Theory and Ab Initio Computation of the

Anisotropic Light Emission in Monolayer

Transition Metal Dichalcogenides

Hsiao-Yi Chen, †,§ Maurizia Palummo,‡ Davide Sangalli,¶ and Marco Bernardi*,†

†Department of Applied Physics and Materials Science, California Institute of Technology,

Pasadena, California 91125, United States

‡Dipartimento di Fisica and INFN, Università di Roma Tor Vergata, Via della Ricerca

Scientifica 1, 00133 Roma, Italy

¶CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area della Ricerca di

Roma 1, Monterotondo Scalo, Italy

§Department of Physics, California Institute of Technology, Pasadena, California 91125,

United States

E-mail: bmarco@caltech.edu

Phone: +1 (626) 395-2515

Abstract

Monolayer transition metal dichalcogenides (TMDCs) are direct gap semiconduc-

tors with unique potential for ultrathin light emitters. Yet, their photoluminescence

(PL) is not completely understood. We develop an approach to compute the radiative

recombination rate in monolayer TMDCs as a function of photon emission direction

and polarization. Using exciton wavefunctions and energies obtained with the ab initio

Bethe-Salpeter equation, we obtain polar plots of the PL for different scenarios. Our

1

results can explain the PL anisotropy and polarization dependence measured in recent experiments, and predict that light is emitted with a peak intensity normal to the exciton dipole in monolayer TMDCs. We show that excitons emit light anisotropically upon recombination when they are in any quantum superposition state of the K and K' inequivalent valleys. When averaged over emission angle and exciton momentum, our new treatment recovers the temperature dependent radiative lifetimes we previously derived. Our work demonstrates a generally applicable first-principles approach to study anisotropic light emission in two-dimensional materials.

Keywords

Transition metal dichalcogenides, Photoluminescence, Exciton, First-principles, Radiative lifetime, Bethe-Salpeter equation.

Two-dimensional transition metal dichalcogenides (2D-TMDCs) with chemical formula MX₂ (M=Mo, W and X=S, Se, Te) are leading candidates for novel optoelectronic devices. ^{1–10} They exhibit a direct gap in their monolayer form and an indirect gap in bulk crystals and multi-layers. Monolayer TMDCs can absorb light strongly, ⁴ and due to their direct gap are expected to also emit light efficiently. However, experiments on exfoliated monolayers typically exhibit weak photoluminescence (PL). ⁸ Recent work reported near-unity PL quantum yield in MoS₂, ¹⁰ but its origin is still debated. ¹¹ While their radiative recombination has been investigated using time-resolved spectroscopy ^{12–15} and *ab initio* calculations, ⁹ microscopic understanding of light emission in 2D-TMDCs remains incomplete.

The lack of inversion symmetry in monolayer TMDCs leads to two inequivalent valleys at the K and K' corners of the hexagonal Brillouin zone. Locking of the spin and valley degrees of freedom introduces optical valley selection rules, ^{16–18} whereby circularly polarized

light can be employed to selectively generate excitons in a specific valley. ^{18–21} As a result, linearly polarized light can form excitons in a quantum superposition of the two valleys, and linearly polarized PL can probe the coherence of such excitonic states. ^{22–24}

The linearly polarized PL seen experimentally is anisotropic, ^{22–24} and it exhibits an angular dependence that is still not completely understood. The intensity of this anisotropic PL has also been seen to depend strongly on light polarization. ²² Theory and experiments have also shed light on valley decoherence, ^{22,25–29} but quantifying exciton coherence through the PL remains an open problem. The anisotropic PL could enable novel light-emitting, optoelectronic, and photovoltaic devices. ^{1–3} Understanding exciton dynamics, decoherence and light emission is thus critical to advancing 2D-TMDCs.

Here, we derive and compute the radiative rates as a function of photon emission direction and polarization in monolayer TMDCs. We employ the *ab initio* Bethe-Salpeter equation (BSE) to compute exciton energies and wavefunctions. The lowest-energy eigenvectors of the BSE are rotated in their degenerate subspace to form excitons with different valley superposition states. Polar plots of the PL generated when these excitons recombine can explain recent PL measurements under excitation with linearly polarized light, and predict new light emission regimes. Our approach is general, and it enables *ab initio* calculations of the PL in 2D semiconductors. Our results advance microscopic understanding of light emission in 2D-TMDCs, explaining their PL anisotropy and its link to valley polarization and decoherence.

We carry out density functional theory (DFT) calculations within the generalized gradient approximation 30 using the Quantum Espresso code. 31 Experimental lattice parameters are used, together with fully relativistic pseudopotentials that include the spin-orbit coupling; the 5s, 5p, 5d, and 6s states are treated as valence for W, and the 4s and 4p for Se. 9,32 The Yambo code 33 is employed to solve the BSE using a $33 \times 33 \times 1$ k-point grid. A rigid shift of the conduction band DFT eigenvalues is applied to obtain quasiparticle bandstructures consistent with GW. 9

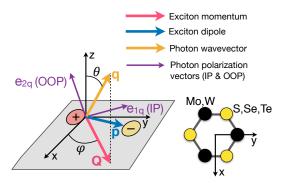


Figure 1: Physical quantities entering our equations. The exciton dipole \mathbf{p} , center-of-mass momentum \mathbf{Q} and in-plane (IP) photon polarization wavevector $\mathbf{e_{1q}}$ lie always in the xy plane containing the material (shaded in gray in figure) in our model. The out-of-plane (OOP) polarization vector $\mathbf{e_{2q}}$ and the photon wavevector \mathbf{q} lie in the \mathbf{Q} - $\hat{\mathbf{z}}$ plane, which is normal to the xy plane and intersects it along the \mathbf{Q} vector. The inset shows the Cartesian coordinates relative to the crystal structure, where spheres represent the atoms.

Within the Tamm-Damcoff approximation, an exciton in state S with center-of-mass momentum \mathbf{Q} can be written as a coherent superposition of non-interacting electron-hole pairs:

$$|S\mathbf{Q}\rangle = \sum_{vc\mathbf{k}} A_{vc\mathbf{k}}^{S\mathbf{Q}} |v\mathbf{k}\rangle |c\mathbf{k} + \mathbf{Q}\rangle$$
 (1)

where v and c label the valence and conduction bands, \mathbf{k} is the electron crystal momentum, and the coefficients $A_{vc\mathbf{k}}^{S\mathbf{Q}}$ are obtained by solving the BSE. The interaction between electrons and photons is treated using the Hamiltonian $H^{\text{int}} = \frac{e}{m} \mathbf{A} \cdot \mathbf{p}$, where \mathbf{p} is momentum and \mathbf{A} the vector potential in second quantized form.³⁴ Following our previous work,⁹ we employ Fermi's golden rule to obtain the exciton radiative decay rate:

$$\gamma_{S}(\mathbf{Q}) = \frac{2\pi}{\hbar} \sum_{\mathbf{q}} \left| \langle G, 1_{\mathbf{q}} | H^{\text{int}} | S\mathbf{Q}, 0 \rangle \right|^{2} \delta(E_{S}(\mathbf{Q}) - \hbar cq)$$

$$= \frac{\pi e^{2}}{\epsilon_{0} m^{2} c V} \sum_{\mathbf{q}} \frac{1}{q} \left| \mathbf{e}_{\mathbf{q}} \cdot \mathbf{p}_{S}(\mathbf{Q}) \right|^{2} \delta(E_{S}(\mathbf{Q}) - \hbar cq)$$
(2)

where the initial state $|S\mathbf{Q}, 0\rangle$ is an exciton with no photon, and the final state $|G, 1_{\lambda \mathbf{q}}\rangle$ the ground state with one emitted photon. The sum runs over two polarizations $\lambda = 1, 2$ (with

polarization vectors $\mathbf{e}_{\lambda \mathbf{q}}$) and the wavevector \mathbf{q} of the emitted photon. Since we focus on monolayers, the exciton center-of-mass momentum is a vector $\mathbf{Q} = Q_x \hat{\mathbf{x}} + Q_y \hat{\mathbf{y}}$ in the xy plane containing the material. Momentum conservation thus requires the in-plane component of the emitted photon wavevector to be equal to \mathbf{Q} , namely, $\mathbf{q} = \mathbf{Q} + q_z \hat{\mathbf{z}}$ (see Figure 1).

The transition dipole in eq 2, $\mathbf{p}_S(\mathbf{Q}) = \langle G|\mathbf{p}|S\mathbf{Q}\rangle$, ³⁵ is called hereafter the dipole of exciton S. Since 2D materials have a weak optical response in the layer-normal direction, we can ignore the z-component of the dipole. For light emission, the values of Q compatible with energy conservation are very small. For this reason, we approximate the dipole of exciton $|S\mathbf{Q}\rangle$ as $\mathbf{p}_S(\mathbf{Q}) \approx \mathbf{p}_S(0)$ by solving the BSE at $\mathbf{Q} = 0$ (the BSE with finite \mathbf{Q}^{36} has been solved for 2D-TMDCs in Ref. ³⁷). Note that the components of \mathbf{p}_S are in general complex numbers. We previously treated the special case in which \mathbf{p}_S is real and arbitrarily chosen to be in the x = y direction. ⁹ This work generalizes the result to an arbitrary complex \mathbf{p}_S , leading to rich physical consequences.

Using the coordinates in Figure 1, we write the transition dipole as $\mathbf{p}_S = p_{Sx} \hat{\mathbf{x}} + p_{Sy} \hat{\mathbf{y}}$, with complex p_{Sx} and p_{Sy} . Without loss of generality, the polarization vectors $\mathbf{e}_{\lambda \mathbf{q}}$ of the emitted photon are chosen as the in-plane (IP) and out-of-plane (OOP) unit vectors:³⁸

IP:
$$\mathbf{e_{1q}} = (-\sin\varphi, \cos\varphi, 0)$$

OOP: $\mathbf{e_{2q}} = (-\cos\theta\cos\varphi, -\cos\theta\sin\varphi, \sin\theta),$ (3)

where φ is the angle between the x-axis and \mathbf{Q} (and thus between the x-axis and the in-plane projection of \mathbf{q}). For an exciton with momentum \mathbf{Q} , the total radiative rate is obtained by summing over both polarizations in eq 2. We obtain (see the Supporting Information):

$$\gamma_{S}(\mathbf{Q}) = \gamma_{S}(0) \cdot \left(\frac{E_{S}(0)}{\sqrt{E_{S}^{2}(Q) - \hbar^{2}c^{2}Q^{2}}} \right)$$

$$\times \left\{ \left| -\frac{p_{Sx}}{p_{S}}\sin\varphi + \frac{p_{Sy}}{p_{S}}\cos\varphi \right|_{\mathrm{IP}}^{2} + \frac{E_{S}(Q)^{2} - \hbar^{2}c^{2}Q^{2}}{E_{S}(Q)^{2}} \left| \frac{p_{Sx}}{p_{S}}\cos\varphi + \frac{p_{Sy}}{p_{S}}\sin\varphi \right|_{\mathrm{OOP}}^{2} \right\} (4)$$

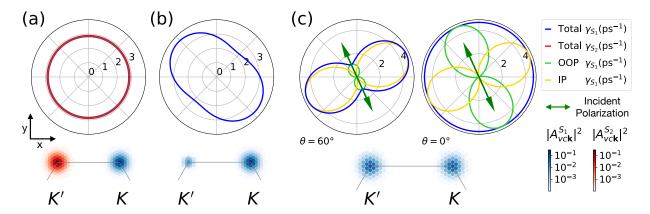


Figure 2: Polar plots of the radiative rates, and the corresponding exciton wavefunctions, shown for several cases. (a) Two distinct excitons entirely located, respectively, on the K and K' valleys, and their isotropic radiative rate. (b) Exciton with unequal weights on the K and K' valleys, and the resulting anisotropic radiative rate and PL emitted for $\theta = 60^{\circ}$. (c) Exciton with equal weights on the K and K' valleys, as generated by linearly polarized light, and its radiative rate emitted at a polar angle $\theta = 60^{\circ}$ (left panel) and along the layer normal at $\theta = 0^{\circ}$ (right panel). The rates for OOP and IP polarized light emission are shown along with their sum. The arrow shows the polarization direction of incident light.

where $E_S(0)$ is the exciton energy computed with the BSE, $E_S(Q)$ the finite-momentum exciton energy, and $\gamma_S(0) = \frac{e^2 p_S^2}{\epsilon_0 m^2 c A E_S(0)}$ the radiative rate for $\mathbf{Q} = 0$; the two terms in curly brackets correspond, respectively, to the IP and OOP emitted photon polarizations. Due to momentum conservation, there is an upper value of $Q = Q_0$ for radiative decay, given by the light-cone condition $E_S(Q_0) = \hbar c Q_0$; the radiative rate vanishes for $Q > Q_0$.

We compute the dependence of the radiative rate on the polar angle θ between the photon emission direction and the layer normal (see Figure 1). Using $E_S(Q) \approx E_S(0)$ due to the very small exciton momentum inside the light cone, together with simple geometric arguments, we have:

$$\frac{\sqrt{E_S^2(Q) - \hbar^2 c^2 Q^2}}{E_S(0)} \approx \frac{\sqrt{E_S^2(Q) - \hbar^2 c^2 Q^2}}{E_S(Q)} = \cos \theta.$$
 (5)

Substituting in eq 4, and using $\gamma_S(\theta, \phi) = \gamma_S(\mathbf{Q})\cos(\theta)$ (see the Supporting Information), we obtain the radiative rates for light emitted with IP and OOP polarizations:

$$\gamma_S^{\text{IP}}(\theta, \varphi) = \gamma_S(0) \left| -\frac{p_{Sx}}{p_S} \sin \varphi + \frac{p_{Sy}}{p_S} \cos \varphi \right|^2$$
(6)

$$\gamma_S^{\text{OOP}}(\theta, \varphi) = \gamma_S(0) \cos^2 \theta \left| \frac{p_{Sx}}{p_S} \cos \varphi + \frac{p_{Sy}}{p_S} \sin \varphi \right|^2.$$
 (7)

Since the intensity of light emitted at a given angle is proportional to the radiative rate, these equations can provide polar plots of the PL. The IP and OOP contributions, which can be measured separately in experiments able to discern the PL polarization, can be added together to obtain the total PL intensity.

An important point is that the lowest-energy exciton responsible for light emission (so-called bright A 1s exciton^{8,9}) is two-fold degenerate in 2D-TMDCs due to the valley degeneracy. These degenerate excitons, called here $|S_1\rangle$ and $|S_2\rangle$, are orthogonal but randomly oriented in their degenerate subspace when the BSE Hamiltonian is diagonalized numerically at $\mathbf{Q} = 0$. They can be rotated in the degenerate subspace to new states $|S'_i\rangle = \mathbf{M}_{ij} |S_j\rangle$ using a unitary matrix \mathbf{M} in SU(2):³⁹

$$\mathbf{M}(u, \theta_1, \theta_2) = \begin{pmatrix} u & \sqrt{1 - |u|^2} e^{i\theta_1} \\ -\sqrt{1 - |u|^2} e^{-i(\theta_1 - \theta_2)} & u^* e^{i\theta_2} \end{pmatrix}$$
(8)

where u, θ_1 and θ_2 are independent parameters defining the transformation. Since excitons are represented by coefficients $A_{vc\mathbf{k}}^S$ in the electron-hole basis employed to solve the BSE, 33,40 the rotation is accomplished by transforming the exciton coefficients as $(A_{vc\mathbf{k}}^{S_1'}, A_{vc\mathbf{k}}^{S_2'})^T = \mathbf{M} \cdot (A_{vc\mathbf{k}}^{S_1}, A_{vc\mathbf{k}}^{S_2})^T$, where T is the transpose.

In the following, the transformed excitons $|S'_i\rangle$ are chosen as those physically relevant in selected excitation scenarios of interest. The square modulus of their coefficients, $|A^{S'_i}_{vc\mathbf{k}}|^2$, define the probability to find the exciton in the K and K' valleys. The exciton dipoles, by virtue of their definition $\mathbf{p}_{S_i} = \langle G|\mathbf{p}|S_i\rangle$, transform in the same way as the exciton states,

namely $\mathbf{p}'_i \equiv \mathbf{p}_{S'_i} = \mathbf{M}_{ij}\mathbf{p}_{S_j}$. The dipoles $\mathbf{p}'_{1,2}$ of the transformed excitons determine their radiative rate through eq 4.

Figure 2 shows different excitation and light emission scenarios. For each case, we plot the exciton weights $|A_{vc\mathbf{k}}^S|^2$ on the two valleys and the radiative rate — which is proportional to the intensity of the PL signal — as a function of in-plane light emission angle φ at a fixed polar angle θ . The results shown here are for WSe₂, but similar trends also hold for other 2D-TMDCs.

Figure 2(a) focuses on excitons generated with circularly polarized light. We transform the BSE eigenvectors to obtain two excitons $|S_{1,2}\rangle$ each located entirely on one valley. We find that the PL for these excitons is isotropic about the layer normal, regardless of the angle θ at which light emission is detected. The isotropic PL is consistent with the fact that circularly polarized photons cannot break the in-plane rotational symmetry of 2D-TMDCs.

In Figure 2(b), we form excitons with unequal weights on the K and K' valleys, which can be directly excited with light or result from decoherence processes. By placing more weight on either valley, the isotropic PL pattern is broken — the radiative rate becomes greater along a specific direction, and the PL is anisotropic for excitons in *any* quantum superposition state of the two valleys.

Figure 2(c) focuses on excitons generated with incident light linearly polarized in the $\hat{\mathbf{E}}_{inc}$ direction. We form two excitons $|S_{1,2}\rangle$ with, respectively, dipoles \mathbf{p}_1 parallel and \mathbf{p}_2 perpendicular to $\hat{\mathbf{E}}_{inc}$. With this choice, only $|S_1\rangle$ is excited since $|\mathbf{p}_2 \cdot \hat{\mathbf{E}}_{inc}| = 0$. Consistent with the optical valley rule, the resulting exciton $|S_1\rangle$ is an equal superposition state of the K and K' valleys, further proving the validity of our rotation procedure. The IP and OOP polarized emission rates, along with their sum, are shown for two emission polar angles, $\theta = 60^{\circ}$ and $\theta = 0^{\circ}$. The IP polarized emission is stronger than the OOP at $\theta = 60^{\circ}$, leading to a total PL that is anisotropic and maximal in the in-plane direction normal to the incident polarization. For $\theta = 0$ (i.e., in the layer-normal direction) the two contributions are equal in magnitude and the resulting PL is isotropic. Both the IP and OOP polarizations lie in

the xy plane in the $\theta \to 0$ limit, and the emitted photons are polarized in the $\hat{\mathbf{E}}_{\text{inc}}$ direction.

As seen from eqs 6–7, the OOP and IP radiative rates and PL signals are rotated by $\varphi = \pi/2$ with respect to one another, and their ratio is:

$$\frac{\gamma_S^{\text{OOP}}(\varphi + \pi/2)}{\gamma_S^{\text{IP}}(\varphi)} = \cos^2(\theta) \le 1.$$
 (9)

This result explains why recent experiments²² observe a stronger PL signal polarized in plane compared to out of plane. When the linear polarization direction of the light that excites the sample is rotated (not shown), we find that only the total phase of the exciton wavefunction changes, and the PL pattern in Figure 2(c) is unchanged but reoriented according to the linear polarization direction, in agreement with the measurements in Ref.²²

There is an important point in the interpretation of recent PL measurements. $^{22-24}$ Due to the small size of the samples, the PL is typically collected through a microscope, measured in the layer-normal direction, and then passed through a polarizer or analyzer. 23,24 The resulting polar plots of the PL as a function of the angle α between the polarizer and the incident polarization exhibit a $\cos(2\alpha)$ trend. $^{22-24}$ In these works, we feel that the dependence of the PL on the polarizer angle α has not been clearly differentiated from the PL dependence on emission direction. We stress that the PL anisotropy computed as a function of emission angle φ in Figure 2(b,c) is distinct from the PL anisotropy measured as a function polarizer angle α , which can be readily explained with our approach.

In the $\theta \to 0$ limit probed experimentally, the radiative rate in eq 2 is $\gamma_S \propto \sum_{\lambda} |\mathbf{e_q} \cdot \mathbf{p}_S|^2$. For excitation with polarization along $\hat{\mathbf{x}}$, which induces a dipole $\mathbf{p}_S = p_S \hat{\mathbf{x}}$, collecting light through a polarizer oriented at angle α gives $\gamma_S \propto p_S^2 \sum_{\lambda} |(A_{\alpha} \mathbf{e_q}) \cdot \hat{\mathbf{x}}|^2$, where A_{α} is the Jones matrix⁴¹

$$A_{\alpha} = \begin{pmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{pmatrix} \tag{10}$$

For $\theta \to 0$, one obtains $\gamma_S(\alpha) \propto p_S^2 \cos^2 \alpha$, a result that also holds for arbitrary θ . We thus predict a PL intensity as a function of polarizer angle $I(\alpha) = I_0 \cos^2 \alpha = I_0[1 + \cos(2\alpha)]/2$ (see Figure 3), which explains the $\cos(2\alpha)$ angular dependence observed in the PL measurements. ^{22–24} By contrast, in Figure 2(c) excitation with linearly polarized light yields a PL with maximal intensity in the in-plane direction *normal* to the exciton dipole (as in classical dipole radiation) rather than parallel to the exciton dipole as in the $I(\alpha)$ plots. To our knowledge, such direction dependent measurements have not yet been carried out.

Also shown in Figure 3 is the expected PL intensity including exciton decoherence effects, which has a trend of $I(\alpha) = A_1 + A_2 \cos(2\alpha)$ (A_i are numerical constants). Two mechanisms can induce exciton decoherence, including T_1 relaxation processes, in which the exciton weights on the K and K' valleys vary due to intervalley scattering, resulting in exciton wavefunctions similar to Figure 2(b), and T_2 relaxation processes, in which the valley weights remain equal, but the exciton dipole – and thus the polarization – rotates by a random angle. Decoherence due to both processes opens a neck in the $I(\alpha)$ PL polar plot (see Figure 3) since a polarizer placed normal to the incident polarization will measure a non-zero signal. Recent measurements of T_2 times of ~ 350 fs^{23,24} at low temperature, where the radiative lifetime is of order 1–10 ps,⁹ justify the significant loss of polarization observed experimentally.^{23,24}

While we treated the bright A 1s exciton as two-fold degenerate, recent work has shown that two exciton branches with a very small energy difference (\sim 1 meV in MoS₂) are present at the light cone due to the exchange interaction.³⁷ These exciton branches correspond to a particular basis in the nearly degenerate pseudospin space. In our notation, excitons in the lower branch with parabolic dispersion couple only to IP polarized light, and excitons in the upper branch with v-shaped dispersion only to OOP polarized light.³⁷ Our approach, which treats these branches as degenerate, forms a single exciton $|S_1\rangle$ that contributes to both IP and OOP polarized emission, which is equivalent to summing over the nearly degenerate branches in Ref.³⁷

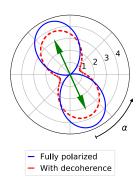


Figure 3: Polar plot of the PL as a function of the angle α between the polarizer and the incident polarization. Shown are the ideal case in which light is fully polarized along the excitation polarization direction (indicated by the arrow) and the case in which light is only partially polarized as a result of decoherence.

Our treatment generalizes the radiative rates derived in our previous work⁹ under the assumption of isotropic exciton dipoles. When \mathbf{p}_S is real and oriented along the x=y direction, so that p_x and p_y are equal, eq 4 reduces to our previously derived formula,⁹ $\gamma_S(\mathbf{Q}) = \gamma_S(0) \cdot \sqrt{1 - \hbar^2 c^2 Q^2 / E_S^2(\mathbf{Q})}$.⁴² The temperature dependence of the radiative rates in Ref.⁹ can also be recovered. Averaging the radiative rate in eq 4 over momentum Q and emission angle φ (see the Supporting Information) gives the temperature dependent radiative lifetime derived in our previous work:⁹

$$\langle \tau_S \rangle (T) = \langle \gamma_S \rangle^{-1} = \gamma_S^{-1}(0) \cdot \frac{3}{4} \left(\frac{E_S(0)^2}{2M_S c^2 k_B T} \right)^{-1}. \tag{11}$$

The few ps lifetimes at low temperature and few ns room temperature lifetimes we predicted with this formula⁹ have now been confirmed by several experiments.^{11–15}

In summary, we presented a general *ab initio* method to compute the radiative rate and PL as a function of direction and polarization in 2D semiconductors. The new treatment reveals the inherently anisotropic PL of 2D-TMDCs and its dependence on polarization, valley occupation and decoherence. Future work will apply our approach to shed light on the PL of structurally anisotropic 2D materials, including ReSe₂ and black phosphorous, where exciton anisotropy is expected to lead to novel PL regimes.

Acknowledgement

H.-Y.C thanks the Taiwan Ministry of Education for fellowship support. M.B. acknowledges support by the National Science Foundation under Grant ACI-1642443, and partial support from the Space Solar Program Initiative at the California Institute of Technology. M.P. acknowledges financial support from the specific initiative NEMESYS of the Italian National Institute of Nuclear Physics (INFN) and EC for the RISE project CoExAN GA644076. D.S. acknowledges funding from the European Union project MaX Materials design at the eXascale H2020-EINFRA-2015-1, Grant Agreement No. 676598 and Nanoscience Foundries and Fine Analysis - Europe H2020-INFRAIA-2014-2015, Grant Agreement No. 654360. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No DE-AC02-05CH11231.

Supporting Information Available

The Supporting Information is available free of charge on the ACS Publications website at DOI: [URL].

Detailed derivations of eq 4, eq 6, eq 7 and eq 11.

This material is available free of charge via the Internet at http://pubs.acs.org/.

Notes and References

(1) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. *Nat. Nanotech.* **2012**, *7*, 699–712.

- (2) Eda, G.; Maier, S. A. ACS Nano 2013, 7, 5660–5665.
- (3) Bernardi, M.; Ataca, C.; Palummo, M.; Grossman, J. C. Nanophotonics **2017**, *6*, 479–493.
- (4) Bernardi, M.; Palummo, M.; Grossman, J. C. Nano Lett. 2013, 13, 3664–3670.
- (5) Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y.-J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; Grigorenko, A. N.; Geim, A. K.; Casiraghi, C.; Neto, A. H. C.; Novoselov, K. S. Science 2013, 340, 1311–1314.
- (6) Wong, J.; Jariwala, D.; Tagliabue, G.; Tat, K.; Davoyan, A. R.; Sherrott, M. C.; Atwater, H. A. ACS Nano 2017, 11, 7230–7240.
- (7) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. *Nano Lett.* **2010**, *10*, 1271–1275.
- (8) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. **2010**, 105, 136805.
- (9) Palummo, M.; Bernardi, M.; Grossman, J. C. Nano Lett. **2015**, 15, 2794–2800.
- (10) Amani, M. et al. Science **2015**, 350, 1065–1068.
- (11) Goodman, A. J.; Willard, A. P.; Tisdale, W. A. Phys. Rev. B 2017, 96, 121404.
- (12) Shi, H.; Yan, R.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. ACS Nano 2013, 7, 1072–1080.
- (13) Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schüller, C. *Appl. Phys. Lett.* **2011**, 99, 102109.
- (14) Lagarde, D.; Bouet, L.; Marie, X.; Zhu, C. R.; Liu, B. L.; Amand, T.; Tan, P. H.; Urbaszek, B. Phys. Rev. Lett. 2014, 112, 047401.

- (15) Yuan, L.; Wang, T.; Zhu, T.; Zhou, M.; Huang, L. *J. Phys. Chem. Lett.* **2017**, *8*, 3371–3379.
- (16) Yao, W.; Xiao, D.; Niu, Q. Phys. Rev. B **2008**, 77, 235406.
- (17) Cao, T.; Wang, G.; Han, W.; Ye, H.; Zhu, C.; Shi, J.; Niu, Q.; Tan, P.; Wang, E.; Liu, B.; Feng, J. *Nat. Commun.* **2012**, *3*, 887.
- (18) Xu, X.; Yao, W.; Xiao, D.; Heinz, T. F. Nat. Phys. **2014**, 10, 343–350.
- (19) Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Nat. Nanotech. 2012, 7, 490–493.
- (20) Mak, K. F.; He, K.; Shan, J.; Heinz, T. F. Nat. Nanotech. 2012, 7, 494–498.
- (21) Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W. Phys. Rev. Lett. 2012, 108, 196802.
- (22) Jones, A. M.; Yu, H.; Ghimire, N. J.; Wu, S.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J.; Mandrus, D. G.; Xiao, D.; Yao, W.; Xu, X. Nat. Nanotech. **2013**, 8, 634–638.
- (23) Wang, G.; Marie, X.; Liu, B.; Amand, T.; Robert, C.; Cadiz, F.; Renucci, P.; Urbaszek, B. *Phys. Rev. Lett.* **2016**, *117*, 187401.
- (24) Ye, Z.; Sun, D.; Heinz, T. F. Nat. Phys. **2017**, 13, 26.
- (25) Yu, T.; Wu, M. W. Phys. Rev. B **2014**, 89, 205303.
- (26) Yu, T.; Wu, M. W. Phys. Rev. B **2016**, 93, 045414.
- (27) Molina-Sanchez, A.; Sangalli, D.; Wirtz, L.; Marini, A. Nano Lett. 2017, 17, 4549–4555.
- (28) Mai, C.; Barrette, A.; Yu, Y.; Semenov, Y. G.; Kim, K. W.; Cao, L.; Gundogdu, K. Nano Lett. **2013**, 14, 202–206.
- (29) Hao, K.; Moody, G.; Wu, F.; Dass, C. K.; Xu, L.; Chen, C.-H.; Sun, L.; Li, M.-Y.; Li, L.-J.; MacDonald, A. H.; Li, X. Nat. Phys. **2016**, 12, 677–682.

- (30) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- (31) Giannozzi, P. et al. J. Phys. Condens. Matter 2009, 21, 395502.
- (32) Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Phys. Rev. B 2012, 85, 205302.
- (33) Marini, A.; Hogan, C.; Grüning, M.; Varsano, D. Comput. Phys. Commun. **2009**, 180, 1392 1403.
- (34) Loudon, R. The Quantum Theory of Light; OUP Oxford, 2000.
- (35) In practice, we use the velocity operator, and compute the transition dipole as $\mathbf{p}_S(\mathbf{Q}) = (-im/\hbar)\langle G|[\mathbf{x}, H]|S\mathbf{Q}\rangle$ to correctly include the non-local part of the Hamiltonian.⁴³
- (36) Gatti, M.; Sottile, F. Phys. Rev. B **2013**, 88, 155113.
- (37) Qiu, D. Y.; Cao, T.; Louie, S. G. Phys. Rev. Lett. 2015, 115, 176801.
- (38) The IP and OOP polarizations are also referred to in the literature as the horizontal and vertical polarizations, respectively, or the transverse (IP) and longitudinal (OOP) polarizations in Ref. ³⁷.
- (39) Hall, B. Lie Groups, Lie Algebras, and Representations: an Elementary Introduction; Springer, 2015.
- (40) Rohlfing, M.; Louie, S. G. Phys. Rev. B **2000**, 62, 4927–4944.
- (41) Jones, R. C. J. Opt. Soc. Am. **1941**, 31, 488–493.
- (42) We remark that $\gamma_S(0) = \frac{e^2 p_S^2}{\epsilon_0 m^2 c A E_S(0)}$ derived here is a factor of 2 smaller than in Ref.,⁹ where the unit vector along the exciton dipole was taken to be $\hat{\mathbf{x}} + \hat{\mathbf{y}}$, and thus incorrectly normalized to $\sqrt{2}$ instead of 1. Note also that here we use SI units, whereas Ref.⁹ uses CGS units, in which $\epsilon_0 = 1/4\pi$, and further substitutes $p_S^2 = m^2 E_S^2(0) \mu_S^2/\hbar^2$.
- (43) Sangalli, D.; Berger, J.; Attaccalite, C.; Grüning, M.; Romaniello, P. *Phys. Rev. B* **2017**, *95*, 155203.

Graphical TOC Entry

