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Abstract

Monolayer transition metal dichalcogenides (TMDCs) are direct gap semiconduc-

tors with unique potential for ultrathin light emitters. Yet, their photoluminescence

(PL) is not completely understood. We develop an approach to compute the radiative

recombination rate in monolayer TMDCs as a function of photon emission direction

and polarization. Using exciton wavefunctions and energies obtained with the ab initio

Bethe-Salpeter equation, we obtain polar plots of the PL for different scenarios. Our
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results can explain the PL anisotropy and polarization dependence measured in recent

experiments, and predict that light is emitted with a peak intensity normal to the ex-

citon dipole in monolayer TMDCs. We show that excitons emit light anisotropically

upon recombination when they are in any quantum superposition state of the K and

K’ inequivalent valleys. When averaged over emission angle and exciton momentum,

our new treatment recovers the temperature dependent radiative lifetimes we previ-

ously derived. Our work demonstrates a generally applicable first-principles approach

to study anisotropic light emission in two-dimensional materials.
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Two-dimensional transition metal dichalcogenides (2D-TMDCs) with chemical formula MX2

(M=Mo, W and X=S, Se, Te) are leading candidates for novel optoelectronic devices.1–10

They exhibit a direct gap in their monolayer form and an indirect gap in bulk crystals and

multi-layers. Monolayer TMDCs can absorb light strongly,4 and due to their direct gap are

expected to also emit light efficiently. However, experiments on exfoliated monolayers typi-

cally exhibit weak photoluminescence (PL).8 Recent work reported near-unity PL quantum

yield in MoS2,10 but its origin is still debated.11 While their radiative recombination has been

investigated using time-resolved spectroscopy12–15 and ab initio calculations,9 microscopic

understanding of light emission in 2D-TMDCs remains incomplete.

The lack of inversion symmetry in monolayer TMDCs leads to two inequivalent valleys

at the K and K’ corners of the hexagonal Brillouin zone. Locking of the spin and valley

degrees of freedom introduces optical valley selection rules,16–18 whereby circularly polarized
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light can be employed to selectively generate excitons in a specific valley.18–21 As a result,

linearly polarized light can form excitons in a quantum superposition of the two valleys, and

linearly polarized PL can probe the coherence of such excitonic states.22–24

The linearly polarized PL seen experimentally is anisotropic,22–24 and it exhibits an an-

gular dependence that is still not completely understood. The intensity of this anisotropic

PL has also been seen to depend strongly on light polarization.22 Theory and experiments

have also shed light on valley decoherence,22,25–29 but quantifying exciton coherence through

the PL remains an open problem. The anisotropic PL could enable novel light-emitting,

optoelectronic, and photovoltaic devices.1–3 Understanding exciton dynamics, decoherence

and light emission is thus critical to advancing 2D-TMDCs.

Here, we derive and compute the radiative rates as a function of photon emission direction

and polarization in monolayer TMDCs. We employ the ab initio Bethe-Salpeter equation

(BSE) to compute exciton energies and wavefunctions.9 The lowest-energy eigenvectors of

the BSE are rotated in their degenerate subspace to form excitons with different valley

superposition states. Polar plots of the PL generated when these excitons recombine can

explain recent PL measurements under excitation with linearly polarized light, and predict

new light emission regimes. Our approach is general, and it enables ab initio calculations

of the PL in 2D semiconductors. Our results advance microscopic understanding of light

emission in 2D-TMDCs, explaining their PL anisotropy and its link to valley polarization

and decoherence.

We carry out density functional theory (DFT) calculations within the generalized gradient

approximation30 using the Quantum Espresso code.31 Experimental lattice parameters

are used, together with fully relativistic pseudopotentials that include the spin-orbit cou-

pling; the 5s, 5p, 5d, and 6s states are treated as valence for W, and the 4s and 4p for Se.9,32

The Yambo code33 is employed to solve the BSE using a 33×33×1 k-point grid. A rigid shift

of the conduction band DFT eigenvalues is applied to obtain quasiparticle bandstructures

consistent with GW.9
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Figure 1: Physical quantities entering our equations. The exciton dipole p, center-of-mass
momentum Q and in-plane (IP) photon polarization wavevector e1q lie always in the xy
plane containing the material (shaded in gray in figure) in our model. The out-of-plane
(OOP) polarization vector e2q and the photon wavevector q lie in the Q-ẑ plane, which is
normal to the xy plane and intersects it along the Q vector. The inset shows the Cartesian
coordinates relative to the crystal structure, where spheres represent the atoms.

Within the Tamm-Damcoff approximation, an exciton in state S with center-of-mass

momentum Q can be written as a coherent superposition of non-interacting electron-hole

pairs:

|SQ〉 =
∑
vck

ASQvck|vk〉|ck + Q〉 (1)

where v and c label the valence and conduction bands, k is the electron crystal momentum,

and the coefficients ASQvck are obtained by solving the BSE. The interaction between electrons

and photons is treated using the Hamiltonian H int = e
m
A · p, where p is momentum and A

the vector potential in second quantized form.34 Following our previous work,9 we employ

Fermi’s golden rule to obtain the exciton radiative decay rate:

γS(Q) =
2π

h̄

∑
q

∣∣〈G, 1q|H int|SQ, 0〉
∣∣2 δ(ES(Q)− h̄cq)

=
πe2

ε0m2cV

∑
q

1

q
|eq · pS(Q)|2 δ(ES(Q)− h̄cq)

(2)

where the initial state |SQ, 0〉 is an exciton with no photon, and the final state |G, 1λq〉 the

ground state with one emitted photon. The sum runs over two polarizations λ = 1, 2 (with
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polarization vectors eλq) and the wavevector q of the emitted photon. Since we focus on

monolayers, the exciton center-of-mass momentum is a vectorQ = Qxx̂+Qyŷ in the xy plane

containing the material. Momentum conservation thus requires the in-plane component of

the emitted photon wavevector to be equal to Q, namely, q = Q + qzẑ (see Figure 1).

The transition dipole in eq 2, pS(Q) = 〈G|p|SQ〉 ,35 is called hereafter the dipole of

exciton S. Since 2D materials have a weak optical response in the layer-normal direction, we

can ignore the z-component of the dipole. For light emission, the values of Q compatible with

energy conservation are very small. For this reason, we approximate the dipole of exciton

|SQ〉 as pS(Q) ≈ pS(0) by solving the BSE at Q = 0 (the BSE with finite Q36 has been

solved for 2D-TMDCs in Ref.37). Note that the components of pS are in general complex

numbers. We previously treated the special case in which pS is real and arbitrarily chosen

to be in the x= y direction.9 This work generalizes the result to an arbitrary complex pS,

leading to rich physical consequences.

Using the coordinates in Figure 1, we write the transition dipole as pS = pSx x̂ + pSy ŷ,

with complex pSx and pSy. Without loss of generality, the polarization vectors eλq of the

emitted photon are chosen as the in-plane (IP) and out-of-plane (OOP) unit vectors :38

IP : e1q = (− sinϕ, cosϕ, 0)

OOP : e2q = (− cos θ cosϕ,− cos θ sinϕ, sin θ), (3)

where ϕ is the angle between the x-axis and Q (and thus between the x-axis and the in-plane

projection of q). For an exciton with momentum Q, the total radiative rate is obtained by

summing over both polarizations in eq 2. We obtain (see the Supporting Information):

γS(Q)=γS(0)·

 ES(0)√
E2
S(Q)− h̄2c2Q2


×

{∣∣∣∣−pSxpS sinϕ+
pSy
pS

cosϕ

∣∣∣∣2
IP

+
ES(Q)2 − h̄2c2Q2

ES(Q)2

∣∣∣∣pSxpS cosϕ+
pSy
pS

sinϕ

∣∣∣∣2
OOP

}
(4)
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Figure 2: Polar plots of the radiative rates, and the corresponding exciton wavefunctions,
shown for several cases. (a) Two distinct excitons entirely located, respectively, on the K
and K’ valleys, and their isotropic radiative rate. (b) Exciton with unequal weights on the
K and K’ valleys, and the resulting anisotropic radiative rate and PL emitted for θ = 60°.
(c) Exciton with equal weights on the K and K’ valleys, as generated by linearly polarized
light, and its radiative rate emitted at a polar angle θ = 60° (left panel) and along the layer
normal at θ = 0° (right panel). The rates for OOP and IP polarized light emission are shown
along with their sum. The arrow shows the polarization direction of incident light.

where ES(0) is the exciton energy computed with the BSE, ES(Q) the finite-momentum

exciton energy, and γS(0) =
e2p2S

ε0m2cAES(0)
the radiative rate for Q= 0; the two terms in curly

brackets correspond, respectively, to the IP and OOP emitted photon polarizations. Due to

momentum conservation, there is an upper value of Q=Q0 for radiative decay, given by the

light-cone condition ES(Q0) = h̄cQ0; the radiative rate vanishes for Q>Q0.

We compute the dependence of the radiative rate on the polar angle θ between the

photon emission direction and the layer normal (see Figure 1). Using ES(Q)≈ES(0) due

to the very small exciton momentum inside the light cone, together with simple geometric

arguments, we have:

√
E2
S(Q)− h̄2c2Q2

ES(0)
≈

√
E2
S(Q)− h̄2c2Q2

ES(Q)
= cos θ. (5)
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Substituting in eq 4, and using γS(θ, φ) = γS(Q) cos(θ) (see the Supporting Information),

we obtain the radiative rates for light emitted with IP and OOP polarizations:

γIPS (θ, ϕ) = γS(0)

∣∣∣∣−pSxpS sinϕ+
pSy
pS

cosϕ

∣∣∣∣2 (6)

γOOP
S (θ, ϕ)= γS(0) cos2 θ

∣∣∣∣pSxpS cosϕ+
pSy
pS

sinϕ

∣∣∣∣2 . (7)

Since the intensity of light emitted at a given angle is proportional to the radiative rate,

these equations can provide polar plots of the PL. The IP and OOP contributions, which

can be measured separately in experiments able to discern the PL polarization, can be added

together to obtain the total PL intensity.

An important point is that the lowest-energy exciton responsible for light emission (so-

called bright A 1s exciton8,9) is two-fold degenerate in 2D-TMDCs due to the valley degen-

eracy. These degenerate excitons, called here |S1〉 and |S2〉, are orthogonal but randomly

oriented in their degenerate subspace when the BSE Hamiltonian is diagonalized numerically

at Q = 0. They can be rotated in the degenerate subspace to new states |S ′i〉 = Mij |Sj〉

using a unitary matrix M in SU(2):39

M(u, θ1, θ2) =

 u
√

1− |u|2eiθ1

−
√

1− |u|2e−i(θ1−θ2) u∗eiθ2

 (8)

where u, θ1 and θ2 are independent parameters defining the transformation. Since excitons

are represented by coefficients ASvck in the electron-hole basis employed to solve the BSE,33,40

the rotation is accomplished by transforming the exciton coefficients as (A
S′
1
vck, A

S′
2
vck)T =

M · (AS1
vck, A

S2
vck)T , where T is the transpose.

In the following, the transformed excitons |S ′i〉 are chosen as those physically relevant in

selected excitation scenarios of interest. The square modulus of their coefficients, |AS
′
i
vck|2,

define the probability to find the exciton in the K and K’ valleys. The exciton dipoles, by

virtue of their definition pSi
= 〈G|p|Si〉, transform in the same way as the exciton states,
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namely p′i ≡ pS′
i
= MijpSj

. The dipoles p′1,2 of the transformed excitons determine their

radiative rate through eq 4.

Figure 2 shows different excitation and light emission scenarios. For each case, we plot

the exciton weights
∣∣ASvck∣∣2 on the two valleys and the radiative rate − which is proportional

to the intensity of the PL signal − as a function of in-plane light emission angle ϕ at a fixed

polar angle θ. The results shown here are for WSe2, but similar trends also hold for other

2D-TMDCs.

Figure 2(a) focuses on excitons generated with circularly polarized light. We transform

the BSE eigenvectors to obtain two excitons |S1,2〉 each located entirely on one valley. We

find that the PL for these excitons is isotropic about the layer normal, regardless of the

angle θ at which light emission is detected. The isotropic PL is consistent with the fact that

circularly polarized photons cannot break the in-plane rotational symmetry of 2D-TMDCs.

In Figure 2(b), we form excitons with unequal weights on the K and K’ valleys, which

can be directly excited with light or result from decoherence processes. By placing more

weight on either valley, the isotropic PL pattern is broken − the radiative rate becomes

greater along a specific direction, and the PL is anisotropic for excitons in any quantum

superposition state of the two valleys.

Figure 2(c) focuses on excitons generated with incident light linearly polarized in the

Êinc direction. We form two excitons |S1,2〉 with, respectively, dipoles p1 parallel and p2

perpendicular to Êinc. With this choice, only |S1〉 is excited since |p2 · Êinc| = 0. Consistent

with the optical valley rule, the resulting exciton |S1〉 is an equal superposition state of the

K and K’ valleys, further proving the validity of our rotation procedure. The IP and OOP

polarized emission rates, along with their sum, are shown for two emission polar angles,

θ = 60° and θ = 0°. The IP polarized emission is stronger than the OOP at θ = 60°, leading

to a total PL that is anisotropic and maximal in the in-plane direction normal to the incident

polarization. For θ = 0 (i.e., in the layer-normal direction) the two contributions are equal

in magnitude and the resulting PL is isotropic. Both the IP and OOP polarizations lie in
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the xy plane in the θ → 0 limit, and the emitted photons are polarized in the Êinc direction.

As seen from eqs 6−7, the OOP and IP radiative rates and PL signals are rotated by

ϕ = π/2 with respect to one another, and their ratio is:

γOOP
S (ϕ+ π/2)

γIPS (ϕ)
= cos2(θ) ≤ 1. (9)

This result explains why recent experiments22 observe a stronger PL signal polarized in plane

compared to out of plane. When the linear polarization direction of the light that excites the

sample is rotated (not shown), we find that only the total phase of the exciton wavefunction

changes, and the PL pattern in Figure 2(c) is unchanged but reoriented according to the

linear polarization direction, in agreement with the measurements in Ref.22

There is an important point in the interpretation of recent PL measurements.22–24 Due to

the small size of the samples, the PL is typically collected through a microscope, measured in

the layer-normal direction, and then passed through a polarizer or analyzer.23,24 The resulting

polar plots of the PL as a function of the angle α between the polarizer and the incident

polarization exhibit a cos(2α) trend.22–24 In these works, we feel that the dependence of the

PL on the polarizer angle α has not been clearly differentiated from the PL dependence on

emission direction. We stress that the PL anisotropy computed as a function of emission

angle ϕ in Figure 2(b,c) is distinct from the PL anisotropy measured as a function polarizer

angle α, which can be readily explained with our approach.

In the θ→0 limit probed experimentally, the radiative rate in eq 2 is γS∝
∑

λ |eq · pS|
2.

For excitation with polarization along x̂, which induces a dipole pS = pSx̂, collecting light

through a polarizer oriented at angle α gives γS ∝ p2S
∑

λ |(Aαeq) · x̂|2, where Aα is the

Jones matrix41

Aα =

 cos2 α cosα sinα

cosα sinα sin2 α

 (10)
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For θ → 0, one obtains γS(α) ∝ p2S cos2 α, a result that also holds for arbitrary θ. We

thus predict a PL intensity as a function of polarizer angle I(α) = I0 cos2 α = I0[1 +

cos(2α)]/2 (see Figure 3), which explains the cos(2α) angular dependence observed in the

PL measurements.22–24 By contrast, in Figure 2(c) excitation with linearly polarized light

yields a PL with maximal intensity in the in-plane direction normal to the exciton dipole (as

in classical dipole radiation) rather than parallel to the exciton dipole as in the I(α) plots.

To our knowledge, such direction dependent measurements have not yet been carried out.

Also shown in Figure 3 is the expected PL intensity including exciton decoherence effects,

which has a trend of I(α) = A1 +A2 cos(2α) (Ai are numerical constants). Two mechanisms

can induce exciton decoherence, including T1 relaxation processes, in which the exciton

weights on the K and K’ valleys vary due to intervalley scattering, resulting in exciton

wavefunctions similar to Figure 2(b), and T2 relaxation processes, in which the valley weights

remain equal, but the exciton dipole − and thus the polarization − rotates by a random

angle. Decoherence due to both processes opens a neck in the I(α) PL polar plot (see

Figure 3) since a polarizer placed normal to the incident polarization will measure a non-

zero signal. Recent measurements of T2 times of ∼350 fs23,24 at low temperature, where the

radiative lifetime is of order 1−10 ps,9 justify the significant loss of polarization observed

experimentally.23,24

While we treated the bright A 1s exciton as two-fold degenerate, recent work has shown

that two exciton branches with a very small energy difference (∼1 meV in MoS2) are present

at the light cone due to the exchange interaction.37 These exciton branches correspond to a

particular basis in the nearly degenerate pseudospin space. In our notation, excitons in the

lower branch with parabolic dispersion couple only to IP polarized light, and excitons in the

upper branch with v-shaped dispersion only to OOP polarized light.37 Our approach, which

treats these branches as degenerate, forms a single exciton |S1〉 that contributes to both IP

and OOP polarized emission, which is equivalent to summing over the nearly degenerate

branches in Ref.37
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Figure 3: Polar plot of the PL as a function of the angle α between the polarizer and the
incident polarization. Shown are the ideal case in which light is fully polarized along the
excitation polarization direction (indicated by the arrow) and the case in which light is only
partially polarized as a result of decoherence.

Our treatment generalizes the radiative rates derived in our previous work9 under the

assumption of isotropic exciton dipoles. When pS is real and oriented along the x = y

direction, so that px and py are equal, eq 4 reduces to our previously derived formula,9

γS(Q) = γS(0) ·
√

1− h̄2c2Q2/E2
S(Q) .42 The temperature dependence of the radiative rates

in Ref.9 can also be recovered. Averaging the radiative rate in eq 4 over momentum Q and

emission angle ϕ (see the Supporting Information) gives the temperature dependent radiative

lifetime derived in our previous work:9

〈τS〉(T ) = 〈γS〉−1 = γ−1S (0) · 3

4

(
ES(0)2

2MSc2kBT

)−1
. (11)

The few ps lifetimes at low temperature and few ns room temperature lifetimes we predicted

with this formula9 have now been confirmed by several experiments.11–15

In summary, we presented a general ab initio method to compute the radiative rate and

PL as a function of direction and polarization in 2D semiconductors. The new treatment

reveals the inherently anisotropic PL of 2D-TMDCs and its dependence on polarization, val-

ley occupation and decoherence. Future work will apply our approach to shed light on the

PL of structurally anisotropic 2D materials, including ReSe2 and black phosphorous, where

exciton anisotropy is expected to lead to novel PL regimes.
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normalized to
√

2 instead of 1. Note also that here we use SI units, whereas Ref.9 uses

CGS units, in which ε0 = 1/4π, and further substitutes p2S = m2E2
S(0)µ2

S/h̄
2.

(43) Sangalli, D.; Berger, J.; Attaccalite, C.; Grüning, M.; Romaniello, P. Phys. Rev. B

2017, 95, 155203.

15



Graphical TOC Entry

+ _

16


