A Solution to Cover’s Problem for the Binary
Symmetric Relay Channel: Geometry of Sets on the
Hamming Sphere

Leighton Pate Barnes, Xiugang Wu and Ayfer Ozgiir
Stanford University, Stanford, CA 94305
Email: {lpb, x23wu, aozgur}@stanford.edu

Abstract—We solve a long-standing open problem posed by
Cover and named “The Capacity of the Relay Channel,” Open
Problems in Communication and Computation, Springer-Verlag,
1987, in the case when the channels from the source to the relay
and the destination are binary symmetric channels. Similar to our
recent solution of this problem in the Gaussian case, we solve this
problem by connecting it to high-dimensional geometry. However,
our geometric approach in the binary case significantly deviates
from the Gaussian case, since our treatment of the Gaussian case
relied on an extension of the classical isoperimetric inequality on
the Euclidean sphere, the counterpart of which does not exist on
the Hamming sphere. Instead, we prove a Riesz rearrangement
type inequality on the Hamming sphere, which allows us to
develop a new upper bound on the capacity of the binary
symmetric relay channel. Our argument (and consequently our
upper bound) for the binary case is weaker than the one we
obtained in the Gaussian case, but nevertheless strong enough to
resolve Cover’s problem.

I. INTRODUCTION

Characterizing the capacity of the relay channel is a long-
standing problem in network information theory, which re-
mains open despite decades of research efforts [1]-[3]. A
seemingly less demanding question that is of interest is the
one posed by Cover in Open Problems in Communication and
Computation, Springer-Verlag, 1987 [4]. This question was
called “The Capacity of the Relay Channel” by Cover, however
as we describe in the following it actually corresponds to a
subquestion of the general capacity problem.

Consider a relay channel as depicted in Fig. 1, where the
source X wants to send information to the destination Y with
the help of the relay Z, and the relay Z can communicate to
the destination Y via an isolated bit pipe of capacity Cy. Let
C(Cy) denote the capacity of this channel as a function of Cj.
Then obviously C(Cp) is non-decreasing in Cy, and we have
C(0) = max,,) I(X;Y) and C(oc0) = max,,) [(X;Y, Z).
Now, assuming that Z and Y are conditionally independent
and identically distributed given X, Cover asked: “What is
the critical value of Cy such that C(Cy) first equals C(00)?”
In other words, we are interested in characterizing

Ci = inf{Cy : C(Cy) = C(c0)}, (1)
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i.e., the minimum rate needed for the Z-Y link so as to
achieve the maximum possible rate C'(co) on this channel,
corresponding to full cooperation between the relay and the
destination.

Fig. 1.

A relay channel.

In our recent work [5]-[6], we answered this question in
the Gaussian case and showed that C'(Cpy) can not equal
to C(oo) unless Cyp = oo, regardless of the SNR of the
Gaussian channels, while the cut-set bound would suggest that
C(o00) can be achieved at finite Cy. Our proof was based on
a geometric formulation of the problem and an application
of Riesz’ rearrangement inequality on the n-sphere due to
Baernstein and Taylor [8] to obtain a strengthening of the
classical isoperimetric inequality on the n-sphere.

In this paper, we further consider Cover’s problem in the
binary symmetric case, where both the X-Y and X-Z links
are binary symmetric channels with some crossover probability
p. We develop the analogous geometric formulation in this
case, as well as a new discrete rearrangement inequality. Using
these tools, we are able to resolve Cover’s problem for the
binary symmetric relay channel and show that Cj equals the
Slepian-Wolf coding rate at which one can losslessly transfer
the relay’s observation to the destination.

II. CHANNEL MODEL AND MAIN RESULT

Consider the relay channel depicted in Fig. 1, where the
source’s input X is received by the relay Z and the desti-
nation Y through a channel p(y, z|z), and the relay Z can
communicate to the destination Y via an isolated bit pipe
of capacity Cy. A (2"% n) code for this channel consists
of an encoding function X" : [1 : 2"F] — X", a relay
function f,, : Z® — [1 : 2"“°] and a decoding function
gn @ V" x [1:27%] — [1 : 2"f]. The average probability
of error of the code is defined as

Pe(n) = Pl’(gn(ynv fn(Zn)) 7& ]\/[)7



where the message M is assumed to be uniformly drawn from
the message set [1 : 2"%]. A rate R is said to be achievable if
there exists a sequence of (2”7, n) codes such that the average
probability of error Pe(n) — 0 as n — oo. The capacity of the
relay channel is the supremum of all achievable rates, denoted

In the rest of the paper, we will focus on the binary sym-
metric case of the channel, where p(y, z|z) = p(y|z)p(z|z)

and
Glay=q 7P V0
p(ylz) =
p LY F
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zZ|\r) =
p(z|x) {p it

with X,Y and Z all taking values from H = {0,1} and 0 <
p< % It is easy to check that in this case

<XK0=Hf§HXVKZ)=1+fUpHﬁ—2H@%
p(x

where the maximum is attained with the uniform input distri-
bution on H,

H(r)=—rlogr — (1 —r)log(l —r),¥r € [0,1]
is the binary entropy function, and

p1xp2i=pi1(1 —p2) +p2(l —p1) .

Note that in order to achieve C(c0), a natural strategy
is to use a simple Compress-and-Forward scheme with only
Slepian-Wolf binning, i.e. the so-called Hash-and-Forward (H-
F) [7], to faithfully transfer the relay’s observation Z” to the
destination by treating Y™ as correlated side information so
that the destination can decode the source message based on
both Z™ and Y. Implementing this strategy requires a rate
Co = H(p * p), where H(p * p) is the conditional entropy
H(Z|Y') when X is uniformly distributed on H, and this leads
to an upper bound on C{, namely

Co < H(p*p).

Note that this H-F upper bound converges to 0 as p — 0; but
interestingly it converges to 1 as p — 1/2, even though C(c0)
itself is diminishing in this regime.

On the converse side, we can apply the cut-set bound to
obtain the following lower bound on Cj:

Cy>H(pxp)— H(p),

which significantly deviates from the H-F upper bound on Cj.
See Fig. 2. Note that especially as p — 1/2 while achievability
requires a full bit of Cy to support the diminishing C'(co) rate,
the cut-set bound potentially allows to achieve the diminishing
C(o0) rate at diminishing Cy. Fig. 2 also plots a previous
lower bound we obtain for C§ in [9], which shows that C is
strictly larger than 0 when p — 1/2.

The main result of this paper is an exact characterization
of Cj;, which resolves the above dichotomy and shows that to
achieve C'(00), it is necessary to losslessly transfer the relay’s
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Fig. 2. Bounds on Cj.

observation to the destination at the Slepian-Wolf coding rate
H(p *p).

Theorem 2.1: C§ = H(p * p)

This theorem follows immediately from the following the-
orem which establishes a new upper bound on the capacity of
this channel for any Cj.

Theorem 2.2: The capacity C(Cp) satisfies

C(Co) <1-H(p)+Co—a 2)
C(Cy) <1—-H(p)+ min ho(l) —a (3)
L€[pxp—2rp,pxp]
for some a € [0, H(p)], where h, (1) is given by
l—pxp+2rp
ho(l) = H(l) — 2rpH | . —P*PT2TP
() = 1(0) - 2rpt (=252
l—p*xp—2rp+2r
—2r(l—pH
=) < 4r(1 —p) )
—H(p) +a+2r “)

and r is defined such that
r r
Hp—a:pH<)+ 1—pH<>. 5
(») ) -nE (7

In Fig. 3 we plot this new bound under p = 0.1 together with
the celebrated cut-set bound and the Compress-and-Forward
rate. We also plot a previous upper bound we obtain in [9],
which is actually tighter than the new bound in this paper for
small Cp but becomes loose when Cj gets large. Note that
from the figure one can visually observe that our new bound
reaches the value C'(co) only when Cy > H (p*p), which leads
to the conclusion in Theorem 1.1. This is formally proved in
the next section.

III. PROOFS

The proof of Theorem 2.2 follows from the below lemma,
which is the main technical focus of this paper and whose
proof is outlined in Section III-C. We now state this lemma
and show how it leads to the bound in Theorem 2.2, which is
then used to establish Theorem 2.1.

Lemma 3.1: Let I,, be a discrete random variable and X",
Y™ and Z™ be n-length binary random vectors which form
the Markov chain I,, — Z™ — X™ — Y", where Z" and Y™
are independent Bernoulli vectors given X" such that X" @
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Zn, X" @Y™ "% Bemn(p) and I, = f,(Z") is a deterministic
function of Z™. Let H(I,|X"™) be denoted by na,. Then we
have

min
In€[p+p—2rnp,p*p],

H(I,][Y")<n ha, (1),
where h,, (I,) and 7, are similarly defined as in (4) and (5)
respectively.

A. Proof of Theorem 2.2

Suppose a rate R is achievable. Then there exists a sequence
of (2% n) codes such that the average probability of error
Pe(n) — 0 as n — oo. Let the relay’s transmission be
denoted by I,, = f,(Z™). By standard information theoretic
arguments, for this sequence of codes we have

nR<I(X™ Y™ 1) +nu (6)
=I[(X"Y")+ (X L)Y™) +np

= [(X™Y™) 4 H(L|Y™) — HI|X™) +np (7)
< nI(XgiYo) + H(LIY™) — HILIX") +m (8)
< (1 — Hp)) + HLY™) = H(I|X") + 11, (9)

for any 1« > 0 and n sufficiently large. In the above, (6) follows
from Fano’s inequality, (7) uses the fact that [, — X" — Y™
form a Markov chain and thus H([,|X",Y") = H(I,|X™),
(8) follows by defining the time sharing random variable @ to
be uniformly distributed over [1 : n], and (9) follows because
I(Xq;Yg) is upper bounded by 1 — H (p) with the maximum
being attained with the uniform distribution of Xg on H.
Now we use Lemma 3.1 to upper bound the difference
H(I,|Y™) — H(I,|X™) in (9). It is trivial to observe that
the random variables [,,, X™, Z™ and Y™ associated with a
code of blocklength n satisfy the conditions in the lemma,
and therefore we can bound the difference of the two entropy
terms in (9) and conclude that for any achievable rate R,

R<1-H(p)+ ha, (In) — an + 1, (10)

min
ln €[p*xp—277p,p*p],
where a,, = n 1 H(IL,|X").
At the same time, for any achievable rate R, we also have
R<1—H(p)+Co—an+ u, (11)

which simply follows from (9) by upper bounding H(I,,|Y™)
with nCy and plugging in the definition of a,. Combining
(10) and (11) concludes the proof of the theorem.

B. Proof of Theorem 2.1

To see Theorem 2.2 implies Theorem 2.1, we will use
bounds (2)—(3) to prove that C'(Cy) < C(o0) if Cy is strictly
less than H (p*p). First consider bound (2). If here a« = H (p),
then clearly C'(Cy) < C(o0) for Cy < H(px*p). Otherwise, if
a < H(p), then (3) will bound C(Cy) away from C(o0). In
particular, note that for any a < H (p), the difference h,(l)—a
in (3) satisfies

ha (p*p) —a=H(px*p) — H(p)

and h, (1) is increasing at p x p, or more precisely,

12)

hi, (p*p) > 0.

Therefore, as long as a < H(p), the minimization of h,(l) —a
with respect to [ in (3) yields a value strictly smaller than the
R.H.S. of (12), and thus C(Cy) is also strictly less than C(c0)
if a < H(p). This proves Theorem 2.1.

C. Proof Outline for Lemma 3.1

In this section we provide a proof outline for Lemma 3.1.
At a high-level, this lemma tries to mimic the corresponding
lemma we derived for the Gaussian case [6, Lemma 2.1].
However, our key technical argument in this paper is different
from the Gaussian case. The key step in proving Lemma 2.1
in [6] is to prove a generalization of the classical isoperimetric
inequality on the high-dimensional Euclidean sphere by using
Riesz’ rearrangement inequality. The classical isoperimetric
inequality on the Euclidean sphere states that among all sets
on the sphere with a given area the spherical cap has the
smallest boundary or more generally the smallest neighbor-
hood. Our generalization in [6] shows that the spherical cap
is the extremal set not only in terms of minimizing the area
of its neighborhood, but roughly speaking also in terms of
minimizing its total intersection volume with the neighborhood
of a randomly chosen point on the sphere (where the w-
neighborhood of a point on the sphere is defined as the set
of all points of geodesic distance at most w to this point).
When trying to extend this argument to the binary case,
we face a major difficulty; there is no counterpart for the
classical isoperimetric inequality on the Hamming sphere. In
particular, it is known that the set with smallest boundary on
the Hamming sphere may not be a spherical cap [10], [12]
and no general characterizations are known despite this being
a natural question in discrete geometry of significant interest
since [10], [12]. We circumvent this problem by proving a
discrete version of the Riesz rearrangement inequality on the
Hamming sphere. We detail the contribution of our work from
a discrete geometric perspective after we outline the proof of
the lemma in the following.

Recall our goal in Lemma 3.1 is to bound H([,|Y™) in
terms of H(I,|X™) in a Markov chain I, — Z" — X" —Y™,
where Z" and Y are i.i.d. Bernoulli vectors given X", and
I, = fn,(Z™) is a deterministic mapping of Z™ to a set of
integers. Similarly to the Gaussian case, one can verify that if
H(I,|X™) =0 then H(I,|Y"™) =0 as follows: H(I,|X™) =



0 implies that given the transmitted codeword X, there is no
ambiguity about I,,, or equivalently all Z™ sequences jointly
typical with X™ are mapped to the same I,,. However, since
Y™ and Z™" are statistically equivalent given X", they share
the same typical set given X" and since this typical set is
mapped to a single I,, value, this implies that I,, can be also
determined based on Y and therefore H(I,|Y™) = 0. Based
on this intuition, the goal therefore is to prove an upper bound
on H(I,|Y™) for a given value of H(I,|X").

Following a similar line of thought, if H(I,|X™) is fixed
to a certain non-zero value, say H(I,|X™) = na,, with a,, €
(0, H(p)], this roughly speaking implies that the typical Z™’s
surrounding an X" are now mapped to multiple [, values.
This argument can be made precise as follows: Consider the
following B-length i.i.d. sequence

{(X™(0),Y"(b), Z"(b), In(b)) }i_,, (13)

where for any b € [1 : B], (X"(b),Y™(b), Z™(b), I.(D))
has the same distribution as (X", Y™ Z" I,). For no-
tational convenience, we write the B-length sequence
[X™(1), X™(2),...,X™(B)] as X and similarly define Y,Z
and I; note that here we have

L= [fu(Z"(1)), fu(Z27(2)), .-, [n(Z2"(B))] =: f(Z).

Now we can apply a standard typicality argument to say that
for any typical (x, i) pair,!

p(ijx) = P(f(Z) = i|X = x) = 27"Pn, (14)

This probabilistic statement can be translated into the fol-
lowing geometric picture: Given x, typical y and z sequences
will be approximately uniformly distributed on an e-thin
Hamming spherical shell centered at x and of radius np,
defined as

Shell (x,nB(p —€),nB(p + €))
={aeH"P :d(a,x) € [nB(p—€),nB(p+¢)]}

where ¢ — 0 as B — oo. The relation (14) can then be used to
argue that the set of z’s jointly typical with x that are mapped
to a given i, denoted by

Ax(i) = {z € Shell (x,nB(p — €¢),nB(p +¢)) : f(z) =i},
has cardinality

[ Ase (i) = 2Bl )] (15)
on this thin shell. This translation between probabilities and
cardinalities of sets is immediate since y and z are distributed
approximately uniformly on the shell.

To upper bound H (I,,|Y™), we will apply a simple packing
argument similar to the one we developed in the Gaussian

'For the purpose of this outline, the term “typical” sequence or a pair
of “typical” sequences can be understood to mean “almost all” sequences
or pair of sequences that one can observe from the prescribed distribution.
Once a certain geometric property is established for a set of sequences with
probability approaching one, it is easy to formally argue that we can restrict
our attention to this high probability set and ignore remaining “atypical”
sequences.

case [5]-[6]. In particular, consider a typical y and draw a
Hamming ball around it with certain radius nBl,,, denoted by

Ball(y,nBl,) := {a € H"" : d(a,y) < nBl,}

where the normalized radius [,, € [0,1]. Obviously, each
sequence in this ball is mapped to an i value by f. Let
A(i) denote the set of binary sequences that are mapped to
a given value i, ie. A(i) = {z € H"P: f(z) =i}. Then
|Ball(y,nBl,) N A(i)| denotes the number of sequences in
Ball(y,nBl,) that are mapped to the value i. If we can
characterize |Ball(y,nBl,) N A(i)| for each typical i, or less
ambitiously find a lower bound on |Ball(y,nBl, )N A(i)| that
holds for any typical i, then the total number of possible i’s
given y can be upper bounded by the ratio

[Ball(y,nBl,)|
[Ball(y,nBi,) N A@{)|

This implies the following bound on the conditional entropy
of I given Y,

[Ball(y,nBl,)|
[Ball(y, nBl,) N A(i)|’
which, divided by B, gives a bound on H(I,|Y™) since
H(IY) = BH(I,]Y™) due to the fact that (I,Y) are
generated i.i.d. from the distribution of (I,,,Y™).

The remaining task is then to lower bound |Ball(y, nBl,)N
A(i)| for a typical (y,i) pair. To this end, note that

[Ball(y,nBl,) N A(i)| > |Ball(y,nBl,) N Ax(i)]

HAY) < log (16)

for any x that is jointly typical with (y,i), since by def-
inition Ax(i) C A(i). As we have previously argued in
(15), |Ax(i)] = 2"BlH®=anl for any typical (x,i) pair.
Moreover, any y that is typical with this (x,i) pair will
be uniformly distributed on Shell (x,nB(p — €),nB(p + €)).
Therefore the problem of characterizing |Ball(y,nBl,) N
Ax(i)| for set of jointly typical x,y,i triple reduces to the
following geometric problem: characterize the intersection of
the set Ax(i) C Shell(x,nB(p —¢),nB(p+¢€)) of cardi-
nality |Ay(i)| = 2"BH®)=en] with the nBl,-neighborhood
of a randomly and uniformly chosen point on the shell.
Note that this intersection in general depends on the shape
of Ax(i), which is dictated by the relay mapping and can
be arbitrary. We therefore need to find a lower bound on
[Ball(y,nBl,) N Ax(i)| that holds for any subset Ay(i) of
the shell with given cardinality. In [5]-[6], we achieve this
by showing that the intersection is minimal when Ay(i)
is a spherical cap (by developing a generalization of the
classical isoperimetrical inequality on the Euclidean sphere)
and computing the intersection when Ax(i) is a spherical cap.
As mentioned earlier, there is no counterpart of the classical
isoperimetric inequality on the Euclidean sphere in Hamm-
ming space. Instead, we lower bound the cardinality of the
intersection by showing that it would be minimal if A, (i) were
a stable set. These stable sets take the place of the spherically
symmetrized subsets that appear in the Euclidean setting, i.e.
spherical caps, but are more general than a spherical cap on the



Hamming sphere. (For example, stable sets on the Hamming
sphere include lower dimensional spheres and spherical caps
as the two intuitively extremal special cases.) To show this we
develop a certain symmetrization argument which gives rise
to a discrete version of the Riesz rearrangement inequality
on the Hamming sphere. However, since a stable set is a
general concept, much less specific than a spherical cap or
a lower dimensional sphere, we cannot simply compute the
intersection |Ball(y,nBl,) N Ax(i)| by assuming Ay(i) is
stable. Instead we develop a (possibly loose) lower bound
on this intersection by arguing that each stable set of size
2nBIH(p)=an] peeds to contain a lower dimensional subsphere
of a certain size and the intersection can be lower bounded
by stacking the points in Ax(i) on this lower dimensional
sphere. This allows to obtain the following lower bounded on
this intersection

Ball(y, nBl,,) N Ay (i)| > 275",

where

Vo = 2r,pH (

ln 7p*p+27nnp
4r,p

I, — — 2+ 21,
+2rn(1_p)H< p*D rp+r>

4r, (1 — p)

-I-H(p) — Qnp _QTn (17)
for the following range of [,,:
ln € [p*p—2rup,p*pl, (18)
where r,, in both (17) and (18) is defined such that
rn Tn
H(p)—a, =pH | — 1-p)H . 19
0 - an=pit (=) 4 a-p ({0). a9

This result is stated and proved in the next section. Because
of this, one can conclude that for a typical (y,i) pair and I,,
satisfying (18),

Ball(y, nBl,) N A(i)| > 2"BV»,

which, when plugged into (16), immediately yields the desired
bound on H([,|Y™).
IV. DISCRETE GEOMETRY
Consider the shell

Shell (x,nB(p —€),nB(p+¢€))

where ¢ — 0 as nB — oo, and some arbitrary subset A of
the shell with |A| = 27BIH®)=ax] Qur goal in this section is
to show that for any § > 0 and nB sufficiently large,

Pr (|A N Ball(Y, nB(l, + 6))| > 2HB<Vn—6>|x) >1-4.

Interestingly, the above can be shown by restricting
our attention to a single sphere that is a subset of
Shell (x,nB(p — €),nB(p + €)). In particular, note that there
are only polynomially many spheres that make up this shell,
and therefore there must exist some p,, g with p,p — p and

| A N Sphere(x, nBp,p)| > 2"BH P —an—al

for some ¢; — 0 as nB — oo. Define
— nB . : <
I's(V) {a eH llgflel‘r/ld(a, b) < (5}

as the J-neighborhood of a set V' C H"™B and let A, = AN
Sphere(x, nBp,,5). By the triangle inequality,

s ({y . |A, N Ball(y, nBl,)| > 2"3("”—‘”}) (20)

c {y - |A, N Ball (y, nB(l, +6)) | > 2"B<Vn—6>} . Q@

If the intersection size in (20) is greater than or equal the
threshold 2"5(V»=9) for most y € Sphere(x, nBp, ). then
using the blowing-up lemma [13], (20) can be made to have
probability approaching one conditionally on x, where § — 0
as nB — oo. Thus (21) will also have conditional probability
approaching one.

With this in mind we will make the following notational
simplifications. First, we will state the main lemma of this
section for general n — oo with the understanding that there
is no difficulty in applying it to dimension nB — oo. Second,
we will restrict our attention to the Hamming sphere S C ‘H"
of radius np, or

S={yeH"|d0,y)=np}.

Formally, we are actually considering a sequence of Hamming
spheres with radius np,, (which must be an integer) and p,, —
p as n — oo. Third, we define B;(y) to be the spherical cap
centered at y € S with normalized radius [ i.e.

Bi(y) ={y € S |d(y,y) <nl}.

The main lemma of this section is as follows:

Lemma 4.1: Suppose y is a random variable with uniform
distribution over S, A C S with |A| = 2"[H(P)=an] and 2p(1—
p) — 2r,p <1, < 2p(l — p). Then

Pr <|A N B, (y)] > 2”<Vn*5>) ~1

as n — oo where V,, is defined in (17), r,, is defined by (19),
and 0 — 0 as n — oo.

We will first introduce a notion of rearrangement in this
discrete setting. To accomplish this we use a generalization of
the two-point symmetrization process seen in [8]. This discrete
version is also presented in [10] and [12] while investigating
isoperimetric inequalities. Let 0;; : S — S be the transposition
that switches elements ¢ and j so that for y = (y;,...,¥,)

)=0(..

For an arbitrary subset A of S, define the positive section,
negative section, and zero section of A associated with 4, j as
follows:

Uij(~"7yi7"'7yj7~' 73’3773’17)

Al ={yeAly, =1y, =0}
A ={yeAly,=0,y; =1}

0 _ _
Aij_{yeA‘yi_y]'}



The i, j symmetrization of A is then

Al = A% U (A Ui (A7) U (A Noy(AF)) . (22)

The first thing to note about Aj; is that [A| = |A};|. This
follows because any element y of A which is excluded from
the negative section because of the intersection in the final term
of (22) will have its counterpart o;;(y) included in positive
section because of the union in the middle term.

For 7 < j consider the repeated application of this sym-
metrization operation to the subset A. After finitely many
applications for each ¢ < 7, eventually we will arrive at a
subset A* such that any further 4, j symmetrization will not
change the subset. Call such a subset A* a stable subset.
These stable subsets will take the place of the spherically
symmetrized subsets that appear in the Euclidean setting.

Lemma 4.2: For any normalized radius [ and subsets

A C CS,
Z ].A(l')].c( 1Bz(y) Z ]-A* ]-C* )]-Bl(y)(x)a
z,yeS T,yeS

(23)

where A*, C™ are stable sets constructed via the symmetriza-
tion process above from A, C' respectively.
Proof: Define the functional

I(A,C) = > 1a@)leW)lp, (@) -

z,yeS

The claim is that

I(A,C) < I(A,

K O* )
for any ¢ < j and therefore by repeated application of
symmetrization we get the desired result.

Now to check this claim. Any point y € ij' U C’?j will
also appear in C}; and cannot have fewer elements of A
within distance n!/ than it had elements of A. This is because
any elements that were removed during symmetrization were
replaced by reflected versions that are no further away from
9.

Now consider any point y € C;;. Suppose y € C;; which
implies 0;;(y) was already in C. Any points = which were
moved by symmetrization to outside of B;(y) will be moved
to inside B;(0;;(y)) and the sum will remain unchanged. The
last case is if y ¢ Cj; which implies 0y;(y) € C};. Any
element  which was in B;(y) but is not in B;(o;;(y)) must
have a counterpart o;;(z) € Bj(0;;(y)) which will therefore
be incorporated in the sum. [ |

For any function f : S — R>¢ let y; be an ordering of all
y € S such that f(y1) < f(y2) < ... < fly)s)) - Write

IS

f(y):f(ylHZ(f(y)

Let g : § — R>q be similarly written as

FWi-1) Y rwy>rwor®) -

IS

9(y) = g(¥}) + Z e

9(%i-1)) Ligw)zew} (¥)

where g(y1) < ... < g(yg)) - Next, let

S|

f*(y)=f(y1)+2(f(y)

with the corresponding definition for g*.
Corollary 4.1: For any functions f,g
nonincreasing function K : Z>g — R>¢ ,

F@i-1) Ys 2wy (9)

S = Rzo and

S f@)g)K(d@,y) < > f@)g () K(d(,y)) -
z,yeSsS z,YyeS
(24)
Proof: Writing
K(n) = Z(K(i — 1) = K(i)l{n<iy(n) ,

each term in the summations in (24) can be written as a product
of three summations. Using Lemma 2 the inequality holds for
each term in that product. [ ]

Lemma 4.2 is a discrete version of the Riesz rearrangement
inequality seen in [8]. This is even more explicit the way
it is written in Corollary 4.1. In fact, an alternative way to
define f* and g* is via a discrete analogue of the polarization
process seen in [8] and [11]. Using this next lemma, and with
some further work, we will be able to use this rearrangement
inequality in a similar way as the continuous version was used

in [5]-[6].
Define
= > 1a(@)lp,)(x) = AN Bi(y)]
€S
and
=Y Las(@) g, (@) = [A" N Bu(y)| -

€S

We can rewrite (23) by choosing C' to correspond to the k
elements of S that give the k largest values of 1(y). In this
case we get

max Zw y) < Y le-Y'(vy)
Yk ves
< ma;;ka Yj) (25)

where the maxima also require y; # y,, for i # m.
Lemma 4.3: Consider y to be a random variable with uni-
form distribution over S. Given arbitrary A C .S, suppose

Pr(|A* N Bi(y)| > v,) —> 1
as n — 0o. Then

Pr(|AﬁBl(y)| > %") 1.

Proof: Let y; be an ordering across all y € S such that
Vi = (yi), 1 > P2 > ... > 15 and let ¥ be ordered in
the corresponding way.



Let &, be the largest integer such that 1¢, > % and let
&/ be the largest integer such that 2/)5, > v,. Any value n
such that &, > £/, does not pose any dinfﬁculty. Let ny be the
subsequence of n values such that §,, < f{lk. If there does
not exist such a subsequence then there is nothing to prove.

For n = ny, first note that

S| IS

ij] Zw

We will split these sums up into three parts: from j = 1 to
§ny,» from j =&, +1to &, and from j =&, +1 to [S].
In the first part we have

Enk énk

i<y Wy
j=1 j=1

where the inequality is due to (25). In the last part we have

|AllBi(y)| -

S| IS|

Z wj_ ISI-&)+ Y. ¥

J=&n, J=&n, +1

because the rightmost term is greater than or equal to zero
and 1); is less than %+ for the range of the sum. Putting all of
these together we get

&, &,

j{: P < 7§'|5\ + > W

Jj= Enk+1 J=En, +1

and because 1/13 > vy and ¢; < M over the range of this sum,

(5 Enk) < 7(|S| nk) .

Un

2

|

Lemma 4.3 reduces our problem to showing that Lemma

4.1 is true for stable sets A. From now on we will assume

that A is stable. The defining property of a stable set that will

be useful is that if y = (y,,...,y,) € A, and if y; = 1 and

y;, = 0 for ¢ < j, then o;;(y) must also be in A. If this were

not the case then A}; would not equal A. Using this property

we can see that the following subset U must be contained in
any stable set A with the prescribed cardinality:
yi=11i=1,...,n(p—

yi=0,i=n(p+ry),...,n

Let yo € S be the string with np ones in the first np compo-
nents and then zeros in the remaining n(1 — p) components.
The reason U must be contained in any stable A is that a stable
set with cardinality 2" (?)=a=] muyst contain at least one point
with distance greater than or equal to 2r,n from yqy. The value
Ty, 18 defined by (19) to be such that a spherical cap the same
size as A would have radius 2r,n, so this set is too large to
have only points with distance less than 2r,n from y,. By
stability, if a point with distance 27,n or greater from g is
in A then all of U must be in A. Note that there is actually a
vanishing €, term that we have ignored in this analysis. The
value of r,, only represents the radius of a spherical cap up to

the addition of some €, — 0. We can ignore this extra term
by letting U be defined by some slightly smaller r,, with the
difference approaching zero as n — oo. This will not affect
the resulting exponents.

Lemma 4.4: Consider y to be a random variable with uni-
form distribution over S, A C S with |A| = 2"H(P)=anl "and
2p(1 —p) — 2r,p <1, < 2p(1 — p). Define

An = ln - (2p(1 - p) - 2Tnp) .

Then

Pr(|UN By, (y)| > 2"V»=9) 51

as n — 0o, where

A,
V. > 27“an( )
4rpp

ot ()

r,, is defined by (19), and § — 0.

Proof: A typical element y € S will have p proportion
of ones in each of the following three blocks of components:
@ i=1,...,n(p—rn)
@ i=np—rn)+1,...;n(p+r)
(i) i=np+ra)+1,...,n
Note these typical elements are distance 2np(1 — p) — 2nr,p
away from the set U. For some [, > 2p(1 — p) — 2r,p,
we would like to count how many elements of U are within
distance nl,, of a typical y € S.

Fix any typical y € S. To get from y to one of the closest
elements of U, there are are 2nr,, (% — p) ones from block
(iii) that need to be moved to block (ii). We can also pick
up to nA,, /2 ones from within block (ii) to move to different
locations within block (ii). This gives at least

2nryp 2nr, (1 —p)
(nAn/2> (2nrn (3—p) + nAn/Q)
elements. The first term is for the nA, /2 ones that were
chosen from the 2nr,p ones in block (ii). The second term
is for choosing the 2nr, (% — p) + nA/2 locations out of
2nr, (1 — p) spots within block (ii) that did not start with
ones. These are the locations that will be filled with ones from
both blocks (ii) and (iii). Characterizing the exponent of this
expression gives the bound on V,, in the lemma. [ ]
We can now proceed with the proof of Lemma 4.1. The
proof will build on the all of the previous lemmas, as well
as another symmetrization-like procedure that will further
simplify stable sets.
Proof (Lemma 4.1): For stable A, define A’ to be a subset

A'={a€ A|d(yo,a) <2nR,}
where R,, is such that
on[H (p)—an]
2np+1
The reason such an R,, must exist is that there are at most
2np + 1 different distances that a point in S can be from .
The following two properties of A’ can be easily verified:

{a € Ald(yo,a) = 2nRy}| >



(i) liminf, .o R, — 7, >0
(i) A’ is stable.

Instead of thinking about A as a set, consider a more general
setting where A is replaced by a function f : .S — R> and

we are interested in the “generalized intersection value”

=) flx

zeS

1BL y) )

under the constraint that

S I = 1Al

yeS

Starting from f(y) = 14(y), consider the following procedure:

fori=1,...,|{a € A|d(yo,a) =2nR,}|,
1: pick one y € A’\U such that A"\{y} is still stable and
d(yo,y) = 2nR,
2: A+ A\{y}
3:letU; ={ueU| f(u) =mingey f(y)}
4: pick one y' € U; such that the set U] =
is stable

5: f(y) < f(¥) + 1Y) — 11y (v)

Loosely speaking, this process takes each point y € A’"\U and
stacks it on top of U — filling the resulting function in layer
by layer. The loop will terminate with some

f@z[&jjif)/(yj)pmw.

The y,y’ that are chosen in steps 1 and 4 can always be
found such that the intended sets are stable. Explicitly, one
could pick y that is the smallest candidate element in the
lexicographic order. Any element that was relying on such a y
for stability would need to be even smaller in the lexicographic
order. Similarly, 3’ could be picked to be the largest candidate
element in the lexicographic order.

The claim is that after each iteration of this loop, f = f*
and the functional

max Zw yj) = max ZZf

Yi,-- yk Y1, Yk
v 7Y j=1x2€8

(O\U:) U{y'}

(26)

an(yj)(x) 27

does not decrease for any fixed k. The property f = f* follows
immediately from the stability of A"\{y} and U/ and the fact
that A’ starts as a stable set.

We would like to show that (27) does not decrease on each
iteration of the loop. We can assume the y1,...,y; that give
the maximum in (27) form a stable set. If they did not, then by

applying Corollary 1 with g = 1y, .. 1 we would achieve

at least the same value with g* = 1g, . y~. For these
Y1, - .., Yi the following inequality holds:
Z Z 1{y e 1Bz (y; ) > Z Z 1{y} 1an(yj (z) .
j=1lzeSs j=1lz€eS

(28)

Due to property (i) of A’, we can assume R,, > r,, by defining
U with a slightly smaller r,, with the difference approaching

zero as n — oo. This means 3’ can be reached from y by
shifting ones from the right to the left. Each time a one is
shifted to the left, the number of elements in {yi,...,yx}
within distance nl,, of that point cannot decrease. This proves
(28) which proves the claim.

Finally, using the the fact that (27) does not decrease during
the construction of (26), we can exactly reproduce the proof
of Lemma 4.3 to show that if

> f@)p, (@) 2 v, | =1,
z€S
then
> 1a(@)ip,, (@) = 7" —1.
TES
Furthermore,
> F@)p,, (@) =
€S
2n[H(p)—an] 22nrn
() ()| et
zeS

so using Lemma 4.4 we arrive at the final result.
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