IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

Sum-Networks From Incidence Structures:
Construction and Capacity Analysis

Ardhendu Tripathy™, Student Member, IEEE, and Aditya Ramamoorthy™, Member, IEEE

Abstract— A sum-network is an instance of a function com-
putation problem over a directed acyclic network, in which
each terminal node wants to compute the sum over a finite
field of the information observed at all the source nodes. Many
characteristics of the well-studied multiple unicast network com-
munication problem also hold for sum-networks, due to a known
reduction between the two problems. In this paper, we describe
an algorithm to construct families of sum-network instances using
incidence structures. The computation capacity of several of these
sum-network families is evaluated. Unlike the coding capacity of
a multiple unicast problem, the computation capacity of sum-
networks depends on the characteristic of the finite field over
which the sum is computed. This dependence is very strong;
we show examples of sum-networks that have a rate-1 solution
over one characteristic but a rate close to zero over a different
characteristic. In addition, a sum-network can have arbitrarily
different computation capacities for different alphabets.

Index Terms—Network coding, function
sum-networks, characteristic, incidence structures.

computation,

I. INTRODUCTION

PPLICATIONS as diverse as parallel processing, dis-

tributed data analytics and sensor networks often deal
with variants of the problem of distributed computation. This
has motivated the study of various problems in the fields of
computer science, automatic control and information theory.
Broadly speaking, one can model this question in the fol-
lowing manner. Consider a directed acyclic network with its
edges denoting communication links. A subset of the nodes
observe certain information, these nodes are called sources.
A different subset of nodes, called terminals, wish to compute
functions of the observed information with a certain fidelity.
The computation is carried out by the terminals with the aid
of the information received over their incoming edges. The
demand functions and the network topology are a part of the
problem instance and can be arbitrary. This framework is very

Manuscript received November 6, 2016; accepted August 17, 2017. Date
of publication October 23, 2017; date of current version April 19, 2018.
This work was supported by the National Science Foundation under Grant
CCF-1149860, Grant CCF-1320416, Grant CCF-1718470, and Grant DMS-
1120597. This paper was presented in part at the 2014 52nd Allerton
Conference on Communication, Control, and Computing and the 2015 IEEE
International Symposium on Information Theory.

The authors are with the Department of Electrical and Computer
Engineering, lowa State University, Ames, [IA 50011 USA (e-mail:
ardhendu@iastate.edu; adityar@iastate.edu).

Communicated by A. G. Dimakis, Associate Editor for Coding Techniques.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2017.2765661

general and encompasses several problems that have received
significant research attention.

Prior work [1]-[3] concerning information theoretic issues
in function computation worked under the setting of corre-
lated information observed at the sources and simple network
structures, which were simple in the sense that there were
edges connecting the sources to the terminal without any
intermediate nodes or relays. For instance, [2] characterizes
the amount of information that a source must transmit so that
a terminal with some correlated side-information can reliably
compute a function of the message observed at the source
and the side-information. Reference [3] considered distributed
functional compression, in which two messages are separately
encoded and given to a decoder that computes a function of
the two messages with an arbitrarily small probability of error.

With the advent of network coding [4], [5], the scope
of the questions considered included the setting in which
the information observed at the sources is independent and
the network topology is more complex. Under this setting,
information is sent from a source to a terminal over a path
of edges in the directed acyclic network with one or more
intermediate nodes in it, these relay nodes have no limit on
their memory or computational power. The communication
edges are abstracted into error-free, delay-free links with a
certain capacity for information transfer and are sometimes
referred to as bif-pipes. The messages are required to be recov-
ered with zero distortion. The mulficast scenario, in which
the message observed at the only source in the network is
demanded by all terminals in the network, is solved in [4]-[6].
A sufficient condition for solvability in the multicast scenario
is that each terminal has a max-flow from the source that is
at least the entropy rate of the message random process [4].
Reference [6] established that linear network codes over a
sufficiently large alphabet can solve this problem and [5]
provided necessary and sufficient conditions for solving a
multicast problem instance in an algebraic framework. The
work in [5] also gave a simple algorithm to construct a network
code that satisfies it.

Unlike the multicast problem, the multiple unicast problem
does not admit such a clean solution. This scenario has mul-
tiple source-terminal pairs over a directed acyclic network of
bit-pipes and each terminal wants to recover the message sent
by its corresponding source with the help of the information
transmitted on the network. To begin with, there are problem
instances where more than one use of the network is required
to solve it. To model this, each network edge is viewed as

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1893-4891
https://orcid.org/0000-0003-3448-1271

3462

carrying a vector of n alphabet symbols, while each message
is a vector of m alphabet symbols. A network code specifies
the relationship between the vector transmitted on each edge
of the network and the message vectors, and it solves a
network coding problem instance if m = n. It is shown that
linear network codes are in general not sufficient to solve this
problem [7]. One can define the notion of coding capacity
of a network as the supremum of the ratio m/n over all
network codes that allow each terminal to recover its desired
message; this ratio m/n for a particular network code is called
its rate. The coding capacity of a network is independent
of the alphabet used [8]. While a network code with any
rational rate less than the coding capacity exists by definition
and zero-padding, a network code with rate equal to coding
capacity does not exist for certain networks, even if the coding
capacity is rational [9]. The multi-commodity flow solution to
the multiple unicast problem is called a routing solution, as the
different messages can be interpreted as distinct commodities
routed through the intermediate nodes. It is well-known that in
the case of multicast, network coding can provide a gain in rate
over traditional routing of messages that scales with the size of
the network [10]. However, evaluating the coding capacity for
an arbitrary instance of the network coding problem is known
to be hard in general [11]-[14].

Expanding the scope of the demands of the terminals, [15]
considered function compufation over directed acyclic net-
works with only one terminal; the value to be recovered at
the terminal was allowed to be a function of the messages
as opposed to being a subset of the set of all messages.
This computation is performed using information transmitted
over the edges by a network code. Analogous to the coding
capacity, a notion of computation capacity can be defined in
this case. A rate-m/n network code that allows the terminal
to compute its demand function has the interpretation that
the function can be computed by the terminal m times in
n uses of the network. Cut-set based upper bounds for the
computation capacity of a directed acyclic network with one
terminal were given in [15] and [16]. A matching lower
bound for function computation in tree-networks was given
in [15] and the computation capacity of linear and non-linear
network codes for different classes of demand functions was
explored in [17].

A different flavor of the function computation problem,
often called the sum-network problem, considers directed
acyclic networks with multiple terminals, each of which
demands the finite-field sum of all the messages observed
at the sources [18], [19]. Reference [20] characterized
the requirements that sum-networks with two or three
sources or terminals must satisfy so that each terminal can
recover the sum at unit rate. Similar to the network cod-
ing scenario, a sum-network whose terminals are satisfied
by a rate-1 network code are called solvable sum-networks.
Reference [19] established that deciding whether an arbitrary
instance of a sum-network problem instance is solvable is at
least as hard as deciding whether a suitably defined multiple
unicast instance is solvable. As a result of this reduction the
various characteristics of the solvability problem for network
coding instances are also true for the solvability problem for

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

sum-networks; this establishes the broadness of the class of
sum-networks within all communication problems on directed
acyclic networks.

While solvable sum-networks and solvable network coding
instances are intimately related, the results in this paper
indicate that these classes of problems diverge when we focus
on coding/computation capacity, which can be strictly less
than one. In [8, Sec. VIJ, the coding capacity of networks
is shown to be independent of the finite field chosen as the
alphabet for the messages and the information transmitted over
the edges. We show that an analogous statement is not true
for sum-networks by demonstrating infinite families of sum-
network problem instances whose computation capacity vary
depending on the finite field alphabet. Moreover, the gap in
computation capacity on two different finite fields is shown
to scale with the network size for certain classes of sum-
networks. For two alphabets F;, 7, of different cardinality
and a network A/, Cannons ef al. [8, Th. VL5] described
a procedure to simulate a rate-mp/n2 network code on F»
for A using a rate-m/n; network code on JF; for the same
network, such that ma/ny > (m/n1)—e for any € > 0. That
procedure does not apply for sum-networks. Along the lines
of the counterexample given in [20] regarding minimum max-
flow connectivity required for solvability of sum-networks
with three sources and terminals, we provide an infinite family
of counterexamples that mandate certain value of max-flow
connectivity to allow solvability (over some finite field) of
a general sum-network with more than three sources and
terminals. These sum-network problem instances are arrived
at using a systematic construction procedure on combinatorial
objects called incidence structures. Incidence structures are
structured set systems and include, e.g., graphs and combinato-
rial designs [21]. We note here that combinatorial designs have
recently been used to address issues such as the construction
of distributed storage systems [22], [23] and coded caching
systems [24]-[26].

This paper is organized as follows. Section II describes
previous work related to the problem considered and sum-
marizes the contributions. Section III describes the problem
model formally and Section IV describes the construction
procedure we use to obtain the sum-network problem instances
considered in this work. Section V gives an upper bound on the
computation capacity of these sum-networks and Section VI
describes a method to obtain linear network codes that achieve
the upper bound on rate for several families of the sum-
networks constructed. Section VII interprets the results in this
paper and outlines the key conclusions drawn in this paper.
Section VIII concludes the paper and discusses avenues for
future work.

II. BACKGROUND, RELATED WORK AND
SUMMARY OF CONTRIBUTIONS

The problem setting in which we will work is such that
the information observed at the sources are independent and
uniformly distributed over a finite field alphabet 7. The
network links are error-free and assumed to have unit-capacity.
Each of the possibly many terminals wants to recover the finite

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES

field sum of all the messages with zero error. This problem was
introduced in the work of [18]. Intuitively, it is reasonable to
assume the network resources, i.e., the capacity of the network
links and the network structure have an effect on whether
the sum can be computed successfully by all the terminals
in the network. Reference [20] characterized this notion for
the class of sum-networks that have either two sources and/or
two terminals. For this class of sum-networks it was shown
that if the source messages had unit-entropy, a max-flow of
one between each source-terminal pair was enough to solve
the problem. It was shown by means of a counterexample
that a max-flow of one was not enough to solve a sum-
network with three sources and terminals. However, it was
also shown that a max-flow of two between each source-
terminal pair was sufficient to solve any sum-network with
three sources and three terminals. Reference [27] considered
the computation capacity of the class of sum-networks that
have three sources and three or more terminals or vice
versa. It was shown that for any integer k > 2, there exist
three-source, n-terminal sum-networks (where n = 3) whose
computation capacity is % The work most closely related
to this paper is [28], which gives a construction procedure
that for any positive rational number p/q returns a sum-
network whose computation capacity is p/q. Assuming that
p and q are relatively prime, the procedure described in [28]
constructs a sum-network that has 2q — 1+ ()‘qz_]) sources and
2g+ (qu._ 1) terminals, which can be very large when g is large.
The authors asked the question if there exist smaller sum-
networks (i.e., with fewer sources and terminals) that have the
computation capacity as p/q. Our work in [29] answered it in
the affirmative and proposed a general construction procedure
that returned sum-networks with a prescribed computation
capacity. The sum-networks in [28] could be obtained as
special cases of this construction procedure. Some smaller
instances of sum-networks for specific values were presented
in [30]. Small sum-network instances can be useful in deter-
mining sufficiency conditions for larger networks. The scope
of the construction procedure proposed in [29] was widened
in [31], as a result of which, it was shown that there exist
sum-network instances whose computation capacity depends
rather strongly on the finite field alphabet. This work builds
on the contributions in [29] and [31]. In particular, we present
a systematic algebraic technique that encompasses the prior
results. We also include proofs of all results and discuss the
implications of our results in depth.

A. Summary of Contributions

In this work, we define several classes of sum-networks for
which we can explicitly determine the computation capacity.
These networks are constructed by using appropriately defined
incidence structures. The main contributions of our work are
as follows.

« We demonstrate novel techniques for determining upper
and lower bounds on the computation capacity of the
constructed sum-networks. In most cases, these bounds
match, thus resulting in a determination of the capacity
of these sum-networks.

3463

« We demonstrate a strong dependence of the computation
capacity on the characteristic of the finite field over which
the computation is taking place. In particular, for the same
network, the computation capacity changes based on the
characteristic of the underlying field. This is unlike the
coding capacity for the multiple unicast problem which is
known to be independent of the network coding alphabet.

« Consider the class of networks where every source-
terminal pair has a minimum cut of value at least a, where
o is an arbitrary positive integer. We demonstrate that
there exists a sum-network within this class (with a large
number of sources and terminals) whose computation
capacity can be made arbitrarily small. This implies that
the capacity of sum-networks cannot be characterized just
by individual source-terminal minimum cuts.

III. PROBLEM FORMULATION AND PRELIMINARIES

We consider communication over a directed acyclic
graph (DAG) G = (V,E) where V is the set of nodes
and E € V x V x Z, are the edges denoting the delay-
free communication links between them. The edges are given
an additional index as the model allows for multiple edges
between two distinct nodes. For instance, if there are two edges
between nodes # and v, these will be represented as (u, v, 1)
and (u,v,2). Subset S C V denotes the source nodes and
T C V denotes the terminal nodes. The source nodes have
no incoming edges and the terminal nodes have no outgoing
edges. Each source node s; € S observes an independent
random process X;, such that the sequence of random vari-
ables X;1, X;7,... indexed by time (denoted by a positive
integer) are i.i.d. and each X;; takes values that are uniformly
distributed over a finite alphabet 7. The alphabet F is assumed
to be a finite field with |F| = ¢ and its characteristic denoted
as ch(F). Each edge represents a communication channel of
unit capacity, i.e., it can transmit one symbol from F per
time slot. When referring to a communication link (or edge)
without its third index, we will assume that it is the set of
all edges between its two nodes. For such a set denoted by
(u, v), we define its capacity cap(u, v) as the number of edges
between u and ». We use the notation In(v) and In(e) to
represent the set of incoming edges at node v € V and edge
e € E.Forthe edge e = (4, v) lethead(e) = v and tail(e) = u.
Each terminal node t € T demands the sum (over F) of the
individual source messages. Let Z; = Z“:s'_ sy Xij for all
j € N (the set of natural numbers); then each t € T wants to
recover the sequence Z := (Z1, Z, ...) from the information
it receives on its incoming edges, i.e., the set In(f).

A network code is an assignment of local encoding func-
tions to each edge ¢ € E (denoted as &e (-)) and a decoding
function to each terminal ¢+ € T (denoted as w;(-)) such
that all the terminals can compute Z. The local encoding
function for an edge connected to a set of sources only has
the messages observed at those particular source nodes as its
input arguments. Likewise, the input arguments for the local
encoding function of an edge that is not connected to any
source are the values received on its incoming edges and
the inputs for the decoding function of a terminal are the

values received on its incoming edges. As we consider directed
acyclic networks, it can be seen that there is a global encoding
function that expresses the value transmitted on an edge in
terms of the source messages in the set X := {X; : 5; € S}.
The global encoding function for an edge e is denoted
as ¢ (X).

The following notation describes the domain and range of
the local encoding and decoding functions using two natural
numbers m and n for a general vector network code. m is the
number of i.i.d. source values that are encoded simultaneously
by the local encoding function of an edge that emanates
from a source node. n is the number of symbols from F
that are transmitted across an edge in the network. Thus for
such an edge e whose tail(e) = s € S, the local encoding
function is ég(Xsl,ng, ooy Xsm) € F". We will be using
both row and column vectors in this paper and they will be
explicitly mentioned while defining them. If u is a vector,
the u” represents its transpose.

« Local encoding function for edge e € E.

g 1 F" — F" if tail(e) € S,
Ge : FrIn@lE@N . 7 if tail(e) ¢ S.

« Decoding function for the terminal t € T'.
v :J'c'n|ln(r)| — Fm.

A network code is linear over the finite field J if all the
local encoding and decoding functions are linear transforma-
tions over F. In this case the local encoding functions can
be represented via matrix products where the matrix elements
are from F. For example, for an edge e such that tail(e) ¢ S,
let ¢ € N be such that ¢ = |In(tail(e))| and In(tail(e)) =
{e1,e2,...,e}. Also, let each ¢, (X) € F" be denoted as a
column vector of size n whose elements are from . Then the
value transmitted on e can be evaluated as

Pe(X) = Pe(e, (X), per (X)), . .., pe. (X)),
= M, [$e)T $0,OT ... e (X)]",

where M, € F™"*"¢ is a matrix indicating the local encoding
function for edge e. For the sum-networks that we consider,
a valid (m, n) fractional network code solution over F has the
interpretation that the component-wise sum over F of m i.i.d.
source symbols can be communicated to all the terminals in
n time slots.

Definition 1: The rate of a (m,n) network code is defined
to be the ratio m/n. A sum-network is solvable if it has a
(m, m) network coding solution for some m e N.

Definition 2: The computation capacify of a sum-network
is defined as

su m there is a valid (m,n) network code
P n’ for the given sum-network

We use different types of incidence structures for construct-
ing sum-networks throughout this paper. We now formally
define and present some examples of incidence structures.

Definition 3 (Incidence Structure): Let P be a set of ele-
ments called points, and B be a set of elements called blocks,
where each block is a subset of P. The incidence structure 7 is

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

3 4 5

Fig. 1. A pictorial depiction of the Fano plane. The point set P = {1,..., 7).
The blocks are indicated by a straight line joining their constituent points. The
points 2, 4 and 6 lying on the circle also depict a block.

defined as the pair (P, B). If p € P, B € B such that p € B,
then we say that point p is incident to block B. In general B
can be a multiset, i.e., it can contain repeated elements, but
we will not be considering them in our work. Thus for any
two distinct blocks By, B, there is at least one point which is
incident to one of By and B and not the other.

We denote the cardinalities of the sets P and B by the
constants » and b respectively. Thus the set of points and
blocks can be indexed by a subscript, and we have that

P:{plspzs-"'lpv}s 'JBb}

Definition 4 (Incidence Matrix): The incidence matrix
associated with the incidence structure 7 is a (0, 1)-matrix of
dimension v x b defined as follows.

and B = {By, By, ...

o 1 if p; € By,
Azl J) = [0 otherwise.

Thus, incidence matrices can be viewed as general set sys-
tems. For example, a simple undirected graph can be viewed
as an incidence structure where the vertices are the points and
edges are the blocks (each block is of size two). Combinatorial
designs [21] form another large and well-investigated class of
incidence structures. In this work we will use the properties
of t-designs which are defined next.

Definition 5 (t-Design): An incidence structure 7 = (P, B)
is a t-(v, k,) design, if

« it has v points, i.e., |P| =,

« each block B € B is a k-subset of the point set P, and

« P and B satisfy the f-design property, i.e., any f-subset

of P is present in exactly 4 blocks.

A t-(v, k, 1) design is called simple if there are no repeated
blocks. These designs have been the subject of much investi-
gation when f = 2; in this case they are also called balanced
incomplete block designs (BIBDs).

Example 1: A famous example of a 2-design with 4 = 1
is the Fano plane 7 = (P, B) shown in Figure 1. Letting
numerals denote points and alphabets denote blocks for this
design, we can write:

P =1{1,2,3,4,5,6,7,, B={A,B,C,D,E,F,G},

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES

where
A={1,2,3}, B={3,4,5}, C={1,5,6}, D={1,4,7},
E=1{2,5,7, F={3,6,7}, G=1{2,4,6}.

The corresponding incidence matrix Az, with rows and
columns arranged in numerical and alphabetical order,
is shown below.

1 01 1000
1 00010 1
1100010

Az=]|0 1 0 1 0 0 1 (1)
0110100
001 00 1 1
0 001 1 1 0]

It can be verified that every pair of points in 7 appears in
exactly one block in B.
There are some well-known conditions that the parameters
of a t-(v, k, 1) design satisfy (see [21]).
« For integer i < t the number of blocks incident to any
i-subset of P is the same. We let b; denote that constant.
Then,

v—1 k—
=i)

We note that by is simply the total number of blocks
denoted by b. Likewise, by represents the number of
blocks that each point is incident to; we use the symbol
p to represent it. Furthermore, b; = 4.
It follows that a necessary condition for the existence of
a t-(v,k, A) design is that (f::) divides A(}_;) for all
i=1,2,...,1.

« Counting the number of ones in the point-block incidence
matrix for a particular design in two different ways,
we arrive at the equation bk = vp.

i
i)’ Vie{0,1,2,...,1}. (2)

IV. CONSTRUCTION OF A FAMILY OF SUM-NETWORKS

Let [f] := {1,2,...,t} for any t € N. Our construction
takes as input a (0, 1)-matrix A of dimension r x c.

Definition 6 (Notation for Row and Column of A): Let p;
denote the i-th row vector of A fori € [r] and B; denote the
j-th column vector of A for j € [c].!

It turns out that the constructed sum-networks have inter-
esting properties when the matrix A is the incidence matrix
of appropriately chosen incidence structures. The construction
algorithm is presented in Algorithm 1. The various steps in
the algorithm that construct components of the sum-network
G = (V, E) are described below.

1) Source node set S and terminal node set T: S and T both
contain r + ¢ nodes, one for each row and column of A.
The source nodes are denoted at line 4 as sp,, sp; if they
correspond to the i-th row, j-th column respectively.
The terminal nodes are also denoted in a similar manner

1A justification for this notation is that later when we use the incidence
matrix (A7) of an incidence structure 7 to construct a sum-network, the rows
and columns of the incidence matrix will correspond to the points and blocks
of T respectively.

at line 5. They are added to the vertex set V of the sum-
network at line 6.

2) Bottleneck edges: We add r unit-capacity edges indexed
as e¢; for i € [r] in line 2 to the edge set E. Each edge
e; corresponds to a row of the matrix A. We also add
the required tail and head vertices of these edges to V.

3) Edges between S U T and the bottleneck edges: For
every i € [r], we connect tail(e;) to the source node
corresponding to the row p; and to the source nodes
that correspond to all columns of A with a 1 in the
i-th row. This is described in line 8 of the algorithm.
Line 9 describes a similar operation used to connect
each head(e;) to certain terminal nodes.

4) Direct edges between S and T : For each terminal in T,
these edges directly connect it to source nodes that
do not have a path to that particular terminal through
the bottleneck edges. Using the notation for rows and
columns of the matrix A, they can be characterized as
in lines 12 and 15.

Algorithm 1 Sum-Net-Cons

Input: A.

Output: G = (V, E).

: Initialize V, E, S, T < ¢.

E < e :ielr]}.

: V <« {head(e;), tail(e;) : i € [r]}.

S <« {sp i elrlju {SB}- 1 j € lcl).

T < {tp; :i e[rl}U{rg; : j €[cl}

V<< VUSUT.

:for alli €[r] do

E <« E U {(sp;,tail(e;)) : A(G,j) = 1;j € [cl} U

{(sp;.» tail(€:))).

9: E <« E U {(head(e;), tgj) DAL,) = 1, € [el} U
{(head(e;), 15,)}.

10: end for

11: for all i € [r] do

122 E < EU{(sp;, 1p;)
AG, j) =0: j € [c]).

13: end for

14: for all j € [c] do

15: E <« EU{(sp,-,rgj) A, j)=05i e [I’]}U{(.S‘Bj,,f;gj) :
B}"B,-: =0; j' € [c]}.

16: end for

17: return G < (V, E).

AN A B

i #E e [f']}U{(.S‘Bj,Ip;-) :

For an incidence structure 7, let A7 represent its incidence
matrix. The sum-networks constructed in the paper are such
that the matrix A used in the SUM-NET-CONS algorithm is
either equal to A7 or A% for some incidence structure 7.
When A = A7, we call the sum-network constructed as the
normal sum-network for 7. Otherwise when A = A%, we call
the sum-network constructed as the franspose sum-network
for 7. The following definitions are useful for analysis. For
every p € P, we denote the set of blocks that contain the
point p as

(p):=(BeB:peB), ®)

3466

51 5{1,2} 52
€1 €9

h 112} lo
(@

51 5{1,2} $2

€{1,2}

h t{12) lo

(b)

Fig. 2. Two sum-networks obtained from the line graph on two vertices
described in Example 2. The source set S and the terminal set T contain
three nodes each. All edges are unit-capacity and point downward. The
edges with the arrowheads are the bottleneck edges constructed in step 2 of
the construction procedure. (a) Normal sum-network, and (b) transposed
sum-network.

and for every B € B, the collection of blocks that have a
non-empty intersection with B is denoted by the set

(B) :=={B'€B:B'NB # ¢}
= {B' eB:BTB #0},

(C))
(&)

where boldface B indicates the column of A7 corresponding
to block B € B.

The inner product above is computed over the reals. In the
sequel, we will occasionally need to perform operations similar
to the inner product over a finite field. This shall be explicitly
pointed out.

We now present some examples of
constructed using the above technique.

Example 2: Let T be the unique simple line graph on two
vertices, with points corresponding to the vertices and blocks
corresponding to the edges of the graph. Denoting the points
as natural numbers, we get that P = {1, 2} and B = {{1, 2}}.
Then the associated incidence matrices are as follows.

AI:[}:I, and AT =[11].

Following the SUM-NET-CONS algorithm the two sum-
networks obtained are as shown in the Figure 2.

Example 3: In this example we construct a sum-network
using a simple f-design. Let 7 denote the 2-(3, 2, 1) design
with its points denoted by the numbers {1, 2, 3} and its blocks

sum-networks

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

Fig. 3. The normal sum-network obtained for the incidence structure 7
described in Example 3. All edges are unit-capacity and directed downward.
The edges with the arrowheads are the bottleneck edges, and the edges denoted
by dashed lines correspond to the direct edges introduced in step 4 of the
construction procedure. For this case, the normal and the transposed sum-
network are identical.

denoted by the letters {A, B, C}. For this design we have
that A = {1,2}, B = {1,3},C = {2,3} and its associated
incidence matrix under row and column permutations can be
written as follows.

1
AT =11
0

— T

0
1
1

Note that A7 = A%. Hence the normal sum-network and the
transposed sum-network are identical in this case. Following
the SUM-NET-CONS algorithm, we obtain the sum-network
shown in Figure 3.

Remark 1: Note that each edge added in the SUM-
NET-CONS algorithm has unit capacity. Proposition 6 in
Section VII modifies the SUM-NET-CONS algorithm so that
each edge e in the sum-network has cap(e) = a > 1,a € N.

V. UPPER BOUND ON THE COMPUTATION CAPACITY

In this section, we describe an upper bound on the computa-
tion capacity of a sum-network obtained from a (0, 1)-matrix
A of dimension r x ¢. We assume that there exists a (m, n)
fractional network code assignment, i.e., Q;e for e € E (and
corresponding global encoding functions ¢, (X)) and decoding
functions y; for f € T so that all the terminals in T can recover
the sum of all the independent sources.

For convenience of presentation, we will change notation
slightly and let the messages observed at the source nodes
corresponding to the rows of A be X, for i € [r] and those
corresponding to the columns of A be X p; for j € [c]. Each of
the messages is a column vector of length m over F. The set

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES

of all source messages is represented by X. We let ¢.(X)
denote the n-length column vector of symbols from F that
are transmitted by the edge e € E, as it is the value returned
by the global encoding function ¢, for edge e on the set of
source messages denoted by X. As is apparent, non-trivial
encoding functions can only be employed on the bottleneck
edges, i.e., ¢; fori € [r] as these are the only edges that have
more than one input. For brevity, we denote ¢;(X) = ¢, (X).
We define the following set of global encoding functions.

Pn() (X) := {¢e(X) : € € In(v)},

Let H(Y) be the entropy function for a random variable Y.
We let {¥; }"] denote the set {Y1, ¥Y,..., ¥;} forany ! > 1. The
following lemma demonstrates that certain partial sums can be
computed by observing subsets of the bottleneck edges.
Lemma 1: If a network code allows each terminal to
compute the demanded sum, then the value X:o; =
Xp; + 2.j:aG,j)=1 XB; can be computed from ¢;(X),

ie, H (X’;,'_ |¢,-(X)) — 0 for all i € [r]. Similarly for any

J €lcl the value X := 2. 4¢ j)=1 Xp; + 218 <(8)) X,
can be computed from the set of values {¢;(X) for i E

[r1, AG, j) = 1}.
Proof: We let for any i € [r]

H=3 K 1= 3 Xa wiZi= 3 Xa,
i'#i JA(Lj)=1 J:AG,j)=0

such that the sum Z = X, +Z1+Zy+Z3 and X, = Xp,+Z>.

By our assumption that each terminal can recover the
demanded sum, we know that Z can be evaluated from
Bia(y,) (X) for all i € [r] ic., H(Z|¢1n(¢p)(X)) = 0 for
all z E [r]. Since {Xp, : i" # i} and {Xp; : A(i, j) = 0}
determine the value of Zl and Zs respectively and also
determine the values transmitted on each of the direct edges
that connect a source node to f,,, we get that

H (ZI1a(,) (0)
= H (ZI6:(X0, By, i X) 11’ £ 1),
(Bsa iz : AG,) =0))
(é} H (Xp, + Z1 + Zo + Z31¢i(X), (X, = i' # i},
{X3; : AG, j)=0})
= H (X}, 16:(0, (Xp, :i' #i}, (Xp; : AG, j) =0))
= H (X}, (Xp, ' £}, (Xg; : AG,) = 0}l (X))
— H ((Xp, :i' # 1), (Xp; : AG,) = O} (X))
= H (X),14:(X))
+H (X, 1 #1), (Xp; : AG,) = 0)IX),, 61(X))
— H((Xp, 7' i), (Xp; : AG,) = O} (X))
Q H (x,,14:0),

where inequality (a) follows from the fact that ¢, b fp,-)(X) is
a function of X, for i’ # i and qb(mj,fp'_)(X) is a function of

Yo e V.

3467

{XB; : A(i, j) = 0} and equality (b) is due to the fact that X’;,'_
is conditionally independent of both { X, : i’ #i}and {Xp ;
A(i, j) = 0} given ¢;(X). This conditional independence
can be checked as follows. Let lowercase symbols represent
specific realizations of the random variables.

Pr (X;?; = Xp (Xp, = xp, i’ #i},
(Xp; = x5, : AG,) = 0}I4i(X) = ¢i (v))
@ pr(x!, = x/,, $i(X) = ¢i(x))/ Pr(gi(X) = i (x))

-Pr({Xp-{ =xp, 10’ #i},{Xp; =xp; : A(i, j) = 0})
© pr (X}, = 2, 14100 = $:(x))
({Xp.-! =xp, 10’ #i},{Xp; = xp;
i (X) = ¢i(x)),
where equalities (a) and (b) are due to the fact that the source

messages are independent and ¢; (x) is only a function of x,
and the set {xp; : A, j) =1}

Since terminal f,;, can compute Z, H (Z|¢5In) (X))
and we get from eq. (6) that H (X p, + Z2|¢; (X)) =0.

For the second part of the lemma, we argue similarly as
follows. We let for any j € [c]

S AG, j) =0}

Z) = Z Xpi» L2= Z Xpis
i:A(,j)=1 i:A(i, j)=0
Z3 = Z Xp, Zs= D Xp
Bj) B¢(Bj)

such that Z = Z1 + Z»+ Z3+ Z4 and Xi;j = Z1+ Z3. By our
assumption, for all j € [c], H (Z|¢In(,3j)(X)) = 0. The sets
{Xp:pé¢Bjland {Xp: B ¢ (Bj)} determine the value of Z»
and Z4 respectively and also the values transmitted on each
of the direct edges that connect a source node to the terminal
tp;. Let @ denote the set {¢i(X) : A(i, j) = 1}. Then,
H (ZIgins) (X))
= H(Z1+ Za+ Z3 + 240, (s, 1) (X) : AG,) = 0},
(bain,) : B € (B))))
a) .
> H (Z1+ Za + Z3 + Z4]®, (X, : AGG, j) =0},
{Xp: B ¢ (B))})
= H (X |0, (X, : AG,) =0}, (X5 : B ¢ (B)))
= H(’Bj, {Xp, 1 A, j)=0},{Xp:B ¢ (Bj)}|tD)
— H ({Xp; : AG, j) =0}, {Xp : B ¢ (B;)}|®)
= H(Xp,|®) — H({Xp,; : AGi, j) =0}, {Xp : B ¢ (B})}|®)
+H({Xp; : AGG, j) =0},{Xp : B ¢ (Bj)}|X},, ®)
O
H(Xp |®).
Inequality (a) is due to the fact that qb(sp 15)(X) is a function

of Xp, and similarly for ¢, 5, y(X). Equallty (b) follows
from the fact that Z; + Z3 is conditionally independent

of both {X, : A(i,j) = 0} and {Xg}., B ¢ (Bj)}
given the set of random variables {¢;(X) : A(i, j) = 1}.
This can be verified in a manner similar to as was done
previously. This gives us the result that H (X}gj|{¢,-(X) :
A, jy=1}) =0. []

Next, we show the fact that the messages observed at the
source nodes are independent and uniformly distributed over
J™ imply that the random variables X ;J'_ for all i € [r] are
also uniform i.i.d. over F™. To do that, we introduce some
notation. For a matrix N e F"*¢, for any two index sets
R < [r],C < [c], we define the submatrix of N containing the
rows indexed by R and the columns indexed by C as N[R, C].
Consider two (0, 1)-matrices N1, N> of dimensions r x t and
t x ¢y respectively. Here 1 and O indicate the multiplicative and
additive identities of the finite field F respectively. The i-th
row of Nj is denoted by the row submatrix Ny [i, [f]] € {0, 1)
and the j-th column of N, be denoted by the column submatrix
Ny [[t1, j1 € {0,1}. Then we define a matrix function on
Ni N, that returns a r; x ¢ matrix (NyNp)s as follows.

1, if the product Ny [7, [t1] N2 [[t], j]
(N1N2)#(i, j) = over Z is positive,

0, otherwise.

For an incidence structure 7 = (P, B) with r x ¢ incidence
matrix A, let X,, ¥p € P and Xp, VB € B be m-length vec-
tors with each component i.i.d. uniformly distributed over F.
We collect all the independent source random variables in a
column vector X having m(r +c) elements from F as follows

T
Xg.] -
Recall that p; denotes the i-th row and B; denotes the j-
th column of the matrix A. For all i [r] let ¢; € F"
denote the column vector with 1 in its i-th component and
zero elsewhere. Then for X/, , i;j as defined in lemma 1,
one can check that (® indicates the Kronecker product of two
matrices)

Xy = ([ef

— T T T T T
X = [XPI XPZ XPr Xﬂl XBQ

pi|®In) X, forallielr] (7

and
Xy, = ([B] (BI B (B] B | ® In) X, (®)

for all j € [c] where [, is the identity matrix of size m.
By stacking these values in the correct order, we can get the
following matrix equation.

r r r T
X XTI xf x| =aemx ©
where the matrix My € Fr+)x(r+) s defined as
R A
My = I:AT (ATA)#] : (10)

Note that the first r rows of M4 are linearly independent.
There is a natural correspondence between the rows of M4 and
the points and blocks of 7 of which A is the incidence matrix.
If 1 <i <r, then the i-th row My [i, [r + c]] corresponds to
the point p; € P and if r + 1 < j <r + ¢, then the j-th row
Ma [, [r + c]l corresponds to the block B; € B.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

Lemma 2: For a (0,1)-matrix A of size r x ¢, let
X, X’p. € F™ be as defined in egs. (7), (8) and matrix My
be as defined in eq. (10). Let r+1 := rank r M for some non-
negative integer f and index set 8" € {r+1,r+2,...,r +c}
be such that ranky M4 [[r1U S, [r +c]] =r +1. Let Bg :=
{BSi’ BSés ..., Bg} © B be the set of blocks that correspond
to the rows of M, indexed by &' in increasing order. Then
we have

r r f f r f f f
Pr(XPI :x],...,Xpr :Xr.,XBSi :yl,...,XBS; :yt)
:q—m(r+t),

and
Pr (X, =x;) :Pr(X}gS}:y;-) =q™, Vielrl, jeltl.
(11)

Proof: The quantities in the statement of the lemma satisfy
the following system of equations

(M[[r1US,[r +¢l] ® In)

T T T e
x [X5, Xpr X, Xk
r ’ r r T
= [xT xI xj b ¢
_[Pl Pr B‘Si BS; .
T T xT T’ -
The vector X --- X, Xp "‘XBC] is uniform over

Fm(r+c) | Since the matrix M [[r1US,[r +c]] ® I has full
row rank equal to m(r +1), the R.H.S. of the above equation is
uniformly distributed over ™" +1), giving the first statement.
The second statement is true by marginalization. []

Theorem 1: The computation capacity of any sum-network

constructed by the SUM-NET-CONS algorithm is at most 1.

Proof: By the construction procedure, there is a terminal
tp; Which is connected to the sources sp; and {sp; : A, j) =
1} through the edge e;. By lemmas 1 and 2 we have that
H(¢i(X)) = mlog,q bits. From the definition of n the
maximum amount of information transmitted on e; is nlog, g
bits and that implies that m < n. []

Next, we show that the upper bound on the computation
capacity exhibits a strong dependence on the characteristic of
the field (denoted ch(F)) over which the computation takes
place.

Theorem 2: Let A be a (0, 1)-matrix of dimension r x ¢
and suppose that we construct a sum-network corresponding
to A using the SUM-NET-CONS algorithm. The matrix M4 is
as defined in eq. (10). If rankFr M4 = r + ¢, the upper bound
on computation capacity of the sum-network is r/(r +t).

Proof: Let Bg: € B be as defined in lemma 2. Then from

lemmas 1 and 2, we have H (X’ |$;(X)) =0, Vi € [r] and
Pi

H X}, 11$i(X) : AG, j) = 1}) =0, Vj e [t]. Hence we

have lha{ H({¢:(X)}]) = m(r +1)]logq. From the definition
of n, we get nrlogqg > H({¢i(X)}]) = m(r +1)logqg —
m/n <r/(r+1t). [|

Proposition 1: We have that rank r M4 = r +f if and only
if rankr ((ATA)y — AT A) = 1. Furthermore, ranky My =
r + ¢ if and only if ch(F) { dety M4, where dety, indicates

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES

the determinant of the matrix with its elements interpreted
as 0 or 1 in Z.
Proof: From eq. (10), we have that

I, A
Ma = [AT (ATA)#]

I, O7[L 0 I, A
:[AT IC]I:O (ATA)#—ATA:I [0 IC]’ 12

which gives us the rank condition. Since M4 is a (0, 1)-matrix,
if it has full rank, then its determinant is some non-zero
element of F, where F is the base subfield of F having prime
order. We could also interpret the elements of M4 as integers
and evaluate its determinant dety M 4. Then if M4 has full
rank, we have that ch(F) { dety, M 4. []

Example 4: Consider the normal sum-network obtained
from using the Fano plane for which the incidence matrix
Af is as defined in eq. (1), so that r = ¢ = 7. It can be
verified that rankg g2y Ma, = 7. Hence theorem 2 gives an
upper bound of 1 for the computation capacity. In fact, there is
a rate-1 network code that satisfies all terminals in the normal
sum-network obtained using the Fano plane as described later
in proposition 4.

We can obtain a different upper bound on the computation
capacity by considering submatrices of M, that do not nec-
essarily contain all the initial r rows. To do this we define a
new index set S” based on an index set S € [r] as follows.

S"<{r+1,r+2,...,r +c} such that

VieS" ATli —r,[r]1 € Span{L,[j,[r]]: j € S}. (13)
Here Span indicates the subspace spanned by the vectors in a
set. The submatrix of M, that contains all the rows indexed
by numbers in SUS" is M[SUS”, [r +c]I.

Theorem 3: Let A be a (0, 1)-matrix of dimension r x ¢
and suppose that we construct a sum-network correspond-
ing to A using the SUM-NET-CONS algorithm. For any
(m, n)-network code that enables all the terminals to compute
the sum, we must have that

where xg = rankr M4[SUS”,[r +c]] and S" is as defined
in eq. (13).

Proof: Note that for the choice & = [r], the index set
& is the same as the index set &’ defined in lemma 2 and
xg = ranky M4, thus recovering the r/rankyr M4 upper
bound on the computation capacity from theorem 2. For
S = {81,...,85} C [r], we have an index set 7 < §”
such that

x5 = rankg MA[SUS”, [r + 11,
=rankr MA[SUT,[r+cll=|S|+|T].

We collect the blocks indexed in increasing order by 7 in the
set By = {B7,, ..., Bt,} € B, where y := |T|. Then one can
recover the L.H.S. of the following equation from the set of

Fig. 4. A simple undirected graph G with two connected components. It has
6 vertices and 4 edges.

messages {¢;(X) :i € S}

fT . fT fT
[Xp5| XPS|S| XBTI

X’T :IT

BT,

| MalS, [r +c]]
= ([MA[T, Ir + c]]] ® "’”) x.

Hence we have that ¢"1S! > gm(SHY) — m/n < |S|/xs.
The same reasoning is valid for any choice of S € [r] and
that gives us the result. []

Example 5: Consider the transposed sum-network corre-
sponding to the undirected graph G shown in Figure 4.
One can check that the matrix M Al when the rows and

columns of the incidence matrix A{; are arranged in increasing
alphabetical and numeric order is as follows.

1 00 011 0000
01 00101000
001 001 0O0T1O00
00 0 1l0 0 OO0 1 1

Ma—|1 1 1O 1 1 1100

A 1 000 1100 00
01 00101000
001 001 0O0T1O00
00 0 1l0 0 OO0 1 1
(00 0 1/0 0 0 0 1 1|

We choose our finite field alphabet to be G F(3) in this exam-
ple. Then rankgp3y M AL = 5 and theorem 2 gives that the
computation capacity is at most 4/5. However, theorem 3 gives
a tighter upper bound in this case. Specifically, if S = {1, 2, 3}
then §” = {5, 6,7, 8} and rankGF(3) MA£ [SUS”, [10]] = 4.
Hence theorem 3 states that the computation capacity of the
transposed sum-network for the graph G is at most 3/4.

We apply the above theorems to obtain characteristic depen-
dent upper bounds on the computation capacity of some
infinite families of sum-networks constructed using the given
procedure.

Corollary 1: Let T = (P,B) be an incidence structure
obtained from a simple undirected graph where 7 denotes
the set of vertices and B consists of the 2-subsets of P
corresponding to the edges. Let deg(p) € Z represent the
degree of vertex p € P. The incidence matrix A7 has
dimension |P| x |B|. The computation capacity of the normal
surp-network constructed using A7 is at most TP%BT for any
finite field F.

3470

Let F be the finite field alphabet of operation and define
P'cPasP :={p:ch(F)t (deg(p)—1), p € P}. Consider
the set of edges B’ := U,p/(p).

The com%utaUOn capacity of the transposed sum-network is

at most B P
Proof: Recall that B] is the i-th row of AT for all
i € [|B[]. Then the inner product over F between two rows is

2 (mod ch(F)), ifi=j,

1, if edges indexed by i and
J have a common vertex,

0, otherwise.

It can be observed that the matrix of interest, i.e., (A A7) —
AIAI = —I|p has full rank over every finite field.

The transposed sum-network for 7 is obtained by applying
the SUM-NET-CONS algorithm on the |B| x |P| matrix A%,
so that the parameters r = |B|, ¢ = |P|. We apply theorem 3
by choosing the index set S < [|B]|] such that S = {j : B; €
B'}. Defined this way, |S| = |B’| and §” is obtained from S
using eq. (13). We collect all the points corresponding to the
rows in the submatrix MA}[S”, [r +¢]] in a set Pgr < P.
Note that Pg» depends on the set of edges B’. By definitions
of B’ and §”, we have that P’ € Pg». This is true because B’
consists of all the edges that are incident to at least one point in
P’ while indices in the set " correspond to all points that are
not incident to any edge outside 13’. For instance, in Example 5
above, as F = GF(3), P’ = {1}. Then B’ = {A, B, C} and
Psr ={1,2,3,4}.

We now show that rank r M4[SUS"] = |B’| +|P’| and that
gives us the result using theorem 3. Recall that p; denotes the
i-th row of A7, which corresponds to the vertex p; for all
i € [|P]]. It follows that the inner product between p;, p;
over F is

deg(p;) (mod ch(F)), ifi=j,
P:pf: =11, if {i, j} € B,
0 otherwise.

2

Because of the above equation, all the off-diagonal terms in

the matrix (AIA%)# — AIA% are equal to zero. We focus on

the submatrix M[SUS”, [r+c]] obtained from eq. (12), letting
fE?I ={j—|B|:jeS8"} we get that

1,58, S 0
A7lS[5, S1 Ip) [Sfisv slggl]

T
A I:IIBI AI],
0 Ip
where

. [1misusm 0
Tl 0 ((AzaDs—Azal) [Sp. 0Pn] |

By definition of P’ the points in the set Ps» \ P are such
that deg(p;) — 1 = 0 (mod ch(F)), i.e., the diagonal entry
corresponding to those points in (AIA%)# - AIA% in the
matrix A is zero. Thus, A has exactly |B’| + |P’| rows which
are not equal to the all-zero row vector. The first and third

M[SUS",[r+c]]l = [

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

matrices are invertible, and hence we get that rankr M[S U
S",Ir +cll = |B'[+ |P'|. u
Corollary 2: LetT = (P, B) be a2-(v, k, 1) design. For the
normal sum-network constructed using the |P| x | B| incidence
matrix A7, the computation capacity is at most I_'PﬁBT if
ch(F) 1 (k — 1). For the transposed sum-network constructed
using AI, the computation capacity is at most % if
ch(F) t =1
Proof: We first describe the case of the transposed sum-
network. From eq. (2) each point in a 2-(v, k, 1) design is
incident to p = % blocks. Moreover any two points occur
together in exactly one block. Thus, we have the inner product
over F as

= =1 (mod ch(¥)), if j =i,
J 1, otherwise.
This implies that A7AT — (A7AD) = (3= —1)1 =

(%) I, and setting its determinant non-zero gives the result.

For the normal sum-network, we argue as follows. Note
that Bfr B; =k (mod ch(F)) for any i. Since any two points
determine a unique block, two blocks can either have one
point or none in common. Hence, for i # j, the inner product
over F is

oTp. _ |1 T BB #0,
v 0, otherwise.

Then ATA7 — (ATA7)y = (k — 1)I, and setting its
determinant as non-zero gives the result. []

Corollary 3: Let T = (P, B) be a t-(v, k, A) design, for
t > 2. From eq. (2), each point s present in p := 4(2_})/(*Z})
blocks and the number of blocks incident to any pair of points
is given by by := 4(273)/(573). Consider the transposed sum-
network constructed using the incidence matrix A% which
has dimension |B| x |P|. The computation capacity of the
transposed sum-network is at most Bl if

ch(F) { (p—ba+o(ba—1))(p —by)" L.

Proof: By definition, we have that the inner product over
F between two rows is

T P
Pipj:[bz

It follows that AIA (AIA)# has the value (p — 1) on the
diagonal and (b2 — 1) elsewhere That is,

A7AT —(AzAD)s
= ((p — b2) (mod ch(F)))I, + ((b2 — 1) (mod ch(F)))Jy,

where J, denotes the square all ones matrix of dimen-
sion ». Then by elementary row and columns operations,
det [A7AL — (A7AT)4] can be evaluated to be equal to
(b — b2+ o(bs — D)(p — ba)*~" (mod ch(F)). u

Corollary 4: Let D = (P,B) be a t-(v,f + 1, 1) design
with 4 # 1 and incidence matrix A% We define a higher
incidence matrix Aps of dimension (l |) x |B| such that each
row corresponds to a distinct f-subset of P and each column

(mod ch(F)), if j=i,
(mod ch(F)), otherwise.

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES

corresponds to a block in B. Apr is a (0, 1)-matrix such that
for any i € [(})],j e [IBI], its entry Ap(i, j) = 1 if each
of the points in the f-subset corresponding to the i-th row is
incident to the block B; € B and zero otherwise. The compu-
tation capacity of the normal sum-network constructed using

A7y is at most o = Aj—ﬂrl if ch(F) { f. The computation
I

capacity of the transposed sum-network constructed using AL,

lBl'f' vy = T if ch(F) § (2 —1).

Proof: The incidence matrix Apr is a (0, 1) matrix of
dimension (}) x H—Ll(t;) Let p;, B, denote the i-th row and
u-th column respectively of Ap: fori € [(7)],u € [H_i](‘;)]
Each row of Apr corresponds to a distinct 7-subset of P.
By t-design criterion, any set of ¢ points belongs to exactly 4
blocks. Since the columns have a one-to-one correspondence
with the blocks in B, each row of Apr has exactly 4 1’s.
Two rows will have a 1 in the same column if the block
corresponding to the column is incident to both the f-subsets
corresponding to the two rows. Since each block has ¢t + 1
points, there cannot be more than one block incident to two
different 7-subsets. Hence, for the inner product over F,
we have that p,'pl?r = A (mod ch(F)) and for all i # j;i,

i€l@1

is at most

1, if the union of the f-subsets corresponding to

PiP}F = the i-th and j-th rows is a block in B,

0, otherwise.

Then Ap AL, —(Ap AL)4 = ((A—1) (mod ch(F)))/(»y and
that gives the result for the transposed sum-network.

For the normal sum-network, we look at the columns of
Ap in a similar manner. Each column of Ap: corresponds
to a block in B. Since the size of each block is f + 1, each
column has exactly (H;l) =t + 1 elements as 1. Also, two
different blocks can have at most f points in common, and
only when that happens, will the two columns have a 1 in the
same row. Hence, for the inner product over F, we have that
BI'B, = (t+1) (mod ch(F)) and forall u # v;u,v € [(})],

1, if the u-th and o-th blocks have ¢ points

Bf B, = in common,

0, otherwise.

r F— r i = (1}
Then AD’A_D (ApAD)# t (mod ch(f))lﬁr(‘) and
theorem 2 gives the result. |
VI. LINEAR NETWORK CODES FOR
CONSTRUCTED SUM-NETWORKS

In this section, we propose linear network codes for the
sum-networks constructed using the SUM-NET-CONS algo-
rithm. Recall that the algorithm takes a (0, 1)-matrix A
that has r rows and ¢ columns as its input. In Section V,
we demonstrated that the incidence matrix of certain incidence
structures result in sum-networks whose capacity can be upper
bounded (cf. Corollaries 1, 2, 4). We now demonstrate that
under certain conditions, we can obtain network codes whose
rate matches the corresponding upper bound. Thus, we are able
to characterize the capacity of a large family of sum-networks.

347

TABLE I

THE FUNCTION VALUES TRANSMITTED ACROSS €1, €7 IN FIGURE 2(a)
FOR A NETWORK CODE WITH RATE = 2/3. EACH MESSAGE X1, X2,
X{1,2y IS A VECTOR WITH 2 COMPONENTS, AND @1(X), ¢2(X) ARE
VECTORS WITH 3 COMPONENTS EACH. A NUMBER WITHIN
SQUARE BRACKETS ADJOINING A VECTOR INDICATES
A PARTICULAR COMPONENT OF THE VECTOR

Component ¢ (X) $2(X)
1 Xa[l]+ X231 Xo[1] + X1 23 [1]
2 X2+ Xq1,23[2] X2[2] + X123 (2]
3 X{1,23[1] X{1,23[2]

We emphasize that random linear network codes that have
been used widely in the literature for multicast code con-
structions are not applicable in our context. In particular,
it is not too hard to argue that a random linear network
code would result in each terminal obtaining a different linear
function or subspace. Thus, constructing codes for these sum-
networks requires newer ideas. We outline the key ideas by
means of the following example.

Example 6: Consider the sum-network shown in
Figure 2(a). The matrix Az used in its construction is
of dimension r x ¢ where r = 2, ¢ = 1 and is described in
Example 2. It can be observed that ATA7 — (ATA7), = 1.
Then theorem 2 states that the computation capacity of this
sum-network is at most 2/3. We describe a network code
with m = 2,n = 3. The global encoding functions for the
two bottleneck edges are shown in Table I. Using the values
transmitted, all three terminals can recover the sum in the
following manner. f; receives the value of X, from the
direct edge (s2, 1) while f2 receives the value of X; from
the direct edge (s1,12). Then #; recovers the sum using the
first two components of ¢(X) while f recovers the sum
using the first two components of ¢>(X). Additionally, #{1 2
receives both ¢1(X), ¢2(X) and can carry out the operation
(X1 + Xq1,2)) + (X2 + X{1,2)) — X[1,2). Thus, each terminal
is satisfied.

The network code in the example has the following struc-
ture. For each bottleneck edge, the first r components of the
global encoding vector are the sum of all messages that are
incident to that bottleneck. The remaining ¢ components of
the encoding vectors transmit certain components of messages
observed at source nodes that correspond to columns in the
matrix A7. In the example, f{y 7} received the first component
of Xy1,2) from ¢1(X) and the second component from ¢>(X).
Thus it was able to recover the value of X 2;, which it used
in computing the demanded sum.

Our construction of network codes for sum-networks will
have this structure, i.e., the first » components on a bottleneck
edge will be used to transmit a parfial sum of the messages
observed at the sources that are connected to that bottleneck
edge and the remaining ¢ components will transmit portions of
certain sources in an uncoded manner. For a given incidence
matrix A, our first step is to identify (if possible) a correspond-
ing non-negative integral matrix D of the same dimensions
with the following properties.

« D(@,j)=0if A(Z, j)=0.

« Each row in D sums to r.

« Each column in D sums to c.

3472

Under certain conditions on the incidence matrix A, we will
show that D can be used to construct suitable network codes
for the sum-networks under consideration.

The existence of our proposed network codes are thus
intimately related to the existence of non-negative integral
matrices that satisfy certain constraints. The following theorem
[32, Corollary 1.4.2] is a special case of a more general
theorem in [33] that gives the necessary and sufficient condi-
tions for the existence of non-negative integral matrices with
constraints on their row and column sums. We give the proof
here since we use some ideas from it in the eventual network
code assignment.

Theorem 4: Let R = (r;,r2,...,rm) and § = (51,
§2,...,8,) be non-negative integral vectors satisfying
ri+...4+rm = s1+...+s,. There exists an m x n nonnegative
integral matrix D such that

0<D(,j)<cij, Yielml], Vjeln],

> DG, j)=ri, VYielm],
j=1
and

m
> DG, j)=sj, Vjeln
i=1
if and only if for all I € [m] and J < [n], we have that

PIILED IR

iel jel jel i¢l

(14)

Proof: Consider a capacity-limited flow-network modelled
using a bipartite graph on m + n nodes. The left part has m
nodes denoted as x;, Vi € [m] and the right part has n nodes
denoted as y;,Vj e [n]. For all i, j there is a directed edge
(x;, yj) with capacity c;;. There are two additional nodes in the
flow-network, the source node S* and terminal node T*. There
are directed edges (S*, x;) with capacity r; for all i € [m] and
directed edges (y;, T*) with capacity s; for all j € [n]. Let x;
be the set of all nodes in the left part whose indices are in [
and let y; be the set of all nodes in the right part whose indices
are not in J. Consider a cut separating nodes in {S*}Ux;Uyj
from its complement. Let f* be the value of the maximum
S*-T* flow in this network. Then we must have that for all
possible choice of subsets I < [m], J € [n],

2t D etz /n
igl Gi,j)iel,jel igl
In particular, suppose that f* = 3> . .,s; in the flow-

network. Substituting this in eq. (15), we get the condition
that for all possible subsets I < [m], J € [n],

PITED IR

iel jel jel i¢l

(15)

(16)

Note that by choosing all possible subsets I,J, we are
considering every possible S*-T* cut in the network. Then
by the maxflow-mincut theorem, the set of conditions of the
form of eq. (16) for all I, J are not only necessary but also
sufficient for the existence of a flow of value f* =3, [, 5;
in the network.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

A feasible flow with this value can be used to arrive at the
matrix D as follows. We set the value of element D(i, j) in
the matrix to be equal to the value of the feasible flow on the
edge (x;,y;) for all i € [m], j € [n]. It is easy to verify that
the matrix D satisfies the required conditions. []

Using the existence theorem for nonnegative integral
matrices, we can obtain network codes for sum-networks
constructed from certain incidence structures. The following
theorem describes a set of sufficient conditions that, if satisfied
by an incidence structure, allow us to construct a linear
network code that has the same rate as the computation
capacity of that sum-network. The proof of the theorem is
constructive and results in an explicit network code.

Theorem 5: Let T = (P, B) be an incidence structure and
let A7 denote the corresponding incidence matrix of dimension
v x b. Suppose that the following conditions are satisfied.

o ATAr — (ATAD)y = diag(ui, ..., up) (mod ch(F)),

where p; is a non-zero element of F Vi € {1,2,...,b}.

« There exists a matrix D7 with integer elements of the

same dimension as A7 whose entries satisfy

Dr(,j) =0, if A7G,j)=0, (17)
> D1l j) =v, (18)
i=1
and
b
D Dzl)=b. (19)

j=1
Then the computation capacity of the sum-network constructed
using A7 via the SUM-NET-CONS algorithm is ;7. This rate
can be achieved by a linear network code.

Proof: Note that ATA7 — (ATA7)4 has full rank by
assumption, theorem 2 states that the computation capacity
of the sum-network is at most »/(» + b). We construct a
(m,n) linear network code with m = v,n = v + b using
the matrix D7. Since m = v, each message vector has o
components. For a vector t € F", the notation t[l1 : I2]
for two positive integers /1, /> € [v] denotes a (I — 1 + 1)
length vector that contains the components of ¢ with indices
in the set {l1,l1 + 1,...,[2} in order. We need to specify the
global encoding vectors ¢;(X) only for the bottleneck edges
e;,i € [v] as all the other edges in the network act as repeaters.
The linear network code is such that the first » components
of the vector transmitted along e; Vi € [v] is

GO0l =Xp+ D Xaj.
J:Az (i, j)=1
By construction, each £, Vi € [v] is connected to the source
nodes in {sp, : i’ #i}U {s; : A7(i, j) = 0} by direct edges.
tp; can then compute the following value from the information
received on the direct edges.

et X X
i'#i J:Az(i,j)=0
Adding the above value to ¢; (X)[1 : v] enables f,,; to compute

the required sum. In what follows, we focus on terminals of
the form rngj c [b].

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES

Since n = v+b, each vector ¢;(X) € F" has b components
that haven’t been specified yet. We describe a particular
assignment for the b components on every ¢;(X), i € [p] using
the matrix D7 that enables each tp jV j € [b] to compute the
sum.

Recall the bipartite flow network constructed in the proof of
theorem 4. The nodes in the left part are denoted as p;Vi € [v]
and the nodes in the right part are denoted as B;V¥j < [b].
There is an edge (p;, B;) if and only if Az(i, j) = 1. The
flow on the edge (p;, B;) is denoted as f(p;, Bj) and its
value is determined by Dz(i, j), i.e., f(pi, Bj) := Dz(i, j).

By constraints on the row and column sums of D7, we con-
clude that the value of the flow through any p;Vi € [v]is b and
the value of the flow through any B;Vj e [b] is v. Without loss
of generality, assume that B; = {p1, p2,---, p|B;|}. We can
partition the » components of message vector Xpg; into |B;|
parts such that the i-th partition contains f(p;, Bj) distinct
components of Xp;. Such a partitioning can be done for
all message vectors ng,j € [b]. Then the flow f(p;, B;)
indicates that the vector ¢; (X)[v+1 : v+b] includes f(p;, B;)
uncoded components of X ;. Assigning such an interpretation
to every edge in the flow-network is possible as the total
number of components available in each ¢;(X) is b and that
is also equal to the flow through the point p;.

By construction, terminal IB; is connected to all bottleneck
edges in the set {e¢; : Az(i, j) = 1}. From the assignment
based on the flow, fg i receives f(p;, Bj) distinct components
of Xp; from ¢i(X) for all {i A7(i,j) = 1}. Since

:-’=] f(pi, Bj) = v, it can recover all o components of ng
in a piecewise fashion.

By adding the first » components transmitted on all the
bottleneck edges that are connected to 1B, it can recover

> (X o]

AT (i,j)=1

- 3 %+ ¥ Y

i:A7 (i, j)=1 i:A7 (i, j)=1 LAz (i,))=1

> Xp+ . B! BXp,

AT (i,j)=1 Be(Bj)

Because of the condition that AgAlr — (AgAlr)# = diag

(g1, p2, - .., ub), one can verify that
Z BEB:XBIZ(#J'+1)XBJ-+ Z Xp,.
Bie(Bj) Bie(Bj)\Bj

By the flow-based assignment, each fp; obtains the value of
X p; in a piecewise manner. It can then carry out the following

> #(X) 0]l — pjXp

i:Az (i, /)=1

= D> Xpt+(ui+DXp+ D Xp—ujXp,
A7 (i,)=1 Bie(Bj)\B;
=Xt 3 X,

pEBJ: B;E(Bj}

The messages not present in this partial sum, ie., {X, : p ¢
B;} U {Xp : B ¢ (Bj)} are available at !B; through direct

3473

1 D 4
A C
2 B 3

(©

Fig. 5. (a) Undirected graph considered in Example 7. (b) Part of the
corresponding normal sum-network constructed for the undirected graph
in (a). The full normal sum-network has nine nodes each in the source set §
and the terminal set T. However, for clarity, only the five sources and terminals
that correspond to the columns of the incidence matrix of the graph are shown.
Also, the direct edges constructed in Step 4 of the construction procedure
are not shown. All edges are unit-capacity and point downward. The edges
with the arrowheads are the bottleneck edges constructed in step 2 of the
construction procedure. (c) Bipartite flow network as constructed in the proof
of theorem 4 for this sum-network. The message values corresponding to the
flow on the solid lines are also shown.

edges by construction. Hence, terminals that correspond to a
column of A7 are also able to compute the required sum. B

We illustrate the linear network code proposed above by
means of the following example.

Example 7: Consider the normal sum-network obtained
from the undirected simple graph G shown in Figure 5(a).
A part of the sum-network is shown in Figure 5(b). The
4 x 5 incidence matrix A satisfies the condition of the-
orem 4 and therefore has an associated matrix Dg with
row-sum as 5 and column-sum 4 as shown below. The rows
and columns of Ag are arranged in increasing numeric and

3474

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

TABLE II

THE FUNCTION VALUES TRANSMITTED ACROSS €], €7, 3,4 IN FIGURE 5(B) FOR A NETWORK CODE WITH RATE = 4/9. EACH MESSAGE
Xa,Xp,Xc,Xp,Xg 1S A VECTOR WITH 4 COMPONENTS, AND ¢1(X), ¢2(X), ¢3(X), ¢4(X) ARE VECTORS WITH 9 COMPONENTS EACH.
THE NUMBER INSIDE SQUARE BRACKETS ADJOINING A VECTOR INDICATES A PARTICULAR COMPONENT OF THE VECTOR

Component ¢1(X) @2(X) ¢3(X) $a(X)
1to4 X1+ Xa4+Xp+Xg Xo+Xa+Xp Xa+Xp+Xeg+Xp Xa+Xe+Xp

5 Xa[l] Xal3] Xg[4] Xc[2]

6 Xal2] Xal4 Xc[l] Xc[3]

7 Xpll] Xg[1] Xge[2] Xc[4]

8 Xpl2] Xg[2] Xg[3] Xpl3]

9 Xg(1] Xg[3] Xgl4] Xpl4]

alphabetical order. and s; = o forall i € [v], j € [P] and
1 0 0 1 1 2 0 0 2 1 0, if AzG,j)=0,

A — 1 1.0 0 0 Der — 2 3 0 0 0 Cij = . ..
C=1o0 11 0 11 =10 11 0 3 oo, if Az(i, j)=1.

0 0 1 1 0 0 0 3 2 0 By this choice the condition in inequality (14) is trivially

Using the matrix D¢, one can construct a structured linear net-
work code with rate = v/(v +b) = 4/9 as shown in Table II.
One can check that it enables all the terminals to compute
the required sum. The flow-network corresponding to D¢ is
shown in Figure 5(c), and the messages corresponding to the
flow on the solid edges are shown alongside the respective
edge.

We can also consider the transposed sum-network for the
same graph G. Corollary 1 gives an upper bound on the
computation capacity that depends on F. If F = GF(2),
then the subset of points P’ = {2,4} and the upper bound
is 4/6. Note that theorem 5 is not applicable here as the matrix
AEAG — (AEAG)# does not have all its diagonal elements
as non-zero over G F(2). Proposition 3 gives a condition for
the existence of a network code for transposed sum-networks
obtained using irregular graphs. We apply that condition to
the transposed sum-network of the graph G considered here
in Example 8.

In the following proposition we show that certain infinite
families of incidence structures satisfy the requirements stated
in theorem 5. In particular, the incidence structures considered
in Corollaries 1, 2 and 4 satisfy the conditions and hence the
computation capacity of the associated sum-networks can be
calculated.

Proposition 2: The following incidence structures and their
transposes satisfy condition (ii) in theorem 5, i.e., if their
incidence matrix of dimension v x b is denoted by A7, there
exists a corresponding non-negative integral matrix Dy that
satisfies the conditions in equations (17) — (19).

1) Incidence structures derived from a regular graph or a

biregular bipartite graph.

2) t-(v, k, A) designs with 1 = 1.

3) The higher incidence structure of a t-(n, t +1, 1) design
with 4 # 1 obtained using the procedure described in
corollary 4.

Proof: The existence of Dy with row-sums as » and
column-sums b is the same as the existence of D% with
row-sums as b and column-sums . Thus, it suffices to argue
for D7. To check the validity of the condition we first choose
the bounds on the elements of the matrix D7. We set r; = b

satisfied whenever I, J are chosen such that there is a point
in I which is incident to some block in J, i.e., there exist
i € I,j e J such that A7 (i, j) = 1. Hence we restrict our
attention to choices of / and J such that none of the points in 1
are incident to any block in J. Under this restriction, the L.H.S.
of inequality (14) is 0 and the condition is equivalent to
(v — |I])b = |J|p. We will assume that

3I C [v], J < [b] such that

A7(i,j)=0 Viel,jeJ, and (v — |I))b < |J]v, (20)

and show that it leads to a contradiction for each of the three
incidence structures considered.

If 7 corresponds to a d-regular simple graph, then
b = dv/2. Consider the point-block incidence matrix A7,
which is a (0, 1)-matrix of size » x b. For the chosen I in
eq. (20), we look at the submatrix Agz[I, [b]] of size |I| x b
that consists of the rows of A7 indexed by the points in [
and all the columns. Let /; be the number of columns with a
single 1 in A7[/, [b]] and [be the number of columns with
two 1s in Ag[I, [p]]. By counting the total number of 1s in
Agl[lI, [P]] in two ways, we get that

dill=h+2Lb<2h+h) = Lh+h= %

Since the number of edges incident to at least one point in
I is Iy + I, any subset J of the edges that has no incidence
with any point in [satisfies |J| < b — d|I|/2. Using these in
eq. (20) we get that

do (dv d|I|
—Ipb < Tp = @—|I)— < (= -
(@—1Db < Il (v ||)24(2 2)9,

which is a contradiction.

Now suppose that 7 corresponds to a biregular bipartite
graph, with L vertices having degree d; in the left part
and R vertices having degree dgr in the right part. Then
b= Ld; = Rdp. Consider a subset I; U Ip of its vertices.
Let E; (resp. Eg) be the set of edges which are incident
to some vertex in I (resp. Ir) but not incident to any
vertex in Ip (resp. Ip). The number of edges that are not
incident to any vertex in I; U Ig is equal to (L — |I|)dL —
|ERr| = (R — |Ir|)dr — | EL|. Suppose there is a choice of [

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES

3475

TABLE III

THE FUNCTION VALUES TRANSMITTED ACROSS THE BOTTLENECK EDGES OF THE TRANSPOSED SUM-NETWORK CORRESPONDING TO THE GRAPH
SHOWN IN FIGURE 5(A) FOR A RATE-4/6 NETWORK OVER G F(2). EACH MESSAGE X3, X4 1S A VECTOR WITH 4 COMPONENTS, AND
¢a(X), dp(X), dc(X), ¢p(X), ¢g(X) ARE VECTORS WITH 6 COMPONENTS EACH. THE NUMBER INSIDE SQUARE BRACKETS
ADIOINING A VECTOR INDICATES A PARTICULAR COMPONENT OF THE VECTOR. A DASH INDICATES THAT THE
VALUE TRANSMITTED ON THAT COMPONENT IS NOT USED IN DECODING BY ANY TERMINAL

Component $a(X) #5(X) dc(X) ¢p(X) $p(X)
1to4 Xi+Xoa+Xa Xoe+X34+Xp Xa+Xu4+Xe Xi+Xa+Xp X1+Xs+Xg
5 X3[1] X2[3] Xa[1] X4[3] -
6 X2(2] X2[4] X4(2] Xa[4] -

in eq. (20) is such that I = I} U Ig for some Iy, Ir. Then we
have that

(@ —1IDb < |Jo,

Ld; + Rdp
= (L+R—(|IL|+|IR|))f
L —|Ii)dr — E R —|Ighdgp — |E
<(|ILDdL R+2([r|)dgr — | LI(LJFR),
[I}ldp + |IR|dr + |EL| + |ER] |IL] + |IR|
Ld; + Rdp L+R ~’

= (L+R)(|IEL| + |ER|) < (L —R)|I|dL
+ (R — L)|Ig|dR,
= (L+ R)(IEL| + |ER]) < (L — R)(|EL| — |ER]).

If L > R or|EL| > |ERg|, then we have a contradiction. That
leaves the case when L < R and |EL| < |Eg|, which implies
(L+R)(|EL|+|ER|) < (R—L)(|Eg|—|EL]) and that is also
a contradiction.

Next, consider a f-(v, k, 1) design with b blocks such that
repetition degree of each point is p and we have that bk = vp.
With the I of eq. (20), we employ a similar procedure as
for the case of the d-regular graph. We choose the submatrix
Agl[I, [b]] of size |I| x b that corresponds to the rows indexed
by the points in I and let [;, Vi € [k] denote the number of
columns with exactly i 1s in Az[[I, [b]]. We count the total
number of 1s in Az[7, [b]] in two ways, yielding

k

Ul =11 +2k + -+ (k= Dot +kle <k D1,
i=l1

k
pUI _ bl
i =—=—.
TEE T
The number of blocks that are incident to at least one point in
I is equal to ZJ 1 li- Hence any subset J of blocks that has
no incidence with any point in [satisfies |J| < b — |I|b/v.
Using this in eq. (20) we get that

(—IDb<|Jp = (—|I)b < (b_ %) N

which is a contradiction.

If 7 = (P, B) is the higher incidence structure obtained
from a t-(n,t + 1,) design as described in corollary 4, then
we have that |P| = (}) and |B| = t+l(). By definition of
for the original design, we have that each of the points in P
are incident to exactly A blocks. Also, each block in I3 consists
of (‘H) =t + 1 points. For the submatrix A7[I, [b]] whose
rows correspond to the points in I from Condition 20, we let

l;, Vi € [t+1] denote the number of columns that have exactly

i 1s in them. By counting the total number of 1s in Az[], [b]]
in two ways we get that

f+1 r+1 t+1

Zsl < (t+1)Zl = Zl, > :ﬂ

The total number of blocks incident to at least one point in [
is ZH’I [;. Then the number of blocks |J| that are not incident
to any point in [satisfy |J| < |B| — |I|4/(f + 1). Using these
(—11Db < |J|v,

= ()17 0) <7 () -m) €)

which is a contradiction. Thus in all the three kinds of inci-
dence structures considered, we have shown that they admit
the existence of the associated matrix D7 under the stated
qualifying conditions. This enables us to apply theorem 5 and
obtain a lower bound on the computation capacity of these
sum-networks.]

For an undirected graph 7 = (P, B) that is not regular,
proposition 2 is not applicable. Theorem 5 describes a suf-
ficient condition for the existence of a linear network code
that achieves the upper bound on the computation capacity of
normal sum-networks constructed from undirected graphs that
are not necessarily regular. The upper bound on the capacity
of the transposed sum-network constructed using the incidence

Al =

matrix AT however can be different from Biorpr depending
on the ﬁnlte field F (cf. corollary 1) and theorem g needs to be
modified to be applicable in that case. The following example
illustrates this.

Example 8: Consider the transposed sum-network for the
irregular graph G described in Example 7. Corollary 1 gives
an upper bound of 4/6 on the computation capacity when F =
GF(2), as for that case P’ = {2,4} and B’ = {A, B, C, D}.
We show the submatrix AE[B’, P’] in the equation below and
also an associated matrix Dg whose support is the same as that
of AE[B’, P’1 and whose row-sum = 6 — 4 = 2 and column-
sum = 4. The rows and columns are arranged in increasing
alphabetical and numeric order.

0
0
I,DGZ
1

O
R oo

AGIB, P =

(==l S I S

0

[

Using D we can construct a rate-4/6 linear network code,
shown in Table III, that achieves the computation capacity
for F = GF(2) of the transposed sum-network constructed

3476

using the irregular graph G shown in Figure 5(a). In particular,
terminals #1,f3 don’t need any information other than the
partial sums obtained over their respective bottleneck edges
to compute the sum. Terminals f,, 4 need the value X», X4
respectively, and that is transmitted in a piecewise fashion
according to the matrix D¢ over the bottleneck edges.

For an undirected graph 7 = (P, B) that is not regular,
let P’, B’ be the set of points and edges as chosen in the
statement of corollary 1. We describe a condition on the
submatrix A% [B’, P'] which consists of the rows and columns
of AT corresponding to the blocks and points in the sets 3/, P’
respectively. This condition allows us to construct a capacity-
achieving linear network code for the transposed sum-network.

Proposition 3: For an undirected graph 7 = (P, B), let
[Pl = o, |B'| = b', where P’, B’ are subsets of points
and blocks as defined in corollary 1 and let A%[B’, PG, j)
indicate an element of the submatrix for indices i e [b'],
J € [v']. Suppose there is a matrix D7 of dimension b’ x v’
such that

Dz(, j) =0, if AL[B, PG, j)=0
i%(f, j)=2»5", forall jel[v],
i=1
and
i%(f, j) =0/, forallielb].

i=1

Then there is linear network code of rate b, v that allows each
terminal in the transposed sum-network constructed using 7
to compute the required sum.

Proof: We describe a rate-b’/(b’ + v") network code that
enables each terminal to compute the sum. Then by corollary 1
we know that this is a capacity-achieving code. Since this is
a transposed sum-network, the bottleneck edges in the sum-
network correspond to the blocks in the undirected graph 7.
The first »* components transmitted over each bottleneck is
obtained by the following equation.

¢ :b1=Xp + > X, forall B; €B.
Jj:pjEBi

We show that this partial sum satisfies all the terminals in the
set {t; : Bi € BYU({t; : pj ¢ P'}. Terminals in {fp; : B; € B}
can recover the sum as all messages not present in the partial
sum are available to fp; through direct edges. For terminals in
the set {t, : p ¢ P’}, they carry out the following operation
as a part of their decoding procedure.

> oM :b1= > (Xp+ D X, | @D
i:Bie(p) i:Bie(p) Jj:pjeBi
= Z X+ D, pp)Xp
i:Bie(p) ip.pjleB
+deg(p)X,. (22)

For p; # p. we have that pp}" = L if {p, p;j} € B. Also
by condition on the points that are not in P’, we have that

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

deg(p) = 1 (mod ch(F)), and hence all the coefficients in
the above partial sum are 1. The messages in the set {Xp :
B ¢ (p)}uU {ij : {pj, p} ¢ B} are available to f, through
direct edges and hence it can recover the sum.

The remaining »" components available on the bottleneck
edges {e; : B; € B’} are used to transmit information that
enable the terminals in the set {f, : p € P’} to compute the
sum. Specifically, we construct a flow on a bipartite graph
whose one part corresponds to the points in P” and the other
part corresponds to the blocks in 5’, with incidence being
determined by the submatrix A%[B’, P’1. Since there exists
a matrix D7 with specified row and column sums, we can
use it to construct a flow on the bipartite graph such that the
messages in the set {X, : p; € P’} are transmitted in a
piecewise fashion over the bottleneck edges {e; : B; € B’} in
a manner similar to the proof of theorem 5. Arguing in the
same way, one can show that the network code based on the
flow solution allows each f, Yp € P’ to obtain the value of
X from the information transmitted over the bottleneck edges
in the set {¢; : B; € (p)}. Terminal ¢, computes the sum in
eq. (21) as a part of its decoding procedure. Since deg(p) # 1
(mod ch(F)), every term in the RHS of eq. (22) except X,
has its coefficient as 1. But since f, knows the value of X,
it can subtract a multiple of it and recover the relevant partial
sum. The messages not present in this partial sum are available
to f, through direct edges and hence it can also compute the
value of the sum.]

Proposition 2 describes families of incidence structures
for which the sum-networks constructed admit capacity-
achieving linear network codes. The upper bound on the
computation capacity of these sum-networks is obtained from
Corollaries 1, 2 and 4. We now describe a rate-1 linear network
code for the sum-networks when their corresponding incidence
structures do not satisfy the qualifying conditions for the upper
bounds. By theorem 1, the computation capacity of any sum-
network obtained using the SUM-NET-CONS algorithm is at
most 1.

Proposition 4: For an incidence structure 7 = (P, B) and
a finite field F, there exists a rate-1 linear network code that
satisfies the following listed sum-networks. If

e« T is a2-(v,k,1) design:

— the normal sum-network with ch(F) | k — 1,
— the transpose sum-network with ch(F) | ;= 1,

e Tisat-(v,t+ 1, 1) design:

— the normal sum-network obtained using the higher
incidence matrix with ch(F) | ¢,

— the transpose sum-network obtained using the higher
incidence matrix with ch(F) | A — 1.

Proof: Suppose we construct a sum-network using the
SUM-NET-CONS algorithm on a (0, 1)-matrix A of dimen-
sion r x c. If ATA = (ATA)#, the following rate-1 linear
network code

¢i(X) =X, + D, Xp;, Vielr],

J:Bje(p;)
satisfies every terminal in the sum-network in the following
manner. A terminal 7, Vi e [r] receives all the messages
not present in the partial sum transmitted along e; through

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES

direct edges, and hence it can compute the sum. A terminal
tp, VB € B can carry out the following operation.

2, 4 =2 Xpt >, D, X

i:p;eB; pieB pi€B Bje(p;)
T
= > Xp+ > B[BXp.
p‘:EB I:B;E{Bj}

Since ATA = (AT A)g, all the coefficients in the above sum
are 1 and >, p ¢i(X) is equal to the sum of all the
messages in the sef {Xp; : pi € B;j}U{Xp : B € (Bj)}.
All the messages that are not present in this set are available
to tp; through direct edges.

Such a rate-1 linear network code gives us our proposition in
the following manner. Let A7 be the v x % incidence matrix
for a 2-(v, k, 1) design and let A,’I be the higher incidence
matrix as defined in corollary 2 for a 7-(v,t + 1, A) design
with 4 # 1. Then, we have (from proofs of Corollaries 2, 4)

ATAT — (ALAD)s = (k— 1)1,
v—k
ATAT — (A7AD)s = .— 1,
Af AL — (Af Al)s = 11,

AZAT — (A AT e = - 1)1

Thus, whenever any of the above matrices is a zero matrix,
we have a scalar linear network code that achieves the com-
putation capacity of the associated sum-network. |

VII. DiscUussSION AND COMPARISON WITH PRIOR WORK

The discussion in Sections V and VI establishes the compu-
tation capacity for sum-networks derived from several classes
of incidence structures. We now discuss the broader impli-
cations of these results by appealing to existence results for
these incidence structures. BIBDs have been the subject of
much investigation in the literature on combinatorial designs.
In particular, the following two theorems are well-known.

Theorem 6 [21, Th. 6.17]: There exists a (v, 3, 1)-BIBD
(also known as a Steiner triple system) if and only if
p=1,3 (mod 6);p > 7.

Theorem 7 [21, Th. 7.31]: There exists a (v, 4, 1)-BIBD
if and only if » = 1,4 (mod 12); 0 > 13.

In particular, these results show that there are an infinite
family of Steiner triple systems and BIBDs with block size
4 and 4 = 1. Since k = 3 for any Steiner triple system,
we can demonstrate the existence of sum-networks whose
computation capacity is greatly affected by the choice of the
finite field F used for communication.

Proposition 5: Consider the normal sum-network con-
structed using a 2-(v, 3, 1) design. If ch(F) = 2, then the
computation capacity of the sum-network is 1. For odd ch(F),
the computation capacity is %. For the normal sum-network
constructed using a (v, 4, 1)-BIBD, the computation capacity
is 1 if ch(F) = 3 and 11142-0 otherwise.

Proof: The number of blocks in a 2-(v, 3, 1) design is
equal to v(v — 1)/6. From corollary 2, if ch(F) is odd,
then the computation capacity of the sum-network constructed
using a Steiner triple system is at most m =

_6
54+v°

3477

Moreover by proposition 2, we can construct a linear network
code with rate equal to the upper bound. On the other hand,
if ch(F) = 2, then the computation capacity of the same
sum-network is 1 by proposition 4.

The number of blocks in a 2-(v, 4, 1) design is v (v —1)/12.
We can recover the result for the computation capacity of a
normal sum-network constructed using it in a manner similar
to the previous case. []

Thus, this result shows that for the same network, com-
puting the sum over even characteristic has capacity 1, while
the capacity goes to zero as O(1/v) for odd characteristic.
Moreover, this dichotomy is not unique to the prime number 2.
Similar results hold for sum-networks derived from higher
incidence structures (cf. corollary 4).

Theorem 8§ [34]: For two integers f,o such that
v>t+1>0and o =t (mod (f + 1)*+!), a t-(o, 1 + 1,
(t + 1)1%+1) design with no repeated blocks exists.

The number of blocks in a f-(v, t+1, (+1)!1%+1) design can
be evaluated to be (%) Lﬂjf—Jrl We consider the normal sum-
network obtained using the higher incidence matrix of this
t-design. If ch(F) 1 t, then by corollary 4 and proposition 2,
we have that the computation capacity of this sum-network is

() B 1
(v) + (u) (402 T 4 ;]2(; 4])]2:—1 :

t t) 1+l
On the other hand, if ch(F) is a divisor of f, then by theorem 1
and proposition 4 we have that the computation capacity of the
normal sum-network constructed using the higher incidence
matrix is 1. Thus for the same sum-network, computing the
sum over a field whose characteristic divides the parameter ¢
can be done at rate = 1. However, if the field characteristic
does not divide ¢, zero-error computation of the sum can only

2
be done at a rate which goes to zero as O ((i) !)

€

Theorem 6 describes an infinite family of BIBDs with k = 3
and A = 1. There are further existence results for BIBDs with
A =1 and k # 3. In particular, for 4 = 1,k < 9 there exist
BIBDs with value of » as given in Table 3.3 in [35, Sec. IL.3.1].
As an example, if k = 5, then there exists a 2-(», 5, 1) design
whenever v = 1,5 (mod 20). For any choice of a BIBD from
this infinite family, we can construct a corresponding normal
sum-network, whose computation capacity for a particular
finite field can be found using corollary 2 and proposition 2.
Even though theorem 8 states the existence of f-designs for v, ¢
that satisfy the qualifying conditions, explicit constructions of
such f-designs with f > 6 are very rare.

For a transposed sum-network obtained from an undirected
graph that is not regular, the computation capacity can show
a more involved dependence on the finite field alphabet as the
following example demonstrates.

Example 9: Consider the transposed sum-network obtained
by applying the SUM-NET-CONS algorithm on the undirected
graph 7 shown in Figure 6. Corollary 1 gives us an upper
bound on the computation capacity of the transposed sum-
network based on the finite field alphabet 7. The upper bound
for three different choices of F is as follows.

¢« F = GF(2): Then P’ = {b}, so the upper bound is

16/(16 + 1) = 16/17.

3478

- - -

Fig. 6. The schematic shown represents an undirected graph with three
components: Sg, S14 and Syg. S; denotes the star graph on t + 1 vertices,
with only one vertex having degree t while the rest have degree 1. The
vertices with the maximum degree in the three star graphs are a, b, ¢
respectively. In addition, a is connected to b and b is connected to ¢, such that
deg(a) = 7, deg(b) = 16, deg(c) = 11.

e« F = GF(3): Then P’
11/(11 4+ 1) = 11/12.
e F = GF(5): Then P’
7/(71+1)=1/8.
We use proposition 3 to check if we can construct a linear
network code in each case that has the same rate as the
respective upper bound. To do that, we focus on the appro-
priate submatrix of A7 for each case and see if it satisfies
the required condition on row and column sums. The rows of
A7 corresponding to the vertices a, b, ¢ (in order) are shown
below.

= {c}, so the upper bound is

= {a}, so the upper bound is

1g 1 o --- 0
06 1 114 1 010,
o ... 0 1 19

where 1, 0 indicate all-one and all-zero row vectors of size
specified by their subscripts. Using this, one can verify that
the appropriate submatrix for each of the three choices of F
satisfies the conditions of proposition 3 and hence we can
construct a capacity-achieving linear network code in each
case.

Thus, as the previous example demonstrates, the computa-
tion capacity of a particular sum-network need not take just
one of two possible values, and can have a range of different
values based on the finite field chosen. We can generalize the
example to obtain sum-networks that have arbitrary different
possible values for their computation capacity.

Our constructed sum-networks have a unit maximum flow
between any source and any terminal. We can modify our
construction so that each edge in the network has a capacity
of a > 1. Specifically, the following result can be shown.

Proposition 6: Let N denote the sum-network obtained by
applying the SUM-NET-CONS algorithm on a matrix A of
dimension r x ¢. For an integer & > 1, let \/; denote the sum-
network obtained by modifying the SUM-NET-CONS algo-
rithm such that A, has the same structure as A but each
edge e, in N, has cap(e,) = @ > 1. Then, if A satisfies the
qualifying conditions in Theorems 2 and 5, the computation
capacity of Ny is ;5.

Proof: Since A satisfies the conditions in theorem 5,
there exists a (m, n) vector linear network code with m = r,
n = r +c. For every unit-capacity edge in A/, we have a unit-
capacity edges between the same tail and head in A,. At the
tail of every edge in N, we can apply the same network

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

code except now we have a distinct edges on which we can
transmit the encoded value. Thus we need transmit only ’j—c
symbols on each of those edges. If ’aﬂ is not an integer, one
can appropriately multiply both m,n with a constant. This
modified network code has rate = ::c' Since A also satisfies
the conditions in theorem 2, we have that an upper bound
on the computation capacity of N is r/(r + ¢). Applying the
same argument on A, we get that an upper bound on the
computation capacity of A is % This matches the rate of
the modified vector linear network code described above. W

This result can be interpreted as follows. Consider the
class of sum-networks where the maximum flow between any
source-terminal pair is at least a. Our results indicate, that for
any a, we can always demonstrate the existence of a sum-
network, where the computation capacity is strictly smaller
than 1. Once again, this indicates the crucial role of the

network topology in function computation.

A. Comparison With Prior Work

The work of Rai and Das [28] is closest in spirit to our
work. The authors in [28] gave a construction procedure to
obtain a sum-network with computation capacity equal to
p/q, where p,q are any two co-prime natural numbers. The
procedure involved first constructing a sum-network whose
capacity was 1/q. Each edge in this sum-network had unit-
capacity. By inflating the capacity of each edge in the sum-
network to p > 1, the modified sum-network was shown to
have computation capacity as p/q.

Our work is a significant generalization of their work.
In particular, their sum-network with capacity 1/g can be
obtained by applying the SUM-NET-CONS algorithm to the
incidence matrix of a complete graph on 2q — 1 vertices [29].
We provide a systematic procedure for constructing these sum-
networks for much larger classes of incidence structures.

The authors in [28] also posed the question if smaller sum-
networks (with lesser sources and terminals) with capacity
as p/q existed. Using the procedure described in this paper,
we can answer that question in the affirmative.

Example 10: The normal sum-network for the undirected
graph in Figure 5(a) has computation capacity = 4/9 and
has nine sources and terminals. To obtain a sum-network with
the same computation capacity using the method described
in [28] would involve constructing the normal sum-network
for a complete graph on 17 vertices, and such a sum-network
would have 153 source nodes and terminal nodes each.

In [20], it was shown by a counter-example that for the class
of sum-networks with |S| = |T| = 3, a maximum flow of 1
between each source-terminal pair was not enough to guaran-
tee solvability (i.e., no network code of rate 1 exists for the
counterexample). It can be observed that their counter-example
is the sum-network shown in Figure 2(a). Our characterization
of computation capacity for a family of sum-networks provides
significantly more general impossibility results in a similar
vein. In particular, note that for the a-capacity edge version
of a sum-network, the maximum flow between any source-
terminal pair is at least a. Then suppose we consider the class
of sum-networks with |S| = |T| = x = B(f + 1)/2 for

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES

some f < N. Consider a complete graph Ky = (V,E)
on B vertices; then |V| + |E| = x. Consider the sum-
network obtained by applying the procedure on Kpz, with
each edge added having capacity as a. Then the computation
capacity of this sum-network is aff/x, which is less than 1
if @ < (B + 1)/2. This implies that a max-flow of (8 + 1)/2
between each source-terminal pair is a necessary condition
for ensuring all sum-networks with |S| = |T| = x are
solvable. When x cannot be written as £(f+1)/2 for some £,
a similar argument can be made by finding an undirected graph
G = (V, E) (whose incidence matrix Ag satisfies the condi-
tion in theorem 5) such that | V| is minimal and |V |+ |E| = x.

VIII. CONCLUSIONS AND FUTURE WORK

Sum-networks are a large class of function computation
problems over directed acyclic networks. The notion of com-
putation capacity is central in function computation problems,
and various counterexamples and problem instances have been
used by different authors to obtain a better understanding
of solvability and computation capacity of general networks.
We provide an algorithm to systematically construct sum-
network instances using combinatorial objects called inci-
dence structures. We propose novel upper bounds on their
computation capacity, and in most cases, give matching
achievable schemes that leverage results on the existence of
non-negative integer matrices with prescribed row and column
sums. We demonstrate that the dependence of computation
capacity on the underlying field characteristic can be rather
strong.

There are several opportunities for future work. Our pro-
posed linear network codes for the constructed sum-networks
require the corresponding incidence structures to have a spe-
cific property. In particular, our techniques only work in the
case when ATA — (AT A)4 is a diagonal matrix. It would
be interesting to find capacity achieving network codes in
cases when ATA — (AT A)y is not diagonal. More generally,
it would be interesting to obtain achievability schemes and
upper bounds for sum-networks with more general topologies.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and
the anonymous reviewers whose comments and suggestions
significantly improved the quality of the paper.

REFERENCES

[1] J. Komer and K. Marton, “How to encode the modulo-two sum
of binary sources,” IEEE Trans. Inf. Theory, vol. IT-25, no. 2,
pp. 219-221, Mar. 1979.

A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903-917, Mar. 2001.

V. Doshi, D. Shah, M. Medard, and M. Effros, “Functional compression
through graph coloring,” IEEE Trans. Inf. Theory, vol. 56, no. 8,
pp. 3901-3917, Aug. 2010.

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204-1216,
Jul. 2000.

R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782-795, Oct. 2003.

S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371-381, Feb. 2003.

R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding
in network information flow,” IEEE Trans. Inf. Theory, vol. 51, no. 8,
pp. 2745-2759, Aug. 2005.

[21
[31

[4]

(51
(6]
(71

(81

91

[10]

(1

[12]

[13]

[14]

[15]

[16]

(7

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]

[35]

3479

1. Cannons, R. Dougherty, C. Freiling, and K. Zeger, “Network rout-
ing capacity,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 777-788,
Mar. 2006.

R. Dougherty, C. Freiling, and K. Zeger, “Unachievability of network
coding capacity,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2365-2372,
Jun. 2006.

S. Jaggi et al., “Polynomial time algorithms for multicast network code
construction,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973-1982,
Jun. 2005.

S. Huang and A. Ramamoorthy, “An achievable region for the double
unicast problem based on a minimum cut analysis,” IEEE Trans.
Commun., vol. 61, no. 7, pp. 28902899, Jul. 2013.

S. Huang and A. Ramamoorthy, “On the multiple-unicast capacity of
3-source, 3-terminal directed acyclic networks,” IEEE/ACM Trans.
Netw., vol. 22, no. 1, pp. 285-299, Feb. 2014.

A. R. Lehman and E. Lehman, “Complexity classification of network
information flow problems,” in Proc. 15th Annu. ACM-SIAM Symp.
Discrete Algorithms, Jan. 2004, pp. 142-150.

S. Kamath, D. N. C. Tse, and C.-C. Wang, “Two-unicast is hard,” in
Proc. IEEE Int. Symp. Inf. Theory, Jun. 2014, pp. 2147-2151.

R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing: Cut-set bounds,” IEEE Trans. Inf.
Theory, vol. 57, no. 2, pp. 1015-1030, Feb. 2011.

C. Huang, Z. Tan, and S. Yang, “Upper bound on function computation
in directed acyclic networks,” in Proc. IEEE Inf. Theory Workshop,
Apr. 2015, pp. 1-5.

R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Linear codes, target function classes, and network computing capacity,”
IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 5741-5753, Sep. 2013.

A. Ramamoorthy, “Communicating the sum of sources over a network,”
in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2008, pp. 1646-1650.

B. K. Rai and B. K. Dey, “On network coding for sum-networks,” IEEE
Trans. Inf. Theory, vol. 58, no. 1, pp. 50-63, Jan. 2012.

A. Ramamoorthy and M. Langberg, “Communicating the sum of
sources over a network,” IEEE J. Sel. Areas Commun., vol. 31, no. 4,
pp. 655-665, Apr. 2013.

D. R. Stinson, Combinatorial Designs: Constructions and Analysis.
New York, NY, USA: Springer-Verlag, 2004.

O. Olmez and A. Ramamoorthy, “Fractional repetition codes with
flexible repair from combinatorial designs,” IEEE Trans. Inf. Theory,
vol. 62, no. 4, pp. 1565-1591, Apr. 2016.

S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for
repair in distributed storage systems,” in Proc. 48th Annu. Allerton Conf.
Commun., Control Comput., Sep. 2010, pp. 1510-1517.

L. Tang and A. Ramamoorthy, “Coded caching with low subpacketi-
zation levels,” in Proc. Int. Symp. Netw. Coding (NetCod), Dec. 2016,
pp. 1-6.

L. Tang and A. Ramamoorthy, “Coded caching for networks with the
resolvability property.” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2016,
pp- 420424,

L. Tang and A. Ramamoorthy. (2017). “Low subpacketization schemes
for coded caching.” [Online]. Available: https://arxiv.org/abs/1706.00101
B. K. Rai and N. Das, “On the capacity of ms/3t and 3s/nt sum-
networks,” in Proc. IEEE Inf. Theory Workshop, Sep. 2013, pp. 1-5.
B. K. Rai and N. Das, “On the capacity of sum-networks,” in Proc.
51st Annu. Allerton Conf. Commun., Control Comput., Oct. 2013,
pp. 1545-1552.

A. Tripathy and A. Ramamoorthy, “Sum-networks from undirected
graphs: Construction and capacity analysis,” in Proc. 52nd Annu. Aller-
ton Conf. Commun. Control Comput., Sep. 2014, pp. 651-658.

N. Das and B. K. Rai, “On the number of sources and terminals of sum-
networks with capacity p/q,” in Proc. 21st Nat. Conf. Commun. (NCC),
Feb. 2015, pp. 1-6.

A. Tripathy and A. Ramamoorthy, “Capacity of sum-networks for
different message alphabets,” in Proc. IEEE Int. Symp. Inf. Theory,
Jun. 2015, pp. 606-610.

R. A. Bmaldi, Combinatorial Matrix Classes. Cambridge, U.K.:
Cambridge Univ. Press, 2006.

L. Mirsky, “Combinatorial theorems and integral matrices,” J. Combinat.
Theory, vol. 5, no. 1, pp. 3044, 1968.

L. Teirlinck, “Non-trivial f-designs without repeated blocks exist for
all t.” Discrete Math., vol. 65, no. 3, pp. 301-311, 1987.

C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs.
Boca Raton, FL, USA: CRC Press, 2006.

Ardhendu Tripathy (S°15) received his B.Tech. degree from the Indian
Institute of Technology, Kanpur in May 2012 and is currently a Ph.D. student
in the Department of Electrical and Computer Engineering at Iowa State
University. His research interests are in the areas of information theory,
machine learning and signal processing.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

Aditya Ramamoorthy (M'05) received the B.Tech. degree in electrical
engineering from the Indian Institute of Technology, Delhi, in 1999, and
the M.S. and Ph.D. degrees from the University of California, Los Ange-
les (UCLA), in 2002 and 2005, respectively. He was a systems engineer
with Biomorphic VLSI Inc. until 2001. From 2005 to 2006, he was with
the Data Storage Signal Processing Group of Marvell Semiconductor Inc.
Since fall 2006, he has been with the Electrical and Computer Engineering
Department at Iowa State University, Ames, IA 50011, USA. His research
interests are in the areas of network information theory, channel coding and
signal processing for bioinformatics and nanotechnology. Dr. Ramamoorthy
served as an editor for the IEEE TRANSACTIONS ON COMMUNICATIONS
from 2011-2015. He is currently serving as an associate editor for the
IEEE TRANSACTIONS ON INFORMATION THEORY. He is the recipient of
the 2012 Early Career Engineering Faculty Research Award from Iowa
State University, the 2012 NSF CAREER award, and the Harpole-Pentair
professorship in 2009 and 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

