


where the message M is assumed to be uniformly drawn from

the message set [1 : 2nR]. A rate R is said to be achievable if

there exists a sequence of (2nR, n) codes such that the average

probability of error P
(n)
e → 0 as n→∞. The capacity of the

relay channel is the supremum of all achievable rates, denoted

by C(C0).
In the rest of the paper, we will focus on the binary sym-

metric case of the channel, where p(y, z|x) = p(y|x)p(z|x)
and

p(y|x) =

{

1− p , y = x

p , y 6= x

p(z|x) =

{

1− p , z = x

p , z 6= x

with X,Y and Z all taking values from H = {0, 1} and 0 <
p < 1

2 . It is easy to check that in this case

C(∞) = max
p(x)

I(X;Y, Z) = 1 +H(p ∗ p)− 2H(p),

where the maximum is attained with the uniform input distri-

bution on H,

H(r) = −r log r − (1− r) log(1− r), ∀r ∈ [0, 1]

is the binary entropy function, and

p1 ∗ p2 := p1(1− p2) + p2(1− p1) .

Note that in order to achieve C(∞), a natural strategy

is to use a simple Compress-and-Forward scheme with only

Slepian-Wolf binning, i.e. the so-called Hash-and-Forward (H-

F) [7], to faithfully transfer the relay’s observation Zn to the

destination by treating Y n as correlated side information so

that the destination can decode the source message based on

both Zn and Y n. Implementing this strategy requires a rate

C0 = H(p ∗ p), where H(p ∗ p) is the conditional entropy

H(Z|Y ) when X is uniformly distributed on H, and this leads

to an upper bound on C∗
0 , namely

C∗
0 ≤ H(p ∗ p).

Note that this H-F upper bound converges to 0 as p→ 0; but

interestingly it converges to 1 as p→ 1/2, even though C(∞)
itself is diminishing in this regime.

On the converse side, we can apply the cut-set bound to

obtain the following lower bound on C∗
0 :

C∗
0 ≥ H(p ∗ p)−H(p),

which significantly deviates from the H-F upper bound on C∗
0 .

See Fig. 2. Note that especially as p→ 1/2 while achievability

requires a full bit of C0 to support the diminishing C(∞) rate,

the cut-set bound potentially allows to achieve the diminishing

C(∞) rate at diminishing C0. Fig. 2 also plots a previous

lower bound we obtain for C∗
0 in [9], which shows that C∗

0 is

strictly larger than 0 when p→ 1/2.

The main result of this paper is an exact characterization

of C∗
0 , which resolves the above dichotomy and shows that to

achieve C(∞), it is necessary to losslessly transfer the relay’s
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observation to the destination at the Slepian-Wolf coding rate

H(p ∗ p).
Theorem 2.1: C∗

0 = H(p ∗ p)
This theorem follows immediately from the following the-

orem which establishes a new upper bound on the capacity of

this channel for any C0.

Theorem 2.2: The capacity C(C0) satisfies
{

C(C0) ≤ 1−H(p) + C0 − a (2)

C(C0) ≤ 1−H(p) + min
l∈[p∗p−2rp,p∗p]

ha(l)− a (3)

for some a ∈ [0, H(p)], where ha(l) is given by

ha(l) = H(l)− 2rpH

(

l − p ∗ p+ 2rp

4rp

)

− 2r(1− p)H

(

l − p ∗ p− 2rp+ 2r

4r(1− p)

)

−H(p) + a+ 2r (4)

and r is defined such that

H(p)− a = pH

(

r

p

)

+ (1− p)H

(

r

1− p

)

. (5)

In Fig. 3 we plot this new bound under p = 0.1 together with

the celebrated cut-set bound and the Compress-and-Forward

rate. We also plot a previous upper bound we obtain in [9],

which is actually tighter than the new bound in this paper for

small C0 but becomes loose when C0 gets large. Note that

from the figure one can visually observe that our new bound

reaches the value C(∞) only when C0 ≥ H(p∗p), which leads

to the conclusion in Theorem 1.1. This is formally proved in

the next section.

III. PROOFS

The proof of Theorem 2.2 follows from the below lemma,

which is the main technical focus of this paper and whose

proof is outlined in Section III-C. We now state this lemma

and show how it leads to the bound in Theorem 2.2, which is

then used to establish Theorem 2.1.

Lemma 3.1: Let In be a discrete random variable and Xn,

Y n and Zn be n-length binary random vectors which form

the Markov chain In − Z
n − Xn − Y n, where Zn and Y n

are independent Bernoulli vectors given Xn such that Xn ⊕



Fig. 3. Bounds on C(C0).

Zn, Xn⊕Y n i.i.d.
∼ Bern(p) and In = fn(Z

n) is a deterministic

function of Zn. Let H(In|X
n) be denoted by nan. Then we

have

H(In|Y
n) ≤ n min

ln∈[p∗p−2rnp,p∗p],
han

(ln),

where han
(ln) and rn are similarly defined as in (4) and (5)

respectively.

A. Proof of Theorem 2.2

Suppose a rate R is achievable. Then there exists a sequence

of (2nR, n) codes such that the average probability of error

P
(n)
e → 0 as n → ∞. Let the relay’s transmission be

denoted by In = fn(Z
n). By standard information theoretic

arguments, for this sequence of codes we have

nR ≤ I(Xn;Y n, In) + nµ (6)

= I(Xn;Y n) + I(Xn; In|Y
n) + nµ

= I(Xn;Y n) +H(In|Y
n)−H(In|X

n) + nµ (7)

≤ nI(XQ;YQ) +H(In|Y
n)−H(In|X

n) + nµ (8)

≤ n(1−H(p)) +H(In|Y
n)−H(In|X

n) + nµ, (9)

for any µ > 0 and n sufficiently large. In the above, (6) follows

from Fano’s inequality, (7) uses the fact that In −X
n − Y n

form a Markov chain and thus H(In|X
n, Y n) = H(In|X

n),
(8) follows by defining the time sharing random variable Q to

be uniformly distributed over [1 : n], and (9) follows because

I(XQ;YQ) is upper bounded by 1−H(p) with the maximum

being attained with the uniform distribution of XQ on H.

Now we use Lemma 3.1 to upper bound the difference

H(In|Y
n) − H(In|X

n) in (9). It is trivial to observe that

the random variables In, X
n, Zn and Y n associated with a

code of blocklength n satisfy the conditions in the lemma,

and therefore we can bound the difference of the two entropy

terms in (9) and conclude that for any achievable rate R,

R ≤ 1−H(p) + min
ln∈[p∗p−2rnp,p∗p],

han
(ln)− an + µ, (10)

where an = n−1H(In|X
n).

At the same time, for any achievable rate R, we also have

R ≤ 1−H(p) + C0 − an + µ, (11)

which simply follows from (9) by upper bounding H(In|Y
n)

with nC0 and plugging in the definition of an. Combining

(10) and (11) concludes the proof of the theorem.

B. Proof of Theorem 2.1

To see Theorem 2.2 implies Theorem 2.1, we will use

bounds (2)–(3) to prove that C(C0) < C(∞) if C0 is strictly

less than H(p∗p). First consider bound (2). If here a = H(p),
then clearly C(C0) < C(∞) for C0 < H(p∗p). Otherwise, if

a < H(p), then (3) will bound C(C0) away from C(∞). In

particular, note that for any a < H(p), the difference ha(l)−a
in (3) satisfies

ha (p ∗ p)− a = H(p ∗ p)−H(p) (12)

and ha(l) is increasing at p ∗ p, or more precisely,

h′a (p ∗ p) > 0.

Therefore, as long as a < H(p), the minimization of ha(l)−a
with respect to l in (3) yields a value strictly smaller than the

R.H.S. of (12), and thus C(C0) is also strictly less than C(∞)
if a < H(p). This proves Theorem 2.1.

C. Proof Outline for Lemma 3.1

In this section we provide a proof outline for Lemma 3.1.

At a high-level, this lemma tries to mimic the corresponding

lemma we derived for the Gaussian case [6, Lemma 2.1].

However, our key technical argument in this paper is different

from the Gaussian case. The key step in proving Lemma 2.1

in [6] is to prove a generalization of the classical isoperimetric

inequality on the high-dimensional Euclidean sphere by using

Riesz’ rearrangement inequality. The classical isoperimetric

inequality on the Euclidean sphere states that among all sets

on the sphere with a given area the spherical cap has the

smallest boundary or more generally the smallest neighbor-

hood. Our generalization in [6] shows that the spherical cap

is the extremal set not only in terms of minimizing the area

of its neighborhood, but roughly speaking also in terms of

minimizing its total intersection volume with the neighborhood

of a randomly chosen point on the sphere (where the ω-

neighborhood of a point on the sphere is defined as the set

of all points of geodesic distance at most ω to this point).

When trying to extend this argument to the binary case,

we face a major difficulty; there is no counterpart for the

classical isoperimetric inequality on the Hamming sphere. In

particular, it is known that the set with smallest boundary on

the Hamming sphere may not be a spherical cap [10], [12]

and no general characterizations are known despite this being

a natural question in discrete geometry of significant interest

since [10], [12]. We circumvent this problem by proving a

discrete version of the Riesz rearrangement inequality on the

Hamming sphere. We detail the contribution of our work from

a discrete geometric perspective after we outline the proof of

the lemma in the following.

Recall our goal in Lemma 3.1 is to bound H(In|Y
n) in

terms of H(In|X
n) in a Markov chain In −Z

n −Xn − Y n,

where Zn and Y n are i.i.d. Bernoulli vectors given Xn, and

In = fn(Z
n) is a deterministic mapping of Zn to a set of

integers. Similarly to the Gaussian case, one can verify that if

H(In|X
n) = 0 then H(In|Y

n) = 0 as follows: H(In|X
n) =



0 implies that given the transmitted codeword Xn, there is no

ambiguity about In, or equivalently all Zn sequences jointly

typical with Xn are mapped to the same In. However, since

Y n and Zn are statistically equivalent given Xn, they share

the same typical set given Xn and since this typical set is

mapped to a single In value, this implies that In can be also

determined based on Y n and therefore H(In|Y
n) = 0. Based

on this intuition, the goal therefore is to prove an upper bound

on H(In|Y
n) for a given value of H(In|X

n).
Following a similar line of thought, if H(In|X

n) is fixed

to a certain non-zero value, say H(In|X
n) = nan with an ∈

(0, H(p)], this roughly speaking implies that the typical Zn’s

surrounding an Xn are now mapped to multiple In values.

This argument can be made precise as follows: Consider the

following B-length i.i.d. sequence

{(Xn(b), Y n(b), Zn(b), In(b))}
B
b=1, (13)

where for any b ∈ [1 : B], (Xn(b), Y n(b), Zn(b), In(b))
has the same distribution as (Xn, Y n, Zn, In). For no-

tational convenience, we write the B-length sequence

[Xn(1), Xn(2), . . . , Xn(B)] as X and similarly define Y,Z
and I; note that here we have

I = [fn(Z
n(1)), fn(Z

n(2)), . . . , fn(Z
n(B))] =: f(Z).

Now we can apply a standard typicality argument to say that

for any typical (x, i) pair,1

p(i|x) = P (f(Z) = i|X = x)
.
= 2−nBan . (14)

This probabilistic statement can be translated into the fol-

lowing geometric picture: Given x, typical y and z sequences

will be approximately uniformly distributed on an ε-thin

Hamming spherical shell centered at x and of radius np,

defined as

Shell (x, nB(p− ε), nB(p+ ε))

:=
{

a ∈ HnB : d(a,x) ∈ [nB(p− ε), nB(p+ ε)]
}

where ε→ 0 as B →∞. The relation (14) can then be used to

argue that the set of z’s jointly typical with x that are mapped

to a given i, denoted by

Ax(i) = {z ∈ Shell (x, nB(p− ε), nB(p+ ε)) : f(z) = i},

has cardinality

|Ax(i)|
.
= 2nB[H(p)−an] (15)

on this thin shell. This translation between probabilities and

cardinalities of sets is immediate since y and z are distributed

approximately uniformly on the shell.

To upper bound H(In|Y
n), we will apply a simple packing

argument similar to the one we developed in the Gaussian

1For the purpose of this outline, the term “typical” sequence or a pair
of “typical” sequences can be understood to mean “almost all” sequences
or pair of sequences that one can observe from the prescribed distribution.
Once a certain geometric property is established for a set of sequences with
probability approaching one, it is easy to formally argue that we can restrict
our attention to this high probability set and ignore remaining “atypical”
sequences.

case [5]–[6]. In particular, consider a typical y and draw a

Hamming ball around it with certain radius nBln, denoted by

Ball(y, nBln) :=
{

a ∈ HnB : d(a,y) ≤ nBln
}

where the normalized radius ln ∈ [0, 1]. Obviously, each

sequence in this ball is mapped to an i value by f . Let

A(i) denote the set of binary sequences that are mapped to

a given value i, i.e. A(i) =
{

z ∈ HnB : f(z) = i
}

. Then

|Ball(y, nBln) ∩ A(i)| denotes the number of sequences in

Ball(y, nBln) that are mapped to the value i. If we can

characterize |Ball(y, nBln) ∩A(i)| for each typical i, or less

ambitiously find a lower bound on |Ball(y, nBln)∩A(i)| that

holds for any typical i, then the total number of possible i’s

given y can be upper bounded by the ratio

|Ball(y, nBln)|

|Ball(y, nBln) ∩A(i)|
.

This implies the following bound on the conditional entropy

of I given Y,

H(I|Y) ≤ log
|Ball(y, nBln)|

|Ball(y, nBln) ∩A(i)|
, (16)

which, divided by B, gives a bound on H(In|Y
n) since

H(I|Y) = BH(In|Y
n) due to the fact that (I,Y) are

generated i.i.d. from the distribution of (In, Y
n).

The remaining task is then to lower bound |Ball(y, nBln)∩
A(i)| for a typical (y, i) pair. To this end, note that

|Ball(y, nBln) ∩A(i)| ≥ |Ball(y, nBln) ∩Ax(i)|

for any x that is jointly typical with (y, i), since by def-

inition Ax(i) ⊆ A(i). As we have previously argued in

(15), |Ax(i)|
.
= 2nB[H(p)−an] for any typical (x, i) pair.

Moreover, any y that is typical with this (x, i) pair will

be uniformly distributed on Shell (x, nB(p− ε), nB(p+ ε)).
Therefore the problem of characterizing |Ball(y, nBln) ∩
Ax(i)| for set of jointly typical x,y, i triple reduces to the

following geometric problem: characterize the intersection of

the set Ax(i) ⊆ Shell (x, nB(p− ε), nB(p+ ε)) of cardi-

nality |Ax(i)|
.
= 2nB[H(p)−an] with the nBln-neighborhood

of a randomly and uniformly chosen point on the shell.

Note that this intersection in general depends on the shape

of Ax(i), which is dictated by the relay mapping and can

be arbitrary. We therefore need to find a lower bound on

|Ball(y, nBln) ∩ Ax(i)| that holds for any subset Ax(i) of

the shell with given cardinality. In [5]–[6], we achieve this

by showing that the intersection is minimal when Ax(i)
is a spherical cap (by developing a generalization of the

classical isoperimetrical inequality on the Euclidean sphere)

and computing the intersection when Ax(i) is a spherical cap.

As mentioned earlier, there is no counterpart of the classical

isoperimetric inequality on the Euclidean sphere in Hamm-

ming space. Instead, we lower bound the cardinality of the

intersection by showing that it would be minimal if Ax(i) were

a stable set. These stable sets take the place of the spherically

symmetrized subsets that appear in the Euclidean setting, i.e.

spherical caps, but are more general than a spherical cap on the



Hamming sphere. (For example, stable sets on the Hamming

sphere include lower dimensional spheres and spherical caps

as the two intuitively extremal special cases.) To show this we

develop a certain symmetrization argument which gives rise

to a discrete version of the Riesz rearrangement inequality

on the Hamming sphere. However, since a stable set is a

general concept, much less specific than a spherical cap or

a lower dimensional sphere, we cannot simply compute the

intersection |Ball(y, nBln) ∩ Ax(i)| by assuming Ax(i) is

stable. Instead we develop a (possibly loose) lower bound

on this intersection by arguing that each stable set of size

2nB[H(p)−an] needs to contain a lower dimensional subsphere

of a certain size and the intersection can be lower bounded

by stacking the points in Ax(i) on this lower dimensional

sphere. This allows to obtain the following lower bounded on

this intersection

|Ball(y, nBln) ∩Ax(i)|
·
≥ 2nBVn ,

where

Vn := 2rnpH

(

ln − p ∗ p+ 2rnp

4rnp

)

+ 2rn(1− p)H

(

ln − p ∗ p− 2rnp+ 2rn
4rn(1− p)

)

+H(p)− an − 2rn (17)

for the following range of ln:

ln ∈ [p ∗ p− 2rnp, p ∗ p], (18)

where rn in both (17) and (18) is defined such that

H(p)− an = pH

(

rn
p

)

+ (1− p)H

(

rn
1− p

)

. (19)

This result is stated and proved in the next section. Because

of this, one can conclude that for a typical (y, i) pair and ln
satisfying (18),

|Ball(y, nBln) ∩A(i)|
·
≥ 2nBVn ,

which, when plugged into (16), immediately yields the desired

bound on H(In|Y
n).

IV. DISCRETE GEOMETRY

Consider the shell

Shell (x, nB(p− ε), nB(p+ ε))

where ε → 0 as nB → ∞, and some arbitrary subset A of

the shell with |A| = 2nB[H(p)−an]. Our goal in this section is

to show that for any δ > 0 and nB sufficiently large,

Pr
(

|A ∩ Ball(Y, nB(ln + δ))| ≥ 2nB(Vn−δ)|x
)

≥ 1− δ .

Interestingly, the above can be shown by restricting

our attention to a single sphere that is a subset of

Shell (x, nB(p− ε), nB(p+ ε)). In particular, note that there

are only polynomially many spheres that make up this shell,

and therefore there must exist some pnB with pnB → p and

|A ∩ Sphere(x, nBpnB)| ≥ 2nB[H(p)−an−ε1]

for some ε1 → 0 as nB →∞. Define

Γδ(V ) =

{

a ∈ HnB : min
b∈V

d(a,b) ≤ δ

}

as the δ-neighborhood of a set V ⊆ HnB and let As = A ∩
Sphere(x, nBpnB). By the triangle inequality,

ΓnBδ

({

y : |As ∩ Ball(y, nBln)| ≥ 2nB(Vn−δ)
})

(20)

⊆
{

y : |As ∩ Ball (y, nB(ln + δ)) | ≥ 2nB(Vn−δ)
}

. (21)

If the intersection size in (20) is greater than or equal the

threshold 2nB(Vn−δ) for most y ∈ Sphere(x, nBpnB), then

using the blowing-up lemma [13], (20) can be made to have

probability approaching one conditionally on x, where δ → 0
as nB →∞. Thus (21) will also have conditional probability

approaching one.

With this in mind we will make the following notational

simplifications. First, we will state the main lemma of this

section for general n→∞ with the understanding that there

is no difficulty in applying it to dimension nB →∞. Second,

we will restrict our attention to the Hamming sphere S ⊂ Hn

of radius np, or

S = {y ∈ Hn | d(0, y) = np} .

Formally, we are actually considering a sequence of Hamming

spheres with radius npn (which must be an integer) and pn →
p as n → ∞. Third, we define Bl(y) to be the spherical cap

centered at y ∈ S with normalized radius l i.e.

Bl(y) = {y
′ ∈ S | d(y, y′) ≤ nl} .

The main lemma of this section is as follows:

Lemma 4.1: Suppose y is a random variable with uniform

distribution over S, A ⊆ S with |A| = 2n[H(p)−an], and 2p(1−
p)− 2rnp ≤ ln ≤ 2p(1− p). Then

Pr
(

|A ∩Bln(y)| ≥ 2n(Vn−δ)
)

→ 1

as n→∞ where Vn is defined in (17), rn is defined by (19),

and δ → 0 as n→∞.

We will first introduce a notion of rearrangement in this

discrete setting. To accomplish this we use a generalization of

the two-point symmetrization process seen in [8]. This discrete

version is also presented in [10] and [12] while investigating

isoperimetric inequalities. Let σij : S → S be the transposition

that switches elements i and j so that for y = (y1, . . . , yn),

σij(. . . , yi, . . . , yj , . . .) = (. . . , yj , . . . , yi, . . .) .

For an arbitrary subset A of S, define the positive section,

negative section, and zero section of A associated with i, j as

follows:

A+
ij = {y ∈ A | yi = 1, yj = 0}

A−
ij = {y ∈ A | yi = 0, yj = 1}

A0
ij = {y ∈ A | yi = yj}



The i, j symmetrization of A is then

A∗
ij = A0

ij ∪ (A+
ij ∪ σij(A

−
ij)) ∪ (A−

ij ∩ σij(A
+
ij)) . (22)

The first thing to note about A∗
ij is that |A| = |A∗

ij |. This

follows because any element y of A which is excluded from

the negative section because of the intersection in the final term

of (22) will have its counterpart σij(y) included in positive

section because of the union in the middle term.

For i < j consider the repeated application of this sym-

metrization operation to the subset A. After finitely many

applications for each i < j, eventually we will arrive at a

subset A∗ such that any further i, j symmetrization will not

change the subset. Call such a subset A∗ a stable subset.

These stable subsets will take the place of the spherically

symmetrized subsets that appear in the Euclidean setting.

Lemma 4.2: For any normalized radius l and subsets

A,C ⊂ S,
∑

x,y∈S

1A(x)1C(y)1Bl(y)(x) ≤
∑

x,y∈S

1A∗(x)1C∗(y)1Bl(y)(x) ,

(23)

where A∗, C∗ are stable sets constructed via the symmetriza-

tion process above from A,C respectively.

Proof: Define the functional

I(A,C) =
∑

x,y∈S

1A(x)1C(y)1Bl(y)(x) .

The claim is that

I(A,C) ≤ I(A∗
ij , C

∗
ij)

for any i < j and therefore by repeated application of

symmetrization we get the desired result.

Now to check this claim. Any point y ∈ C+
ij ∪ C

0
ij will

also appear in C∗
ij and cannot have fewer elements of A∗

ij

within distance nl than it had elements of A. This is because

any elements that were removed during symmetrization were

replaced by reflected versions that are no further away from

y.

Now consider any point y ∈ C−
ij . Suppose y ∈ C∗

ij which

implies σij(y) was already in C. Any points x which were

moved by symmetrization to outside of Bl(y) will be moved

to inside Bl(σij(y)) and the sum will remain unchanged. The

last case is if y /∈ C∗
ij which implies σij(y) ∈ C∗

ij . Any

element x which was in Bl(y) but is not in Bl(σij(y)) must

have a counterpart σij(x) ∈ Bl(σij(y)) which will therefore

be incorporated in the sum.

For any function f : S → R≥0 let yi be an ordering of all

y ∈ S such that f(y1) ≤ f(y2) ≤ . . . ≤ f(y|S|) . Write

f(y) = f(y1) +

|S|
∑

i=2

(f(yi)− f(yi−1)) 1{f(y)≥f(yi)}(y) .

Let g : S → R≥0 be similarly written as

g(y) = g(y′1) +

|S|
∑

i=2

(

g(y′i)− g(y
′
i−1)

)

1{g(y)≥g(y′

i
)}(y)

where g(y′1) ≤ . . . ≤ g(y
′
|S|) . Next, let

f∗(y) = f(y1) +

|S|
∑

i=2

(f(yi)− f(yi−1)) 1{f(y)≥f(yi)}∗(y)

with the corresponding definition for g∗.

Corollary 4.1: For any functions f, g : S → R≥0 and

nonincreasing function K : Z≥0 → R≥0 ,
∑

x,y∈S

f(x)g(y)K(d(x, y)) ≤
∑

x,y∈S

f∗(x)g∗(y)K(d(x, y)) .

(24)

Proof: Writing

K(n) =
∞
∑

i=1

(K(i− 1)−K(i))1{n<i}(n) ,

each term in the summations in (24) can be written as a product

of three summations. Using Lemma 2 the inequality holds for

each term in that product.

Lemma 4.2 is a discrete version of the Riesz rearrangement

inequality seen in [8]. This is even more explicit the way

it is written in Corollary 4.1. In fact, an alternative way to

define f∗ and g∗ is via a discrete analogue of the polarization

process seen in [8] and [11]. Using this next lemma, and with

some further work, we will be able to use this rearrangement

inequality in a similar way as the continuous version was used

in [5]–[6].

Define

ψ(y) =
∑

x∈S

1A(x)1Bl(y)(x) = |A ∩Bl(y)|

and

ψ′(y) =
∑

x∈S

1A∗(x)1Bl(y)(x) = |A
∗ ∩Bl(y)| .

We can rewrite (23) by choosing C to correspond to the k
elements of S that give the k largest values of ψ(y). In this

case we get

max
y1,...,yk

k
∑

j=1

ψ(yj) ≤
∑

y∈S

1C∗(y)ψ′(y)

≤ max
y1,...,yk

k
∑

j=1

ψ′(yj) (25)

where the maxima also require yi 6= ym for i 6= m.

Lemma 4.3: Consider y to be a random variable with uni-

form distribution over S. Given arbitrary A ⊂ S, suppose

Pr(|A∗ ∩Bl(y)| ≥ vn)→ 1

as n→∞. Then

Pr
(

|A ∩Bl(y)| ≥
vn
2

)

→ 1 .

Proof: Let yi be an ordering across all y ∈ S such that

ψi = ψ(yi), ψ1 ≥ ψ2 ≥ . . . ≥ ψ|S| and let ψ′
j be ordered in

the corresponding way.



Let ξn be the largest integer such that ψξn ≥
vn

2 and let

ξ′n be the largest integer such that ψ′
ξ′n
≥ vn. Any value n

such that ξn ≥ ξ
′
n does not pose any difficulty. Let nk be the

subsequence of n values such that ξnk
< ξ′nk

. If there does

not exist such a subsequence then there is nothing to prove.

For n = nk, first note that

|S|
∑

j=1

ψj =

|S|
∑

j=1

ψ′
j = |A||Bl(y)| .

We will split these sums up into three parts: from j = 1 to

ξnk
, from j = ξnk

+ 1 to ξ′nk
, and from j = ξ′nk

+ 1 to |S|.
In the first part we have

ξnk
∑

j=1

ψj ≤

ξnk
∑

j=1

ψ′
j

where the inequality is due to (25). In the last part we have

|S|
∑

j=ξ′nk
+1

ψj ≤
vn
2
(|S| − ξ′nk

) +

|S|
∑

j=ξnk
+1

ψ′
j

because the rightmost term is greater than or equal to zero

and ψj is less than vn

2 for the range of the sum. Putting all of

these together we get

ξ′nk
∑

j=ξnk
+1

ψ′
j ≤

vn
2
(|S| − ξ′nk

) +

ξ′nk
∑

j=ξnk
+1

ψj

and because ψ′
j ≥ vn and ψj ≤

vn

2 over the range of this sum,

vn
2
(ξ′nk

− ξnk
) ≤

vn
2
(|S| − ξ′nk

) .

Lemma 4.3 reduces our problem to showing that Lemma

4.1 is true for stable sets A. From now on we will assume

that A is stable. The defining property of a stable set that will

be useful is that if y = (y1, . . . , yn) ∈ A, and if yj = 1 and

yi = 0 for i < j, then σij(y) must also be in A. If this were

not the case then A∗
ij would not equal A. Using this property

we can see that the following subset U must be contained in

any stable set A with the prescribed cardinality:

U =

{

y ∈ S

∣

∣

∣

∣

yi = 1, i = 1, . . . , n(p− rn)

yi = 0, i = n(p+ rn), . . . , n

}

.

Let y0 ∈ S be the string with np ones in the first np compo-

nents and then zeros in the remaining n(1 − p) components.

The reason U must be contained in any stable A is that a stable

set with cardinality 2n[H(p)−an] must contain at least one point

with distance greater than or equal to 2rnn from y0. The value

rn is defined by (19) to be such that a spherical cap the same

size as A would have radius 2rnn, so this set is too large to

have only points with distance less than 2rnn from y0. By

stability, if a point with distance 2rnn or greater from y0 is

in A then all of U must be in A. Note that there is actually a

vanishing εn term that we have ignored in this analysis. The

value of rn only represents the radius of a spherical cap up to

the addition of some εn → 0. We can ignore this extra term

by letting U be defined by some slightly smaller rn with the

difference approaching zero as n → ∞. This will not affect

the resulting exponents.

Lemma 4.4: Consider y to be a random variable with uni-

form distribution over S, A ⊆ S with |A| = 2n[H(p)−an], and

2p(1− p)− 2rnp ≤ ln ≤ 2p(1− p). Define

∆n = ln − (2p(1− p)− 2rnp) .

Then

Pr(|U ∩Bln(y)| ≥ 2n(Vn−δ))→ 1

as n→∞, where

Vn ≥ 2rnpH

(

∆n

4rnp

)

+ 2rn(1− p)H

(

rn(1− 2p) + ∆n/2

2rn(1− p)

)

,

rn is defined by (19), and δ → 0.

Proof: A typical element y ∈ S will have p proportion

of ones in each of the following three blocks of components:

(i) i = 1, . . . , n(p− rn)
(ii) i = n(p− rn) + 1, . . . , n(p+ rn)

(iii) i = n(p+ rn) + 1, . . . , n .

Note these typical elements are distance 2np(1− p)− 2nrnp
away from the set U . For some ln ≥ 2p(1 − p) − 2rnp,

we would like to count how many elements of U are within

distance nln of a typical y ∈ S.

Fix any typical y ∈ S. To get from y to one of the closest

elements of U , there are are 2nrn
(

1
2 − p

)

ones from block

(iii) that need to be moved to block (ii). We can also pick

up to n∆n/2 ones from within block (ii) to move to different

locations within block (ii). This gives at least
(

2nrnp

n∆n/2

)(

2nrn(1− p)

2nrn
(

1
2 − p

)

+ n∆n/2

)

elements. The first term is for the n∆n/2 ones that were

chosen from the 2nrnp ones in block (ii). The second term

is for choosing the 2nrn
(

1
2 − p

)

+ n∆/2 locations out of

2nrn(1 − p) spots within block (ii) that did not start with

ones. These are the locations that will be filled with ones from

both blocks (ii) and (iii). Characterizing the exponent of this

expression gives the bound on Vn in the lemma.

We can now proceed with the proof of Lemma 4.1. The

proof will build on the all of the previous lemmas, as well

as another symmetrization-like procedure that will further

simplify stable sets.

Proof (Lemma 4.1): For stable A, define A′ to be a subset

A′ = {a ∈ A | d(y0, a) ≤ 2nRn}

where Rn is such that

|{a ∈ A | d(y0, a) = 2nRn}| ≥
2n[H(p)−an]

2np+ 1
.

The reason such an Rn must exist is that there are at most

2np+ 1 different distances that a point in S can be from y0.

The following two properties of A′ can be easily verified:



(i) lim infn→∞Rn − rn ≥ 0
(ii) A′ is stable.

Instead of thinking about A as a set, consider a more general

setting where A is replaced by a function f : S → R≥0 and

we are interested in the “generalized intersection value”

ψ(y) =
∑

x∈S

f(x)1Bl(y)(x)

under the constraint that
∑

y∈S

f(y) = |A| .

Starting from f(y) = 1A(y), consider the following procedure:

for i = 1, . . . , |{a ∈ A | d(y0, a) = 2nRn}| ,

1: pick one y ∈ A′\U such that A′\{y} is still stable and

d(y0, y) = 2nRn

2: A′ ← A′\{y}
3: let Ui = {u ∈ U | f(u) = miny∈U f(y)}
4: pick one y′ ∈ Ui such that the set U ′

i = (U\Ui) ∪ {y
′}

is stable

5: f(y)← f(y) + 1{y′}(y)− 1{y}(y)

Loosely speaking, this process takes each point y ∈ A′\U and

stacks it on top of U – filling the resulting function in layer

by layer. The loop will terminate with some

f(y) ≥

⌊(

2n[H(p)−an]

2np+ 1

)/(

22nrn

2

)⌋

1U (y) . (26)

The y, y′ that are chosen in steps 1 and 4 can always be

found such that the intended sets are stable. Explicitly, one

could pick y that is the smallest candidate element in the

lexicographic order. Any element that was relying on such a y
for stability would need to be even smaller in the lexicographic

order. Similarly, y′ could be picked to be the largest candidate

element in the lexicographic order.

The claim is that after each iteration of this loop, f = f∗

and the functional

max
y1,...,yk

k
∑

j=1

ψ(yj) = max
y1,...,yk

k
∑

j=1

∑

x∈S

f(x)1Bln (yj)(x) (27)

does not decrease for any fixed k. The property f = f∗ follows

immediately from the stability of A′\{y} and U ′
i and the fact

that A′ starts as a stable set.

We would like to show that (27) does not decrease on each

iteration of the loop. We can assume the y1, . . . , yk that give

the maximum in (27) form a stable set. If they did not, then by

applying Corollary 1 with g = 1{y1,...,yk} we would achieve

at least the same value with g∗ = 1{y1,...,yk}∗ . For these

y1, . . . , yk the following inequality holds:

k
∑

j=1

∑

x∈S

1{y′}(x)1Bln (yj)(x) ≥
k
∑

j=1

∑

x∈S

1{y}(x)1Bln (yj)(x) .

(28)

Due to property (i) of A′, we can assume Rn ≥ rn by defining

U with a slightly smaller rn with the difference approaching

zero as n → ∞. This means y′ can be reached from y by

shifting ones from the right to the left. Each time a one is

shifted to the left, the number of elements in {y1, . . . , yk}
within distance nln of that point cannot decrease. This proves

(28) which proves the claim.

Finally, using the the fact that (27) does not decrease during

the construction of (26), we can exactly reproduce the proof

of Lemma 4.3 to show that if

Pr

(

∑

x∈S

f(x)1Bln (y)(x) ≥ vn

)

→ 1 ,

then

Pr

(

∑

x∈S

1A(x)1Bln (y)(x) ≥
vn
2

)

→ 1 .

Furthermore,
∑

x∈S

f(x)1Bln (y)(x) ≥

⌊(

2n[H(p)−an]

2np+ 1

)/(

22nrn

2

)⌋

∑

x∈S

1U (x)1Bln (y)(x)

so using Lemma 4.4 we arrive at the final result.

REFERENCES

[1] E. C. van der Meulen, “Three-terminal communication channels,” Adv.

Appl. Prob., vol. 3, pp. 120–154, 1971.
[2] T. Cover and A. El Gamal, “Capacity theorems for the relay channel,”

IEEE Trans. Inform. Theory, vol. 25, pp. 572–584, 1979.
[3] A. El Gamal and Y.-H. Kim, Network Information Theory, Cambridge,

U.K.: Cambridge University Press, 2012.
[4] T. M. Cover, “The capacity of the relay channel,” Open Problems

in Communication and Computation, edited by T. M. Cover and B.
Gopinath, Eds. New York: Springer-Verlag, 1987, pp. 72–73.

[5] X. Wu, L. Barnes, A. Ozgur, “Cover’s open problem: “The capacity of the
relay channel”,” Proc. of 54th Annu. Allerton Conf. Commun., Control,

Comput., Illinois, 2016.
[6] X. Wu, L. Barnes, A. Ozgur, “Cover’s open problem: “The capacity of

the relay channel”,” submitted to IEEE Trans. Inform. Theory. Available:
https://arxiv.org/abs/1701.02043

[7] Y.-H. Kim, “Coding techniques for primitive relay channels,” in Proc.

Forty-Fifth Annual Allerton Conf. Commun., Contr. Comput., Monticello,
IL, Sep. 2007.

[8] Albert Baernstein II and B.A. Taylor, “Spherical rearrangements, sub-
harmonic functions, and ∗-functions in n-space,” Duke Mathematical

Journal, vol. 43, no. 2, pp. 245–268, 1976.
[9] X. Wu, A. Ozgur, L.-L. Xie, “Improving on the cut-set bound via

geometric analysis of typical sets,” IEEE Trans. Inform. Theory, vol. 63,
pp. 2254–2277, April 2017.

[10] L. H. Harper, “On a problem of Kleitman and West,” Discrete Mathe-

matics, vol. 93, no. 2-2, pp. 169-182, 1991.
[11] A. Burchard, “A Short Course on Rearrangement Inequalities,”

http://www.math.toronto.edu/almut/rearrange.pdf,
June 2009.

[12] B. List, “A Vertex Variant of the Kleitman-West Problem,” in Operations

Research and Discrete Analysis, Springer Netherlands, 1997.
[13] K. Marton, A simple proof of the blowing-up lemma, IEEE Trans. on

Information Theory, vol. 32, no. 3, pp. 445446, May 1986.


