
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018 3461

Sum-Networks From Incidence Structures:
Construction and Capacity Analysis

Ardhendu Tripathy ,Student Member, IEEE, and Aditya Ramamoorthy,Member, IEEE

Abstract— A sum-network is an instance of a function com-
putation problem over a directed acyclic network, in which
each terminal node wants to compute the sum over a finite
field of the information observed at all the source nodes. Many
characteristics of the well-studied multiple unicast network com-
munication problem also hold for sum-networks, due to a known
reduction between the two problems. In this paper, we describe
an algorithm to construct families of sum-network instances using
incidence structures. The computation capacity of several of these
sum-network families is evaluated. Unlike the coding capacity of
a multiple unicast problem, the computation capacity of sum-
networks depends on the characteristic of the finite field over
which the sum is computed. This dependence is very strong;
we show examples of sum-networks that have a rate-1 solution
over one characteristic but a rate close to zero over a different
characteristic. In addition, a sum-network can have arbitrarily
different computation capacities for different alphabets.

Index Terms— Network coding, function computation,
sum-networks, characteristic, incidence structures.

I. INTRODUCTION

APPLICATIONS as diverse as parallel processing, dis-
tributed data analytics and sensor networks often deal

with variants of the problem of distributed computation. This
has motivated the study of various problems in the fields of
computer science, automatic control and information theory.
Broadly speaking, one can model this question in the fol-
lowing manner. Consider a directed acyclic network with its
edges denoting communication links. A subset of the nodes
observe certain information, these nodes are called sources.
A different subset of nodes, called terminals, wish to compute
functions of the observed information with a certain fidelity.
The computation is carried out by the terminals with the aid
of the information received over their incoming edges. The
demand functions and the network topology are a part of the
problem instance and can be arbitrary. This framework is very

Manuscript received November 6, 2016; accepted August 17, 2017. Date
of publication October 23, 2017; date of current version April 19, 2018.
This work was supported by the National Science Foundation under Grant
CCF-1149860, Grant CCF-1320416, Grant CCF-1718470, and Grant DMS-
1120597. This paper was presented in part at the 2014 52nd Allerton
Conference on Communication, Control, and Computing and the 2015 IEEE
International Symposium on Information Theory.
The authors are with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA 50011 USA (e-mail:
ardhendu@iastate.edu; adityar@iastate.edu).
Communicated by A. G. Dimakis, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2017.2765661

general and encompasses several problems that have received
significant research attention.
Prior work [1]–[3] concerning information theoretic issues
in function computation worked under the setting of corre-
lated information observed at the sources andsimplenetwork
structures, which were simplein the sense that there were
edges connecting the sources to the terminal without any
intermediate nodes or relays. For instance, [2] characterizes
the amount of information that a source must transmit so that
a terminal with some correlated side-information can reliably
compute a function of the message observed at the source
and the side-information. Reference [3] considered distributed
functional compression, in which two messages are separately
encoded and given to a decoder that computes a function of
the two messages with an arbitrarily small probability of error.
With the advent of network coding [4], [5], the scope
of the questions considered included the setting in which
the information observed at the sources is independent and
the network topology is more complex. Under this setting,
information is sent from a source to a terminal over a path
of edges in the directed acyclic network with one or more
intermediate nodes in it, these relay nodes have no limit on
their memory or computational power. The communication
edges are abstracted into error-free, delay-free links with a
certain capacity for information transfer and are sometimes
referred to asbit-pipes. The messages are required to be recov-
ered with zero distortion. Themulticast scenario, in which
the message observed at the only source in the network is
demanded by all terminals in the network, is solved in [4]–[6].
A sufficient condition for solvability in the multicast scenario
is that each terminal has a max-flow from the source that is
at least the entropy rate of the message random process [4].
Reference [6] established that linearnetwork codes over a
sufficiently large alphabet can solve this problem and [5]
provided necessary and sufficient conditions for solving a
multicast problem instance in an algebraic framework. The
work in [5] also gave a simple algorithm to construct a network
code that satisfies it.
Unlike the multicast problem, the multiple unicast problem
does not admit such a clean solution. This scenario has mul-
tiple source-terminal pairs over a directed acyclic network of
bit-pipes and each terminal wants to recover the message sent
by its corresponding source with the help of the information
transmitted on the network. To begin with, there are problem
instances where more than one use of the network is required
to solve it. To model this, each network edge is viewed as

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1893-4891
https://orcid.org/0000-0003-3448-1271

3462 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

carrying a vector ofnalphabet symbols, while each message
is a vector ofm alphabet symbols. A network code specifies
the relationship between the vector transmitted on each edge
of the network and the message vectors, and it solves a
network coding problem instance ifm = n.Itisshownthat
linear network codes are in general not sufficient to solve this
problem [7]. One can define the notion ofcoding capacity
of a network as the supremum of the ratiom/nover all
network codes that allow each terminal to recover its desired
message; this ratiom/nfor a particular network code is called
itsrate. The coding capacity of a network is independent
of the alphabet used [8]. While a network code with any
rational rate less than the coding capacity exists by definition
and zero-padding, a network code with rate equal to coding
capacity does not exist for certain networks, even if the coding
capacity is rational [9]. The multi-commodity flow solution to
the multiple unicast problem is called a routing solution, as the
different messages can be interpreted as distinct commodities
routedthrough the intermediate nodes. It is well-known that in
the case of multicast, network coding can provide a gain in rate
over traditional routing of messages that scales with the size of
the network [10]. However, evaluating the coding capacity for
an arbitrary instance of the network coding problem is known
to be hard in general [11]–[14].
Expanding the scope of the demands of the terminals, [15]

consideredfunction computationover directed acyclic net-
works with only one terminal; the value to be recovered at
the terminal was allowed to be a function of the messages
as opposed to being a subset of the set of all messages.
This computation is performed using information transmitted
over the edges by a network code. Analogous to the coding
capacity, a notion ofcomputation capacitycan be defined in
this case. A rate-m/nnetwork code that allows the terminal
to compute its demand function has the interpretation that
the function can be computed by the terminalm times in
nuses of the network. Cut-set based upper bounds for the
computation capacity of a directed acyclic network with one
terminal were given in [15] and [16]. A matching lower
bound for function computation in tree-networks was given
in [15] and the computation capacity of linear and non-linear
network codes for differentclassesof demand functions was
explored in [17].
A different flavor of the function computation problem,

often called the sum-networkproblem, considers directed
acyclic networks with multiple terminals, each of which
demands the finite-field sum of all the messages observed
at the sources [18], [19]. Reference [20] characterized
the requirements that sum-networks with two or three
sources or terminals must satisfy so that each terminal can
recover the sum at unit rate. Similar to the network cod-
ing scenario, a sum-network whose terminals are satisfied
by a rate-1 network code are called solvable sum-networks.
Reference [19] established that deciding whether an arbitrary
instance of a sum-network problem instance is solvable is at
least as hard as deciding whether a suitably defined multiple
unicast instance is solvable. As a result of this reduction the
various characteristics of the solvability problem for network
coding instances are also true for the solvability problem for

sum-networks; this establishes the broadness of the class of
sum-networks within all communication problems on directed
acyclic networks.
While solvable sum-networks and solvable network coding
instances are intimately related, the results in this paper
indicate that these classes of problems diverge when we focus
on coding/computation capacity, which can be strictly less
than one. In [8, Sec. VI], the coding capacity of networks
is shown to be independent of the finite field chosen as the
alphabet for the messages and the information transmitted over
the edges. We show that an analogous statement is not true
for sum-networks by demonstrating infinite families of sum-
network problem instances whose computation capacity vary
depending on the finite field alphabet. Moreover, the gap in
computation capacity on two different finite fields is shown
to scale with the network size for certain classes of sum-
networks. For two alphabetsF1,F2of different cardinality
and a networkN, Cannonset al.[8, Th. VI.5] described
a procedure to simulate a rate-m2/n2network code onF2
forN using a rate-m1/n1network code onF1for the same
network, such thatm2/n2≥ (m1/n1)− for any >0. That
procedure does not apply for sum-networks. Along the lines
of the counterexample given in [20] regarding minimum max-
flow connectivity required for solvability of sum-networks
with three sources and terminals, we provide an infinite family
of counterexamples that mandate certain value of max-flow
connectivity to allow solvability (over some finite field) of
a general sum-network withmore than three sources and
terminals. These sum-network problem instances are arrived
at using a systematic construction procedure on combinatorial
objects calledincidence structures. Incidence structures are
structured set systems and include, e.g., graphs and combinato-
rial designs [21]. We note here that combinatorial designs have
recently been used to address issues such as the construction
of distributed storage systems [22], [23] and coded caching
systems [24]–[26].
This paper is organized as follows. Section II describes
previous work related to the problem considered and sum-
marizes the contributions. Section III describes the problem
model formally and Section IV describes the construction
procedure we use to obtain the sum-network problem instances
considered in this work. Section V gives an upper bound on the
computation capacity of these sum-networks and Section VI
describes a method to obtain linear network codes that achieve
the upper bound on rate for several families of the sum-
networks constructed. Section VII interprets the results in this
paper and outlines the key conclusions drawn in this paper.
Section VIII concludes the paper and discusses avenues for
future work.

II. BACKGROUND,RELATEDWORK AND
SUMMARY OFCONTRIBUTIONS

The problem setting in which we will work is such that
the information observed at the sources are independent and
uniformly distributed over a finite field alphabetF. The
network links are error-free and assumed to have unit-capacity.
Each of the possibly many terminals wants to recover the finite

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES 3463

field sum of all the messages with zero error. This problem was
introduced in the work of [18]. Intuitively, it is reasonable to
assume the network resources, i.e., the capacity of the network
links and the network structure have an effect on whether
the sum can be computed successfully by all the terminals
in the network. Reference [20]characterized this notion for
the class of sum-networks that have either two sources and/or
two terminals. For this class of sum-networks it was shown
that if the source messages had unit-entropy, a max-flow of
one between each source-terminal pair was enough to solve
the problem. It was shown by means of a counterexample
that a max-flow of one was not enough to solve a sum-
network with three sources and terminals. However, it was
also shown that a max-flow of two between each source-
terminal pair was sufficient to solve any sum-network with
three sources and three terminals. Reference [27] considered
the computation capacity of the class of sum-networks that
have three sources and three or more terminals or vice
versa. It was shown that for any integerk≥ 2, there exist
three-source,n-terminal sum-networks (wheren≥ 3) whose
computation capacity is k

k+1. The work most closely related
to this paper is [28], which gives a construction procedure
that for any positive rational numberp/q returns a sum-
network whose computation capacity isp/q. Assuming that
pandqare relatively prime, the procedure described in [28]
constructs a sum-network that has 2q−1+ 2q−1

2 sources and

2q+2q−1
2 terminals, which can be very large whenqis large.

The authors asked the question if there exist smaller sum-
networks (i.e., with fewer sources and terminals) that have the
computation capacity asp/q. Our work in [29] answered it in
the affirmative and proposed a general construction procedure
that returned sum-networks with a prescribed computation
capacity. The sum-networks in [28] could be obtained as
special cases of this construction procedure. Some smaller
instances of sum-networks for specific values were presented
in [30]. Small sum-network instances can be useful in deter-
mining sufficiency conditions for larger networks. The scope
of the construction procedure proposed in [29] was widened
in [31], as a result of which, it was shown that there exist
sum-network instances whose computation capacity depends
rather strongly on the finite field alphabet. This work builds
on the contributions in [29] and [31]. In particular, we present
a systematic algebraic technique that encompasses the prior
results. We also include proofs of all results and discuss the
implications of our results in depth.

A. Summary of Contributions

In this work, we define several classes of sum-networks for
which we can explicitly determine the computation capacity.
These networks are constructed by using appropriately defined
incidence structures. The main contributions of our work are
as follows.

•We demonstrate novel techniques for determining upper
and lower bounds on the computation capacity of the
constructed sum-networks. In most cases, these bounds
match, thus resulting in a determination of the capacity
of these sum-networks.

•We demonstrate a strong dependence of the computation
capacity on the characteristic of the finite field over which
the computation is taking place. In particular, for thesame
network, the computation capacity changes based on the
characteristic of the underlying field. This is unlike the
coding capacity for the multiple unicast problem which is
known to be independent of the network coding alphabet.

•Consider the class of networks where every source-
terminal pair has a minimum cut of value at leastα,where
αis an arbitrary positive integer. We demonstrate that
there exists a sum-network within this class (with a large
number of sources and terminals) whose computation
capacity can be made arbitrarily small. This implies that
the capacity of sum-networks cannot be characterized just
by individual source-terminal minimum cuts.

III. PROBLEMFORMULATION ANDPRELIMINARIES

We consider communication over a directed acyclic
graph (DAG)G = (V,E)where V is the set of nodes
andE ⊆ V× V× Z+ are the edges denoting the delay-
free communication links between them. The edges are given
an additional index as the model allows for multiple edges
between two distinct nodes. For instance, if there are two edges
between nodesuandv, these will be represented as(u,v,1)
and(u,v,2). SubsetS⊂ V denotes the source nodes and
T ⊂ V denotes the terminal nodes. The source nodes have
no incoming edges and the terminal nodes have no outgoing
edges. Each source nodesi∈ Sobserves an independent
random processXi, such that the sequence of random vari-
ablesXi1,Xi2,...indexed by time (denoted by a positive
integer) are i.i.d. and eachXijtakes values that are uniformly
distributed over a finite alphabetF. The alphabetFis assumed
to be a finite field with|F|=qand its characteristic denoted
as ch(F). Each edge represents a communication channel of
unit capacity, i.e., it can transmit one symbol fromF per
time slot. When referring to a communication link (or edge)
without its third index, we will assume that it is the set of
all edges between its two nodes. For such a set denoted by
(u,v), we define its capacity cap(u,v)as the number of edges
betweenuandv. We use the notation In(v)and In(e)to
represent the set of incoming edges at nodev∈V and edge
e∈E. For the edgee=(u,v)let head(e)=vand tail(e)=u.
Each terminal nodet∈Tdemands the sum (overF)ofthe
individual source messages. LetZj= {i:si∈S}

Xijfor all
j∈N(the set of natural numbers); then eacht∈Twants to
recover the sequenceZ:=(Z1,Z2,...)from the information
it receives on its incoming edges, i.e., the set In(t).
A network code is an assignment of local encoding func-
tions to each edgee∈E(denoted asφ̃e(·)) and a decoding
function to each terminalt∈ T (denoted asψt(·))such
that all the terminals can computeZ. The local encoding
function for an edge connected to a set of sources only has
the messages observed at those particular source nodes as its
input arguments. Likewise, the input arguments for the local
encoding function of an edge that is not connected to any
source are the values received on its incoming edges and
the inputs for the decoding function of a terminal are the

3464 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

values received on its incoming edges. As we consider directed
acyclic networks, it can be seen that there is aglobalencoding
function that expresses the value transmitted on an edge in
terms of the source messages in the setX:= {Xi:si∈S}.
The global encoding function for an edge e is denoted
asφe(X).
The following notation describes the domain and range of

the local encoding and decoding functions using two natural
numbersmandnfor a general vector network code.m is the
number of i.i.d. source values that are encoded simultaneously
by the local encoding function of an edge that emanates
from a source node.nis the number of symbols fromF
that are transmitted across an edge in the network. Thus for
such an edgeewhose tail(e)= s∈ S, the local encoding
function isφ̃e(Xs1,Xs2,...,Xsm)∈ F

n. We will be using
both row and column vectors in this paper and they will be
explicitly mentioned while defining them. Ifuis a vector,
theuTrepresents its transpose.

•Local encoding function for edgee∈E.

φ̃e:F
m→ Fn if tail(e)∈S,

φ̃e:F
n|In(tail(e))|→ Fn if tail(e)/∈S.

•Decoding function for the terminalt∈T.

ψt:F
n|In(t)|→ Fm.

A network code is linear over the finite field F if all the
local encoding and decoding functions are linear transforma-
tions overF. In this case the local encoding functions can
be represented via matrix products where the matrix elements
are fromF. For example, for an edgeesuch that tail(e)/∈S,
letc∈ N be such thatc=|In(tail(e))|and In(tail(e))=
{e1,e2,...,ec}. Also, let eachφei(X)∈F

nbe denoted as a
column vector of sizenwhose elements are fromF. Then the
value transmitted onecan be evaluated as

φe(X)=φ̃e(φe1(X), φe2(X),...,φec(X)),

= Meφe1(X)
Tφe2(X)

T... φec(X)
TT,

where Me∈F
n×ncis a matrix indicating the local encoding

function for edgee. For the sum-networks that we consider,
a valid(m,n)fractional network code solution overF has the
interpretation that the component-wise sum overF ofmi.i.d.
source symbols can be communicated to all the terminals in
ntime slots.
Definition 1: Therateof a(m,n)network code is defined

to be the ratiom/n. A sum-network is solvable if it has a
(m,m)network coding solution for somem∈N.
Definition 2: Thecomputation capacityof a sum-network

is defined as

sup
m

n
:
there is a valid (m,n) network code
for the given sum-network

.

We use different types of incidence structuresfor construct-
ing sum-networks throughout this paper. We now formally
define and present some examples of incidence structures.
Definition 3 (Incidence Structure): LetP be a set of ele-
ments calledpoints,andBbe a set of elements calledblocks,
where each block is a subset ofP. The incidence structureIis

Fig. 1. A pictorial depiction of the Fano plane. The point setP={1,...,7}.
The blocks are indicated by a straight line joining their constituent points. The
points 2,4 and 6 lying on the circle also depict a block.

defined as the pair(P,B).Ifp∈P,B∈Bsuch thatp∈B,
then we say that pointpis incident to blockB. In generalB
can be a multiset, i.e., it can contain repeated elements, but
we will not be considering them in our work. Thus for any
two distinct blocksB1,B2there is at least one point which is
incident to one ofB1andB2and not the other.
We denote the cardinalities of the sets P andB by the
constantsvandbrespectively. Thus the set of points and
blocks can be indexed by a subscript, and we have that

P={p1,p2,...,pv}, andB={B1,B2,...,Bb}.

Definition 4 (Incidence Matrix): The incidence matrix
associated with the incidence structureIis a(0,1)-matrix of
dimensionv×bdefined as follows.

AI(i,j):=
1ifpi∈Bj,

0 otherwise.

Thus, incidence matrices can be viewed as general set sys-
tems. For example, a simple undirected graph can be viewed
as an incidence structure where the vertices are the points and
edges are the blocks (each block is of size two). Combinatorial
designs [21] form another large and well-investigated class of
incidence structures. In this work we will use the properties
oft-designs which are defined next.
Definition 5 (t-Design): An incidence structureI=(P,B)
is at-(v,k,λ)design, if

•it hasvpoints, i.e.,|P|=v,
•each blockB∈Bis ak-subset of the point setP,and
•P andBsatisfy thet-design property, i.e., anyt-subset
ofP is present in exactlyλblocks.

At-(v,k,λ)design is calledsimpleif there are no repeated
blocks. These designs have been the subject of much investi-
gation whent=2; in this case they are also called balanced
incomplete block designs (BIBDs).
Example 1: A famous example of a 2-design with λ= 1

is the Fano planeI = (P,B)shown in Figure 1. Letting
numerals denote points and alphabets denote blocks for this
design, we can write:

P ={1,2,3,4,5,6,7}, B={A,B,C,D,E,F,G},

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES 3465

where

A={1,2,3}, B={3,4,5}, C={1,5,6}, D={1,4,7},

E={2,5,7}, F={3,6,7}, G={2,4,6}.

The corresponding incidence matrix AI, with rows and
columns arranged in numerical and alphabetical order,
is shown below.

AI=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 1 0 0 0
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 0 1 0 0 1
0 1 1 0 1 0 0
0 0 1 0 0 1 1
0 0 0 1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1)

It can be verified that every pair of points inP appears in
exactly one block inB.
There are some well-known conditions that the parameters

of at-(v,k,λ)design satisfy (see [21]).

•For integeri≤ tthe number of blocks incident to any
i-subset ofPis the same. We letbidenote that constant.
Then,

bi=λ
v−i

t−i
/
k−i

t−i
, ∀i∈{0,1,2,...,t}. (2)

We note that b0is simply the total number of blocks
denoted byb. Likewise,b1represents the number of
blocks that each point is incident to; we use the symbol
ρto represent it. Furthermore,bt=λ.
It follows that a necessary condition for the existence of
at-(v,k,λ)design is that k−i

t−i dividesλ
v−i
t−i for all

i=1,2,...,t.
•Counting the number of ones in the point-block incidence
matrix for a particular design in two different ways,
we arrive at the equationbk=vρ.

IV. CONSTRUCTION OF AFAMILY OFSUM-NETWORKS

Let[t]:={1,2,...,t}for anyt∈ N. Our construction
takes as input a(0,1)-matrixAof dimensionr×c.
Definition 6 (Notation for Row and Column of A): Let pi
denote thei-th row vector ofAfori∈[r]andBjdenote the
j-th column vector ofAforj∈[c].1

It turns out that the constructed sum-networks have inter-
esting properties when the matrixAis the incidence matrix
of appropriately chosen incidence structures. The construction
algorithm is presented in Algorithm 1. The various steps in
the algorithm that construct components of the sum-network
G=(V,E)are described below.

1)Source node set S and terminal node set T : SandTboth
containr+cnodes, one for each row and column ofA.
The source nodes are denoted at line 4 asspi,sBjif they
correspond to thei-th row,j-th column respectively.
The terminal nodes are also denoted in a similar manner

1A justification for this notation is that later when we use the incidence
matrix (AI) of an incidence structureIto construct a sum-network, the rows
and columns of the incidence matrix will correspond to the points and blocks
ofIrespectively.

at line 5. They are added to the vertex setVof the sum-
network at line 6.

2)Bottleneck edges:We add runit-capacity edges indexed
aseifori∈[r]in line 2 to the edge setE. Each edge
eicorresponds to a row of the matrixA. Wealsoadd
the required tail and head vertices of these edges toV.

3)Edges between S∪T and the bottleneck edges:For
everyi∈[r], we connect tail(ei)to the source node
corresponding to the rowpiand to the source nodes
that correspond to all columns ofA with a 1 in the
i-th row. This is described in line 8 of the algorithm.
Line 9 describes a similar operation used to connect
each head(ei)to certain terminal nodes.

4)Direct edges between S and T :For each terminal inT,
these edges directly connect it to source nodes that
do not have a path to that particular terminal through
the bottleneck edges. Using the notation for rows and
columns of the matrixA, they can be characterized as
in lines 12 and 15.

Algorithm 1Sum-Net-Cons

Input:A.
Output: G=(V,E).
1:InitializeV,E,S,T← φ.
2:E←{ ei:i∈[r]}.
3:V←{ head(ei),tail(ei):i∈[r]}.
4:S←{ spi:i∈[r]} ∪ {sBj:j∈[c]}.
5:T←{ tpi:i∈[r]} ∪ {tBj:j∈[c]}.
6:V← V∪S∪T.
7:for alli∈[r]do
8: E ← E∪{(sBj,tail(ei)):A(i,j)= 1;j∈[c]} ∪
{(spi,tail(ei))}.

9: E ← E∪{(head(ei),tBj):A(i,j)= 1;j∈[c]} ∪
{(head(ei),tpi)}.

10:end for
11:for alli∈[r]do
12: E ← E∪{(spj,tpi):i= j;j∈[r]} ∪ {(sBj,tpi):

A(i,j)=0;j∈[c]}.
13:end for
14:for allj∈[c]do
15: E← E∪{(spi,tBj):A(i,j)=0;i∈[r]} ∪ {(sBj,tBj):

BTjBj=0;j∈[c]}.
16:end for
17:return G← (V,E).

For an incidence structureI,letAIrepresent its incidence
matrix. The sum-networks constructed in the paper are such
that the matrixAused in the SUM-NET-CONS algorithm is
either equal toAIorA

T
I for some incidence structureI.

When A= AI, we call the sum-network constructed as the
normalsum-network forI. Otherwise whenA= ATI, we call
the sum-network constructed as thetransposesum-network
forI. The following definitions are useful for analysis. For
everyp∈P, we denote the set of blocks that contain the
pointpas

p :={B∈B:p∈B}, (3)

3466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

Fig. 2. Two sum-networks obtained from the line graph on two vertices
described in Example 2. The source setSand the terminal setT contain
three nodes each. All edges are unit-capacity and point downward. The
edges with the arrowheads are the bottleneck edges constructed in step 2 of
the construction procedure. (a) Normal sum-network, and (b) transposed
sum-network.

and for everyB ∈ B, the collection of blocks that have a
non-empty intersection withBis denoted by the set

B :={B∈B:B ∩B=φ} (4)

={B∈B:BTB =0}, (5)

where boldface Bindicates the column ofAIcorresponding
to blockB∈B.
The inner product above is computed over the reals. In the

sequel, we will occasionally need to perform operations similar
to the inner product over a finite field. This shall be explicitly
pointed out.
We now present some examples of sum-networks

constructed using the above technique.
Example 2:LetIbe the unique simple line graph on two

vertices, with points corresponding to the vertices and blocks
corresponding to the edges of the graph. Denoting the points
as natural numbers, we get thatP={1,2}andB={{1,2}}.
Then the associated incidence matrices are as follows.

AI=
1
1
, andATI= 11.

Following the SUM-NET-CONS algorithm the two sum-
networks obtained are as shown in the Figure 2.
Example 3:In this example we construct a sum-network

using a simplet-design. LetIdenote the 2-(3,2,1)design
with its points denoted by the numbers{1,2,3}and its blocks

Fig. 3. The normal sum-network obtained for the incidence structureI
described in Example 3. All edges are unit-capacity and directed downward.
The edges with the arrowheads are the bottleneck edges, and the edges denoted
by dashed lines correspond to the direct edges introduced in step 4 of the
construction procedure. For this case, the normal and the transposed sum-
network are identical.

denoted by the letters{A,B,C}. For this design we have
thatA ={1,2},B ={1,3},C ={2,3}and its associated
incidence matrix under row and column permutations can be
written as follows.

AI=

⎡

⎣
1 1 0
1 0 1
0 1 1

⎤

⎦.

Note that AI= A
T
I. Hence the normal sum-network and the

transposed sum-network are identical in this case. Following
the SUM-NET-CONS algorithm, we obtain the sum-network
showninFigure3.
Remark 1: Note that each edge added in the SUM-
NET-CONS algorithm has unit capacity. Proposition 6 in
Section VII modifies the SUM-NET-CONS algorithm so that
each edgeein the sum-network has cap(e)=α>1,α∈N.

V. UPPERBOUND ON THECOMPUTATIONCAPACITY

In this section, we describe an upper bound on the computa-
tion capacity of a sum-network obtained from a(0,1)-matrix
Aof dimensionr×c. We assume that there exists a(m,n)
fractional network code assignment, i.e.,φ̃efore∈ E (and
corresponding global encoding functionsφe(X)) and decoding
functionsψtfort∈Tso that all the terminals inTcan recover
the sum of all the independent sources.
For convenience of presentation, we will change notation
slightly and let the messages observed at the source nodes
corresponding to the rows ofAbeXpifori∈[r]and those
corresponding to the columns ofAbeXBjforj∈[c]. Each of
the messages is a column vector of lengthm overF.Theset

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES 3467

of all source messages is represented byX. Weletφe(X)
denote then-length column vector of symbols fromF that
are transmitted by the edgee∈E, as it is the value returned
by the global encoding functionφefor edgeeon the set of
source messages denoted byX. As is apparent, non-trivial
encoding functions can only be employed on the bottleneck
edges, i.e.,eifori∈[r]as these are the only edges that have
more than one input. For brevity, we denoteφi(X)=φei(X).
We define the following set of global encoding functions.

φIn(v)(X):= {φe(X):e∈In(v)}, ∀v∈V.

LetH(Y)be the entropy function for a random variableY.
We let {Yi}

l
1denote the set{Y1,Y2,...,Yl}for anyl>1. The

following lemma demonstrates that certain partial sums can be
computed by observing subsets of the bottleneck edges.
Lemma 1:If a network code allows each terminal to

compute the demanded sum, then the value Xpi :=
Xpi + j:A(i,j)=1XBj can be computed from φi(X),

i.e.,H Xpi|φi(X) = 0foralli∈[r]. Similarly for any

j∈[c]the valueXBj:= i:A(i,j)=1Xpi+ j:Bj∈Bj
XBj

can be computed from the set of values{φi(X): fori∈
[r],A(i,j)=1}.
Proof: We let for any i∈[r]

Z1=

i=i

Xpi, Z2=

j:A(i,j)=1

XBj andZ3=

j:A(i,j)=0

XBj,

such that the sumZ= Xpi+Z1+Z2+Z3andXpi= Xpi+Z2.
By our assumption that each terminal can recover the

demanded sum, we know that Z can be evaluated from

φIntpi
(X)for alli∈[r],i.e.,H Z|φIn(tpi)(X) = 0for

alli∈[r].Since{Xpi :i = i}and{XBj:A(i,j)= 0}
determine the value of Z1and Z3respectively and also
determine the values transmitted on each of the direct edges
that connect a source node totpi, we get that

H Z|φIntpi
(X)

= H Z|φi(X),{φ(spi,tpi)
(X):i=i},

{φ(sBj,tpi):A(i,j)=0}

(a)
≥ H Xpi+Z1+Z2+Z3|φi(X),{Xpi:i=i},

{XBj:A(i,j)=0}

= H Xpi|φi(X),{Xpi:i=i},{XBj:A(i,j)=0}

= H Xpi,{Xpi:i=i},{XBj:A(i,j)=0}|φi(X)

−H {Xpi:i=i},{XBj:A(i,j)=0}|φi(X)

= H Xpi|φi(X)

+H {Xpi:i=i},{XBj:A(i,j)=0}|Xpi,φi(X)

−H {Xpi:i=i},{XBj:A(i,j)=0}|φi(X)

(b)
= H Xpi|φi(X), (6)

where inequality(a)follows from the fact thatφ(spi,tpi)
(X)is

a function ofXpifori=iandφ(sBj,tpi)(X)is a function of

{XBj:A(i,j)=0}and equality(b)is due to the fact thatXpi
is conditionally independent of both{Xpi:i=i}and{XBj:
A(i,j)= 0}givenφi(X). This conditional independence
can be checked as follows. Let lowercase symbols represent
specific realizations of the random variables.

Pr Xpi= xpi,{Xpi=xpi:i=i},

{XBj= xBj:A(i,j)=0}|φi(X)=φi(x)

(a)
= Pr(Xpi= xpi,φi(X)=φi(x))/Pr(φi(X)=φi(x))

·Pr({Xpi= xpi:i=i},{XBj=xBj:A(i,j)=0})

(b)
= Pr Xpi= xpi|φi(X)=φi(x)

·Pr {Xpi= xpi:i=i},{XBj= xBj:A(i,j)=0}

|φi(X)=φi(x),

where equalities(a)and(b)are due to the fact that the source
messages are independent andφi(x)is only a function ofxpi
and the set{xBj:A(i,j)=1}.

Since terminaltpican computeZ,H Z|φIntpi
(X) = 0

and we get from eq. (6) thatH(Xpi+Z2|φi(X))=0.
For the second part of the lemma, we argue similarly as
follows. We let for anyj∈[c]

Z1=

i:A(i,j)=1

Xpi, Z2=

i:A(i,j)=0

Xpi,

Z3=
B∈Bj

XB, Z4=
B/∈Bj

XB

such thatZ= Z1+Z2+Z3+Z4andXBj= Z1+Z3. By our

assumption, for allj∈[c],H Z|φIn(tBj)(X) =0. The sets

{Xp:p/∈Bj}and{XB:B/∈ Bj}determine the value ofZ2
andZ4respectively and also the values transmitted on each
of the direct edges that connect a source node to the terminal
tBj.Let denote the set{φi(X):A(i,j)=1}. Then,

H Z|φIn(tBj)(X)

= H Z1+Z2+Z3+Z4|,{φ(spi,tBj)(X):A(i,j)=0},

{φ(sB,tBj):B/∈ Bj}

(a)
≥ H Z1+Z2+Z3+Z4|,{Xpi:A(i,j)=0},

{XB:B/∈ Bj}

= H XBj|,{Xpi:A(i,j)=0},{XB:B/∈ Bj}

= H XBj,{Xpi:A(i,j)=0},{XB:B/∈ Bj}|

−H {Xpi:A(i,j)=0},{XB:B/∈ Bj}|

= H(XBj|)−H({Xpi:A(i,j)=0},{XB:B/∈ Bj}|)

+H({Xpi:A(i,j)=0},{XB:B/∈ Bj}|XBj,)

(b)
= H(XBj|).

Inequality(a)is due to the fact thatφ(spi,tBj)(X)is a function

ofXpiand similarly forφ(sB,tBj)(X). Equality(b)follows
from the fact thatZ1+ Z3 is conditionally independent

3468 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

of both{Xpi : A(i,j)= 0}and{XBj :B /∈ Bj}

given the set of random variables{φi(X):A(i,j)= 1}.
This can be verified in a manner similar to as was done
previously. This gives us the result that H(XBj|{φi(X):

A(i,j)=1})=0.
Next, we show the fact that the messages observed at the

source nodes are independent and uniformly distributed over
Fm imply that the random variablesXpifor alli∈[r]are
also uniform i.i.d. overFm. To do that, we introduce some
notation. For a matrixN ∈ Fr×c, for any two index sets
R ⊆[r],C⊆[c], we define the submatrix ofNcontaining the
rows indexed byR and the columns indexed byCasN[R,C].
Consider two(0,1)-matricesN1,N2of dimensionsr1×tand
t×c2respectively. Here 1 and 0 indicate the multiplicative and
additive identities of the finite fieldF respectively. Thei-th
row ofN1is denoted by the row submatrixN1[i,[t]]∈{0,1}

t

and thej-th column ofN2be denoted by the column submatrix
N2[[t],j]∈{0,1}

t. Then we define a matrix function on
N1N2that returns ar1×c2matrix (N1N2)#as follows.

(N1N2)#(i,j)=

⎧
⎪⎨

⎪⎩

1, if the productN1[i,[t]]N2[[t],j]

overZis positive,

0, otherwise.

For an incidence structureI= (P,B)with r×cincidence
matrix A,letXp,∀p∈PandXB,∀B∈Bbem-length vec-
tors with each component i.i.d. uniformly distributed overF.
We collect all the independent source random variables in a
column vectorXhavingm(r+c)elements fromF as follows

X:= XTp1 XTp2 ··· XTpr XTB1 XTB2 ··· XTBc
T
.

Recall that pidenotes thei-th row andBjdenotes the j-
th column of the matrixA.Foralli∈[r]letei∈ F

r

denote the column vector with 1 in itsi-th component and
zero elsewhere. Then forXpi,XBjas defined in lemma 1,
one can check that (⊗indicates the Kronecker product of two
matrices)

Xpi= eTi pi⊗Im X, for alli∈[r] (7)

and

XBj= BTj (BTjB1)# ... (BTjBc)# ⊗Im X,(8)

for allj∈[c]where Im is the identity matrix of sizem.
By stacking these values in the correct order, we can get the
following matrix equation.

XTp1 ··· XTpr XTB1 ··· XTBc

T
=(MA⊗Im)X (9)

where the matrix MA∈F
(r+c)×(r+c)is defined as

MA:=
Ir A
AT (ATA)#

. (10)

Note that the first rrows ofMAare linearly independent.
There is a natural correspondence between the rows ofMAand
the points and blocks ofIof whichAis the incidence matrix.
If 1≤i≤r, then thei-th rowMA[i,[r+c]] corresponds to
the pointpi∈P and ifr+1≤ j≤r+c, then thej-th row
MA[j,[r+c]] corresponds to the blockBj∈B.

Lemma 2:For a (0,1)-matrix A of size r× c,let
Xpi,XBj∈F

mbe as defined in eqs. (7), (8) and matrixMA
be as defined in eq. (10). Letr+t:=rankFMAfor some non-
negative integertandindexsetS⊆{r+1,r+2,...,r+c}
be such that rankFMA [r]∪S,[r+c]=r+t.LetBS :=
{BS1,BS2,...,BSt}⊆Bbe the set of blocks that correspond

to the rows ofMAindexed byS in increasing order. Then
we have

Pr Xp1=x1,...,Xpr=xr,XBS1
= y1,...,XBSt

= yt

=q−m(r+t),

and

Pr Xpi=xi=Pr XBSj
=yj =q

−m, ∀i∈[r],j∈[t].

(11)

Proof:The quantities in the statement of the lemma satisfy
the following system of equations

M [r]∪S,[r+c]⊗Im

× XTp1 ··· XTpr XTB1 ··· XTBc
T

= XTp1 ··· XTpr XTBS1
··· XTBSt

T
.

The vector XTp1···X
T
prX

T
B1
···XTBc

T
is uniform over

Fm(r+c). Since the matrixM [r]∪S,[r+c]⊗Imhas full
row rank equal tom(r+t), the R.H.S. of the above equation is
uniformly distributed overFm(r+t), giving the first statement.
The second statement is true by marginalization.
Theorem 1:The computation capacity of any sum-network
constructed by the SUM-NET-CONS algorithm is at most 1.
Proof: By the construction procedure, there is a terminal

tpiwhich is connected to the sourcesspiand{sBj:A(i,j)=
1}through the edgeei. By lemmas 1 and 2 we have that
H(φi(X))≥ mlog2q bits. From the definition ofn the
maximum amount of information transmitted oneiisnlog2q
bits and that implies thatm≤n.
Next, we show that the upper bound on the computation
capacity exhibits a strong dependence on the characteristic of
the field (denoted ch(F)) over which the computation takes
place.
Theorem 2:Let Abe a(0,1)-matrix of dimensionr×c

and suppose that we construct a sum-network corresponding
toAusing the SUM-NET-CONS algorithm. The matrixMAis
as defined in eq. (10). If rankFMA=r+t, the upper bound
on computation capacity of the sum-network isr/(r+t).
Proof: LetBS ⊆Bbe as defined in lemma 2. Then from

lemmas 1 and 2, we haveH Xpi|φi(X) =0,∀i∈[r]and

H XBS
j

|{φi(X):A(i,j)=1} = 0,∀j∈[t]. Hence we

have thatH({φi(X)}
r
1)≥m(r+t)logq. From the definition

ofn, wegetnrlogq≥ H({φi(X)}
r
1)≥ m(r+t)logq ⇒

m/n≤r/(r+t).
Proposition 1: We have that rankFMA=r+tif and only
if rankF (A

TA)#−A
TA = t. Furthermore, rankFMA=

r+cif and only if ch(F) detZMA, where detZindicates

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES 3469

the determinant of the matrix with its elements interpreted
as 0 or 1 inZ.
Proof: From eq. (10), we have that

MA=
Ir A
AT (ATA)#

=
Ir 0
AT Ic

Ir 0
0 (ATA)#−A

TA
Ir A
0 Ic

, (12)

which gives us the rank condition. SinceMAis a(0,1)-matrix,
if it has full rank, then its determinant is some non-zero
element ofF,whereFis the base subfield ofFhaving prime
order. We could also interpret the elements ofMAas integers
and evaluate its determinant detZMA.ThenifMAhas full
rank, we have that ch(F) detZMA.
Example 4:Consider the normal sum-network obtained

from using the Fano plane for which the incidence matrix
AIis as defined in eq. (1), so thatr= c= 7. It can be
verified that rankGF(2)MAI = 7. Hence theorem 2 gives an
upper bound of 1 for the computation capacity. In fact, there is
a rate-1 network code that satisfies all terminals in the normal
sum-network obtained using the Fano plane as described later
in proposition 4.
We can obtain a different upper bound on the computation

capacity by considering submatrices ofMAthat do not nec-
essarily contain all the initialrrows. To do this we define a
new index setS basedonanindexsetS⊆[r]as follows.

S ⊆{r+1,r+2,...,r+c}such that

∀i∈S,AT[i−r,[r]] ∈Span{Ir[j,[r]] :j∈S}. (13)

Here Span indicates the subspace spanned by the vectors in a
set. The submatrix ofMAthat contains all the rows indexed
by numbers inS∪S isM[S∪S ,[r+c]].
Theorem 3:Let Abe a(0,1)-matrix of dimensionr×c

and suppose that we construct a sum-network correspond-
ing toA using the SUM-NET-CONS algorithm. For any
(m,n)-network code that enables all the terminals to compute
the sum, we must have that

m

n
≤ min
S⊆[r]

|S|

xS
,

wherexS:=rankFMA[S∪S ,[r+c]]andS is as defined
in eq. (13).
Proof: Note that for the choice S =[r], the index set

S is the same as the index setS defined in lemma 2 and
xS = rankFMA, thus recovering ther/rankFMA upper
bound on the computation capacity from theorem 2. For
S ={S1,...,S|S|} ⊂[r], we have an index setT ⊆ S
such that

xS= rankFMA[S∪S ,[r+c]],

= rankFMA[S∪T,[r+c]] = |S|+|T|.

We collect the blocks indexed in increasing order by T in the
setBT={BT1,...,BTy}⊆B,wherey:= |T|. Then one can
recover the L.H.S. of the following equation from the set of

Fig. 4. A simple undirected graphGwith two connected components. It has
6 vertices and 4 edges.

messages {φi(X):i∈S}

XTpS1
··· XTpS|S|

XTBT1
··· XTBTy

T

=
MA[S,[r+c]]
MA[T,[r+c]]

⊗Im X.

Hencewehavethatqn|S|≥qm(|S|+y) ⇒ m/n≤|S|/xS.
The same reasoning is valid for any choice ofS⊆[r]and
that gives us the result.
Example 5: Consider the transposed sum-network corre-
sponding to the undirected graphG shown in Figure 4.
One can check that the matrix MATG

when the rows and

columns of the incidence matrixATGare arranged in increasing
alphabetical and numeric order is as follows.

MATG
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 1 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 1 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1 0 0
1 0 0 0 1 1 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 1 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We choose our finite field alphabet to be GF(3)in this exam-
ple. Then rankGF(3)MATG

= 5 and theorem 2 gives that the

computation capacity is at most 4/5. However, theorem 3 gives
a tighter upper bound in this case. Specifically, ifS={1,2,3}
thenS ={5,6,7,8}and rankGF(3)MATG

[S∪S ,[10]] =4.

Hence theorem 3 states that the computation capacity of the
transposed sum-network for the graphG is at most 3/4.
We apply the above theorems to obtain characteristic depen-
dent upper bounds on the computation capacity of some
infinite families of sum-networks constructed using the given
procedure.
Corollary 1: Let I = (P,B)be an incidence structure
obtained from a simple undirected graph whereP denotes
the set of vertices andB consists of the 2-subsets ofP
corresponding to the edges. Let deg(p)∈ Z represent the
degree of vertex p ∈ P. The incidence matrixAI has
dimension|P|×|B|. The computation capacity of the normal
sum-network constructed usingAIis at most

|P|
|P|+|B|for any

finite fieldF.

3470 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

LetF be the finite field alphabet of operation and define
P ⊆PasP := {p:ch(F) (deg(p)−1),p∈P}. Consider
the set of edgesB:= ∪p∈P p.
The computation capacity of the transposed sum-network is

at most |B|
|B|+|P|.

Proof: Recall that BTi is thei-th row ofA
T
I for all

i∈[|B|]. Then the inner product overF between two rows is

BTiBj=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 (mod ch(F)), ifi= j,

1, if edges indexed byiand

jhave a common vertex,

0, otherwise.

It can be observed that the matrix of interest, i.e.,(ATIAI)#−
ATIAI=−I|B|has full rank over every finite field.
The transposed sum-network forIis obtained by applying
the SUM-NET-CONS algorithm on the|B|×|P|matrix ATI,
so that the parametersr=|B|,c=|P|. We apply theorem 3
by choosing the index setS⊆[|B|]such thatS={j:Bj∈
B}. Defined this way,|S|=|B|andS is obtained fromS
using eq. (13). We collect all the points corresponding to the
rows in the submatrixMATI

[S ,[r+c]]in a setPS ⊆ P.

Note thatPS depends on the set of edgesB. By definitions
ofBandS ,wehavethatP ⊆PS. This is true becauseB
consists of all the edges that are incident to at least one point in
P while indices in the setS correspond to all points that are
not incident to any edge outsideB. For instance, in Example 5
above, asF = GF(3),P ={1}.ThenB ={A,B,C}and
PS ={1,2,3,4}.
We now show that rankFMA[S∪S]=|B|+|P|and that

gives us the result using theorem 3. Recall thatpidenotes the
i-th row ofAI, which corresponds to the vertexpifor all
i∈[|P|]. It follows that the inner product betweenpi,pj
overF is

pip
T
j=

⎧
⎪⎨

⎪⎩

deg(pi) (mod ch(F)), ifi= j,

1, if{i,j}∈B,

0, otherwise.

Because of the above equation, all the off-diagonal terms in
the matrix(AIA

T
I)#−AIA

T
Iare equal to zero. We focus on

the submatrixM[S∪S,[r+c]]obtained from eq. (12), letting
S|B|={j−|B|:j∈S }we get that

M[S∪S,[r+c]] =
I|B|[S,S] 0

AI[S|B|,S] I|P|S|B|,S|B|

· ·
I|B| ATI
0 I|P|

,

where

:=
I|B|[S,[|B|]] 0

0 (AIA
T
I)#−AIA

T
I S|B|,[|P|]

.

By definition ofP the points in the setPS \P are such
that deg(pi)−1≡ 0(mod ch(F)), i.e., the diagonal entry
corresponding to those points in(AIA

T
I)#− AIA

T
I in the

matrix is zero. Thus, has exactly|B|+|P|rows which
are not equal to the all-zero row vector. The first and third

matrices are invertible, and hence we get that rankFMA[S∪
S,[r+c]] = |B|+|P|.
Corollary 2: LetI=(P,B)bea2-(v,k,1)design. For the
normal sum-network constructed using the|P|×|B|incidence
matrix AI, the computation capacity is at most

|P|
|P|+|B|if

ch(F) (k−1). For the transposed sum-network constructed

using ATI, the computation capacity is at most
|B|

|P|+|B|if

ch(F) v−k
k−1.

Proof: We first describe the case of the transposed sum-
network. From eq. (2) each point in a 2-(v,k,1)design is
incident toρ=v−1

k−1blocks. Moreover any two points occur
together in exactly one block. Thus, we have the inner product
overF as

pip
T
j=

v−1
k−1 (mod ch(F)), ifj=i,

1, otherwise.

This implies that AIA
T
I− (AIA

T
I)# =

v−1
k−1−1 Iv =

v−k
k−1 Ivand setting its determinant non-zero gives the result.

For the normal sum-network, we argue as follows. Note
thatBTiBi=k(mod ch(F))for anyi. Since any two points
determine a unique block, two blocks can either have one
point or none in common. Hence, fori= j, the inner product
overF is

BTiBj=
1, ifBi∩Bj=∅,

0, otherwise.

Then ATIAI− (A
T
IAI)# = (k− 1)Ib and setting its

determinant as non-zero gives the result.
Corollary 3: LetI = (P,B)be at-(v,k,λ)design, for
t≥2. From eq. (2), each point is present inρ:=λv−1t−1/

k−1
t−1

blocks and the number of blocks incident to any pair of points
is given byb2:=λ

v−2
t−2/

k−2
t−2. Consider the transposed sum-

network constructed using the incidence matrix ATI which
has dimension|B|×|P|. The computation capacity of the
transposed sum-network is at most |B|

|B|+|P|if

ch(F) (ρ−b2+v(b2−1))(ρ−b2)
v−1.

Proof: By definition, we have that the inner product over
F between two rows is

pip
T
j=

ρ (mod ch(F)), ifj=i,

b2 (mod ch(F)), otherwise.

It follows thatAIA
T
I−(AIA

T
I)#has the value(ρ−1)on the

diagonal and(b2−1)elsewhere. That is,

AIA
T
I−(AIA

T
I)#

= ((ρ−b2)(mod ch(F)))Iv+((b2−1)(mod ch(F)))Jv,

where Jv denotes the square all ones matrix of dimen-
sionv. Then by elementary row and columns operations,
det AIA

T
I−(AIA

T
I)# can be evaluated to be equal to

(ρ−b2+v(b2−1))(ρ−b2)
v−1(mod ch(F)).

Corollary 4: LetD = (P,B)be at-(v,t+1,λ)design
with λ= 1 and incidence matrixAD. Wedefinea higher
incidence matrixAD of dimension

|P|
t ×|B|such that each

row corresponds to a distinctt-subset ofP and each column

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES 3471

corresponds to a block inB.AD is a(0,1)-matrix such that
for anyi∈ v

t ,j∈[|B|], its entryAD(i,j)= 1 if each
of the points in thet-subset corresponding to thei-th row is
incident to the blockBj∈Band zero otherwise. The compu-
tation capacity of the normal sum-network constructed using

AD is at most
(vt)
(vt)+|B|

= t+1
λ+t+1if ch(F) t. The computation

capacity of the transposed sum-network constructed usingATD
is at most |B|

|B|+(vt)
= λ
λ+t+1if ch(F) (λ−1).

Proof: The incidence matrix AD is a(0,1)matrix of
dimension v

t×
λ
t+1

v
t.Letpi,Budenote thei-th row and

u-th column respectively ofAD fori∈
v
t ,u∈

λ
t+1

v
t .

Each row of AD corresponds to a distinctt-subset ofP.
Byt-design criterion, any set oftpoints belongs to exactlyλ
blocks. Since the columns have a one-to-one correspondence
with the blocks in B, each row ofAD has exactlyλ1’s.
Two rows will have a 1 in the same column if the block
corresponding to the column is incident to both thet-subsets
corresponding to the two rows. Since each block hast+1
points, there cannot be more than one block incident to two
differentt-subsets. Hence, for the inner product overF,
we have that pip

T
i = λ(mod ch(F))and for alli= j;i,

j∈ v
t ,

pip
T
j=

⎧
⎪⎨

⎪⎩

1, if the union of thet-subsets corresponding to

thei-th andj-throwsisablockinB,

0, otherwise.

ThenADA
T
D−(ADA

T
D)#=((λ−1)(mod ch(F)))I(vt)

and
that gives the result for the transposed sum-network.
For the normal sum-network, we look at the columns of
AD in a similar manner. Each column ofAD corresponds
to a block inB. Since the size of each block ist+1, each
column has exactlyt+1

t = t+1 elements as 1. Also, two
different blocks can have at mosttpoints in common, and
only when that happens, will the two columns have a 1 in the
same row. Hence, for the inner product overF,wehavethat
BTuBu=(t+1)(mod ch(F))and for allu=v;u,v∈

v
t ,

BTuBv=

⎧
⎪⎨

⎪⎩

1, if theu-th andv-th blocks havetpoints

in common,

0, otherwise.

Then ATDAD − (A
T
DAD)# = t(mod ch(F))Iλt+1(

v
t)
and

theorem 2 gives the result.

VI. LINEARNETWORKCODES FOR
CONSTRUCTEDSUM-NETWORKS

In this section, we propose linear network codes for the
sum-networks constructed using the SUM-NET-CONS algo-
rithm. Recall that the algorithm takes a(0,1)-matrixA
that hasrrows andccolumns as its input. In Section V,
we demonstrated that the incidence matrix of certain incidence
structures result in sum-networks whose capacity can be upper
bounded (cf.Corollaries 1, 2, 4). We now demonstrate that
under certain conditions, we canobtain network codes whose
rate matches the corresponding upper bound. Thus, we are able
to characterize the capacity of a large family of sum-networks.

TABLE I

THEFUNCTIONVALUESTRANSMITTEDACROSSe1,e2INFIGURE2(a)
FOR ANETWORKCODEWITHRAT E=2/3. EACHMESSAGEX1,X2,
X{1,2}IS AVECTORWITH2COMPONENTS,ANDφ1(X), φ2(X)ARE
VECTORSWITH3 COMPONENTSEACH. A NUMBERWITHIN
SQUAREBRACKETSADJOINING AVECTORINDICATES

APARTICULARCOMPONENT OF THEVECTOR

We emphasize that random linear network codes that have
been used widely in the literature for multicast code con-
structions are not applicable in our context. In particular,
it is not too hard to argue that a random linear network
code would result in each terminal obtaining a different linear
function or subspace. Thus, constructing codes for these sum-
networks requires newer ideas. We outline the key ideas by
means of the following example.
Example 6: Consider the sum-network shown in
Figure 2(a). The matrix AI used in its construction is
of dimensionr×cwherer= 2,c= 1 and is described in
Example 2. It can be observed that ATIAI− A

T
IAI#= 1.

Then theorem 2 states that the computation capacity of this
sum-network is at most 2/3. We describe a network code
with m = 2,n= 3. The global encoding functions for the
two bottleneck edges are shown in Table I. Using the values
transmitted, all three terminals can recover the sum in the
following manner.t1 receives the value ofX2 from the
direct edge(s2,t1)while t2receives the value ofX1from
the direct edge(s1,t2).Thent1recovers the sum using the
first two components ofφ1(X)while t2recovers the sum
using the first two components ofφ2(X). Additionally,t{1,2}
receives bothφ1(X), φ2(X)and can carry out the operation
(X1+ X{1,2})+(X2+ X{1,2})− X{1,2}. Thus, each terminal
is satisfied.
The network code in the example has the following struc-
ture. For each bottleneck edge, the firstrcomponents of the
global encoding vector are the sum of all messages that are
incident to that bottleneck. The remainingccomponents of
the encoding vectors transmit certain components of messages
observed at source nodes that correspond to columns in the
matrix AI. In the example,t{1,2}received the first component
ofX{1,2}fromφ1(X)and the second component fromφ2(X).
Thus it was able to recover the value ofX{1,2}, which it used
in computing the demanded sum.
Our construction of network codes for sum-networks will
have this structure, i.e., the firstrcomponents on a bottleneck
edge will be used to transmit apartialsum of the messages
observed at the sources that are connected to that bottleneck
edge and the remainingccomponents will transmit portions of
certain sources in an uncoded manner. For a given incidence
matrix A, our first step is to identify (if possible) a correspond-
ing non-negative integral matrixD of the same dimensions
with the following properties.

• D(i,j)=0ifA(i,j)=0.
•Each row inD sums tor.
•Each column inD sums toc.

3472 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

Under certain conditions on the incidence matrix A, we will
show thatD can be used to construct suitable network codes
for the sum-networks under consideration.
The existence of our proposed network codes are thus

intimately related to the existence of non-negative integral
matrices that satisfy certain constraints. The following theorem
[32, Corollary 1.4.2] is a special case of a more general
theorem in [33] that gives the necessary and sufficient condi-
tions for the existence of non-negative integral matrices with
constraints on their row and column sums. We give the proof
here since we use some ideas from it in the eventual network
code assignment.
Theorem 4:Let R = (r1,r2,...,rm)and S = (s1,
s2,...,sn) be non-negative integral vectors satisfying
r1+...+rm=s1+...+sn. There exists anm×nnonnegative
integral matrixD such that

0≤D(i,j)≤cij, ∀i∈[m],∀j∈[n],
n

j=1

D(i,j)=ri, ∀i∈[m],

and
m

i=1

D(i,j)=sj, ∀j∈[n]

if and only if for allI⊆[m]andJ⊆[n],wehavethat

i∈Ij∈J

cij≥
j∈J

sj−
i/∈I

ri. (14)

Proof:Consider a capacity-limited flow-network modelled
using a bipartite graph onm+nnodes. The left part hasm
nodes denoted asxi,∀i∈[m]and the right part hasnnodes
denoted asyj,∀j∈[n].Foralli,jthere is a directed edge
(xi,yj)with capacitycij. There are two additional nodes in the
flow-network, the source nodeS∗and terminal nodeT∗.There
are directed edges(S∗,xi)with capacityrifor alli∈[m]and
directed edges(yj,T

∗)with capacitysjfor allj∈[n].LetxI
be the set of all nodes in the left part whose indices are inI
and letȳJbe the set of all nodes in the right part whose indices
arenotinJ. Consider a cut separating nodes in{S∗}∪xI∪ȳJ
from its complement. Letf∗be the value of the maximum
S∗-T∗flow in this network. Then we must have that for all
possible choice of subsetsI⊆[m],J⊆[n],

i/∈I

ri+

(i,j):i∈I,j∈J

cij+
j/∈J

sj≥ f
∗. (15)

In particular, suppose that f∗ = j∈[n]sjin the flow-
network. Substituting this in eq. (15), we get the condition
that for all possible subsetsI⊆[m],J⊆[n],

i∈Ij∈J

cij≥
j∈J

sj−
i/∈I

ri. (16)

Note that by choosing all possible subsets I,J, weare
considering every possibleS∗-T∗cut in the network. Then
by the maxflow-mincut theorem, the set of conditions of the
form of eq. (16) for allI,Jare not only necessary but also
sufficient for the existence of a flow of valuef∗= j∈[n]sj
in the network.

A feasible flow with this value can be used to arrive at the
matrix D as follows. We set the value of elementD(i,j)in
the matrix to be equal to the value of the feasible flow on the
edge(xi,yj)for alli∈[m],j∈[n]. It is easy to verify that
the matrixD satisfies the required conditions.
Using the existence theorem for nonnegative integral
matrices, we can obtain network codes for sum-networks
constructed from certain incidence structures. The following
theorem describes a set of sufficient conditions that, if satisfied
by an incidence structure, allow us to construct a linear
network code that has the same rate as the computation
capacity of that sum-network. The proof of the theorem is
constructive and results in an explicit network code.
Theorem 5:LetI=(P,B)be an incidence structure and
letAIdenote the corresponding incidence matrix of dimension
v×b. Suppose that the following conditions are satisfied.

• ATIAI− (A
T
IAI)# = diag(μ1,...,μb)(mod ch(F)),

whereμiis a non-zero element ofF ∀i∈{1,2,...,b}.
•There exists a matrix DIwith integer elements of the
same dimension asAIwhose entries satisfy

DI(i,j)= 0, ifAI(i,j)=0, (17)
v

i=1

DI(i,j)= v, (18)

and

b

j=1

DI(i,j)=b. (19)

Then the computation capacity of the sum-network constructed
usingAIvia the SUM-NET-CONS algorithm is

v
v+b.Thisrate

can be achieved by a linear network code.
Proof: Note that ATIAI− (A

T
IAI)#has full rank by

assumption, theorem 2 statesthat the computation capacity
of the sum-network is at mostv/(v+ b). We construct a
(m,n)linear network code withm = v,n= v+busing
the matrixDI.Sincem = v, each message vector hasv
components. For a vectort∈ Fv, the notationt[l1:l2]
for two positive integersl1,l2∈[v]denotes a(l2−l1+1)
length vector that contains the components oftwith indices
in the set{l1,l1+1,...,l2}in order. We need to specify the
global encoding vectorsφi(X)only for the bottleneck edges
ei,i∈[v]as all the other edges in the network act as repeaters.
The linear network code is such that the firstvcomponents
of the vector transmitted alongei∀i∈[v]is

φi(X)[1:v]=Xpi+

j:AI(i,j)=1

XBj.

By construction, eachtpi∀i∈[v]is connected to the source
nodes in{spi:i=i}∪{sBj:AI(i,j)=0}by direct edges.
tpican then compute the following value from the information
received on the direct edges.

i=i

Xpi+

j:AI(i,j)=0

XBj.

Adding the above value toφi(X)[1:v]enablestpito compute
the required sum. In what follows, we focus on terminals of
the formtBj∀j∈[b].

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES 3473

Sincen=v+b, each vectorφi(X)∈F
nhasbcomponents

that haven’t been specified yet. We describe a particular
assignment for thebcomponents on everyφi(X),i∈[v]using
the matrixDIthat enables eachtBj∀j∈[b]to compute the
sum.
Recall the bipartite flow network constructed in the proof of

theorem 4. The nodes in the left part are denoted aspi∀i∈[v]
and the nodes in the right part are denoted asBj∀j∈[b].
There is an edge(pi,Bj)if and only ifAI(i,j)= 1. The
flow on the edge(pi,Bj)is denoted asf(pi,Bj)and its
value is determined byDI(i,j), i.e.,f(pi,Bj):=DI(i,j).
By constraints on the row and column sums ofDI, we con-
clude that the value of the flow through anypi∀i∈[v]isband
the value of the flow through anyBj∀j∈[b]isv. Without loss
of generality, assume thatBj={p1,p2,···,p|Bj|}. We can
partition thevcomponents of message vectorXBjinto|Bj|
parts such that thei-th partition containsf(pi,Bj)distinct
components ofXBj. Such a partitioning can be done for
all message vectorsXBj,j∈[b]. Then the flowf(pi,Bj)
indicates that the vectorφi(X)[v+1:v+b]includesf(pi,Bj)
uncoded components ofXBj. Assigning such an interpretation
to every edge in the flow-network is possible as the total
number of components available in eachφi(X)isband that
is also equal to the flow through the pointpi.
By construction, terminaltBjis connected to all bottleneck
edges in the set{ei:AI(i,j)= 1}. From the assignment
basedontheflow,tBjreceivesf(pi,Bj)distinct components
of XBj fromφi(X)for all{i : AI(i,j) = 1}. Since
v
i=1f(pi,Bj)=v, it can recover allvcomponents ofXBj

in a piecewise fashion.
By adding the first vcomponents transmitted on all the

bottleneck edges that are connected totBj, it can recover

i:AI(i,j)=1

φi(X)[1:v]

=

i:AI(i,j)=1

Xpi+

i:AI(i,j)=1l:AI(i,l)=1

XBl,

=

i:AI(i,j)=1

Xpi+
Bl∈Bj

BTjBlXBl.

Because of the condition that ATIAI−(A
T
IAI)#= diag

(μ1,μ2,...,μb), one can verify that

Bl∈Bj

BTjBlXBl=(μj+1)XBj+
Bl∈Bj\Bj

XBl.

By the flow-based assignment, eachtBjobtains the value of
XBjin a piecewise manner. It can then carry out the following

i:AI(i,j)=1

φi(X)[1:v]−μjXBj

=

i:AI(i,j)=1

Xpi+(μj+1)XBj+
Bl∈Bj\Bj

XBl−μjXBj,

=
p∈Bj

Xp+
Bl∈Bj

XBl.

The messages not present in this partial sum, i.e.,{Xp:p/∈
Bj}∪{XB:B /∈ Bj}are available attBjthrough direct

Fig. 5. (a) Undirected graph considered in Example 7. (b) Part of the
corresponding normal sum-network constructed for the undirected graph
in (a). The full normal sum-network has nine nodes each in the source setS
and the terminal setT. However, for clarity, only the five sources and terminals
that correspond to the columns of the incidence matrix of the graph are shown.
Also, the direct edges constructed in Step 4 of the construction procedure
are not shown. All edges are unit-capacity and point downward. The edges
with the arrowheads are the bottleneck edges constructed in step 2 of the
construction procedure. (c) Bipartite flow network as constructed in the proof
of theorem 4 for this sum-network. The message values corresponding to the
flow on the solid lines are also shown.

edges by construction. Hence, terminals that correspond to a
column ofAIare also able to compute the required sum.
We illustrate the linear network code proposed above by
means of the following example.
Example 7: Consider the normal sum-network obtained
from the undirected simple graphG shown in Figure 5(a).
A part of the sum-network is shown in Figure 5(b). The
4× 5 incidence matrix AG satisfies the condition of the-
orem 4 and therefore has an associated matrix DG with
row-sum as 5 and column-sum 4 as shown below. The rows
and columns ofAG are arranged in increasing numeric and

3474 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

TABLE II

THE FUNCTION VALUES TRANSMITTEDACROSSe1,e2,e3,e4INFIGURE5(B)FOR ANETWORKCODE WITHRAT E = 4/9. EACH MESSAGE
XA,XB,XC,XD,XE IS AVECTORWITH4 COMPONENTS,ANDφ1(X), φ2(X), φ3(X), φ4(X)AREVECTORSWITH9 COMPONENTSEACH.

THENUMBERINSIDESQUAREBRACKETSADJOINING AVECTORINDICATES APARTICULARCOMPONENT OF THEVECTOR

alphabetical order.

AG=

⎡

⎢
⎢
⎣

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 0 1 1 0

⎤

⎥
⎥
⎦, DG=

⎡

⎢
⎢
⎣

2 0 0 2 1
2 3 0 0 0
0 1 1 0 3
0 0 3 2 0

⎤

⎥
⎥
⎦.

Using the matrixDG, one can construct a structured linear net-
work code with rate=v/(v+b)=4/9 as shown in Table II.
One can check that it enables all the terminals to compute
the required sum. The flow-network corresponding toDG is
shown in Figure 5(c), and the messages corresponding to the
flow on the solid edges are shown alongside the respective
edge.
We can also consider the transposed sum-network for the

same graphG. Corollary 1 gives an upper bound on the
computation capacity that depends onF.IfF = GF(2),
then the subset of pointsP ={2,4}and the upper bound
is 4/6. Note that theorem 5 is not applicable here as the matrix
ATGAG−(A

T
GAG)#does not have all its diagonal elements

as non-zero overGF(2). Proposition 3 gives a condition for
the existence of a network code for transposed sum-networks
obtained using irregular graphs. We apply that condition to
the transposed sum-network of the graphG considered here
in Example 8.
In the following proposition we show that certain infinite

families of incidence structures satisfy the requirements stated
in theorem 5. In particular, the incidence structures considered
in Corollaries 1, 2 and 4 satisfy the conditions and hence the
computation capacity of the associated sum-networks can be
calculated.
Proposition 2: The following incidence structures and their

transposes satisfy condition (ii) in theorem 5, i.e., if their
incidence matrix of dimensionv×bis denoted byAI,there
exists a corresponding non-negative integral matrixDIthat
satisfies the conditions in equations (17) – (19).
1) Incidence structures derived from a regular graph or a
biregular bipartite graph.

2)t-(v,k,λ)designs withλ=1.
3) The higher incidence structure of at-(n,t+1,λ)design
with λ= 1 obtained using the procedure described in
corollary 4.
Proof: The existence of DI with row-sums as vand

column-sumsbis the same as the existence ofDTI with
row-sums asband column-sumsv. Thus, it suffices to argue
forDI. To check the validity of the condition we first choose
the bounds on the elements of the matrixDI. Wesetri=b

andsj=vfor alli∈[v],j∈[b]and

cij=
0, ifAI(i,j)=0,

∞, ifAI(i,j)=1.

By this choice the condition in inequality (14) is trivially
satisfied wheneverI,Jare chosen such that there is a point
inIwhich is incident to some block in J, i.e., there exist
i∈ I,j∈ Jsuch thatAI(i,j)= 1. Hence we restrict our
attention to choices ofIandJsuch that none of the points inI
are incident to any block inJ. Under this restriction, the L.H.S.
of inequality (14) is 0 and the condition is equivalent to
(v−|I|)b≥|J|v. We will assume that

∃I⊆[v], J⊆[b]such that

AI(i,j)= 0 ∀i∈I,j∈J,and(v−|I|)b<|J|v, (20)

and show that it leads to a contradiction for each of the three
incidence structures considered.
If I corresponds to a d-regular simple graph, then

b= dv/2. Consider the point-block incidence matrixAI,
which is a (0,1)-matrix of sizev×b. For the chosenIin
eq. (20), we look at the submatrixAI[I,[b]]of size|I|×b
that consists of the rows ofAIindexed by the points inI
and all the columns. Letl1be the number of columns with a
single 1 inAI[I,[b]]andl2be the number of columns with
two 1s inAI[I,[b]]. By counting the total number of 1s in
AI[I,[b]]in two ways, we get that

d|I|=l1+2l2≤2(l1+l2) ⇒ l1+l2≥
d|I|

2
.

Since the number of edges incident to at least one point in
Iisl1+l2, any subsetJof the edges that has no incidence
with any point in Isatisfies|J|≤b−d|I|/2. Using these in
eq. (20) we get that

(v−|I|)b<|J|v ⇒ (v−|I|)
dv

2
<
dv

2
−
d|I|

2
v,

which is a contradiction.
Now suppose that I corresponds to a biregular bipartite
graph, with L vertices having degreedL in the left part
andR vertices having degreedR in the right part. Then
b= LdL= RdR. Consider a subsetIL∪IRof its vertices.
Let EL(resp.ER) be the set of edges which are incident
to some vertex inIL (resp.IR) but not incident to any
vertex inIR (resp.IL). The number of edges that are not
incident to any vertex inIL∪IRis equal to(L−|IL|)dL−
|ER|=(R−|IR|)dR−|EL|. Suppose there is a choice ofI

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES 3475

TABLE III

THEFUNCTIONVALUESTRANSMITTEDACROSS THEBOTTLENECKEDGES OF THETRANSPOSEDSUM-NETWORKCORRESPONDING TO THEGRAPH
SHOWN INFIGURE5(A)FOR ARAT E-4/6NETWORKOVERGF(2).EACHMESSAGEX2,X4IS AVECTORWITH4COMPONENTS,AND
φA(X), φB(X), φC(X), φD(X), φE(X)AREVECTORSWITH6COMPONENTSEACH.THENUMBERINSIDESQUAREBRACKETS

ADJOINING AVECTORINDICATES APARTICULARCOMPONENT OF THEVECTOR.ADASHINDICATESTHAT THE
VALUETRANSMITTED ONTHATCOMPONENT ISNOTUSED INDECODING BYANYTERMINAL

in eq. (20) is such thatI= IL∪IRfor someIL,IR.Thenwe
have that

(v−|I|)b<|J|v,

⇒ (L+R−(|IL|+|IR|))
LdL+RdR

2

<
(L−|IL|)dL−ER+(R−|IR|)dR−|EL|

2
(L+R),

⇒
|Il|dL+|IR|dR+|EL|+|ER|

LdL+RdR
<
|IL|+|IR|

L+R
,

⇒ (L+R)(|EL|+|ER|)<(L−R)|IL|dL

+ (R−L)|IR|dR,

⇒ (L+R)(|EL|+|ER|)<(L−R)(|EL|−|ER|).

IfL> Ror|EL|>|ER|, then we have a contradiction. That
leaves the case whenL< Rand|EL|<|ER|, which implies
(L+R)(|EL|+|ER|)<(R−L)(|ER|−|EL|)and that is also
a contradiction.
Next, consider at-(v,k,1)design withbblocks such that

repetition degree of each point isρand we have thatbk=vρ.
With the Iof eq. (20), we employ a similar procedure as
forthecaseofthed-regular graph. We choose the submatrix
AI[I,[b]]of size|I|×bthat corresponds to the rows indexed
by the points inIand letli,∀i∈[k]denote the number of
columns with exactlyi1s inAI[I,[b]]. We count the total
number of 1s inAI[I,[b]]in two ways, yielding

ρ|I| =l1+2l2+···+(k−1)lk−1+klk≤k

k

i=1

li,

⇒

k

i=1

li≥
ρ|I|

k
=
b|I|

v
.

The number of blocks that are incident to at least one point in
Iis equal to k

i=1li. Hence any subsetJof blocks that has
no incidence with any point inIsatisfies|J| ≤b−|I|b/v.
Using this in eq. (20) we get that

(v−|I|)b<|J|v ⇒ (v−|I|)b< b−
|I|b

v
v,

which is a contradiction.
IfI= (P,B)is the higher incidence structure obtained

from at-(n,t+1,λ)design as described in corollary 4, then
we have that|P|=nt and|B|=

λ
t+1

n
t. By definition oft

for the original design, we have that each of the points inP
are incident to exactlyλblocks. Also, each block inBconsists
of t+1

t = t+1 points. For the submatrixAI[I,[b]]whose
rows correspond to the points inIfrom Condition 20, we let
li,∀i∈[t+1]denote the number of columns that have exactly

i1s in them. By counting the total number of 1s inAI[I,[b]]
in two ways we get that

λ|I|=

t+1

i=1

ili≤ (t+1)

t+1

i=1

li ⇒

t+1

i=1

li≥
λ|I|

t+1
.

The total number of blocks incident to at least one point inI
is t+1

i=1li. Then the number of blocks|J|that are not incident
to any point inIsatisfy|J|≤|B|−|I|λ/(t+1).Usingthese
we get that

(v−|I|)b<|J|v,

⇒
n

t
−|I|

λ

t+1

n

t
<
λ

t+1

n

t
−|I|

n

t
,

which is a contradiction. Thus in all the three kinds of inci-
dence structures considered, we have shown that they admit
the existence of the associated matrixDIunder the stated
qualifying conditions. This enables us to apply theorem 5 and
obtain a lower bound on the computation capacity of these
sum-networks.
For an undirected graphI = (P,B)that is not regular,
proposition 2 is not applicable. Theorem 5 describes a suf-
ficient condition for the existence of a linear network code
that achieves the upper bound on the computation capacity of
normal sum-networks constructed from undirected graphs that
are not necessarily regular. The upper bound on the capacity
of the transposed sum-network constructed using the incidence

matrix ATIhowever can be different from
|B|

|B|+|P|depending
on the finite fieldF(cf.corollary 1) and theorem 5 needs to be
modified to be applicable in thatcase. The following example
illustrates this.
Example 8: Consider the transposed sum-network for the
irregular graphG described in Example 7. Corollary 1 gives
an upper bound of 4/6 on the computation capacity whenF=
GF(2), as for that caseP ={2,4}andB ={A,B,C,D}.
We show the submatrix ATG[B,P]in the equation below and
also an associated matrixDGwhose support is the same as that
ofATG[B,P]and whose row-sum=6−4=2andcolumn-
sum= 4. The rows and columns are arranged in increasing
alphabetical and numeric order.

ATG[B,P]=

⎡

⎢
⎢
⎣

1 0
1 0
0 1
0 1

⎤

⎥
⎥
⎦, DG=

⎡

⎢
⎢
⎣

2 0
2 0
0 2
0 2

⎤

⎥
⎥
⎦.

Using DG we can construct a rate-4/6 linear network code,
shown in Table III, that achieves the computation capacity
forF = GF(2)of the transposed sum-network constructed

3476 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

using the irregular graphGshown in Figure 5(a). In particular,
terminalst1,t3don’t need any information other than the
partial sums obtained over their respective bottleneck edges
to compute the sum. Terminalst2,t4need the valueX2,X4
respectively, and that is transmitted in a piecewise fashion
according to the matrixDGover the bottleneck edges.
For an undirected graphI = (P,B)that is not regular,

letP,B be the set of points and edges as chosen in the
statement of corollary 1. We describe a condition on the
submatrixATI[B,P]which consists of the rows and columns
ofATIcorresponding to the blocks and points in the setsB,P
respectively. This condition allows us to construct a capacity-
achieving linear network code for the transposed sum-network.
Proposition 3: For an undirected graphI = (P,B),let
|P| =v,|B| =b, whereP,B are subsets of points
and blocks as defined in corollary 1 and letATI[B,P](i,j)
indicate an element of the submatrix for indicesi∈[b],
j∈[v]. Suppose there is a matrixDIof dimensionb×v
such that

DI(i,j)= 0, ifA
T
I[B,P](i,j)=0,

b

i=1

DI(i,j)= b, for allj∈[v],

and

v

j=1

DI(i,j)= v, for alli∈[b].

Then there is linear network code of rate b
b+vthat allows each

terminal in the transposed sum-network constructed usingI
to compute the required sum.
Proof: We describe a rate-b/(b+v)network code that

enables each terminal to compute the sum. Then by corollary 1
we know that this is a capacity-achieving code. Since this is
a transposed sum-network, the bottleneck edges in the sum-
network correspond to the blocks in the undirected graphI.
The firstbcomponents transmitted over each bottleneck is
obtained by the following equation.

φi(X)[1:b]=XBi+
j:pj∈Bi

Xpj, for allBi∈B.

We show that this partial sum satisfies all the terminals in the
set{tBi:Bi∈B}∪{tpj:pj/∈P}. Terminals in{tBi:Bi∈B}
can recover the sum as all messages not present in the partial
sum are available totBithrough direct edges. For terminals in
the set{tp:p/∈P}, they carry out the following operation
as a part of their decoding procedure.

i:Bi∈ p

φi(X)[1:b] =
i:Bi∈ p

⎛

⎝XBi+
j:pj∈Bi

Xpj

⎞

⎠ (21)

=
i:Bi∈ p

XBi+

j:{p,pj}∈B

ppTjXpj

+deg(p)Xp. (22)

For pj= p, wehavethatpp
T
j= 1if{p,pj}∈B. Also

by condition on the points that are not inP, wehavethat

deg(p)≡ 1(mod ch(F)), and hence all the coefficients in
the above partial sum are 1. The messages in the set{XB:
B /∈ p} ∪ {Xpj:{pj,p}/∈B}are available totpthrough
direct edges and hence it can recover the sum.
The remainingvcomponents available on the bottleneck
edges{ei:Bi∈ B}are used to transmit information that
enable the terminals in the set{tp:p∈P}to compute the
sum. Specifically, we construct a flow on a bipartite graph
whose one part corresponds to the points inP and the other
part corresponds to the blocks inB, with incidence being
determined by the submatrixATI[B,P]. Since there exists
a matrixDIwith specified row and column sums, we can
use it to construct a flow on the bipartite graph such that the
messages in the set {Xpi :pi∈ P}are transmitted in a
piecewise fashion over the bottleneck edges{ej:Bj∈B}in
a manner similar to the proof of theorem 5. Arguing in the
same way, one can show that the network code based on the
flow solution allows eachtp∀p∈P to obtain the value of
Xpfrom the information transmitted over the bottleneck edges
in the set{ei:Bi∈ p}.Terminaltpcomputes the sum in
eq. (21) as a part of its decoding procedure. Since deg(p)≡1
(mod ch(F)), every term in the RHS of eq. (22) exceptXp
has its coefficient as 1. But sincetpknows the value ofXp
it can subtract a multiple of it and recover the relevant partial
sum. The messages not present in this partial sum are available
totpthrough direct edges and hence it can also compute the
value of the sum.
Proposition 2 describes families of incidence structures
for which the sum-networks constructed admit capacity-
achieving linear network codes. The upper bound on the
computation capacity of these sum-networks is obtained from
Corollaries 1, 2 and 4. We now describe a rate-1 linear network
code for the sum-networks when their corresponding incidence
structures do not satisfy the qualifying conditions for the upper
bounds. By theorem 1, the computation capacity of any sum-
network obtained using the SUM-NET-CONS algorithm is at
most 1.
Proposition 4: For an incidence structureI= (P,B)and
a finite fieldF, there exists a rate-1 linear network code that
satisfies the following listed sum-networks. If
•Iis a 2-(v,k,1)design:
– the normal sum-network with ch(F)|k−1,
– the transpose sum-network with ch(F)|v−kk−1,

•Iis at-(v,t+1,λ)design:
– the normal sum-network obtained using the higher
incidence matrix with ch(F)|t,

– the transpose sum-network obtained using the higher
incidence matrix with ch(F)|λ−1.

Proof: Suppose we construct a sum-network using the
SUM-NET-CONS algorithm on a(0,1)-matrixAof dimen-
sionr×c.IfATA = (ATA)#, the following rate-1 linear
network code

φi(X)= Xpi+
j:Bj∈ pi

XBj, ∀i∈[r],

satisfies every terminal in the sum-network in the following
manner. A terminal tpi,∀i∈[r]receives all the messages
not present in the partial sum transmitted alongeithrough

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES 3477

direct edges, and hence it can compute the sum. A terminal
tB,∀B∈Bcan carry out the following operation.

i:pi∈Bj

φi(X)=
pi∈B

Xpi+
pi∈BBj∈ pi

XBj

=
pi∈B

Xpi+
l:Bl∈Bj

BTlBjXBl.

SinceATA= (ATA)#, all the coefficients in the above sum
are 1 and i:pi∈Bj

φi(X)is equal to the sum of all the
messages in the set {Xpi:pi∈ Bj}∪{XB :B ∈ Bj}.
All the messages that are not present in this set are available
totBjthrough direct edges.
Such a rate-1 linear network code gives us our proposition in

the following manner. LetAIbe thev×
v−1
k−1incidence matrix

for a 2-(v,k,1)design and letAIbe the higher incidence
matrix as defined in corollary 2 for a t-(v,t+1,λ)design
withλ=1. Then, we have (from proofs of Corollaries 2, 4)

ATIAI−(A
T
IAI)#= (k−1)I,

AIA
T
I−(AIA

T
I)#=

v−k

k−1
I,

ATIAI−(A
T
IAI)#= tI,

AIA
T
I−(AIA

T
I)#= (λ−1)I.

Thus, whenever any of the above matrices is a zero matrix,
we have a scalar linear network code that achieves the com-
putation capacity of the associated sum-network.

VII. DISCUSSION ANDCOMPARISONWITHPRIORWORK

The discussion in Sections V and VI establishes the compu-
tation capacity for sum-networks derived from several classes
of incidence structures. We now discuss the broader impli-
cations of these results by appealing to existence results for
these incidence structures. BIBDs have been the subject of
much investigation in the literature on combinatorial designs.
In particular, the following two theorems are well-known.
Theorem 6 [21, Th. 6.17]:There exists a(v,3,1)-BIBD

(also known as a Steiner triple system) if and only if
v≡1,3(mod 6);v≥7.
Theorem 7 [21, Th. 7.31]:There exists a(v,4,1)-BIBD

if and only ifv≡1,4(mod 12);v≥13.
In particular, these results show that there are an infinite

family of Steiner triple systems and BIBDs with block size
4andλ= 1. Sincek= 3 for any Steiner triple system,
we can demonstrate the existence of sum-networks whose
computation capacity is greatlyaffected by the choice of the
finite fieldF used for communication.
Proposition 5: Consider the normal sum-network con-

structed using a 2-(v,3,1)design. If ch(F)= 2, then the
computation capacity of the sum-network is 1. For odd ch(F),
the computation capacity is65+v. For the normal sum-network
constructed using a(v,4,1)-BIBD, the computation capacity
is 1 if ch(F)=3and 12

11+votherwise.
Proof: The number of blocks in a 2-(v,3,1)design is

equal tov(v− 1)/6. From corollary 2, if ch(F)is odd,
then the computation capacity of the sum-network constructed
using a Steiner triple system is at most v

v+v(v−1)/6=
6
5+v.

Moreover by proposition 2, we can construct a linear network
code with rate equal to the upper bound. On the other hand,
if ch(F)= 2, then the computation capacity of the same
sum-network is 1 by proposition 4.
The number of blocks in a 2-(v,4,1)design isv(v−1)/12.

We can recover the result for the computation capacity of a
normal sum-network constructed using it in a manner similar
to the previous case.
Thus, this result shows that for thesamenetwork, com-
puting the sum over even characteristic has capacity 1, while
the capacity goes to zero asO(1/v)for odd characteristic.
Moreover, this dichotomy is not unique to the prime number 2.
Similar results hold for sum-networks derived from higher
incidence structures (cf.corollary 4).
Theorem 8 [34]: For two integers t,v such that
v≥t+1>0andv≡ t(mod (t+1)!2t+1),at-(v,t+1,
(t+1)!2t+1)design with no repeated blocks exists.
The number of blocks in at-(v,t+1,(t+1)!2t+1)design can

be evaluated to bev
t
(t+1)!2t+1

t+1 . We consider the normal sum-
network obtained using the higher incidence matrix of this
t-design. If ch(F) t, then by corollary 4 and proposition 2,
we have that the computation capacity of this sum-network is

v
t

v
t+

v
t
(t+1)!2t+1

t+1

=
1

1+t!2(t+1)!2t−1
.

On the other hand, if ch(F)is a divisor oft, then by theorem 1
and proposition 4 we have that the computation capacity of the
normal sum-network constructed using the higher incidence
matrix is 1. Thus for the same sum-network, computing the
sum over a field whose characteristic divides the parametert
can be done at rate= 1. However, if the field characteristic
does not dividet, zero-error computation of the sum can only

be done at a rate which goes to zero asO t
e
−t2
.

Theorem 6 describes an infinite family of BIBDs withk=3
andλ=1. There are further existence results for BIBDs with
λ= 1andk= 3. In particular, forλ= 1,k≤ 9thereexist
BIBDs with value ofvas given in Table 3.3 in [35, Sec. II.3.1].
As an example, ifk=5, then there exists a 2-(v,5,1)design
wheneverv≡1,5(mod 20). For any choice of a BIBD from
this infinite family, we can construct a corresponding normal
sum-network, whose computation capacity for a particular
finite field can be found using corollary 2 and proposition 2.
Even though theorem 8 states the existence oft-designs forv,t
that satisfy the qualifying conditions, explicit constructions of
sucht-designs witht≥6 are very rare.
For a transposed sum-network obtained from an undirected
graph that is not regular, the computation capacity can show
a more involved dependence on the finite field alphabet as the
following example demonstrates.
Example 9: Consider the transposed sum-network obtained
by applying the SUM-NET-CONS algorithm on the undirected
graphIshown in Figure 6. Corollary 1 gives us an upper
bound on the computation capacity of the transposed sum-
network based on the finite field alphabetF. The upper bound
for three different choices ofF is as follows.

•F = GF(2): ThenP ={b}, so the upper bound is
16/(16+1)=16/17.

3478 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

Fig. 6. The schematic shown represents an undirected graph with three
components:S6,S14andS10.Stdenotes the star graph ont+1 vertices,
with only one vertex having degree twhile the rest have degree 1. The
vertices with the maximum degree in the three star graphs area,b,c
respectively. In addition,ais connected tobandbis connected toc, such that
deg(a)=7,deg(b)=16,deg(c)=11.

•F = GF(3):ThenP ={c}, so the upper bound is
11/(11+1)=11/12.

•F = GF(5):ThenP ={a}, so the upper bound is
7/(7+1)=7/8.

We use proposition 3 to check if we can construct a linear
network code in each case that has the same rate as the
respective upper bound. To do that, we focus on the appro-
priate submatrix ofAIfor each case and see if it satisfies
the required condition on row and column sums. The rows of
AIcorresponding to the verticesa,b,c(in order) are shown
below.

⎡

⎣
16 1 0 ··· 0
06 1 114 1 010
0 ··· 0 1 110

⎤

⎦,

where 1,0indicate all-one and all-zero row vectors of size
specified by their subscripts. Using this, one can verify that
the appropriate submatrix for each of the three choices ofF
satisfies the conditions of proposition 3 and hence we can
construct a capacity-achieving linear network code in each
case.
Thus, as the previous example demonstrates, the computa-

tion capacity of a particular sum-network need not take just
one of two possible values, and can have a range of different
values based on the finite field chosen. We can generalize the
example to obtain sum-networks that have arbitrary different
possible values for their computation capacity.
Our constructed sum-networks have a unit maximum flow

between any source and any terminal. We can modify our
construction so that each edge in the network has a capacity
ofα>1. Specifically, the following result can be shown.
Proposition 6: LetN denote the sum-network obtained by

applying the SUM-NET-CONS algorithm on a matrixAof
dimensionr×c. For an integerα>1, letNαdenote the sum-
network obtained by modifying the SUM-NET-CONS algo-
rithm such thatNαhas the same structure asN but each
edgeeαinNαhas cap(eα)=α >1. Then, ifAsatisfies the
qualifying conditions in Theorems 2 and 5, the computation
capacity ofNαis

αr
r+c.

Proof: Since A satisfies the conditions in theorem 5,
there exists a(m,n)vector linear network code withm=r,
n=r+c. For every unit-capacity edge inN,wehaveαunit-
capacity edges between the same tail and head inNα.Atthe
tail of every edge inNα, we can apply the same network

code except now we haveαdistinct edges on which we can
transmit the encoded value. Thus we need transmit onlyr+cα
symbols on each of those edges. Ifr+cα is not an integer, one
can appropriately multiply bothm,nwith a constant. This
modified network code has rate = αr

r+c.SinceAalso satisfies
the conditions in theorem 2, we have that an upper bound
on the computation capacity ofN isr/(r+c). Applying the
same argument onNα, we get that an upper bound on the
computation capacity ofNαis

αr
r+c. This matches the rate of

the modified vector linear network code described above.
This result can be interpreted as follows. Consider the
class of sum-networks where the maximum flow between any
source-terminal pair is at leastα. Our results indicate, that for
anyα, we can always demonstrate the existence of a sum-
network, where the computation capacity is strictly smaller
than 1. Once again, this indicates the crucial role of the
network topology in function computation.

A. Comparison With Prior Work

The work of Rai and Das [28] is closest in spirit to our
work. The authors in [28] gave a construction procedure to
obtain a sum-network with computation capacity equal to
p/q,wherep,qare any two co-prime natural numbers. The
procedure involved first constructing a sum-network whose
capacity was 1/q. Each edge in this sum-network had unit-
capacity. By inflating the capacity of each edge in the sum-
network top> 1, the modified sum-network was shown to
have computation capacity asp/q.
Our work is a significant generalization of their work.
In particular, their sum-network with capacity 1/qcan be
obtained by applying the SUM-NET-CONS algorithm to the
incidence matrix of a complete graph on 2q−1 vertices [29].
We provide a systematic procedure for constructing these sum-
networks for much larger classes of incidence structures.
The authors in [28] also posed the question ifsmallersum-
networks (with lesser sources and terminals) with capacity
asp/qexisted. Using the procedure described in this paper,
we can answer that question in the affirmative.
Example 10: The normal sum-network for the undirected
graph in Figure 5(a) has computation capacity= 4/9and
has nine sources and terminals. To obtain a sum-network with
the same computation capacity using the method described
in [28] would involve constructing the normal sum-network
for a complete graph on 17 vertices, and such a sum-network
would have 153 source nodes and terminal nodes each.
In [20], it was shown by a counter-example that for the class
of sum-networks with|S| =|T| =3, a maximum flow of 1
between each source-terminal pair was not enough to guaran-
tee solvability (i.e., no network code of rate 1 exists for the
counterexample). It can be observed that their counter-example
is the sum-network shown in Figure 2(a). Our characterization
of computation capacity for a family of sum-networks provides
significantly more general impossibility results in a similar
vein. In particular, note that for theα-capacity edge version
of a sum-network, the maximum flow between any source-
terminal pair is at leastα. Then suppose we consider the class
of sum-networks with|S| =|T| =x = β(β+ 1)/2for

TRIPATHY AND RAMAMOORTHY: SUM-NETWORKS FROM INCIDENCE STRUCTURES 3479

someβ ∈ N. Consider a complete graphKβ = (V,E)
onβ vertices; then |V| +|E| =x. Consider the sum-
network obtained by applying the procedure on Kβ, with
each edge added having capacity asα. Then the computation
capacity of this sum-network isαβ/x, which is less than 1
ifα<(β+1)/2. This implies that a max-flow of(β+1)/2
between each source-terminal pair is a necessary condition
for ensuring all sum-networks with|S| =|T| =x are
solvable. Whenxcannot be written asβ(β+1)/2forsomeβ,
a similar argument can be made by finding an undirected graph
G=(V,E)(whose incidence matrixAGsatisfies the condi-
tion in theorem 5) such that|V|is minimal and|V|+|E|=x.

VIII. CONCLUSIONS ANDFUTUREWORK

Sum-networks are a large class of function computation
problems over directed acyclic networks. The notion of com-
putation capacity is central in function computation problems,
and various counterexamples and problem instances have been
used by different authors to obtain a better understanding
of solvability and computation capacity of general networks.
We provide an algorithm to systematically construct sum-
network instances using combinatorial objects called inci-
dence structures. We propose novel upper bounds on their
computation capacity, and in most cases, give matching
achievable schemes that leverage results on the existence of
non-negative integer matrices with prescribed row and column
sums. We demonstrate that the dependence of computation
capacity on the underlying field characteristic can be rather
strong.
There are several opportunities for future work. Our pro-

posed linear network codes for the constructed sum-networks
require the corresponding incidence structures to have a spe-
cific property. In particular, our techniques only work in the
case whenATA− (ATA)#is a diagonal matrix. It would
be interesting to find capacity achieving network codes in
cases whenATA−(ATA)#is not diagonal. More generally,
it would be interesting to obtain achievability schemes and
upper bounds for sum-networks with more general topologies.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and
the anonymous reviewers whose comments and suggestions
significantly improved the quality of the paper.

REFERENCES

[1] J. Korner and K. Marton, “How to encode the modulo-two sum
of binary sources,” IEEE Trans. Inf. Theory, vol. IT-25, no. 2,
pp. 219–221, Mar. 1979.

[2] A. Orlitsky and J. R. Roche, “Coding for computing,”IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001.

[3] V. Doshi, D. Shah, M. Medard, andM. Effros, “Functional compression
through graph coloring,”IEEE Trans. Inf. Theory, vol. 56, no. 8,
pp. 3901–3917, Aug. 2010.

[4] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[5] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[6] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,”IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[7] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding
in network information flow,”IEEE Trans. Inf. Theory, vol. 51, no. 8,
pp. 2745–2759, Aug. 2005.

[8] J. Cannons, R. Dougherty, C. Freiling, and K. Zeger, “Network rout-
ing capacity,”IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 777–788,
Mar. 2006.

[9] R. Dougherty, C. Freiling, and K. Zeger, “Unachievability of network
coding capacity,”IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2365–2372,
Jun. 2006.

[10] S. Jaggiet al., “Polynomial time algorithms for multicast network code
construction,”IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982,
Jun. 2005.

[11] S. Huang and A. Ramamoorthy, “An achievable region for the double
unicast problem based on a minimum cut analysis,” IEEE Trans.
Commun., vol. 61, no. 7, pp. 2890–2899, Jul. 2013.

[12] S. Huang and A. Ramamoorthy, “On the multiple-unicast capacity of
3-source, 3-terminal directed acyclic networks,” IEEE/ACM Trans.
Netw., vol. 22, no. 1, pp. 285–299, Feb. 2014.

[13] A. R. Lehman and E. Lehman, “Complexity classification of network
information flow problems,” inProc. 15th Annu. ACM-SIAM Symp.
Discrete Algorithms, Jan. 2004, pp. 142–150.

[14] S. Kamath, D. N. C. Tse, and C.-C. Wang, “Two-unicast is hard,” in
Proc. IEEE Int. Symp. Inf. Theory, Jun. 2014, pp. 2147–2151.

[15] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing: Cut-set bounds,”IEEE Trans. Inf.
Theory, vol. 57, no. 2, pp. 1015–1030, Feb. 2011.

[16] C. Huang, Z. Tan, and S. Yang, “Upper bound on function computation
in directed acyclic networks,” inProc. IEEE Inf. Theory Workshop,
Apr. 2015, pp. 1–5.

[17] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Linear codes, target function classes, and network computing capacity,”
IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 5741–5753, Sep. 2013.

[18] A. Ramamoorthy, “Communicating the sum of sources over a network,”
inProc. IEEE Int. Symp. Inf. Theory, Jul. 2008, pp. 1646–1650.

[19] B. K. Rai and B. K. Dey, “On network coding for sum-networks,”IEEE
Trans. Inf. Theory, vol. 58, no. 1, pp. 50–63, Jan. 2012.

[20] A. Ramamoorthy and M. Langberg, “Communicating the sum of
sources over a network,”IEEE J. Sel. Areas Commun., vol. 31, no. 4,
pp. 655–665, Apr. 2013.

[21] D. R. Stinson,Combinatorial Designs: Constructions and Analysis.
New York, NY, USA: Springer-Verlag, 2004.

[22] O. Olmez and A. Ramamoorthy, “Fractional repetition codes with
flexiblerepair from combinatorial designs,”IEEE Trans. Inf. Theory,
vol. 62, no. 4, pp. 1565–1591, Apr. 2016.

[23] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for
repair in distributed storage systems,” inProc. 48th Annu. Allerton Conf.
Commun., Control Comput., Sep. 2010, pp. 1510–1517.

[24] L. Tang and A. Ramamoorthy, “Coded caching with low subpacketi-
zation levels,” inProc. Int. Symp. Netw. Coding (NetCod), Dec. 2016,
pp. 1–6.

[25] L. Tang and A. Ramamoorthy, “Coded caching for networks with the
resolvability property,” inProc. IEEE Int. Symp. Inf. Theory, Jul. 2016,
pp. 420–424.

[26] L. Tang and A. Ramamoorthy. (2017). “Low subpacketization schemes
for coded caching.” [Online]. Available: https://arxiv.org/abs/1706.00101

[27] B. K. Rai and N. Das, “On the capacity of ms/3t and 3s/nt sum-
networks,” inProc. IEEE Inf. Theory Workshop, Sep. 2013, pp. 1–5.

[28] B. K. Rai and N. Das, “On the capacity of sum-networks,” inProc.
51st Annu. Allerton Conf. Commun., Control Comput., Oct. 2013,
pp. 1545–1552.

[29] A. Tripathy and A. Ramamoorthy, “Sum-networks from undirected
graphs: Construction and capacity analysis,” inProc. 52nd Annu. Aller-
ton Conf. Commun. Control Comput., Sep. 2014, pp. 651–658.

[30] N. Das and B. K. Rai, “On the number of sources and terminals of sum-
networks with capacity p/q,” inProc. 21st Nat. Conf. Commun. (NCC),
Feb. 2015, pp. 1–6.

[31] A. Tripathy and A. Ramamoorthy, “Capacity of sum-networks for
different message alphabets,” inProc. IEEE Int. Symp. Inf. Theory,
Jun. 2015, pp. 606–610.

[32] R. A. Brualdi, Combinatorial Matrix Classes. Cambridge, U.K.:
Cambridge Univ. Press, 2006.

[33] L. Mirsky, “Combinatorial theorems and integral matrices,”J. Combinat.
Theory, vol. 5, no. 1, pp. 30–44, 1968.

[34] L. Teirlinck, “Non-trivialt-designs without repeated blocks exist for
allt,”Discrete Math., vol. 65, no. 3, pp. 301–311, 1987.

[35] C. J. Colbourn and J. H. Dinitz,Handbook of Combinatorial Designs.
Boca Raton, FL, USA: CRC Press, 2006.

3480 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

Ardhendu Tripathy (S’15) received his B.Tech. degree from the Indian
Institute of Technology, Kanpur in May 2012 and is currently a Ph.D. student
in the Department of Electrical and Computer Engineering at Iowa State
University. His research interests are in the areas of information theory,
machine learning and signal processing.

Aditya Ramamoorthy (M’05) received the B.Tech. degree in electrical
engineering from the Indian Institute of Technology, Delhi, in 1999, and
the M.S. and Ph.D. degrees from the University of California, Los Ange-
les (UCLA), in 2002 and 2005, respectively. He was a systems engineer
with Biomorphic VLSI Inc. until 2001. From 2005 to 2006, he was with
the Data Storage Signal ProcessingGroup of Marvell Semiconductor Inc.
Since fall 2006, he has been with the Electrical and Computer Engineering
Department at Iowa State University, Ames, IA 50011, USA. His research
interests are in the areas of network information theory, channel coding and
signal processing for bioinformatics and nanotechnology. Dr. Ramamoorthy
served as an editor for the IEEE TRANSACTIONS ONCOMMUNICATIONS
from 2011–2015. He is currently serving as an associate editor for the
IEEE TRANSACTIONS ONINFORMATIONTHEORY. He is the recipient of
the 2012 Early Career Engineering Faculty Research Award from Iowa
State University, the 2012 NSF CAREERaward, and the Harpole-Pentair
professorship in 2009 and 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

