coherence of the CT system matrix without taking into ac-
count the representation basis of the object of interest, thus the coherence being minimized is
not that of the sensing matrix used in the image reconstruction.
The contribution of this paper is the introduction of a rigorous coded aperture optimization

framework for compressive X-ray CT. The proposed coded aperture design aims to minimize
the coherence of the sensing matrix, as this parameter is often used as a metric to describe
the effectiveness of compressed sensing projections [12,13]. Furthermore, the coherence of the
sensing matrix accounts for the sparse basis representation of the object. The design relies on
the steepest descent algorithm in order to achieve incoherence for successful CT reconstruction
from incomplete projection data. The cost function is based on the point spread function (PSF)
of the system, introduced by Lustig et al. [14] as a measure of the sensing matrix quality based
on the RIP and mutual coherence of the sensing matrix. Additionally, two regularization func-
tions are introduced to obtain binary coded apertures and control the transmittance of the system
while sensing all the voxels of the object uniformly. Given the set of coded measurements, CS
reconstruction algorithms are used to recover the image of interest. The methods presented in
this paper for compressive X-ray CT can be extended to other scanning geometries such as,
projection radiography, cone-beam CT, and helical CT. Additionally, by adapting the cost func-
tion to the corresponding system matrix, the method can be extended to other imaging systems
based on the X-ray transform. Such as, coded aperture snapshot spectral imaging (CASSI) [15],
compressive X-ray tomosynthesis and spectral computed tomography (SCT).
This paper is organized as follows. In Section 2, the mathematical model of the coded aperture

compressive X-ray CT system is proposed. Section 3 introduces the gradient descent optimiza-
tion algorithm proposed for the design of the coded apertures as well as the regularization con-
straints proper of the system. In Section 4, a simulation study for fan beam compressive X-ray
CT is presented to evaluate the performance of the optimized codes obtained using the proposed
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approach and compare them to the best random subsampling strategy introduced in [8]. The
reconstructed images obtained from optimized coded aperture projections present higher peak-
signal-to-noise ratio (PSNR) than the reconstructions obtained using random coded apertures.
Additionally, reconstructions using real X-ray projection data are shown for both optimized and
random coded apertures. The normalized absolute error of these reconstructions with respect
to the reconstruction obtained when using the complete set of projections (no coded apertures)
reveals that the proposed optimization framework leads to fewer artifacts in the reconstructed
image. Finally, Section 5 presents the conclusions and future work.

2. Forward projection model

The X-ray transmission imaging model is given by the Beer-Lambert law for monochromatic
X-rays I = I0 · e−

∫ ∞
0 μ(�)d� , where I0 is the intensity of a particular X-ray originated from the

X-ray source passing through the object, I is the measured intensity in the detector, and μ(�) is
the linear attenuation coefficient at location � [16]. If such X-ray source is located at position
�s and illuminates an object in direction ω̂, the data function for the imaging model is given
by: y(�s, ω̂) = − ln(I/I0). Thus, the Beer-Lambert law can be rewritten as y(�s, ω̂) =

∫ ∞
0 f (�s +

�ω̂)d�, where f corresponds to the two-dimensional linear attenuation coefficient map. This
continuous-to-continuous imaging model is known as the X-ray transform of the object. For a
fan-beam X-ray CT system, the source location �s varies continuously in a circular trajectory
around the object, and the ray direction ω̂ varies at each �s in the plane of the source trajectory
[17]. In real systems, only a discrete number of measurements are available. Furthermore, in
order to use iterative image reconstruction algorithms to solve the inverse problem, the imaging
model needs to be discretized. The discrete-to-discrete formulation of the problem leads to a
finite linear system of equations of the form y = Hf, where f ∈ RN 2 is a vectorized form of the
attenuation coefficients of the N × N object to be reconstructed and each of the elements inH ∈
R

MP×N 2 represents the intersection length of each ray with every pixel inside the image, with
M the number of detector elements in the linear array for each of the P view angles. Specifically,
the row index of the matrix H corresponds to a line integral and the column index of the matrix
H corresponds to an image pixel [18]. The number of X-ray projections needed to reconstruct
an image is determined by the Shannon-Nyquist sampling theorem [17, 18]. However, iterative
reconstruction techniques may be used in conjunction with compressive sensing to reconstruct
the image from fewer samples [3, 17, 19]. This approach uses �1 regularization to recover the
object after subsampling the number of view angles or detectors. Although reducing the number
of projection angles has been studied due to its straightforward implementation, reducing the
number of detectors produces higher quality reconstructions for equivalent amounts of radiation
as shown in [8, 20]. Coded aperture compressive X-ray CT was proposed by Kaganovsky et al.
in [8] as an implementation of detector subsampling. It places coded apertures in front of the fan-
beam source to modulate its energy producing a particular coded projection onto the detector
strip. The coded apertures have the same number of elements as the detector array and the coded
aperture pitch is fixed to obtain one to one correspondence with the detector elements. Different
coded aperture patterns are used for each view angle position sp with p = 1, · · · , P as shown
in Fig. 1(a), which depicts the coded aperture compressive X-ray CT system for a fan beam
architecture.

Each row of the CT system matrix, H, indexes a particular detector element at a given view
angle, from the many detector arrays at all view angles in the system. Thus, as shown in Fig. 1(a)
when a coded aperture is placed in front of the source, the coded aperture elements select the
rows of the matrix H associated with the detector elements that correspond to the unblocking
coded aperture elements. Mathematically, the coded aperture matrix C = [c1 , c2 , · · · , cMP]
is defined as a binary matrix, where each D-long column vector ci with i = 1, · · · ,MP, is
associated with a particular detector element. If the coded aperture element associated with
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Fig. 1. (a) Coded aperture compressive fan beam X-ray CT system. Different coded aper-
tures are placed in front of the rotating source for each location sp . Each row in the sys-
tem matrix H describes the sensing for a particular detector element. The unblocked coded
aperture elements select the rows of the matrixH associated with the detector elements that
correspond to the unblocked coded aperture elements. (b) Sensing matrix Q ∈ RD×N 2

, of
a system with N2 = 9, P = 4, D = 6 and M = 3. Q is formed by the rows selected by the
unblocked elements of the coded apertures. Each column of the coded aperture matrix C
is associated with a detector element. If the coded aperture element associated with the ith
detector element is 0 then ci = 0. Otherwise, the vector ci is a natural basis in RD .

the ith detector element is 0 (blocking element), the corresponding vector ci is a zero vector.
Otherwise ci is a natural basis in RD . Measurements are not multiplexed in the detector array;
thus, the vectors composing the matrix C are disjoint. The resulting system matrix Q is formed
by the rows of the matrix H that correspond to the detectors selected by the non-zero entries
of matrix C, that is Q = CH ∈ R

D×N 2 , where D is the number of unblocked X-rays. The
construction of the matrix C from a set of coded apertures is shown in Fig. 1(b). Additionally,
the sparse structure of the sensing matrixQ and the system matrixH for a real CT system using
random coded apertures, with transmittance 12.5 %, is depicted in Fig. 2(a). The discretized
set of line integrals y ∈ R

D , referred to as the sinogram is given by y = Qf. Each row of
the sinogram represents the set of measurements taken with a particular detector at a particular
view angle, Fig. 2(b) shows the spatially coded sinogram obtained by sampling 50% of the data
required by the Shannon-Nyquist theorem for a 64 × 64 Shepp-Logan phantom. The coded
aperture pattern placed in front of the source at the position sp will be reflected in the pth
row of the sinogram. Figure 2(b) depicts a zoom of a particular row of the coded sinogram.
The black elements denote the blocking elements of the coded aperture for that particular view
angle, while the other detectors reflect the information of the corresponding spatial position of
the un-coded sinogram depicted in Fig. 2(c). The coded aperture optimization problem reduces
to finding the best pattern of blocked elements in the sinogram so that the sensing matrix has
low coherence.

In order to reconstruct the object f from the coded sinogram, the ill-conditioned problem can
be solved using CS algorithms. In general, the function f can be recovered provided the function
f is sufficiently sparse in some basisΨ, and such basis is incoherent with the sensing matrix [13].
Let f be represented by: f = Ψz ∈ R

N 2 , where z is the sparse coefficient representation of the
object, and Ψ is the basis representation. The sensing function can be rewritten as: y = QΨz =
Az, where A = QΨ ∈ R

D×N 2 is the sensing matrix. The sparse representation of the object f
can be obtained by solving the following nonlinear optimization problem [13]

ẑ = argmin
z
‖y − Az‖22 + λ‖z‖1 , (1)
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Fig. 2. (a) Sparse structures of the system matrix Q, the coded aperture matrix C, and the
complete CT system matrixH for a fan beam coded aperture compressive X-ray CT system
with P = 16 view angles, M = 16 detectors per view angle and a N × N = 8 × 8 image. The
coded apertures have 12.5% transmittance, that is D = 32. Non-zero entries are depicted
as black pixels for visualization purposes. (b) Under-sampled sinogram of 64 × 64 Shepp-
Logan Phantom with P = 128, M = 128 detectors per view angle and 50% under-sampling.
A zoom of a particular row of the coded sinogram is depicted. The black elements denote
the blocking elements of the coded aperture for that particular view angle, while the other
detectors reflect the information of the corresponding spatial position of the complete un-
coded sinogram depicted in (c).

where λ is a regularization constant and ‖ · ‖1 and ‖ · ‖2 correspond to the �1 and �2 norms,
respectively.

3. Coded aperture optimization

A possible approach to arranging the blocking and unblocking elements of the coded apertures
is to distribute them randomly as proposed in initial models of coded aperture compressive
X-ray CT. Kaganovsky et al. performed an extensive study regarding random subsampling of
both the view angles and the detectors in [8]. Four subsampling strategies were considered:
(i) Uniform view (UV) subsampling, in which view angles were selected uniformly and the
complete set of detectors was used; (ii) Random view (RV) subsampling, in which the view
angles were selected randomly and the complete set of detectors was used; (iii) Uniform
detector (UD) subsampling, in which all the view angles were used while the set of detectors
in each view angle was uniformly sampled; and (iv) Random detector (RD) subsampling, in
which all the view angles were used while the detectors were randomly selected for each view.
RD subsampling was shown to yield the best performance. The best results in [8] pointed to
the random detector (RD) strategy, where the subsampling is chosen at random. The sensing
matrices of compressive X-ray CT, however, are sparse and highly structured as depicted in Fig.
2(a). As such, random coded apertures are not optimal [9, 10, 21]. Even though coded aperture
design based on the RIP and the coherence of the sensing matrix has been proposed in [12, 22]
for other imaging systems such as the CASSI and the colored CASSI; these results do not
extend directly to CT given that the sensing matrices of the systems are different. While the
system matrix in the CASSI system has well-structured diagonal elements [22], CT matrices
do not have a regular structure as shown in Fig. 2(a). To illustrate the advantages of optimized
coded apertures over the UD and UV sampling strategies proposed in [8], Fig. 3 depicts the
reconstruction of a 128 × 128 Walnut phantom Fig. 3(a), made available by Hämäläinen
et al. in [23], using: (b) Optimized coded apertures obtained using the proposed algorithm,
(c) Uniform subsampling of line integrals (UD strategy [8]), and (d) Uniform subsampling
of view angles (UV strategy [8]). In all scenarios, the number of line integrals is fixed to
D = 16429 for a fair comparison. Note the PSNR of the reconstruction obtained when using
optimized coded apertures Fig. 3(b) is more than 20 decibels (dBs) higher than the PSNR
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obtained using a uniformly distributed set of line integrals or a uniformly distributed set of
view angles, Figs. 3(c) and 3(d) respectively. As it can be seen in the highlighted region of
the original image and the reconstructions in Fig. 3, the reconstructions obtained by uniformly
subsampling the measurements present numerous artifacts compared to using optimized coded
apertures. This example illustrates that structured illumination leads to a better performance
when reconstructing the object from highly under-sampled data.

Fig. 3. (a) 128 × 128 Walnut phantom [23] and reconstructions for different subsam-
pling scenarios using: (b) Optimized coded apertures obtained using the proposed algo-
rithm, and (c) UD, and (d) UV strategies [8]. Measurements were simulated for N = 128,
M = P = 256 and D = 16429. A zoom of the highlighted region is depicted to emphasize
the error in the reconstructions. Figure (b) was reconstructed using the gradient projection
for sparse reconstruction (GPSR) algorithm, Figs. (c) and (d) were reconstructed using a
TV regularization algorithm.

The reconstruction of sparse or compressible signals from a very limited number of measure-
ments relies on properties of the sensing matrix such as the RIP. The restricted isometry constant
δs of the system matrix with normalized columns, Ã ∈ R

D×N 2 , is defined as the smallest δs
such that

(1 − δs ) | |x| |22 ≤ ||Ãx| |22 ≤ (1 + δs ) | |x| |22 , (2)

for all s-sparse x ∈ C
N 2 . The matrix Ã is said to satisfy the RIP if δs is small for reasonably

large s. As shown in [24], it holds that

δs = max
S⊂[N 2], |S |≤s

| |Ã∗
SÃS − I | |2 (3)

where [N2] := 1, 2, · · · , N2 and |S | is the cardinality of S. ÃS are the column sub-matrices of
Ã consisting of the columns indexed by S and Ã∗

S corresponds to the conjugate transpose of ÃS .
The RIP, however, is in general difficult to calculate [25]. Alternatively, instead of calculating
the isometry property constant directly, Hou et al. showed in [20] that δs is bounded by the
Frobenius norm of the difference between the PSF of the system, Ã∗Ã, and the identity matrix,
that is

δs ≤ ||Ã∗Ã − I| |F . (4)

Thus, to increase the reconstruction quality, the quantity Γ= | |Ã∗Ã−I| |F needs to be minimized.
In addition to the RIP, the mutual coherence also provides a measure of the quality of the
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system matrix. If the system matrix is designed to have minimal coherence, then it is possible to
guarantee uniqueness of the solution [26]. The mutual coherence of the matrixA = [a1 · · · aN 2 ]
is defined as μ(A) = maxi� j ,1≤i , j≤N 2

{
aTi a j

| |ai | |�2 | |a j | |�2

}
. The Gram matrix G = Ã∗Ã, where Ã is

the equivalent sensing matrix with all its columns normalized, is an alternative way of looking
at the mutual coherence. Moreover, as proposed by Elad in [26] and Duarte-Carvajalino et al.
in [27], coherence minimization can be performed by making any subset of columns in A as
orthogonal as possible, that is, making G as close as possible to the identity matrix. This is
equivalent to minimizing | |Ã∗Ã − I| |F , which is the same result obtained in Eq. (4). Thus, the
coded aperture optimization is formulated as the search of C, over the D × MP binary space
such that

Ĉ = argmin
C
| |Ã∗Ã − I| |F = argmin

C
Γ. (5)

In order to further expand (5), recall C = [c1 , c2 , · · · , cMP], where ci are D−long column
vectors andW = HΨ = [wT

1 , w
T
2 , · · · ,wT

MP
]T , where each wi is of dimensions 1 × N2. Then

the sensing matrix A can be represented as A = CW =
∑MP

i=1 ciwi , and the element of A in
the (m, n) position can be written as [A]m ,n =

∑MP
i=1 ci (m)wi (n). Therefore, the inner product

between the mth and nth columns after normalization of A is given by:

[ÃT Ã]m ,n =

∑MP
i , j 〈ci , c j 〉wi (m)w j (n)

(∑MP
i , j 〈ci , c j 〉wi (m)w j (m)

)1/2 (∑MP
i , j 〈ci , c j 〉wi (n)w j (n)

)1/2 . (6)

As described in Section 2, matrix C is composed by a combination of zero vectors and a set of
disjoint vectors that are natural bases in RD . As such, the inner product 〈ci , c j 〉 = 0 ∀i � j and
〈ci , c j 〉 = 1 ∀i = j given that ci is not a zero vector otherwise 〈ci , c j 〉 = 0 . Therefore, (6) can
be simplified as:

[ÃT Ã]m ,n =

∑MP
i=1 biwi (m)wi (n)

(∑MP
i=1 biwi (m)wi (m)

)1/2 (∑MP
i=1 biwi (n)wi (n)

)1/2 , (7)

where bi = 〈ci , ci〉. Additionally, the parameter Γ is simplified as:

Γ=

N 2∑

m=1

N 2∑

n=1
|

∑MP
i=1 biwi (m)wi (n)

(∑MP
i=1 biwi (m)wi (m)

)1/2 (∑MP
i=1 biwi (n)wi (n)

)1/2 − Im ,n |2. (8)

Substituting (8) in (5), the reparametrized cost function can be written in terms of the vector
b = [b1 , · · · , bMP]T as:

b̂ = argmin
b
Γ= argmin

b

N 2∑

m=1

N 2∑

n=1
|[ÃT Ã]m ,n − Im ,n |2 (9)

Furthermore, as shown in the Appendix A, the coded aperture optimization cost function in (9)
can be simplified as follows

b̂ = argmin
b

∑

m<n

(
d(m, n)

(d(m,m))1/2 (d(n, n))1/2

)2
= argmin

b
F (b) , (10)

where d(m, n) =
∑MP

i=1 biR
m ,n
i

and where Rm ,n
i
= wi (m)wi (n). Note the optimization problem

in (10) is a combinatorial optimization since bi can only take values 0 or 1 which prevents the
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use of gradient information to explore the search space. To overcome this problem, the parame-
ter values are relaxed to lie in the range [0, 1]. This is achieved by imposing the inequality con-
straint 0 < bi < 1 on the optimization problem given in (10). The resulting bound-constrained
optimization problem can be further reduced to an unconstrained optimization problem using
the following parametric transformation bi = cos θi+1

2 , where θ = [θ1 , ..., θMP]T is the uncon-
strained parameter vector. Such transformation was used by Ma and Arce to reduce the inverse
lithography problem to an unconstrained optimization in [28, 29]. The re-parameterized cost
function can be formulated in terms of the parameter vector θ as follows

F (θ) =
∑

m<n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑MP
i=1

cos θi+1
2 Rm ,n

i
(∑MP

i=1
cos θi+1

2 Rm ,m
i

)1/2 (∑MP
i=1

cos θi+1
2 Rn ,n

i

)1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

2

. (11)

Let dθ (m, n) =
∑MP

i=1
cos θi+1

2 Rm ,n
i

, then (11) can be simplified to

F (θ) =
∑

m<n

(
dθ (m, n)

(dθ (m,m))1/2 (dθ (n, n))1/2

)2
. (12)

Note that this cost function is not convex given the cosine terms in the numerator and denom-
inator that modify the optimization variable θ. Thus, a random stochastic gradient-descent al-
gorithm is used to solve the above problem. This requires the calculation of the first order
derivatives of (12). As shown in Appendix B, the gradients ∇F (θ) can be obtained as follows

∇F (θ) =
⎛
⎜⎜⎜⎜⎜⎝
∑

m<n

−dθ (m, n)Rm ,n

dθ (m,m)dθ (n, n)
+

dθ (m, n)2Rm ,m

2dθ (m,m)2dθ (n, n)
+

dθ (m, n)2Rn ,n

2dθ (m,m)dθ (n, n)2

⎞
⎟⎟⎟⎟⎟⎠ 
 sin θ ,

(13)
where ∇F (θ) ∈ R

MP×1, 
 is the element-by-element multiplication operator and Rm ,n =

[Rm ,n
1 , Rm ,n

2 , · · · , Rm ,n
MP

]T . The random stochastic gradient descent algorithm uses a sample
noise term r drawn uniformly from the unit sphere. Assuming θk

i
is the k th iteration result, the

update at the k th + 1 iteration will be given by

θk+1i = θki − α
[
∇F (θki ) + r

]
, (14)

where α is the step size. The iterative optimization above, in general, leads to gray-valued coded
aperture masks with pixel values between 0 and 1 which makes the coded aperture fabrication
impractical. Hence, a post-processing step to obtain a binary coded aperture is needed. Us-
ing a global threshold parameter tm , with 0 ≤ tm ≤ 1, the values of bi can be quantized as
βi = U

(√
cos(θi )+1

2 − tm
)
, where i = 1, · · · ,MP and U (x) is the Heaviside step function of

x, defined as U (x) = 1 for x ≥ 0 and U (x) = 0 for x < 0. The coded aperture matrix C is
constructed such that matrix Q is formed by the rows of matrix H corresponding to the detector
elements for which βi = 1.

3.1. Regularization
The proposed global thresholding approach to obtain binary values for the coded apertures
is sub-optimal, and the transmittance of the coded apertures obtained by the optimization al-
gorithm cannot be controlled. Thus, it is necessary to incorporate prior knowledge about the
solution by constraining the solution space through the addition of appropriate regularization
terms to the cost function. In general, the formulation can be described as follows:

b̂ = argmin
b

F (b) + γ1V1(b) + γ2V2(b), (15)
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where F (b), defined in (10), is the data fidelity term and V1 and V2 are the regularization terms
used to reduce the solution space and constrain the optimized results. γ1 and γ2 are user-defined
parameters to weight the regularization.

3.1.1. Quadratic penalty

Fig. 4. (a) Quadratic penalty cost function encouraging solution in bi ∈ {0, 1} since the
minimum error is obtained for binary values. (b) Transmittance and uniformity penalty
cost function for M = P = 2N = 16 and μ = 2, i.e. approximately 50 % transmittance.
Note the minimum error is achieved for the desired average number of rays.

To obtain near-binary gray optimized coded apertures through the optimization process, the
quadratic penalty is adopted as in [28, 29]. The quadratic penalty term is defined as V1(b) =
4bT (1 − b), such that for each coded aperture element V1(bi ) = 1 − (2bi − 1)2. The penalty
is maximum for bi = 0.5 and minimum for 0 and 1 as shown in Fig. 4(a), that is the penalty
increases as bi moves away from the binary region. The gradient of V1(b) is given by ∇V1(b) =
(−8b + 4), which can be used in conjunction with (13) while carrying out the steepest-descent
iterations as before.

3.1.2. Transmittance penalty

Uniform sensing of the object has been used as criteria for coded aperture design in previous
works [9,10]. Particularly, uniformity in the number of rays that sense a particular voxel across
the region of interest (ROI) is desirable. To this end, a second penalty term is incorporated to
obtain uniformity in the ROI,ΩC , denoted by the circle of radius N inscribed in the N ×N image
while using a determined number of blocking coded aperture elements, therefore obtaining a
coded aperture with a fixed transmittance. The quadratic penalty term is chosen as the variance
of the sum of the length of the rays that measure each pixel, that is:

V2(b) =
1
NC

∑

k∈ΩC

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝
MP∑

i=1

√
biHi ,k

⎞
⎟⎟⎟⎟⎟⎠ − μ

⎤
⎥⎥⎥⎥⎥⎦

2

, (16)

where μ is the desired mean for the ray concentration, NC is the number of pixels in the ROI
ΩC , and Hi ,k is the intersection length of the ith ray with every pixel k inside ΩC . This penalty
is minimum when the number of rays that sense every pixel inside ΩC is approximately equal
to μ. Figure 4(b) shows an example of the regularization function for M = P = 16 and 50%
transmittance. The three curves show the behavior of the regularization cost function for a par-
ticular pixel in the image and 3 different coded aperture elements i = 86, 104, 123. Note that
the behavior of this function for each coded aperture element depends on the system matrix and
the values of the other coded apertures, for example for the configuration in Fig. 4(b) a change
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in the coded aperture corresponding to the detector element i = 123 would not result in a more
uniform sensing. On the other hand, values of 1 would be sub-optimal to achieve uniformity for
the coded apertures corresponding to the detector elements i = 86, and i = 104. As shown in
Appendix C, the gradients ∇V2(b) can be obtained as follows

∇V2(b) = 1
NC

[
η̄THΩC

− μ
] [
HT
ΩC

]


[
η̄T

]−1
, (17)

where η̄ =
√
b and HΩC

corresponds to a matrix formed with the columns of the matrix H that
correspond to the pixels contained inΩC . This gradient can be used in conjunction with (13) and
∇V1(b) while carrying out the steepest-descent iterations as before. Adding the regularization
terms the cost function is adjusted as

J (b) = F (b) + γ1V1(b) + γ2V2(b). (18)

4. Simulation results

Three scenarios are considered to analyze the performance of the optimized coded apertures. Ini-
tially, a compressive X-ray CT configuration with a flat 1D detector strip composed by M = 64
elements, a fan-beam X-ray source, P = 64 view angles, and an object of interest f represented
by a Shepp-Logan phantom of N × N = 32 × 32 pixels are used. Each of the pixels in the
coded aperture corresponds to a particular detector element as detailed in Fig. 1(a). Therefore,
the coded apertures placed in front of each of the sources are also composed by M = 64 ele-
ments. The ASTRA Tomography Toolbox (âĂIJAll Scale Tomographic Reconstruction Antwer-
pâĂİ) [30] was used to obtain the system matrix H as well as the projection measurements y
of the X-ray source. The setup is adjusted to match the full sampling scenario described by Jor-
gensen et al. in [17]. That is, R0 = 40 cm distance from the center of rotation to the X-ray source,
T0 = 80 cm source-to-detector-center distance, detector length 41.3 cm and M = P = 2N . After
obtaining the system matrix using random and optimal coded apertures and the projections for
the corresponding systems, the linear attenuation coefficient image is reconstructed by solving
the minimization problem in (1) using a modified version of the gradient projection for sparse
reconstruction (GPSR) algorithm. The modified GPSR includes a filtering step, as proposed by
Mejia et al. in [31]. The linear attenuation coefficient CT image is represented on the Haar 2D
Wavelet basis.
Using the algorithm described in Section 3 optimized coded apertures are obtained for dif-

ferent subsampling rates adjusting the regularization constants γ1, γ2 and the parameter D for
each case. Note 50 % subsampling is equivalent to a 50% transmittance of the coded aper-
tures in which case D = 0.5(MP), that is, the subsampling rate corresponds to the percent-
age of the full set of detectors used in each case. The elements of the random coded aper-
tures used are random realizations of Bernoulli random variables, with levels of transmittance
equivalent to the corresponding optimal coded aperture transmittance. The PSNR is used to
compare the reconstructions obtained since it is suitable for comparing restoration results, as
it does not depend strongly on the image intensity scaling. For a scenario with an image I
and a reconstruction R of size N × N it is defined as PSNR = 10 log10

(
Max2I
MSE

)
, where

Max I is the maximum possible pixel value of the image I and the mean squared error (MSE),
MSE = 1

N 2
∑N−1

i=0
∑N−1

j=0
[
I (i, j) − R(i, j)]2. Figure 5(a) shows the PSNR of the random and

optimal coded apertures for multiple subsampling rates. For all the simulations in this paper,
random coded apertures correspond to the RD subsampling strategy proposed by Kaganovsky
et al. in [8]. The random selection of measurements was repeated 10 times, and the mean and
standard error for this ensemble were computed and are represented in the graph by the solid
line and shaded strips respectively. Note that the PSNR is higher when using optimized coded
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Fig. 5. (a) PSNR of the reconstructions obtained using random and optimal coded apertures
with different subsampling rates. For the random coded apertures, 10 realizations were
computed and the graph depicts the mean and the standard error as a solid line and shaded
area respectively. (b) Γ error for optimal and random coded apertures. The subsampling
rate corresponds to the percentage of the full set of detectors used in each case.

Fig. 6. Gradient descent iterations of the optimization function and regularization terms for
47.3% (a) and 20.3% (b) subsampling rates. Gradient descent iterations of the mutual co-
herence for 47.3% (c) and 20.3% (d) subsampling rates. The subsampling rate corresponds
to the percentage of the full set of detectors used in each case. The parameters for the
simulation were M = P = 2N = 128.

apertures for all the studied subsampling rates. Particularly, for 27.6%, 31.8%, and 34.8% sub-
sampling rates the PSNR gain is higher than 15 dB. Furthermore, Fig. 5(b) shows that the error
Γ of the system matrices obtained using optimized coded apertures is lower than the error ob-
tained when using random coded apertures. This behavior is expected as Γ is the cost function
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minimized in the proposed optimization algorithm. For all the experiments the object used was
a 32 × 32 Shepp-Logan phantom. A second simulation scenario is considered with the same
geometrical configuration for the hardware, but changing the parameters M = P = 128 and
N = 64. Figures 6(a) and 6(b) show the gradient descent iterations for the error function F
associated with the PSF and the complete cost function J for subsampling rates of 47.3% and
20.3% respectively. As it can be seen, the error J and the Frobenius norm of the PSF (F) are
minimized over time while maintaining the coded apertures in the solution space. Furthermore,
the mutual coherence of the sensing matrix is calculated in each iteration for both subsampling
rates and it can be seen in Figs. 6(c) and 6(d) that the algorithm converges to a lower mutual
coherence value than the initial coded aperture pattern for both 47.3% and 20.3%. For the latter
subsampling rate, reconstructions using a 64 × 64 Walnut phantom [23] Fig. 7(a) were obtained
for: (b) Optimized and (c) Random coded apertures. Figures 7(d) and 7(e) depict the normal-
ized absolute error for the respective cases. The error images were normalized for each case
by dividing all the values by the maximum error of the 2 images (reconstruction error from
random and optimized coded apertures); this process was performed in order to have the same
error scale for both the absolute error of the random and optimized coded aperture cases. As it

Fig. 7. (a) 64 × 64 Walnut phantom [23]. Reconstructions using: (b) optimized and (c)
random coded apertures with subsampling rate 20.3%. Absolute error images for the (d)
optimized and (e) random cases show more artifacts for random projections.(f) SVD of
the CT matrix with optimized codes and random codes. The condition number of both
the random κr and optimized κo cases are specified. The maximum σmax and minimum
σmin values are specified for the random and optimal cases. Optimized projections result
in a less ill-conditioned system.

is expected from the 4 dB difference between the PSNR of the reconstructions obtained using
optimized and random projections, the error images have higher values and more artifacts in the
latter case. The singular value decomposition (SVD) of the system matrix has been reportedly
used as a tool to compare different sampling strategies [8, 9]. The SVD of the matrix Q for
the optimized and random cases is calculated and it is depicted in Fig. 7(f). For the latter, the
mean for 10 different selections is obtained. Considering there is no prior information about
the object under inspection, the measurement strategy that has more singular value components
lying above certain noise level is considered to outperform the others since it would capture

                                                                                              Vol. 25, No. 20 | 2 Oct 2017 | OPTICS EXPRESS 23845 



more orthogonal components of the object. It can be seen that the condition number (ratio of
greatest singular value to the least non-zero singular value κ) of the optimal codes is better than
the random coded apertures case by an order of magnitude. It can be concluded that the use of
optimized codes leads to less ill-conditioned sensing matrices compared to using random codes,
showing that the proposed optimization framework leads to a better conditioning of the forward
operator. The maximum σmax and minimum σmin values are specified for the random and op-
timal cases and are depicted with a ‘*’ marker in Fig. 7(f).
To illustrate the versatility of the algorithm and the motivation for using a Haar wavelet in the

majority of the simulations, reconstructions using a Symlet wavelet for optimized and random
coded apertures are obtained. The PSNR for the optimized case is 122.28 dB for a subsampling
rate of 32.43%. While the PSNR for a subsampling rate of 32.47% using the Haar wavelet
is 133.51 dB, that is an 11 dB gain. In both cases, the reconstructions obtained using opti-
mized coded apertures outperform the reconstructions obtained using random coded apertures
by approximately 8 dBs. To illustrate the difference between the reconstructions obtained from
random and optimized projections in each case, Figs. 8(a) and 8(b), depict the absolute error
plots for the Haar wavelet and the Symlet wavelet respectively. In both figures, the left surface
plot corresponds to the normalized absolute error of the reconstruction using optimized coded
apertures and the right surface plot corresponds to the normalized absolute error for the recon-
structions using random coded apertures. Note in both cases, the error is higher when using
random coded apertures.

Fig. 8. Normalized absolute error plots for the reconstructions of the 64 × 64 Shepp-Logan
phantom for subsampling rates of 32.47% using a Haar wavelet (a) and 32.4% using a
Symlet wavelet (b) and M = P = 128.

Figure 9 depicts reconstructions for the third scenario, in which real tomographic X-ray pro-
jections of a slice of a lotus root, made available by Bubba et al. in [32], are used. The opti-
mization of the coded apertures for this system was performed using the system matrix and the
sinogram provided by the authors corresponding to P = 120 view angles, M = 429 detectors
and a discretized object of 128 × 128 pixels (N = 128). Figure 9(a) depicts the reconstruction
of the lotus slice from real X-ray data using Landweber iterations without using coded aper-
tures [32], that is, D = MP = 51480 and Figs. 9(b) and 9(c) depict the results obtained when
using coded apertures with subsampling rate 20.6%. Note that the number of projection angles
does not correspond to the optimal case (P = 2N) which results in more artifacts for the three
cases. However, as shown before, the reconstruction results obtained when using optimized
coded apertures have fewer artifacts than the results obtained using random coded apertures.
Note that some of the components on the left-hand side of the pictures cannot be distinguished
in Fig. 9(c) but they appear in Figs. 9(a) and 9(b). Figures 9(d) and 9(e) depict the normalized
absolute error of the reconstructions using random and optimized coded apertures, respectively,
compared to the reconstruction using all the available data Fig. 9(a). Note the reconstruction
obtained using optimal coded apertures presents a lower error for the majority of the pixels in
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the image. Furthermore, the maximum error obtained for the optimized coded apertures case
is 0.6 while in the random case is 1. As before, the SVD of the system matrix, as well as the
condition number, were calculated for both the optimized and random coded aperture cases, the
results are shown in Fig. 9(f). Note that the system matrix is less ill-conditioned when using
optimized coded apertures. As mentioned in Section 3, to achieve uniform sensing, it is ideal

Fig. 9. Reconstructions of a slice of a lotus root from real X-ray tomographic projections,
using: (a) Landweber iterations without using coded apertures [32] and (b) optimized and
(c) random coded apertures with subsampling rate 20.6%. Absolute error images for the
(d) optimized and (e) random cases are depicted.(f) SVD of the CT matrix with optimized
codes and random codes. The condition number of both the random κr and optimized κo
cases are specified. The maximum σmax and minimum σmin values are specified for the
random and optimal cases.

Fig. 10. Intensity graphs of the number of rays that measure certain pixel for D = 7742,
and D = 3327 i.e. 47.3% and 20.3% subsampling rates respectively, with the corresponding
standard deviation, mean and maximum values. Hot Spots, with radiation higher than the
95% of the maximum intensity, are located in the random case for both subsampling rates
and are shown as red dots in the figure.

that the number of rays that sense a particular pixel is approximately uniform across the ROI.
Figure 10 shows the intensity graphs corresponding to the number of rays that measure certain
pixel for different subsampling rates using both optimized and random coded apertures. The
mean and standard deviation are calculated for each case in the circle of radius R = N which
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denotes the ROI for fan-beam X-ray CT systems. Note that for D = 7742 which corresponds to
D > N2 and D = 3327 which corresponds to D < N2 the intensity graphs show that the opti-
mized case results in a more uniform sensing of the object; particularly, note that the standard
deviation is lower when using optimized coded apertures. Furthermore, the maximum radiation
is obtained when using random coded apertures for both subsampling rates as shown by the
hot-spots in the intensity graphs. This concentration is in general not ideal. It should be noted
that the regularization term V2 could be modified to control the radiation at different points. For
example, to radiate specific parts of the object in applications with multiple ROIs.

5. Conclusion

The analysis of the mutual coherence and the restricted isometry constant of the compressive
X-ray CT system allows the formulation of an optimization algorithm based on the PSF of
the system matrix to design the coded aperture patterns in a coded aperture compressive X-ray
CT system. The performance of the proposed optimal codes has been compared to the random
approach introduced in [8] using object-independent performance measures such as SVD, the
mutual coherence, and the uniformity criteria. Additionally, reconstruction results for specific
objects with synthetic and real data show that the coded apertures obtained through the proposed
design lead to reconstructions with higher PSNR than the ones obtained using random coded
apertures. This paper considers a fan-beam geometry and represents the object using Haar and
Symlet wavelet bases, but the framework presented here is far more general and can be applied
to other geometries and to other sparse representations of the object. Furthermore, the analysis
can be extended to other imaging systems that make use of the X-ray transform, such as coded
aperture snapshot spectral imaging (CASSI), compressive X-ray tomosynthesis and spectral CT,
by adapting the cost function according to the corresponding system matrix. Different transmit-
tance levels can be attained according to the constraints imposed by the system by changing a
regularization constant in the proposed cost function and using the random stochastic gradient
descent algorithm proposed in this work. Additionally, a regularization term can be added to the
cost function to induce a more uniform sampling in multiple regions of interest. Fabrication of
the coded apertures for circular tomography is under development. Calibration procedures will
be used in order to mitigate the mismatching errors that might occur. Furthermore, the angular
collimation produced by the implemented coded apertures can be accounted for in the system
matrix H. The optimized codes would take into account this phenomenon.

Appendix A: PSF simplification

From equation (9)

b̂ = argmin
b

N 2∑

m=1

N 2∑

n=1
|[ÃT Ã]m ,n − Im ,n |2. (19)

Given that I is an identity matrix Eq. (19) can be rewritten as

b̂ = argmin
b

∑

m�n

(
[ÃT Ã]m ,n − 0

)2
+
∑

m=n

(
[ÃT Ã]m ,m − 1

)2
. (20)

Furthermore, since the columns of Ã are normalized, [ÃT Ã]m ,m = 1 ∀m, and given that [ÃT Ã]
is symmetric, Eq. (19) simplifies to

b̂ = argmin
b

∑

m�n

(
[ÃT Ã]m ,n

)2
= argmin

b

∑

m<n

(
[ÃT Ã]m ,n

)2
. (21)
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Appendix B: Gradient of the cost function F (θ)

From equation (12), F (θ) =
∑

m<n

(
dθ (m ,n)

(dθ (m ,m))1/2 (dθ (n ,n))1/2

)2
, deriving with respect to θi

∇F (θ)θi =
∑

m<n

[
∂dθ (m ,n)

∂θi

]
2dθ (m, n)dθ (m,m)dθ (n, n) − dθ (m, n)2

[
∂dθ (m ,m)

∂θi
dθ (n, n) + ∂dθ (n ,n)

∂θi
dθ (m,m)

]

(dθ (m,m))2 (dθ (n, n))2
.

(22)
Recall from Section 3, dθ (m, n) =

∑MP
i=1

cos θi+1
2 Rm ,n

i
, thus ∂dθ (m ,n)

∂θi
= Rm ,n

i

( − sin θi
2

)
. Let 
 be

the element-by-element multiplication operator, and Rm ,n = [Rm ,n
1 , Rm ,n

2 , · · · , Rm ,n
MP

]T . Then,
substituting ∂dθ (m ,n)

∂θi
in Eq. 22 we obtain

∇F (θ) =
⎛
⎜⎜⎜⎜⎜⎝
∑

m<n

−dθ (m, n)Rm ,n

dθ (m,m)dθ (n, n)
+

dθ (m, n)2Rm ,m

2dθ (m,m)2dθ (n, n)
+

dθ (m, n)2Rn ,n

2dθ (m,m)dθ (n, n)2

⎞
⎟⎟⎟⎟⎟⎠ 
 sin θ.

(23)

Appendix C: Gradient of the regularization term V2(a)

Consider the regularization cost function V2 for K = 2 terms in ΩC and MP = 2

V2(b) =
1
NC

2∑

k=1

((√
b1 Hk ,1 +

√
b2 Hk ,2

)
− μ

)2
. (24)

Deriving with respect to b1

∇V2(b)b1 =
1
NC

{
2
[(√

b1H1,1 +
√
b2H1,2

)
− μ

] 1
2
√
b1
H1,1 + 2

[(√
b1H2,1 +

√
b2H2,2

)
− μ

] 1
2
√
b1
H2,1

}

(25)
Simplifying the expression in (25)

∇V2(b)b1 =
1
NC

[√
bTHΩC

− μ
] [
H1
ΩC

]T 1√
b1

(26)

Where H1
ΩC

corresponds to the first row of the matrix HΩC
, and HΩC

corresponds to a matrix
formed with the columns of the matrix H that correspond to the pixels contained in the ROI
ΩC . Generalizing the result in (26) for a vector b with MP entries, we obtain the following
expression for the gradient of the regularization term V2

∇V2(b) = 1
NC

[√
bTHΩC

− μ
] [
HΩC

]T 

[√
bT

]−1
(27)

where HΩC
corresponds to a matrix formed with the columns of the matrix H that correspond

to the pixels contained in ΩC .
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