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ABSTRACT
We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport.
The code extends the IBOTHROS scheme for covariant, unpolarized transport using two repre-
sentations of the polarized radiation field: In the coordinate frame, it parallel transports the
coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission,
absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and
coordinate- independent as possible. The emission, absorption, and Faraday conversion step
is implemented using an analytic solution to the polarized transport equation with constant
coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution
even for a step with high optical depth and Faraday depth. We show that the code matches
analytic results in flat space, and that it produces results that converge to those produced by
Dexter’s GRTRANS polarized transport code on a complicated model problem. We expect IPOLE
will mainly find applications in modelling Event Horizon Telescope sources, but it may also
be useful in other relativistic transport problems such as modelling for the IXPE mission.

Key words: black hole physics –MHD– polarization – radiative transfer – relativistic
processes.

1 INTRODUCTION

The Event Horizon Telescope (EHT) will soon produce full polar-
ization images of the luminous plasma surrounding the event hori-
zon in the low-accretion rate systems Sgr A* and M87* (Johnson
et al. 2015). Much of the information content of EHT observations
will be in the polarized components of the radiation field; extracting
this information will require a model for the state of the radiating
plasma aswell as the ability to producemock full polarization obser-
vations of these models. Althoughmock total intensity observations
of accretion flow and jet models have now become common (Fal-
cke, Melia & Agol 2000; Noble et al. 2007; Broderick et al. 2009;
Broderick & Loeb 2009a; Dexter &Agol 2009; Mościbrodzka et al.
2009; Yuan et al. 2009; Dexter et al. 2010; Broderick et al. 2011a,b;
Dexter & Fragile 2011; Vincent et al. 2011; Dexter, McKinney &
Agol 2012; Dolence et al. 2012; Mościbrodzka et al. 2012; Younsi,
Wu & Fuerst 2012; Dexter & Fragile 2013; Chan, Psaltis & Özel
2013; Mościbrodzka et al. 2014; Chan et al. 2015; Vincent et al.
2015; Younsi & Wu 2015; Ball et al. 2016; Fraga-Encinas et al.
2016; Mościbrodzka, Falcke & Shiokawa 2016; Pu et al. 2016a;
Pu, Akiyama & Asada 2016b; Chan et al. 2017; Mao, Dexter &
Quataert 2017; Medeiros et al. 2017; Porth et al. 2017; Shiokawa,
Gammie & Doeleman 2017; Roelofs et al. 2017), full polariza-
tion models – although not completely novel (Bromley, Melia &
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Liu 2001; Broderick & Blandford 2004; Broderick & Loeb 2005;
Huang et al. 2008; Shcherbakov, Penna & McKinney 2012; Gold
et al. 2016; Mościbrodzka et al. 2017) – are less well explored.

In EHT target models millimeter photons are produced by
synchrotron emission. It is therefore natural that EHT targets have
substantial linear polarization, and indeed the linear polarization
fraction in Sgr A* is ∼7 per cent1 (Bower et al. 2003, 2005;
Marrone et al. 2007, 2008) and in M87 it is <1 per cent (Kuo
et al. 2014). Circular polarization can also be produced in emis-
sion and by Faraday conversion of linearly polarized radiation. The
circular polarization fraction in Sgr A* has been measured as 1.2–
1.6 per cent (Muñoz, Marrone & Moran 2009; Muñoz et al. 2012).
Our interest in polarized models is therefore well motivated.

Total intensity models of accreting black holes manifest famil-
iar relativistic effects (Cunningham & Bardeen 1973; Cunningham
1975): Gravitational lensing, doppler shift, doppler boosting, and
gravitational redshift all contribute at order unity to models of ac-
cretion flows where the bulk of the emission is generated close to
the event horizon. To this, full polarization models add ‘gravita-
tional Faraday rotation’ (Balazs 1958), i.e. the spacetime can rotate
the plane of polarization of an electromagnetic wave. In the weak
field limit, the rotational angle is proportional to the line-of-sight

1 It is worth mentioning that near-infrared emission from Sgr A* also
has strong linear polarization, of 20–40 per cent (Eckart et al. 2008;
Shahzamanian et al. 2015).
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component of the angular momentum of the lensing mass (Ishihara,
Takahashi & Tomimatsu 1988).

Several existing codes are capable of generating polarized images
of radiating plasma near a compact object. 2 Of these, only Dexter’s
GRTRANS code (Dexter 2016) has been publicly released. It seems to
us that it is useful to have multiple, distinct, and publicly available
solutions of the problem, for verification purposes. Nevertheless,
our code is not completely independent and owes much to the
careful testing and thoughtful construction of GRTRANS.
Still, our scheme differs from GRTRANS in three significant re-

spects.
First, in the formulation of the Liouville operator (the convective

derivative operator in phase space): we use parallel transport of a
coherency or photon density tensor rather than direct integration
of the invariant Stokes parameters with a rotation term for linear
polarization. The coherency matrix approach, analogous to that de-
veloped by van Ballegooijen (1985), seems conceptually cleaner
to us and requires relatively little thought (and therefore reduces
the scope for error in, for example, formulating a polarization mea-
surement). It is also manifestly covariant, so it is easy to change
coordinate systems.

Secondly, at each step, we use an analytic solution for polarized
transport with constant absorption, emission, and rotation coef-
ficients (defined below). The solution was first written down by
Landi Degl’Innocenti & Landi Degl’Innocenti (1985). We recount
it below, as well as a few special cases in an appendix. The result
is a cheap second-order scheme that behaves well even when the
absorption optical depth and/or Faraday depth is large over a single
step.

Thirdly, we directly integrate the geodesic equation rather than
using geokerr (Dexter & Agol 2009), which relies on integra-
bility of geodesics in the Kerr metric. Again, this makes our code
coordinate and spacetime independent. We can therefore study po-
larization properties of non-GR black hole models, and switch to
unconventional coordinate systems (such as the Cartesian Kerr–
Schild coordinates used by, for example, BHAC code, Porth et al.
2017) for the geodesic integration.

In the end, the value of each of these differences is some-
what subjective. What is not subjective is the value of hav-
ing quasi-independent schemes for solving a complicated, tech-
nically demanding problem like relativistic polarized radiative
transport.

This paper is organized as follows. In Section 2, we present
the equations of polarized radiative transfer through magnetized
plasma. Section 2 outlines the coherency tensor formalism of
Gammie & Leung (2012), however we also clarify a few points
from that paper. In Section 3, we describe a semi-analytic scheme
for solving the equations in arbitrary geometry. In Section 4, we
present a few simple tests and demonstrate the performance of the
numerical scheme in recovering known analytic solutions of the po-
larized transfer equations. In case of more complex problems, that
do not have analytic solutions, we compare IPOLE numerical results
to the results obtained with GRTRANS. We summarize the paper and
conclude in Section 5.

2 Polarized transport schemes already exist for applications in cosmology,
but typically do not use ray-tracing.

2 GOVERNING EQUATIONS

The radiative transfer equation for time-independent, unpolarized,
non-relativistic transport, including emission, and absorption but
not scattering, is

dIν

ds
= jν − ανIν, (1)

where Iν ≡ specific intensity, ν ≡ frequency, jν ≡ emissivity, and
αν ≡ absorptivity. Each term is frame dependent. The covariant
generalization is

d

dλ

(
Iν

ν3

)
=

(
jν

ν2

)
− (ναν)

(
Iν

ν3

)
, (2)

where λ ≡ the affine parameter along a photon trajectory, d/dλ is
the convective derivative in phase space (‘Liouville operator’), and
each term in parentheses is invariant and can thus be evaluated in
any frame. The affine parameter is defined through the geodesic
equations

dxμ

dλ
= kμ (3)

and

dkμ

dλ
= −�

μ
αβkαkβ, (4)

where kμ ≡ wave four-vector and � ≡ connection coefficients. The
frequency measured by an observer with four-velocity uμ is

ω = −kμuμ. (5)

The relationship between ω and the frequency in Hz measured by
the observer depends on the units of kμ. We have implicitly assumed
(and will continue to assume below) that photons travel along null
geodesics and therefore that ν is large compared to the plasma
frequency and electron gyrofrequency (see Broderick & Blandford
2004, for a more general treatment). In EHT sources this is an
excellent approximation.

The radiative transfer equation for polarized, time-independent,
non-relativistic transport, including emission and absorption but not
scattering, is

d

ds

⎛
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αν,U −ρν,V αν,I ρν,Q

αν,V ρν,U −ρν,Q αν,I

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Iν

Qν

Uν

Vν

⎞
⎟⎟⎟⎠, (6)

where Iν , Qν , Uν , Vν are (frame-dependent) specific intensities as-
sociated with the Stokes parameters.3 Notice that Qν , Uν , Vν are
signed quantities while Iν is positive definite. Qν > 0 corresponds
to linear polarization along one axis in the plane perpendicular to
the wave 3-vector, while Qν < 0 corresponds to linear polariza-
tion along the second axis. Uν describes polarization at ±45

◦
to

the first axis. Vν is circular polarization. Positive Vν always means

3 The sign of ρU differs from Dexter (2016) and agrees with Landi
Degl’Innocenti & Landi Degl’Innocenti (1985), but this has no effect on
the Dexter (2016) solution because ρU = 0 in the frame in which the trans-
fer coefficients are evaluated.
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right-hand circular polarization (RCP). The IEEE convention is that
for RCP the electric field vector rotates in a right-handed direction
at a fixed position if thumb points along wavevector kμ. For RCP,
the field rotates counter-clockwise as seen from the observer (see
Hamaker & Bregman 1996, for a discussion)

Equation (6) has 11 transfer coefficients that depend on physical
conditions in the plasma. These are the four emission coefficients
jν, A (subscript A can be one of I, Q, U, V); the four absorption coef-
ficients αν, A, and the three rotation coefficients ρν, A. By definition
I 2
ν ≥ Q2

ν + U 2
ν + V 2

ν , i.e. the polarization fraction is≤ 100 per cent,
and evidently we must have

j 2
ν,I > j 2

ν,Q + j 2
ν,U + j 2

ν,V (7)

to guarantee this. Notice that jν, I > 0, but jν, Q, jν, U, jν, V can have
either sign. Assuming maser action is absent, αν, I > 0, but αν, Q,
αν, U, αν, V can also have either sign.
The covariant generalization of (6) is not as simple as for the

unpolarized transfer equation because the definition of Qν , Uν de-
pend on the orientation of the axes by the observer who makes
the measurement. Broderick & Blandford (2004) have presented
a generalization of (2) in terms of the ‘invariant’ Stokes param-
eters S ≡ (I ,Q, U, V ) ≡ (Iν,Qν, Uν, Vν)/ν3 that explicitly ac-
counts for the rotation of an observer frame along the line of sight
(in our notation, the absence of subscript ν implies an invariant
quantity; thus αI ≡ ναν, I). This generalization has been used by
Broderick & Loeb (2009b), Shcherbakov et al. (2012), Gold et al.
(2016), Dexter (2016), and Mościbrodzka et al. (2017) to generate
polarized models of accretion on to a black hole.

The covariant Stokes formulation of the polarized transfer equa-
tion is not written in manifestly covariant form, and hence the
transformation of Stokes parameters from one frame to another is
not completely transparent, although in the end, it amounts to a
rotation. Gammie & Leung (2012) (see also Kosowsky 1996, Wein-
berg 2008) rewrote the polarized transport equation in terms of the
rank-2, Hermitian, coherency tensor

Nαβ ≡ C 〈aα
k a

∗β
k 〉, (8)

where ak is a Fourier component of the four-vector potential and C
is an arbitrary constant. This description is manifestly covariant.

Let us relateNαβ to the Stokes parameters defined in an orthonor-
mal tetrad e

μ
(a) (parenthesized lowercase roman letters indicate tetrad

indices). We make two assumptions about the tetrad: eμ
(t) = uμ, the

four-velocity of the associated observer; and e
μ
(3) = kμ − ωuμ. In

words: the third spatial basis element is a unit vector oriented par-
allel to the spatial component of the wavevector.

It is then helpful to define four auxiliary tensors in the tetrad
frame:

mI ≡

⎛
⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎞
⎟⎟⎟⎠, (9)

mQ ≡

⎛
⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

⎞
⎟⎟⎟⎠, (10)

mU ≡

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, (11)

mV ≡

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

⎞
⎟⎟⎟⎠. (12)

These are just the Pauli matrices (see López Ariste & Semel 1999
for a discussion) in the two dimensional space perpendicular to uμ

and the wave three-vector. Then we define C so that

N (a)(b) = m
(a)(b)
A SA (13)

(again, the index A is one of I, Q, U, V), SA is a component of the
invariant Stokes vector S, and summation over A is implied. The
inverse relation is

SA = 1

2
m

∗(a)(b)
A N(a)(b). (14)

These linear relations betweenN and S are easy to implement numer-
ically. It is also obvious how N transforms under boosts, rotations,
and general coordinate transformations, because it is a tensor.

The covariant polarized transport equation is

kμ∇μNαβ = J αβ + Hαβγ δNγδ. (15)

Here, ∇μ is a covariant derivative (the derivative operator is under-
stood to follow a photon trajectory in frequency space), Jαβ is an
emissivity tensor, and Hαβγ δ incorporates absorption and Faraday
rotation. Expanding the covariant derivative in a coordinate basis,
equation (15) becomes

dNαβ

dλ
= −�α

μνk
μNνβ − �β

μνk
μNαν + J αβ + Hαβγ δNγδ. (16)

Here,

J (a)(b) = m
(a)(b)
A jA, (17)

and

H (a)(b)(c)(d) = 1

2
m

(a)(b)
A MAB m

∗(c)(d)
B , (18)

whereMAB is the matrix of absorption and rotation coefficients that
appears in equation (6). Formodels in which absorption and rotation
can be described in terms of the classical response of the plasma, the
tensorH(a)(b)(c)(d) is directly related to the components of the plasma
dielectric tensor; the relationship is given in Gammie & Leung
(2012) (their equation 64). This form of the polarized transport
equation is equivalent to that used in Broderick&Blandford (2004).

3 NUMERICAL METHODS

Equation (16) might seem an unpromising start for a numerical in-
tegration scheme, since the basic equation is complicated and one
has to integrate the 16 real degrees of freedom in Nαβ compared to
the 4 real degrees of freedom in a Stokes basis representation of the
radiation field. Still, Nαβ is manifestly covariant and conceptually
simple: the tensor notation takes care of all frame transformations
automatically. Also, the integration of additional degrees of free-
dom is, it turns out, not the leading cost in polarized ray-tracing
calculations.
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Our second-order integration strategy splits equation (16) into
two parts. The first part incorporates parallel transport: it uses the
LHS and the first two terms on the RHS to parallel transport the
polarized radiation field in the coordinate basis. The second part in-
corporates emission, absorption, and Faraday rotation: it transforms
the LHS and the second two terms on the RHS into the Stokes basis
in the frame of the plasma, where the transfer coefficients are most
naturally evaluated. These latter terms yield

d

dλ

⎛
⎜⎜⎜⎝

I

Q

U

V

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

jI

jQ

jU

jV

⎞
⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎝

αI αQ αU αV

αQ αI ρV −ρU

αU −ρV αI ρQ

αV ρU −ρQ αI

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

I

Q

U

V

⎞
⎟⎟⎟⎠ + · · · (19)

where, again, the absence of subscript ν implies that a term appears
in invariant form, i.e. ρV = νρν, V and the derivative is understood
to follow an individual photon in frequency space.

What technique should one use to evolve equation (19)? One
consideration is computational expense when the Faraday or ab-
sorption depth is large. Most explicit schemes will be limited by
�λ � MIN(1/αA, 1/ρA). Many λ-steps are then required to cross
the system, even if the transfer coefficients change smoothly. For
example, the Faraday rotation in some models of Sgr A* and M87
at 1.3mm is very large (e.g. Mościbrodzka et al. 2017), so a sim-
ple second-order integration scheme would require many λ-steps to
cross the system as it would be limited to rotating the electric vector
polarization angle (EVPA) by O(1) radian per step. A second con-
sideration is that the source models that motivated the development
of IPOLE are derived from numerical simulations, which have an ir-
reducible granularity because they represent the physical variables
on a grid. It makes no sense to meticulously integrate equation (19)
across a single simulation zone when the structure of the model
inside the zone is known only up to truncation error. Still, even in
this case a stable and physically sensible evolution of equation (19)
is desirable.

It would therefore be helpful to use a numerical technique that
takes advantage of analytic solutions to equation (19) assuming
constant transfer coefficients. Indeed, this is what the DELO fam-
ily of polarized transfer solvers does (Rees, Durrant & Murphy
1989; Janett et al. 2017) while making particular assumptions about
conditions in the source. More generally, Landi Degl’Innocenti &
Landi Degl’Innocenti (1985, hereafter LDI2) found an elegant, for-
mal solution of the problem expressed in terms of an integral along
the line of sight. This solution can be also found in Peraiah (2001)
(notice that section 12.6 contains a few typographical errors in
their equations: 12.6.10, 12.6.27, 12.6.29, 12.6.31, 12.6.32) and,
partially, in Dexter (2016) (contains a typographical error in [D5],
M3[0,2] should be 
1αU + σ
2ρU). Our integration scheme uses
the LDI2 solution in explicit form.

The explicit general polarized transport solution with constant
coefficients can be obtained following LDI2, who write the transfer
equation (19) in the form

dSA

dλ
= jA − KABSB, (20)

where we have recast the equation using our index notation, sub-
stituted jA for their KS (S is LDI2’s source function vector), and

cast the basic equation in invariant form with independent variable
λ rather than s. The formal solution is

SA(λ) =
∫ λ

λ0

OAB (λ − λ′)jBdλ
′ + OAB (λ − λ0)SB (λ0), (21)

where OAB is given by their equation (10).4 This formal solution
still requires evaluation of the integral to put it in a form suitable
for numerical integration. Defining

PAB ≡
∫ λ

OAB, (22)

the formal solution for constant coefficients is

SA(λ) = PAB (λ − λ0)jB + OAB (λ − λ0)SB (λ0). (23)

Integrating LDI2 equation (10), one finds

PAB = −
1f1M3,AB + αIf1

2
(M1,AB + M4,AB )

+ 
2f2M2,AB + αIf2

2
(M1,AB − M4,AB )

− e−αI �λ

×
{[

− 
1f1M3,AB + αIf1

2
(M1,AB + M4,AB )

]
cosh(
1�λ)

+
[

− 
2f2M2,AB + αIf2

2
(M1,AB − M4,AB )

]
cos(
2�λ)

+
[

− αIf2M2,AB − 
2f2

2
(M1,AB − M4,AB )

]
sin(
2�λ)

−
[
α1f1M3,AB − 
1f1

2
(M1,AB + M4,AB )

]
sinh(
1�λ)

}
.

(24)

Here �λ ≡ λ − λ0 and the notation follows LDI2 including the
definition of the 4 × 4 matrices M, except that we have introduced
f1 ≡ (α2

I − 
2
1)

−1 and f2 ≡ (α2
I + 
2

2)
−1, and our αS is their ηS.

The reader is referred to LDI2, or the publicly released code, for a
complete account of the solution.

Solution (23) is complicated and difficult to manipulate alge-
braically. For convenience, we provide two special solutions in the
appendix, for when only Faraday conversion is present and for when
only absorption and emission are present.

3.1 Integration scheme

The full image-generation routine proceeds as follows. The basic
notion is identical to the publicly available IBOTHROS code.5 An
observer is placed at a fixed spacetime event and given a four-
velocity and a ‘camera’ which is defined via an orthonormal tetrad
at the observer. The camera has pixels, which form a regular grid
in angle. If the camera is pointed at the black hole, the central
point of the frame is defined so that photons arriving at that point
have zero angular momentum. Geodesics are integrated backwards
from the centre of each pixel through the source until a stopping
condition is met (the stopping condition is problem dependent). The
coordinates andwavevectors along the geodesic are recorded during
the backwards integration.

4 There is a typographical error inM4[1, 1]; nQ should read ηQ.
5 https://github.com/AFD-Illinois/ibothros2d
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The transfer equation is then integrated forward along the
geodesic to the camera. Begin by setting the Stokes vector using a
boundary condition, usually SA = 0. Then convert SA into Nαβ using
13 and evolve Nαβ forward along the geodesic.

(1) Evaluate the connection coefficient at the initial position and
parallel transport Nαβ by a half-step using the first two terms in
equation (16). This is done using a simple second-order integrator.
Since the rest of the scheme is second order there is no point in
going to higher order.

(2) Erect an orthonormal tetrad e
μ
(a) in the plasma frame at the

half-step position, with e
μ
(0) = uμ, the plasma four-velocity, eμ

(3) par-
allel to the spatial component of the wavevector in the plasma
frame, and e

μ
(1) and e

μ
(2) in the plane perpendicular to both. In most

problems of interest to us synchrotron emission is important, so or-
dinarily we require that e(2) is in the plane formed by the wavevector
and the magnetic field in the plasma frame. Adopt the convention
that Q > 0 corresponds to linear polarization in the e(1) direction.
Then for synchrotron emission and absorption, jU = αU = 0, and if
Faraday conversion is due to a magnetized plasma then ρU = 0.
(3) Evaluate the transfer coefficients in the tetrad frame.
(4) Project Nαβ into SA in the tetrad frame.
(5) Evolve the Stokes vector by a full λ step using the analytic

solution (equation 23).
(6) Transform SA back into Nαβ using the tetrad basis.
(7) Parallel transport Nαβ by another half-step.

Substeps (equation 7) and (equation 1) can be combined without
formal loss of accuracy if a half-step is taken at the beginning and
end of the integration and the stepsize is constant. The initial and
final half-step can also be dropped without loss of accuracy if they
occur in regions where there is no substantial evolution of Nαβ .

Finally, the Stokes parameters are observed in the camera tetrad
using equation (14) and recorded at each pixel.

4 TESTS OF NUMERICAL SCHEME

4.1 Tests of transport step in non-trivial geometries

The parallel transport of kμ andNαβ is realized using a second-order
integrator (meaning the single-step error isO(�λ3) and therefore the
error at the camera is O(�λ2) after integrating over O(�λ−1) steps.
Parallel transport tests considered in this section assume a non-
zero initial Nαβ and transport Nαβ in vacuum (i.e. we are solving
equation (16) assuming that all transport coefficients vanish). We
test the transport of polarized light in (i) Minkowski spacetime
using snake Cartesian coordinates (see section 4.3 in White, Stone
& Gammie 2016) and (ii) Kerr spacetime described by modified
Kerr–Schild coordinates (Gammie, McKinney & Tóth 2003).

(i) The snake coordinates (X0, X1, X2, X3) vary periodically with
Minkowski position (t, x, y, z). The two coordinate systems are
related via (X0,X1,X2,X3)= (t, x, y+ asin (kx), z), where a= 0.3 and
k = π/2 are default parameters. For δ = aksin (kX1) the geometry
is described by the following metric tensor:

gμν =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0

0
√
1 + δ2 −δ 0

0 −δ 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠. (25)

In snake coordinates, equation (16) has source terms because the
connection coefficient �2

11 does not vanish. We find �2
11 by numer-

ically differentiating the metric tensor (a facility for obtaining the

Figure 1. Transport-step test no 1: convergence of the transport-step in
vacuumwhen polarized light is transported inMinkowski spacewith ‘snake’
Cartesian coordinates. The residuals between the Stokes parameters at the
beginning and at the end of integration path are shown as a function of the
step-size. The transport scheme converges at second order.

connection coefficients by numerical differentiation of the metric is
provided in the default, public version of the code).

In flat spacetime, in the absence of emitting and absorbingmatter,
the Stokes parameters should remain constant when measured in a
parallel transported tetrad attached to kμ (here Q and U are read
out in a tetrad in which the basis vectors perpendicular to kμ are
aligned with the snake coordinates). Fig. 1 displays residuals of
Stokes parameters extracted from Nαβ at xfinal = 3 (where xfinal is
the end of the integration path that starts at xinit = 0) with respect
to their initial values as a function of the constant step size. As
expected, the residuals decrease as (�λ)2.

(ii) In the second test, we check performance of the parallel
transport in Kerr metric in modified Kerr–Schild coordinates. Here,
the integration is carried out along geodesics that pass the black
hole event horizon with an impact parameter of 5GM/c2. The black
hole dimensionless angular momentum parameter a/M = 0.9375.
First, we checked that during integration the parallel transported
rank-2 tensor Nαβ remains Hermitian. Secondly, we check three
invariant quantities along the ray: Stokes I, combination of Stokes
parameters I2 + Q2 + U2, and V2. Fig. 2 shows residuals between
initial invariant quantities and the ones measured at the end of
geodesics integration (at large distance from the black hole). The
residuals are shown as a function of step-size control parameter EPS.
The residuals evidently decrease as EPS2. Our second-order scheme
has single precision accuracy for EPS � 10−3, which is the value we
typically use in IBOTHROS when generating mock observations of a
general relativistic magnetohydrodynamics (GRMHD) simulation.

Fig. 2 demonstrates the convergence of the transport scheme in
Kerr metric along a single geodesic. We are interested in construct-
ing images of an accreting black hole at a camera located far from
the hole. In the third test, we demonstrate the accuracy of the trans-
port step when constructing such images. The observer is located
at rcam = 106GM/c2. The observer’s line of sight is oriented at 90◦

with respect to the black hole spin axis. We set a screen producing
a uniformly polarized radiation at r = 104GM/c2 behind the black
hole. The screen has size 104 × 104GM/c2. The Stokes parame-
ters at the screen are generated using the same tetrad construction
procedure as that used for the camera. A checkerboard pattern in
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Figure 2. Transport-step test no 2: convergence of the transport-step in
vacuum in a near vicinity of the event horizon of the Kerr black hole.
Here, we show residuals of invariant quantities between initial and final
integration point as a function of parameter describing the step-size. The
transport scheme converges at second order.

Stokes I is introduced to help visualize how gravitational lensing
distorts the background screen. The degree of linear polarization
LP =

√
Q2 + U 2/I = 100 per cent and degree of circular polar-

ization CP = |V|/I = 25 per cent are constant across the entire
screen.

Fig. 3 shows how a Kerr black hole distorts the background
checkerboard pattern. Top and bottom panels show the same model
at large and small scales, respectively. For a large field-of-view
the pattern is only weakly affected by the gravitational field of the
black hole. For a smaller field-of-view the pattern is strongly lenses
and the image of the screen edges resemble a four-leaf clover. In
vacuum Stokes I, I2 + Q2 + U2 and V2 are invariant, and conse-
quently the linear and circular polarization fractions are invariant.
We find that these radiative transport invariants are conserved for
any given ray that reaches the observer with accuracy better than
0.01 per cent. Notice however that the polarization angle EVPA is
a function of ray impact parameter. The EVPA rotation is expected
because of gravitational Faraday rotation (e.g. Ishihara et al. 1988;
Sereno 2005).

4.2 Tests source step combined with transport step

Next we test the part of the code that evolves the Stokes parame-
ters. Dexter (2016, Appendix C) presents two cases where equation
(6) has an analytic solution in a simple functional form. These

Figure 3. Transport-step test no 3: image of uniformly polarized screen (of size equal 104 × 104 M) behind the spinning black hole. Observer’s viewing
angle is 90◦with respect to the black hole spin axis. The upper panels show the image of the screen for a large field of view to show the problem setup. At
these scales the image is barely affected by the gravitational lensing and EVPA is zero. The lower panels show the zoom-in of the upper panels on to inner
regions where lensing is significant and therefore distorts the checkerboard pattern. Panels from the left- to right-hand panels show: Stokes I (transport-step
invariant), the change of linear polarization degree (transport-step invariant), EVPA and the change of circular polarization degree (which square value is also
the transport-step invariant). Here, we see some rotation of polarization angle.
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Figure 4. Source-step tests no 1 and 2: Numerical (points) and analytic (lines) solutions of radiative transport of polarized light in 1D in snake coordinates.
Left panel: test of emission and absorption of stokes I and Q. Right panel: test of emission and rotation of Stokes Q, U, and V (see text for details).

Figure 5. Source-step test no 3: structure of the slab of plasma together with all synchrotron emissivities, absorptivities, and rotativities, their ratios and optical
and Faraday thickness per one step along the integration path.

two examples are in Minkowski spacetime and either jIQ �= 0
and αIQ �= 0 or jQUV �= 0 and ρQV �= 0. Other transfer coeffi-
cients are set to zero. Here, we repeat these two tests in the snake
coordinates.

In the first test, jIQ = (2, 1) and αIQ = (1, 1.2) are the only
non-zero elements on the RHS of equation (16) (apart from the

�2
11 coefficient needed for parallel transport in snake coordinates).

Fig. 4 (left-hand panel) compares the IPOLE numerical and known
analytic solutions. For step size �λ = 10−3 (although for constant
transfer coefficients our errors do not depend on the step size),
the residuals between numerical and analytic model are better than
single-precision accuracy.
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Figure 6. Source-step test no 3: comparison of radiative transfer integration with IPOLE and GRTRANS schemes. The largest difference is in Stokes Q, U, and V
in regions of large Faraday optical depth, τF � 1. Otherwise the relative difference between the codes is less than 1 per cent.

In the second test, jQUV = (0.1, 0.1, 0.1) andρQV = (10,−4). Fig. 4
(right-hand panel) shows the results. Here, the residuals between
numerical and analytic solution are even smaller compared to the
emission/absorption test in the left-hand panel. The errors oscillate
and grow with λ.

4.3 Comparison of IPOLE and GRTRANS

4.3.1 Relativistic plasma in Minkowski space

Next, we consider a radiative transfer problem in a slab of rela-
tivistically hot, magnetized plasma with varying plasma density,
temperature, magnetic field strength, and magnetic field direction.
The plasma is emitting, absorbing, and Faraday rotating/converting
polarized synchrotron radiation. This problem has no analytic solu-
tion, so we test by comparison with GRTRANS.
We use the same jS, αS, and ρS as those in GRTRANS. The exact for-

mulae for emissivity, absorptivity, and rotativity are written down
in Dexter (2016) in appendices A1 and B2. The expressions for
Faraday rotativities follow Shcherbakov (2008). Each coefficient is
a distinct function of plasma density, temperature, magnetic field
strength, photon frequency, and orientation of the magnetic field
with respect to kμ. This test also allows us to test our implementa-
tions of units, as both codes produce results in cgs units.

We integrate equation (16) along the x-axis from x = −15L to
x = 15L, where L = 1015 cm. The plasma electron number density
varies smoothly with x as

ne = n0

[
1 + A exp−(x/L)2/σ 2

x

]
, (26)

where n0 = 102, A = 104, and σ x = 4 are free parameters.
The electrons have a relativistic, thermal (Maxwell–Jüttner) dis-
tribution function described by dimensionless electron temperature
�e = kBTe/(mec2). Electron temperature is also a smooth, slowly
changing function of x:

�e = �e,0

[
1 + A exp−(x/L)2/σ 2

x

]
, (27)

where �e, 0 = 20, A = −0.99, and σ x = 10 are free parameters.
The density and temperature profiles are shown in Fig. 5 (top left-
hand panel). For simplicity, we assume that magnetic field strength
B = 30 Gauss and its orientation θ = 60◦ are constant along the
integration path. Also the spatial components of the plasma four-
velocity are zero. The radiative transfer equations are integrated
for a photon with frequency of 230GHz. The invariant synchrotron
emissivities, absorptivities, and rotativities and their ratios along the
integration path are shown in Fig. 5. Two bottom panels in Fig. 5
show the optical and Faraday optical thickness per integration step.

Fig. 6 shows radiative transfer solutions through the plasma
shown in Fig. 5. Here all Stokes parameters are shown in cgs units
as produced by IPOLE and GRTRANS. The codes agree with each other
well, except for Stokes Q and U in regions with high Faraday depth
(between x = −3 L and x = 5 L) where Q, U, and V are small.

4.3.2 Polarized transport in hot accretion flows on to a black hole

In Fig. 7 (upper panels), we present an example of IPOLE polar-
ized images of hot, magnetized turbulent accretion flow around
a Kerr black hole. The underlying plasma accretion flow model
is a 3D GRMHD Fishbone–Moncrief torus simulation carried out
with HARM3D code (Gammie et al. 2003, Noble et al. 2006). The
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Figure 7. Polarized millimetre images of a Kerr black hole (a/M = 0.9375) accreting matter. The dynamics of magnetized plasma around the black hole is
a 3D GRMHD model of thick accretion disc with turbulent magnetic fields. Top panels show the Stokes I (with green ticks indicating the direction of EVPA
and the length of each tick being proportional to a local

√
Q2 + U2), Stokes Q, U and V. The dark circular shadow in the Stokes I map is the shadow of the

black hole event horizon. Bottom panels show corresponding residuals between Stokes parameters in IPOLE and GRTRANS output. The field of view in all images
is 20 × 20GM/c2 with resolution of 256 × 256 pixels and the observer’s line of sight is 60◦ away from the black hole spin axis.

simulation data is converted from the code units to cgs units assum-
ing black hole mass MBH = 6.2 × 109 M� and the mass accretion
rate on to the black hole Ṁ = 1.1 × 10−4M� yr−1. The model
requires a prescription for electron temperature; we assume that
electron temperature equals proton temperatures in the entire com-
putational domain. In this test, the observer is located at distance of
r = 1000M from the black hole and the line of sight is at 60◦ to the
black hole spin axis.

We repeat the radiative transport calculation through the same
simulation snapshot using GRTRANS. Fig. 7 (lower panels) shows dif-
ference between IPOLE and GRTRANS outputs. The differences are
small. We quantify the difference between images using mean
square error defined as MSES = ∑

ij (Sipole − Sgrtrans)2/
∑

ij S2
grtrans,

where S is the Stokes parameter and summations are done
over all image pixels. The results are MSEI = 4.38 × 10−5,
MSEQ = 1.44× 10−3,MSEU = 9× 10−4, andMSEV = 3.92× 10−3

for stepping parameter EPS = 0.0025. One can also quantify the
agreement between two corresponding Stokes maps using the im-
age quality index Qidx (Wang & Bovik 2002). We find Qidx(I, Q,
U, V)=(0.999968,0.999173,0.998880,0.995589), where Qidx = 1
would mean that two images are identical, which confirms strong
consistency between corresponding Stokes maps. We conclude that
the agreement between the two codes is excellent even for a very
complex problems.

In the future, we will test the convergence of radiative transfer
simulations through various GRMHD simulations as a function

of the step size along geodesics and as a function of number of
pixels in the images. In our example calculation, we also assumed
that the dynamical simulations are static and the plasma conditions
do not change as the light propagates through it (the ‘fast light’
approximation). Near a black hole event horizon, however, the light
crossing time is comparable to the dynamical time. It is important
to quantify how sensitive the observed Stokes parameters are to
spatial and temporal resolution (i.e. cadences of data dumps) of the
numerical simulations, but such a study is beyond the scope of the
present paper.

5 SUMMARY

We have designed a numerical scheme capable of integrating rela-
tivistic polarized radiative transfer equations by ray tracing in non-
trivial spacetimes and in optical and Faraday thick plasmas.We have
demonstrated that the integration scheme is stable and accurate and
can reproduce known analytic solutions. The code has been tested
on scaled problems and on dimensional problems to test the unit
system. Our results agree with results from J. Dexter’s independent
code, GRTRANS.

We plan to extend IPOLE to include scattering within a Monte
Carlo framework, so that it canmake predictions for a broader range
of sources and photon energies (Connors & Stark 1977; Connors,
Stark & Piran 1980), motivated by results from INTEGRAL and
the future X-ray polarization mission IXPE.
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Does the code run efficiently, i.e. how fast is it? Our reference
machine is a two socket Intel Xeon E5-2660 at 2.6GHz, which has
a total of 20 physical cores (40 with hyperthreading). We compile
the code with a version of h5cc that uses gcc 4.8.5 and -
Ofast --fopenmp. We find that a 2562 fully polarized image
with a 40GM/c2 field of view, using data from a harm3d model,
completes in 8.6 s clocktime and 253 s cpu time. On a single core,
the code completes in 136 s, for an average speed of 480 rays per
second. This speed is similar to that of IBOTHROS2D.

IPOLE is publicly available at https://github.com
/moscibrodzka/ipole (note: the code will be released simulta-
neously with publication).
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Mościbrodzka M., Gammie C. F., Dolence J. C., Shiokawa H., Leung P. K.,

2009, ApJ, 706, 497
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APPENDIX A: SPECIAL SOLUTIONS TO
POLARIZED TRANSFER EQUATION

It may be useful for tests to have simplified analytic solutions
to the polarized transfer equation (19) in special cases. Here, we
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consider solutions with Faraday rotation alone (and no absorption
and emission), and when Faraday rotation is absent.

A1 Solution with faraday rotation alone

Consider equation (19) with the only the rotation coefficients
nonzero:

d

dλ

⎛
⎜⎜⎜⎝

I

Q

U

V

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 ρV −ρU

0 −ρV 0 ρQ

0 ρU −ρQ 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

I

Q

U

V

⎞
⎟⎟⎟⎠. (A1)

This can be integrated directly to find the analytic solution:

I = I0 (A2)

Q = Q0 cos(ρλ) + 2
ρQ(ρ · S)

ρ2
sin2(ρλ/2)

+ ρUV0 − ρV U0

ρ
sin(ρλ), (A3)

U = U0 cos(ρλ) + 2
ρU (ρ · S)

ρ2
sin2(ρλ/2)

+ ρV Q0 − ρQV0

ρ
sin(ρλ), (A4)

V = V0 cos(ρλ) + 2
ρV (ρ · S)

ρ2
sin2(ρλ/2)

+ ρQU0 − ρUQ0

ρ
sin(ρλ), (A5)

which has a pleasing symmetry to it. Here ρ2 ≡ ρ2
Q + ρ2

U + ρ2
V ,

and ρ · S ≡ ρQQ0 + ρUU0 + ρV V0.

A2 Solution with emission and absorption alone

Now consider the piece of equation (19) with ρA → 0:

d

dλ

⎛
⎜⎜⎜⎝

I

Q

U

V

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

jI

jQ

jU

jV

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝

αI αQ αU αV

αQ αI 0 0

αU 0 αI 0

αV 0 0 αI

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

I

Q

U

V

⎞
⎟⎟⎟⎠.

(A6)

ThematrixM on the RHS is real and symmetric, so one can solve by
finding the eigenvalues and eigenvectors of M, projecting the initial
state and emission coefficients into the eigenbasis, where equation
(19) reduces to the same form as the unpolarized radiative transfer
equation, and reassembling the result in the Stokes basis.

Rather than simply stating the result, it may be helpful to give a
few intermediate results. Here is an orthonormal eigenbasis for M
(in the Stokes basis):

e1 = 1

N1
{0,−αV nU , −αV nQ, αUnQ + αQnU }, (A7)

with eigenvalue 1/λ1 = αI, N1 ≡ (2(αQαUnQnU + n2
Qn2

U ))
1/2,

nQ ≡ (α2
Q + α2

V )
1/2, nU ≡ (α2

U + α2
V )

1/2,

e2 = 1

N2
{0, αV nU ,−αV nQ, αUnQ − αQnU }/N2, (A8)

with eigenvalue 1/λ2 = αI, N2 ≡ (2(−αQαUnQnU + n2
Qn2

U ))
1/2,

e3 = 1√
2αP

{αP , αQ, αU , αV }, (A9)

with eigenvalue 1/λ3 = αI + αP, αP ≡ (α2
Q + α2

U + α2
V )

1/2,

e4 = 1√
2αP

{−αP , αQ, αU , αV }, (A10)

with eigenvalue 1/λ4 = αI − αP. Evidently if I is to decay under
absorption we must have αI ≥ αP. Notice that 1/λi is an eigenvalue,
and λ is the affine parameter.

Finding the combined absorption and emission solution is now
easy. Let ai(λ) be the solution for the amplitude of eigenvector ei.
The transfer equation in the eigenbasis, excluding Faraday conver-
sion, is

dai

dλ
= ji − ai

λi

, (A11)

where ji = jAei, A. The solution is identical to the formal solution of
the unpolarized transfer equation:

ai(λ) = jiλi(1 − e−λ/λi ) + a0
i e

−λ/λi . (A12)

Here a0
i is the initial Stokes vector projected into the eigenbasis.

The solution in the Stokes basis is then

SA(λ) = ai(λ)ei,A. (A13)

The final result can be written as

I =
(

I0 cosh(αP λ) − α · S
αP

sinh(αP λ)

)
e−αI λ

+ α · j

α2
I − α2

P

(
−1 + αI sinh(αP λ) + αP cosh(αP λ)

αP

e−αP λ

)

+ αI jI

α2
I − α2

P

(
1 − αI cosh(αP λ) + αP sinh(αP λ)

αI

e−αP λ

)
,

(A14)

Q =
(

Q0 + αQα · S
α2

P

(cosh(αP λ) − 1) − I0
αQ

αP

sinh(αP λ)

)
e−αI λ

+ jQ(1 − e−αI λ)

αI

+ (α · j )αQ

αI (α2
I − α2

P )

×
(
1 −

[ (
1 − α2

I

α2
P

)
− αI

α2
P

(αI cosh(αP λ)

+ αP sinh(αP λ))

]
e−αI λ

)

+ jIαQ

αP (α2
I − α2

P )

× (−αP + (αP cosh(αP λ) + αI sinh(αP λ))e−αI λ
)
, (A15)

U =
(

U0 + αUα · S
α2

P

(cosh(αP λ) − 1) − I0
αU

αP

sinh(αP λ)

)
e−αI λ

+ jU (1 − e−αI λ)

αI
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+ (α · j )αU

αI (α2
I − α2

P )

×
(
1 −

[ (
1 − α2

I

α2
P

)
− αI

α2
P

(αI cosh(αP λ)

+ αP sinh(αP λ))

]
e−αI λ

)

+ jIαU

αP (α2
I − α2

P )

× (−αP + (αP cosh(αP λ) + αI sinh(αP λ))e−αI λ
)
, (A16)

V =
(

V0 + αV α · S
α2

P

(cosh(αP λ) − 1) − I0
αV

αP

sinh(αP λ)

)
e−αI λ

+ jV (1 − e−αI λ)

αI

+ (α · j )αV

αI (α2
I − α2

P )

×
(
1 −

[ (
1 − α2

I

α2
P

)
− αI

α2
P

(αI cosh(αP λ)

+ αP sinh(αP λ))

]
e−αI λ

)

+ jIαV

αP (α2
I − α2

P )

× (−αP + (αP cosh(αP λ) + αI sinh(αP λ))e−αI λ
)
, (A17)

where α2
P = α2

Q + α2
U + α2

V , α · S = αQQ0 + αUU0 + αV V0, and
α · j = αQjQ + αUjU + αVjV. If we ignore emission, only the
first terms in equations (A14)–(A17) do not vanish. If αP → 0
(or αI → 0) then there is a danger of division by zero and one must
take the appropriate limit analytically.

The general solution is found in a similar way (see LDI2).
Because the matrix KAB is not symmetric, the eigenvalues are
complex, so there are both oscillatory and exponentially grow-
ing/decaying components to the solution.
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