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source side of the cut have noiseless access to the message

and all nodes on the destination side can freely cooperate

to decode the transmitted message. As basic as it sounds,

existing approaches for developing infeasibility results in

information theory seem insufficient to quantitatively capture

this phenomenon.1

In this and our concurrent work [15]–[17] on the discrete

memoryless version of this problem, we build a novel geo-

metric approach to capture this phenomenon. The main idea

is to study the geometric relations that are satisfied by typical

realizations of the n-letter random variables associated with a

reliable code for communicating over the relay channel. (E-

quivalently, these are the geometric relations that are satisfied

with high probability by these n-letter random variables.) We

then translate these geometric relations into new and surprising

relations between the entropies of the corresponding random

variables. A key ingredient in this approach is a measure

concentration result, namely the blowing-up lemma due to

Marton [29], which says that under a product measure slightly

blowing up any set with a small but exponentially significant

probability suffices to increase its probability to nearly 1.2 This

lemma allows us to obtain distance relations between typical

sets, which we then translate to entropy relations.

While our bounds for the discrete memoryless relay channel

in [15]–[17] and the Gaussian case treated in the current paper

have similar flavor, these two cases also comprise some signif-

icant differences. In particular, the discrete memoryless case

seems easier to deal with as one can make explicit counting

arguments and rely on the standard notion of strong typicality.

Indeed, the Gaussian case has proven to be associated with

some inherent difficulty historically—for example, the earlier

results by Zhang [18], and Aleksic, Razaghi, and Yu [20] that

demonstrate the looseness of the cut-set bound in the discrete

memoryless case do not have counterparts in the Gaussian

case. Also, the recent upper bound developed by Xue [19] for

the discrete memoryless relay channel cannot be extended to

the Gaussian case, as it relies on a counting argument that is

valid only when the output alphabet is finite.3 To develop an

upper bound on the capacity of the primitive relay channel

in the Gaussian case, this paper develops a new argument

for translating geometric relations between typical sets of

random variables into relations between their entropies. We

also construct a series of typical sets for a mixed set of discrete

and continuous random variables that enjoy some properties

of strong typical sets.

1A similar observation was pointed out in [14].
2For a more detailed discussions regarding concentration of measure,

and the blowing-up lemma along with its earlier applications in network
information theory, see the comprehensive monograph by Raginsky and Sason
[34]. In this context, it is also worth mentioning that tools related to Gaussian
concentration and Marton’s transportation-cost inequalities have also been
invoked in a recent work by Polyanskiy and Wu [33] to solve the “missing
corner point” problem for the two-user Gaussian interference channel.

3Note that this issue cannot be resolved by the standard discretization
procedure that is typically used for extending an achievability theorem for
a discrete memoryless channel to a continuous channel, because as the
quantization interval goes to zero the upper bound in [19] obtained by a
counting argument becomes arbitrarily large.

A. Organization of the Paper

The remainder of the paper is organized as follows. First

Section II introduces the channel model and reviews the clas-

sical cut-set bound on the capacity of the Gaussian primitive

relay channel. Then Section III presents our new upper bound

and discusses its implication on the capacity approximation

problem for Gaussian relay networks, followed by the proof

of our bound in Sections IV and V. Finally in Section VI,

we provide another bound which sharpens our main result

for certain regimes of the channel parameters. We include this

result as to illustrate that there may be significant potential for

improving our results by refining our method and arguments.

II. PRELIMINARIES

A. Channel Model

Consider a Gaussian primitive relay channel as depicted in

Fig. 1, where X ∈ R denotes the source signal which is

constrained to average power P , and Z ∈ R and Y ∈ R

denote the received signals of the relay and the destination.

We have
{

Z = X +W1

Y = X +W2

where W1 and W2 are Gaussian noises that are independent of

each other and X , and have zero mean and variances N1 and

N2 respectively. The relay can communicate to the destination

via an error-free digital link of rate R0.

For this channel, a code of rate R and blocklength n,

denoted by

(C(n,R), fn(z
n), gn(y

n, fn(z
n))), or simply, (C(n,R), fn, gn),

consists of the following:

1) A codebook at the source X ,

C(n,R) = {xn(m),m ∈ {1, 2, . . . , 2nR}}
where

1

n

n
∑

i=1

x2
i (m) ≤ P, ∀m ∈ {1, 2, . . . , 2nR};

2) An encoding function at the relay Z,

fn : Rn → {1, 2, . . . , 2nR0};
3) A decoding function at the destination Y ,

gn : Rn × {1, 2, . . . , 2nR0} → {1, 2, . . . , 2nR}.
The average probability of error of the code is defined as

P (n)
e = Pr(gn(Y

n, fn(Z
n)) 6= M),

where the message M is assumed to be uniformly drawn

from the message set {1, 2, . . . , 2nR}. A rate R is said to

be achievable if there exists a sequence of codes

{(C(n,R), fn, gn)}∞n=1

such that the average probability of error P
(n)
e → 0 as n → ∞.

The capacity of the primitive relay channel is the supremum

of all achievable rates, denoted by C(R0).
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B. The Cut-Set Bound

For the Gaussian primitive relay channel, the cut-set bound

can be stated as follows.

Proposition 2.1 (Cut-set Bound): For the Gaussian primi-

tive relay channel, if a rate R is achievable, then there exists

a random variable X satisfying E[X2] ≤ P such that
{

R ≤ I(X;Y, Z) (1)

R ≤ I(X;Y ) +R0. (2)

Note that constraints (1) and (2) correspond to the broadcast

channel X-Y Z and multiple-access channel XZ-Y , and hence

are generally known as the broadcast and multiple-access

constraints, respectively. Also it can be easily shown that both

I(X;Y, Z) and I(X;Y ) in Proposition 2.1 are maximized

when X ∼ N (0, P ), which leads us to the following corollary.

Corollary 2.1: For the Gaussian primitive relay channel, if

a rate R is achievable, then














R ≤ 1

2
log

(

1 +
P

N1
+

P

N2

)

(3)

R ≤ 1

2
log

(

1 +
P

N2

)

+R0. (4)

III. MAIN RESULT

Our main result in this paper is the following theorem,

which provides a new upper bound on the capacity of the

Gaussian primitive relay channel that is tighter than the cut-

set bound. The proof of this theorem is given in Section IV.

Theorem 3.1: For the Gaussian primitive relay channel, if

a rate R is achievable, then there exists a random variable X
satisfying E[X2] ≤ P and some a ∈ [0, R0] such that










R ≤ I(X;Y, Z) (5)

R ≤ I(X;Y ) +R0 − a (6)

R ≤ max{I(X;Y ), I(X;Z)}+ a+
√
2a ln 2 log e. (7)

As in the cut-set bound, all the mutual information terms

I(X;Y, Z), I(X;Y ) and I(X;Z) in the above theorem are

maximized when X ∼ N (0, P ), and therefore our bound

can be re-stated more explicitly in terms of the logarithmic

function as follows.

Corollary 3.1: For the Gaussian primitive relay channel, if

a rate R is achievable, then there exists some a ∈ [0, R0] such

that










































R ≤ 1

2
log

(

1 +
P

N1
+

P

N2

)

(8)

R ≤ 1

2
log

(

1 +
P

N2

)

+R0 − a (9)

R ≤ 1

2
log

(

1 + max

{

P

N1
,
P

N2

})

+ a+
√
2a ln 2 log e. (10)

Since a ≥ 0 in the above, our bound is in general tighter

than the cut-set bound in Corollary 2.1. In fact, our bound can

be strictly tighter than the cut-set bound when the multiple-

access constraint (4) is active in the cut-set bound. To see this,

first consider the symmetric case when N1 = N2 =: N . For

this case, the cut-set bound in Corollary 2.1 says that if a rate

R is achievable, then














R ≤ 1

2
log

(

1 +
2P

N

)

(11)

R ≤ 1

2
log

(

1 +
P

N

)

+R0, (12)

while our bound in Corollary 3.1 asserts that any achievable

rate R must satisfy














R ≤ 1

2
log

(

1 +
2P

N

)

(13)

R ≤ 1

2
log

(

1 +
P

N

)

+R0 − a∗, (14)

where a∗ is the solution to the following equation:

R0 = 2a∗ +
√
2a∗ ln 2 log e, (15)

which is obtained by equating the R.H.S. of constraints (9) and

(10). Obviously, if R0 > 0, then a∗ > 0 and (14) is tighter

than (12). Therefore, when constraint (12) is more stringent

between (11) and (12), our bound is strictly tighter than the

cut-set bound. The same argument and conclusion also apply

when N1 ≥ N2, in which case our bound reduces to














R ≤ 1

2
log

(

1 +
P

N1
+

P

N2

)

(16)

R ≤ 1

2
log

(

1 +
P

N2

)

+R0 − a∗, (17)

where a∗ is similarly defined as in (15). Finally it can be easily

checked that when N1 ≤ N2, our bound is also strictly tighter

than the cut-set bound as long as

1

2
log

(

1 +
P

N1

)

≤ 1

2
log

(

1 +
P

N2

)

+R0.

Note that both the cut-set bound and our bound depend on

the channel parameters through P
N1

, P
N2

and R0. It is inter-

esting to evaluate the largest gap between these two bounds

over all parameter values ( P
N1

, P
N2

, R0). For this we show in

Appendix A the following proposition, which says that the

largest gap occurs in the symmetric case when P
N1

= P
N2

→ ∞
and R0 = 0.5.

Proposition 3.1: Let ∆
(

P
N1

, P
N2

, R0

)

denote the gap be-

tween our bound and the cut-set bound, and ∆∗ be its largest

possible value over all Gaussian primitive relay channels, i.e.,

∆∗ := sup
P
N1

, P
N2

,R0

∆

(

P

N1
,
P

N2
, R0

)

.

Then, ∆∗ = ∆(∞,∞, 0.5) = 0.0535.

A. Gaussian Relay Networks

The primitive single-relay channel we consider in this paper

can be regarded as a special case of a Gaussian relay network.

However, the upper bound we develop for this special case

has also implications for larger Gaussian relay networks with

multiple relays. In particular, it can be used to infer how

tightly the capacity of general Gaussian relay networks can

be approximated by the cut-set bound. Consider a discrete
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memoryless Gaussian relay network of N nodes, in which a

source node s aims to reliably communicate a message to a

destination node d.4. For each node i ∈ {1, 2, . . . , N} =: N ,

we let Ri and Ti denote the numbers of receive-antennas

and transmit-antennas of node i, respectively. We adopt the

usual Gaussian relay network setting, where if xj [t] ∈ R
Tj is

the signal transmitted by node j at time instant t, the signal

received at node i is given by

yi[t] =
∑

j∈N
Gijxj [t] + zi[t], (18)

where Gij ∈ R
Ri×Tj is a known Ri × Tj matrix describing

the channel gain from node j to i, zi[t] ∼ N (0, IRi×Ri
) is

additive Gaussian noise with {z1[t], z2[t], . . . , zN [t]}t=1,2,...

being mutually independent. We assume a per-antenna power

constraint at each node, equal to 1 without loss of generality.

In this manner, a Gaussian relay network is completely charac-

terized by the triple (G, s, d), where G denotes the collection

of channel gain matrices {Gij : i, j ∈ N}.5 For a network

(G, s, d), it will be convenient to define the quantity

κ(G, s, d) :=
∑

i∈N
max{Ti, Ri} (19)

since it will be referred to frequently. When the network

(G, s, d) under consideration is clear from context, we will

abbreviate κ ≡ κ(G, s, d). A code and an achievable rate for

a Gaussian relay network (G, s, d) and the capacity C(G, s, d)
are defined in the standard way (see for example [13]).

For a network (G, s, d), the cut-set bound [39] is given by:

C̄(G, s, d) = sup
f(x1,...,xN )

min
S:s∈S,d∈Sc

I(XS ;YSc |XSc), (20)

where the supremum is over all joint distributions

f(x1, . . . ,xN ) on
∏N

i=1 R
Ti satisfying the power constraints

E
[

‖Xi‖2
]

≤ TiP for i ∈ N , the minimum is over all

subsets S ⊂ N that separate s from d, and the conditional

distribution of y1, . . . ,yN given x1, . . . ,xN is induced by

the channel model (18).

Initiated by the work of Avestimehr, Diggavi and Tse [6],

there has been significant recent interest in approximating the

capacity of general Gaussian relay networks with the cut-

set bound, i.e. bounding the gap between the rates achieved

by specific schemes and the cut-set bound on capacity. In

particular, following a series of other works (e.g., [6], [11],

[8]), Lim, Kim and Kim [27] have proved the following

approximation result:

Proposition 3.2 ([27]): For any Gaussian relay network

(G, s, d),

C(G, s, d) ≥ C̄(G, s, d)− 0.5κ(G, s, d). (21)

Since C(G, s, d) ≤ C̄(G, s, d) always, Proposition 3.2 es-

tablishes that the cut-set bound approximates the capacity

4We adopt the notation and formulation in [13].
5The discussion in this section holds also under a per-node power constraint

instead of a per-antenna power constraint since Proposition 3.2, or more
precisely the results in[6], [11], [8], [27] that we refer to in this proposition,
hold under an average power constraint. We restrict attention to a per-node
power constraint since in this case the power constraint can be absorbed in
the channel gains and the network can be simply specified by the channel
gain matrix G.

C(G, s, d) within a factor that is linear in the parameter κ but

independent of the channel gains G. An interesting question

is whether (21) can be substantially improved. For example,

is it possible to replace the slack term 0.5κ with 0.1κ, or with

a sublinear term such as κ
log log κ? This was posed as an open

question by Niesen and Diggavi in [23] and by Avestimehr,

Diggavi, Tian and Tse in [21]. Some recent results [22], [23],

[24], [25] encourage this possibility by demonstrating that

a sublinear in κ gap to the cut-set bound can be achieved

when additional constraints are imposed on the topology of the

network. As a specific example, it has been shown by Chern

and Ozgur [24] that, for the diamond network with N − 2
relays,

C(G, s, d) ≥ C̄(G, s, d)− 2 log(κ− 2) (22)

when all nodes have one antenna (i.e., κ = N ).

However, more recently Courtade and Ozgur observe in [13]

that such an improvement is impossible, unless the cut-set

bound is tight for all Gaussian relay networks. Toward doing

so, they define a general template for approximating capacity

via the cut-set bound. In the spirit of the approximation

results proved in [6], [11], [8], [26], [27], [22], [24], [23],

[25], a Gaussian Relay Network Approximation Theorem with

parameter γ (abbreviated as γ-GRNAT) is defined to be a

claim of the following form:

Claim 3.1: There exists a constant γ ≥ 0 and a function

f(n) = o(n) such that, for any Gaussian relay network

(G, s, d),

C(G, s, d) ≥ C̄(G, s, d)− (γκ+ f(κ)). (23)

It should be emphasized that a γ-GRNAT makes an asser-

tion that is independent of network topology, channel SNRs,

and so forth. In particular, Proposition 3.2 provides a concrete

example of a 0.5-GRNAT, with the f(κ) term being zero.

The main result of [13] is to show that improving the

linear term 0.5κ in (21) to a sublinear term o(κ) is equivalent

to proving the cut-set bound is tight for all Gaussian relay

networks. This is formally stated as follows:

Proposition 3.3 ([13]): A 0-GRNAT exists if and only if

C(G, s, d) = C̄(G, s, d) for all Gaussian relay networks

(G, s, d).
However, Courtade and Ozgur [13] also point out that they are

not aware of any results which show that the cut-set bound

is not tight for a Gaussian relay network. Combined with

the result of the current paper, which shows that the cut-set

bound is not tight for one specific Gaussian network, the above

theorem asserts that the Θ(κ) term in approximations of the

form (23) is fundamental. Note that the rate limited channel

from the relay to the destination in Fig. 1 can be equivalently

thought of as a Gaussian channel of the same capacity (c.f.

[12]) and therefore the primitive relay setting we consider here

can be thought of as one instance of a Gaussian relay network

where the destination is equipped with two receive antennas,

one directed to the source and one directed to the relay with

no interference in between.

Since Proposition 3.3 asserts that the Θ(κ) term in ap-

proximations of the form (23) is fundamental, the following
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definition is well-motivated:

γ? = inf{γ : a γ-GRNAT holds}. (24)

In words, γ? characterizes the best possible linear factor in

(23). Clearly, Propositions 3.2 and 3.3 imply that

0 < γ? ≤ 0.5. (25)

To this end, the following observation, noted in [13], implies

that an explicit gap to the cut-set bound for any specific

network with specific channel parameters and topology can

be used to obtain a lower bound on γ?:

Proposition 3.4 ([13]): If (G, s, d) is a Gaussian relay net-

work and C(G, s, d) ≤ C̄(G, s, d)− β, then

γ? ≥ β

κ(G, s, d)
. (26)

Therefore, the gap 0.0535 in Proposition 3.1 for the Gaus-

sian primitive relay channel combined with the fact that

κ(G, s, d) = 4 for this network implies that

γ? ≥ 0.01.

In other words, the capacity of Gaussian relay networks can

not be approximated by the cut-set bound within a gap that is

smaller than (0.0535/4)κ ≈ 0.01κ. A more recent result we

prove in [28] demonstrates a gap of 0.2075 for the Gaussian

primitive relay channel and implies an improved lower bound

on γ?,

γ? ≥ 0.05.

IV. PROOF OF THEOREM 3.1

In this section we prove Theorem 3.1 for both the symmetric

(N1 = N2) and asymmetric (N1 6= N2) cases. The proofs

for both cases rely on the below lemma, which is the main

technical focus of this paper and whose proof is provided in

Section V. We now state this lemma and show how it leads

to the bound in Theorem 3.1.

Lemma 4.1: Consider any discrete random vector Xn ∈
R

n. Let Zn = Xn +Wn
1 and Y n = Xn +Wn

2 , where both

Wn
1 and Wn

2 are i.i.d. sequences of Gaussian random variables

with zero mean and variance N and they are independent of

each other and Xn. Also let In = fn(Z
n) be a function of Zn

which takes value on a finite set. Then, if H(In|Xn) = nan,

we have

I(Xn; In)− I(Y n; In) ≤ n(an +
√

2an ln 2 log e). (27)

Note that In −Zn −Xn − Y n in the above lemma form a

Markov chain and the result of the lemma can be equivalently

regarded as fixing I(Xn; In) = H(In)− nan and controlling

the second mutual information I(Y n; In). In this sense, there

is some similarity in flavor between our result (27) and

the strong data processing inequality [35]. However, when

deriving strong data processing inequalities one is typically

interested in upper bounding I(Y n; In) while we are interested

in lower bounding it. Moreover, here we assume more specific

structure for the Markov chain In − Zn −Xn − Y n.

Equipped with the above lemma, we are now ready to prove

Theorem 3.1.

A. Symmetric Case (N1 = N2)

First consider the symmetric case when N1 = N2 := N .

Suppose a rate R is achievable. Then there exists a sequence

of codes

{(C(n,R), fn, gn)}∞n=1 (28)

such that the average probability of error P
(n)
e → 0 as n → ∞.

For this sequence of codes, we have

nR = H(M)

= I(M ;Y n, Zn) +H(M |Y n, Zn)

≤ I(Xn;Y n, Zn) +H(M |Y n, fn(Z
n))

≤ I(Xn;Y n, Zn) + nµ (29)

= h(Y n, Zn)− h(Y n, Zn|Xn) + nµ

=

n
∑

i=1

[h(Yi, Zi|Y i−1, Zi−1)− h(Yi, Zi|Xi)] + nµ

≤
n
∑

i=1

[h(Yi, Zi)− h(Yi, Zi|Xi)] + nµ

=

n
∑

i=1

I(Xi;Yi, Zi) + nµ

= n(I(XQ;YQ, ZQ|Q) + µ) (30)

= n(h(YQ, ZQ|Q)− h(YQ, ZQ|Q,XQ) + µ)

≤ n(h(YQ, ZQ)− h(YQ, ZQ|XQ) + µ)

= n(I(XQ;YQ, ZQ) + µ)

i.e.,

R ≤ I(XQ;YQ, ZQ) + µ (31)

for any µ > 0 and sufficiently large n, where (29) follows from

Fano’s inequality, (30) follows by defining the time sharing

random variable Q to be uniformly distributed over [1 : n],
and

E[X2
Q] =

1

n

n
∑

i=1

E[X2
i ] =

1

n
E

[

n
∑

i=1

X2
i

]

≤ P. (32)

Moreover, letting In := fn(Z
n), we have for any µ > 0

and sufficiently large n,

nR = H(M)

= I(M ;Y n, In) +H(M |Y n, In)

≤ I(Xn;Y n, In) + nµ (33)

= I(Xn;Y n) + I(Xn; In|Y n) + nµ

= I(Xn;Y n) +H(In|Y n)−H(In|Xn) + nµ (34)

≤ n(I(XQ;YQ) +R0 − an + µ),

i.e.,

R ≤ I(XQ;YQ) +R0 − an + µ, (35)

where an := 1
nH(In|Xn) satisfies

0 ≤ an ≤ R0. (36)

Note that in (34) we use the fact that H(In|Y n, Xn) =
H(In|Xn) due to the Markov chain In −Xn − Y n.
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which combined with the Markov relation In−Xn−Y n−Z̃n

further implies that

I(Xn; In)− I(Y n; In) ≤ n(an +
√

2an ln 2 log e). (42)

Combining this with inequality (37) then proves constraint (7)

for the N1 > N2 case and concludes the proof of Theorem

3.1.

V. PROOF OF LEMMA 4.1

We now prove Lemma 4.1. For this, we first introduce some

auxiliary results that will be used in the proof.

A. Auxiliary Results

We begin with the following measure concentration result

which is a blowing-up lemma for general Gaussian random

variables.

Lemma 5.1: For any subset A ⊆ R
n, let Γr(A) be its

blown-up set of radius r defined as

Γr(A) := {bn ∈ R
n : ∃ an ∈ A s.t. d(an, bn) ≤ r} ,

where

d(an, bn) := ‖an − bn‖ (43)

denotes the Euclidean distance between the two sequences

an and bn. Let U1, U2, . . . , Un be n i.i.d. Gaussian random

variables with Ui ∼ N (0, N), ∀i ∈ {1, 2, . . . , n}. Then, for

any A ⊆ R
n with Pr(Un ∈ A) ≥ 2−nan ,

Pr(Un ∈ Γ√
n(

√
2Nan ln 2+t)(A)) ≥ 1− 2−

nt2

2N , ∀t > 0.

Lemma 5.1 is essentially due to Marton [29] (see also [30]–

[31]). In Appendix B, we provide a simple proof of Lemma

5.1 that extends from [32, eq. (1.6)], which is a version of

the lemma stated by Talagrand for standard Gaussian random

variables. For more discussions on the blowing-up lemma and

its applications, see the recent comprehensive monograph by

Raginsky and Sason [34].

The next lemma constructs a series of typical sets in a nested

manner (for a mixed set of continuous and discrete random

variables) which satisfy certain properties that will be used in

the proof of Lemma 4.1.

Lemma 5.2: Let X − Z − I form a Markov chain where

X and I are discrete random variables (or vectors), Z is a

continuous random variable (or vector) and I is a deterministic

function of Z. Let (X,Z, I) be a B-length sequence i.i.d.

generated from the joint distribution of (X,Z, I), with I being

a function of Z denoted by I = f(Z). Then one can construct

a series of typical sets satisfying certain properties as follows:

1) Let S
(B)
ε (X,Z, I) be the set of (x, z, i) sequences

defined as

S(B)
ε (X,Z, I) = {(x, z, i) :

2−B(h(Z|X)+ε) ≤ f(z|x) ≤ 2−B(h(Z|X)−ε),

2−B(H(X|Z)+ε) ≤ p(x|z) ≤ 2−B(H(X|Z)−ε),

2−B(H(I|X)+ε) ≤ p(i|x) ≤ 2−B(H(I|X)−ε),

2−B(H(X|I)+ε) ≤ p(x|i) ≤ 2−B(H(X|I)−ε)}.

Then for any ε > 0 and B sufficiently large,

Pr((X,Z, I) ∈ S(B)
ε (X,Z, I)) ≥ 1− ε.

2) For any z, let S
(B)
ε (X|z) be the set of x sequences

defined as

S(B)
ε (X|z) = {x : (x, z, f(z)) ∈ S(B)

ε (X,Z, I)},
and let S

(B)
ε (X,Z) be the set of (x, z) sequences

defined as

S(B)
ε (X,Z) = {(x, z) :
x ∈ S(B)

ε (X|z), Pr(X ∈ S(B)
ε (X|z)|Z = z) ≥ 1−√

ε}.
Then for any ε > 0 and B sufficiently large,

Pr((X,Z) ∈ S(B)
ε (X,Z)) ≥ 1− 2

√
ε.

3) For any (x, i), let S
(B)
ε (Z|x, i) be the set of z sequences

defined as

S(B)
ε (Z|x, i) = {z : f(z) = i, (x, z) ∈ S(B)

ε (X,Z)},
and let S

(B)
ε (X, I) be the set of (x, i) sequences defined

as

S(B)
ε (X, I) = {(x, i) :
Pr(Z ∈ S(B)

ε (Z|x, i)|X = x, I = i) ≥ 1− 4
√
ε}.

Then for any ε > 0 and B sufficiently large,

Pr((X, I) ∈ S(B)
ε (X, I)) ≥ 1− 2 4

√
ε.

Furthermore, for any (x, i) ∈ S
(B)
ε (X, I),

2−B(H(I|X)+ε) ≤ p(i|x) ≤ 2−B(H(I|X)−ε),

and for B sufficiently large,

Pr(Z ∈ S(B)
ε (Z|x, i)|X = x) ≥ 2−B(H(I|X)+2ε).

4) For any i, let S
(B)
ε (X|i) be the set of x sequences

defined as

S(B)
ε (X|i) = {x : (x, i) ∈ S(B)

ε (X, I)},
and let S

(B)
ε (I) be the set of i sequences defined as

S(B)
ε (I) = {i : Pr(X ∈ S(B)

ε (X|i)|I = i) ≥ 1− 2 8
√
ε}.

Then for any ε > 0 and B sufficiently large,

Pr(I ∈ S(B)
ε (I)) ≥ 1− 2 8

√
ε.

Note that if X,Z, I were all discrete, we could directly

use the strongly typical sets as defined in [38, Ch. 2] and

all the properties above will naturally follow.6 Unfortunately,

there is no counterpart of strong typicality for continuous

random variables and if one uses weak typicality [39, Ch.

3] instead then the above properties can not be all guaranteed.

Under this circumstance, Lemma 5.2 says that by its discussed

nested construction one can still have typical sets satisfying

all these properties, however the proof of this lemma is more

complex than simply invoking weak typicality and is included

in Appendix C.

6Indeed, in our parallel paper [17] which considers improving on the cut-
set for discrete memoryless relay channels, we directly resort to the notion of
strong typicality instead of using the typicality sets as discussed in Lemma
5.2.
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Moreover, with property (48) we can lower bound the size of

S
(B)
ε (Xn|z) by considering the following:

1−√
ε ≤ Pr(X ∈ S(B)

ε (Xn|z)|Z = z)

=
∑

x∈S
(B)
ε (Xn|z)

p(x|z)

≤ 2−B(H(X|Z)−ε)
∣

∣

∣
S(B)
ε (Xn|z)

∣

∣

∣
,

i.e.,
∣

∣

∣
S(B)
ε (Xn|z)

∣

∣

∣
≥ (1−√

ε)2B(H(Xn|Zn)−ε). (52)

Based on (50), (51) and (52), we now lower bound f(y|i)
for each y ∈ Γ√

nB(
√
2Nan ln 2+3

√
Nε)(S

(B)
ε (Zn|x, i)). In

particular, we have for B sufficiently large,

f(y|i) =
∑

x

f(y|x)p(x|i)

≥
∑

x∈S
(B)
ε (Xn|z)

f(y|x)p(x|i)

≥ 2−B(H(Xn|In)+ε)
∑

x∈S
(B)
ε (Xn|z)

f(y|x) (53)

≥ 2−B(H(Xn|In)+ε)
∣

∣S(B)
ε (Xn|z)

∣

∣ min
x∈S

(B)
ε (Xn|z)

f(y|x)

≥ (1−√
ε)2−B(H(Xn|In)+ε)

× 2B(H(Xn|Zn)−ε) min
x∈S

(B)
ε (Xn|z)

f(y|x), (54)

where the z throughout the above is the z ∈ S
(B)
ε (Zn|x, i)

such that d(y, z) ≤
√
nB(

√
2Nan ln 2+3

√
Nε), (53) follows

from (50), and (54) follows from (52). To lower bound the last

term in (54), note that for any x ∈ S
(B)
ε (Xn|z), we have due

to (51) that

d(x,y) ≤ d(x, z) + d(z,y)

≤
√
nB(

√

N(1 + 2ε) +
√

2Nan ln 2 + 3
√
Nε)

=:
√
nB(

√
N +

√

2Nan ln 2 + ε1)

and thus,

f(y|x) = 1

(2πN)
nB
2

e−
‖y−x‖2

2N

≥ 2−
nB(

√
N+

√
2Nan ln 2+ε1)2

2N log e−nB
2 log 2πN

= 2
−nB

(

(
√

N+
√

2Nan ln 2+ε1)2

2N log e+ 1
2 log 2πN

)

=: 2−nB( 1
2 log 2πeN+an+

√
2an ln 2 log e+ε2)

where ε1, ε2 → 0 as ε → 0. Plugging this into (54) yields that

f(y|i) ≥ (1−√
ε)2−B(H(Xn|In)+ε)2B(H(Xn|Zn)−ε)

× 2−nB( 1
2 log 2πeN+an+

√
2an ln 2 log e+ε2)

≥ 2−B[H(Xn|In)−H(Xn|Zn)+n( 1
2 log 2πeN+an+

√
2an ln 2 log e+ε3)]

(55)

for any y ∈ Γ√
nB(

√
2Nan ln 2+3

√
Nε)(S

(B)
ε (Zn|x, i)) and B

sufficiently large, where ε3 → 0 as ε → 0.

For any i ∈ S
(B)
ε (In), let Yi be a set of y sequences defined

as

Yi :=
⋃

x∈S
(B)
ε (Xn|i)

Γ√
nB(

√
2Nan ln 2+3

√
Nε)(S

(B)
ε (Zn|x, i)).

Then for each y ∈ Yi, there exists some x ∈ S
(B)
ε (Xn|i) such

that y ∈ Γ√
nB(

√
2Nan ln 2+3

√
Nε)(S

(B)
ε (Zn|x, i)), and by (55)

it follows that for B sufficiently large,

f(y|i)
≥ 2−B[H(Xn|In)−H(Xn|Zn)+n( 1

2 log 2πeN+an+
√
2an ln 2 log e+ε3)].

Moreover, for any i ∈ S
(B)
ε (In), we have for B sufficiently

large,

Pr(Y ∈ Yi|I = i)

=
∑

x

Pr(Y ∈ Yi|X = x)p(x|i)

≥
∑

x∈S
(B)
ε (Xn|i)

Pr(Y ∈ Yi|X = x)p(x|i)

≥
∑

x∈S
(B)
ε (Xn|i)

Pr(Y ∈ Γ√
nB(

√
2Nan ln 2+3

√
Nε)(S

(B)
ε (Zn|x, i))|X = x)

× p(x|i)
≥ (1− ε)Pr(X ∈ S(B)

ε (Xn|i)|I = i) (56)

≥ (1− ε)(1− 2 8
√
ε) (57)

≥ 1− 3 8
√
ε,

where (56) follows from (46) and (57) follows from Lemma

5.2-4). Finally, recalling from Lemma 5.2-4) that

Pr(I ∈ S(B)
ε (I)) ≥ 1− 2 8

√
ε

and choosing δ to be max{3 8
√
ε, ε3}, we arrive at the following

proposition.

Proposition 5.1: For any δ > 0 and sufficiently large B,

there exists a set I of i such that

Pr(I ∈ I) ≥ 1− δ,

and for any i ∈ I, there exists a set Yi of y satisfying

Pr(Y ∈ Yi|I = i) ≥ 1− δ,

and for any y ∈ Yi

f(y|i)
≥ 2−B(H(Xn|In)−H(Xn|Zn)+n

2 log 2πeN+nan+n
√
2an ln 2 log e+nδ).

We now use Proposition 5.1 to prove Lemma 4.1. For this,

first consider h(Y|i) for any i ∈ I. We have

h(Y|i) ≤ h(Y|i) + 1− I(Y; I(Y ∈ Yi)|i) (58)

= 1 + h(Y|I(Y ∈ Yi), i)

= 1 + Pr(Y ∈ Yi|I = i)h(Y|i,Y ∈ Yi)

+ Pr(Y /∈ Yi|I = i)h(Y|i,Y /∈ Yi), (59)
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where I(A) is the indicator function defined as 1 if A holds

and 0 otherwise, and (58) follows since

I(Y; I(Y ∈ Yi)|i) ≤ H(I(Y ∈ Yi)|i) ≤ 1.

To bound h(Y|i,Y ∈ Yi), we have by Proposition 5.1 that,

h(Y|i,Y ∈ Yi)

= −
∫

y∈Yi

f(y|i,Y ∈ Yi) log f(y|i,Y ∈ Yi)dy

≤ −
∫

y∈Yi

f(y|i,Y ∈ Yi) log f(y|i)dy

≤ B
(

H(Xn|In)−H(Xn|Zn) +
n

2
log 2πeN + nan

+ n
√

2an ln 2 log e+ nδ
)

·
∫

y∈Yi

f(y|i,Y ∈ Yi)dy

= B
(

H(Xn|In)−H(Xn|Zn) +
n

2
log 2πeN + nan

+ n
√

2an ln 2 log e+ nδ
)

. (60)

Now consider E[‖Y‖2|i] for any i. We have

E[‖Y‖2|i] = E[‖X‖2|i] + E[‖W2‖2|i] ≤ nB(P +N),

where the equality follows from the independence between X

and W2 even conditioned on i. Therefore,

E[‖Y‖2|i,Y /∈ Yi] ≤
E[‖Y‖2|i]

Pr(Y /∈ Yi|i)
≤ nB(P +N)

Pr(Y /∈ Yi|i)
,

and

Pr(Y /∈ Yi|I = i)h(Y|i,Y /∈ Yi)

≤ nB

2
Pr(Y /∈ Yi|I = i) log 2πe

P +N

Pr(Y /∈ Yi|I = i)

≤ nBδ1, (61)

for some δ1 → 0 as δ → 0.

Plugging (60) and (61) into (59), we have for any i ∈ I
and sufficiently large B,

h(Y|i) ≤ Pr(Y ∈ Yi|I = i)B
(

H(Xn|In)−H(Xn|Zn)

+
n

2
log 2πeN + nan + n

√

2an ln 2 log e+ nδ
)

+ 1 + nBδ1

≤ B
(

H(Xn|In)−H(Xn|Zn) +
n

2
log 2πeN

+ nan + n
√

2an ln 2 log e+ nδ2 + 1/B
)

(62)

for some δ2 → 0 as δ → 0. Therefore, for sufficiently large

B,

h(Y|I) =
∑

i

p(i)h(Y|i)

=
∑

i∈I
p(i)h(Y|i) +

∑

i 6∈I
p(i)h(Y|i)

≤
∑

i∈I
p(i)B

(

H(Xn|In)−H(Xn|Zn) +
n

2
log 2πeN

+ nan + n
√

2an ln 2 log e+ nδ2 + 1/B
)

+
∑

i 6∈I
p(i)

nB

2
log 2πe(P +N)

≤ B
(

H(Xn|In)−H(Xn|Zn) +
n

2
log 2πeN

+ nan + n
√

2an ln 2 log e+ nδ3 + 1/B
)

(63)

for some δ3 → 0 as δ → 0. Observing that

h(Y|I) =
B
∑

b=1

h(Y n(b)|In(b)) = Bh(Y n|In)

and noting that both δ3 and 1/B in (63) can be made arbitrarily

small by choosing B sufficiently large, we obtain

h(Y n|In) ≤ H(Xn|In)−H(Xn|Zn) +
n

2
log 2πeN

+ nan + n
√

2an ln 2 log e. (64)

Finally, using the relation (64), we have

I(Xn; In)− I(Y n; In)

= H(Xn)−H(Xn|In)− h(Y n) + h(Y n|In) (65)

≤ H(Xn)−H(Xn|In)− h(Y n) +H(Xn|In)
−H(Xn|Zn) +

n

2
log 2πeN + nan + n

√

2an ln 2 log e

= I(Xn;Zn)− [h(Y n)− n

2
log 2πeN ]

+ nan + n
√

2an ln 2 log e

= I(Xn;Zn)− I(Xn;Y n) + nan + n
√

2an ln 2 log e

= nan + n
√

2an ln 2 log e

where the last step follows because Zn and Y n are condi-

tionally i.i.d. given Xn, i.e. I(Xn;Zn) = I(Xn;Y n). This

finishes the proof of Lemma 4.1.

VI. FURTHER IMPROVEMENT

In this section we show that in the case of N1 ≤ N2, our

bound in Theorem 3.1 can be further sharpened for certain

regimes of channel parameters. In particular, we will prove

the following proposition.

Proposition 6.1: For a Gaussian primitive relay channel

with N1 ≤ N2, if a rate R is achievable, then there exists

some a ∈ [0, R0] such that (8), (9) and the following two
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constraints






































R ≤ 1

2
log

(

1 +
P

N1

)

+ a+
√
2a ln 2 log e (66)

R ≤ 1

2
log

(

1 +
P

N1

)

+
N1

N2
a

+

√

N1

N2

(

N1

N2
2a ln 2 + 1− N1

N2

)

log e (67)

are simultaneously satisfied.

Proposition 6.1 improves upon Theorem 3.1 for the N1 ≤
N2 case by introducing a new constraint (67) that is structural-

ly similar to (66). Note that neither constraint (66) nor (67) is

dominating the other and which one is tighter depends on the

channel parameter. This makes the bound in Proposition 6.1

in general tighter than that in Theorem 3.1 for the N1 ≤ N2

case. Nevertheless, in Appendix D we show that the largest

gap between the bound in Proposition 6.1 and the cut-set

bound remains to be 0.0535, which is still attained when
P
N1

= P
N2

→ ∞ and R0 = 0.5.

To show Proposition 6.1, we only need to show the new

constraint (67), which follows immediately from the following

lemma.

Lemma 6.1: Consider any discrete random vector Xn ∈
R

n. Let Zn = Xn +Wn
1 and Y n = Xn +Wn

2 , where Wn
1

and Wn
2 are i.i.d. sequences of Gaussian random variables with

zero mean and variance N1 and N2 respectively, and they are

independent of each other and Xn. Also let In = fn(Z
n) be

a function of Zn which takes value on a finite set. Then, if

N1 ≤ N2 and H(In|Xn) = nan, we have

I(Xn; In)− I(Y n; In) ≤ I(Xn;Zn)− I(Xn;Y n)

+ n

(

N1

N2
an +

√

N1

N2

(

N1

N2
2an ln 2 + 1− N1

N2

)

log e

)

.

(68)

Note that Lemma 6.1 provides a new bound (68) on the

difference I(Xn; In) − I(Y n; In) under the assumption of

N1 ≤ N2. Since the random variables (Xn, Y n, Zn, In)
associated with the relay channel for the N1 ≤ N2 case

trivially satisfies the condition of Lemma 6.1, one can combine

(68) with (37), which immediately yields the new constraint

(67). In the sequel we focus on proving Lemma 6.1.

A. Proof of Lemma 6.1

Without of loss of generality, write Zn and Y n as
{

Zn = Xn +Wn
1

Y n = Z̃n +Wn
22

with

Z̃n := Xn +Wn
21,

where Wn
1 ,W

n
21 and Wn

22 are i.i.d. sequences of Gaussian

random variables with zero mean and variance N1, N1 and

N2 −N1 respectively, and they are independent of each other

and Xn.

Consider the B-length i.i.d. extensions of the above random

variables. By applying the typicality argument and blowing-up

lemma along the same lines as in the proof of Lemma 4.1, we

have for any (x, i) ∈ S(B)(Xn, In) and B sufficiently large,

Pr(Z ∈ Γ√
nB(

√
2Nan ln 2+3

√
N1ε)

(S(B)
ε (Zn|x, i))|X = x)

≥ 1− ε. (69)

Since Z̃ and Z are identically distributed given X, (69) also

holds with Z replaced by Z̃. In other words, we have for any

(x, i) ∈ S(B)(Xn, In) and B sufficiently large,

Pr(∃ z ∈ S(B)
ε (Zn|x, i) s.t.

d(Z̃, z) ≤
√
nB(

√

2N1an ln 2 + 3
√

N1ε)|X = x) ≥ 1− ε.
(70)

Consider any specific pair of (z̃, z) with d(z̃, z) ≤√
nB(

√
2N1an ln 2 + 3

√
N1ε) and recall Y = z̃+W22. We

have

d2(Y, z) = ‖Y − z‖2
= ‖W22 + z̃− z‖2

= [W22 + (z̃− z)]T [W22 + (z̃− z)]

= ‖W22‖2 + 2WT
22(z̃− z) + ‖(z̃− z)‖2

= ‖W22‖2 + 2WT
22(z̃− z) + d2(z̃, z).

From the weak law of large numbers, for any ε > 0 and

sufficiently large B, we have

Pr(‖W22‖2 ∈ [nB(N2 −N1 − ε/2), nB(N2 −N1 + ε/2)])

≥ 1− ε/2

and

Pr(2WT
22(z̃− z) ∈ [−nBε/2, nBε/2]) ≥ 1− ε/2.

Therefore, by the union bound, for any ε > 0 and sufficiently

large B,

1− ε ≤ Pr(d2(Y, z) ≤ nB(N2 −N1 + ε) + d2(z̃, z))

≤ Pr(d2(Y, z) ≤ nB(N2 −N1 + ε)

+ nB(
√

2N1an ln 2 + 3
√

N1ε)
2)

= Pr(d(Y, z) ≤
√
nB
√

(N2 +N1(2an ln 2− 1) + ε1)),
(71)

where ε1 is defined such that

(N2 −N1 + ε) + (
√

2N1an ln 2 + 3
√

N1ε)
2

= N2 +N1(2an ln 2− 1) + ε1

and ε1 → 0 as ε → 0. In light of (70) and (71), we have (72)

for any (x, i) ∈ S(B)(Xn, In) and B sufficiently large.

Now along the similar lines as in the proof of Lem-

ma 4.1, we can lower bound the conditional density f(y|i)
for any y ∈ Γ√

nB
√

N2+N1(2an ln 2−1)+ε1
(S

(B)
ε (Zn|x, i)),

(x, i) ∈ S(B)(Xn, In). In particular, consider a specific

z ∈ S
(B)
ε (Zn|x, i) such that

d(y, z) ≤
√
nB
√

N2 +N1(2an ln 2− 1) + ε1. (73)

For any x ∈ S
(B)
ε (Xn|z) where z is the one as described in

(73), we have by (51) that

d(x, z) ≤
√

nBN1(1 + 2ε),
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Pr(Y ∈ Γ√
nB

√
N2+N1(2an ln 2−1)+ε1

(S(B)
ε (Zn|x, i))|X = x)

= Pr(∃ z ∈ S(B)
ε (Zn|x, i) s.t. d(Y, z) ≤

√
nB
√

N2 +N1(2an ln 2− 1) + ε1
∣

∣X = x)

≥ Pr(∃ z ∈ S(B)
ε (Zn|x, i) s.t. d(Z̃, z) ≤

√
nB(

√

2N1an ln 2 + 3
√

N1ε)
∣

∣X = x)

× Pr(∃ z ∈ S(B)
ε (Zn|x, i) s.t. d(Y, z) ≤

√
nB
√

N2 +N1(2an ln 2− 1) + ε1
∣

∣X = x, ∃ z ∈ S(B)
ε (Zn|x, i) s.t. d(Z̃, z) ≤

√
nB(

√

2N1an ln 2 + 3
√

N1ε))

≥ (1− ε)2 (72)

and therefore by the triangle inequality,

d(x,y) ≤
√

nBN1(1 + 2ε)

+
√
nB
√

N2 +N1(2an ln 2− 1) + ε1,

which leads to the following lower bound on f(y|x),
f(y|x)

≥ 2
−nB

(

1
2 log 2πeN2+

N1
N2

an+

√

N1
N2

(

N1
N2

2an ln 2+1−N1
N2

)

log e+ε2

)

where ε2 → 0 as ε → 0. Plugging this into (54) yields that

f(y|i) ≥ 2−B(H(Xn|In)−H(Xn|Zn)+n
2 log 2πeN2)

· 2−B

(

n

(

N1
N2

an+

√

N1
N2

(

N1
N2

2an ln 2+1−N1
N2

)

log e

)

+nε3

)

(74)

for any y ∈ Γ√
nB

√
N2+N1(2an ln 2−1)+ε1

(S
(B)
ε (Zn|x, i)),

(x, i) ∈ S(B)(Xn, In), where ε3 → 0 as ε → 0. Finally,

following the same procedure as in the proof of Lemma 4.1

to translate (74) to the upper bound on h(Y n|In), we have

h(Y n|In) ≤ H(Xn|In)−H(Xn|Zn) +
n

2
log 2πeN2

+ n

(

N1

N2
an +

√

N1

N2

(

N1

N2
2an ln 2 + 1− N1

N2

)

log e

)

,

which combined with (65) immediately yields the new bound

(68) on the difference I(Xn; In)− I(Y n; In). This concludes

the proof of Lemma 6.1.

VII. CONCLUSION

We consider the Gaussian primitive relay channel, and

establish a new upper bound on its capacity that is tighter than

the cut-set bound. Combined with a tensorization argument

[13], this result also implies that the current capacity approx-

imations for Gaussian relay networks, which have linear gap

to the cut-set bound in the number of nodes, are order-optimal

and leads to a lower bound on the pre-constant.

The proof of our bound involves quantitively characterizing

the tensions between the n-dimensional information measures

involved in the problem. The main idea is to use measure con-

centration to study the geometric relations that are satisfied by

typical realizations of the n-letter random variables associated

with the problem, and then translate these geometric relations

into new and surprising relations between the entropies of the

corresponding n-letter random variables. In our forthcoming

work [28], we further strengthen this geometric approach and

develop a tighter upper bound on the capacity of the Gaussian

primitive relay channel, which directly leads to a solution

of a long-standing open question posed by Cover [9] in the

Gaussian case.

APPENDIX A

PROOF OF PROPOSITION 3.1

First rewrite our new bound in Corollary 3.1 as














R ≤ 1

2
log

(

1 +
P

N1
+

P

N2

)

(75)

R ≤ 1

2
log

(

1 +
P

N2

)

+R0 − a∗ (76)

where a∗ is the solution to the following equation:

1

2
log

(

1 +
P

N2

)

+R0 −
1

2
log

(

1 + max

{

P

N1
,
P

N2

})

= 2a∗ +
√
2a∗ ln 2 log e. (77)

Observe that the gap ∆( P
N1

, P
N2

, R0) between our new bound

and the cut-set bound is positive only if the channel parameters

( P
N1

, P
N2

, R0) are such that between (75) and (76) of our

bound, constraint (76) is active. This is because if in our bound

constraint (75) is active, then for the cut-set bound also (3) is

active and these two bounds become the same.

Thus to find the largest gap, one can without loss of

generality assume constraint (76) is active for our bound.

We now argue that the largest gap happens only when (4)

is active for the cut-set bound. Suppose this is not true,

i.e., when the largest gap happens constraint (3) instead of

(4) is active. Then this implies that the R.H.S. of (3) is

strictly less than that of (4) and thus one can reduce R0 to

further increase the gap, which contradicts with the largest

gap assumption. Therefore, only when (76) and (4) are active,

the gap attains the largest value that is given by the solution

a∗ to equation (77). The largest value that the L.H.S. of (77)

can take while still maintaining (76) and (4) are active is 0.5,

in which case the channel parameter ( P
N1

, P
N2

, R0) has to be

(∞,∞, 0.5). Solving equation (77) with L.H.S. = 0.5, we

obtain ∆∗ = ∆(∞,∞, 0.5) = 0.0535.

APPENDIX B

PROOF OF LEMMA 5.1

Given A ⊆ R
n, let B := {bn ∈ R

n :
√
Nbn ∈ A} and

Vi =
Ui√
N
, ∀i ∈ {1, 2, . . . , n}. Then V1, V2, . . . , Vn are n i.i.d.
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standard Gaussian random variables with Vi ∼ N (0, 1), ∀i ∈
{1, 2, . . . , n}, and

Pr(V n ∈ B) = Pr(
√
NV n ∈ A) = Pr(Un ∈ A) ≥ 2−nan .

We next invoke Gaussian measure concentration as stated in

(1.6) of [32]: for any B ⊆ R
n and

r ≥
√

−2 ln Pr(V n ∈ B),

we have

Pr(V n ∈ Γr(B)) ≥ 1− e
− 1

2

(

r−
√

−2 ln Pr(V n∈B)
)2

.

Thus, for any t > 0,

Pr(V n ∈ Γ√
n(

√
2an ln 2+ t√

N
)(B))

≥ Pr(V n ∈ Γ√−2 ln Pr(V n∈B)+
√

n
N

t
(B))

≥ 1− 2−
nt2

2N .

Noting that

Γ√
n(

√
2Nan ln 2+t)(A)

=
{√

Nbn : bn ∈ Γ√
n(

√
2an ln 2+ r√

N
)(B)

}

,

we have

Pr(Un ∈ Γ√
n(

√
2Nan ln 2+t)(A))

= Pr(
√
NV n ∈ Γ√

n(
√
2Nan ln 2+t)(A))

= Pr(V n ∈ Γ√
n(

√
2an ln 2+ t√

N
)(B))

≥ 1− 2−
nt2

2N .

APPENDIX C

PROOF OF LEMMA 5.2

Lemma 5.2-1) is a simple consequence of the law of large

numbers. To prove Lemma 5.2-2)–4), we will repeatedly use

the following lemma, which has been proved in [18].

Lemma C.1: Let A ⊆ C×D. For x ∈ C, use A|x to denote

the set

A|x = {y ∈ D : (x, y) ∈ A}.

If Pr(A) ≥ 1− ε, then Pr(B) ≥ 1−√
ε, where

B := {x ∈ C : Pr(A|x|x) ≥ 1−√
ε}.

A. Proof of Lemma 5.2-2)

Consider B sufficiently large. Due to Lemma C.1 and the

fact that

Pr((X,Z, I) ∈ S(B)
ε (X,Z, I)) ≥ 1− ε,

we have

Pr{(x, z) : Pr((X, z, f(z)) ∈ S(B)
ε (X,Z, I)|Z = z) ≥ 1−√

ε}
≥ 1−√

ε,

i.e.,

Pr{(x, z) : Pr(X ∈ S(B)
ε (X|z)|Z = z) ≥ 1−√

ε} ≥ 1−√
ε.

Then by the definition of S
(B)
ε (X,Z),

Pr((X,Z) /∈ S(B)
ε (X,Z))

≤ Pr(X /∈ S(B)
ε (X|Z))

+ Pr{(x, z) : Pr(X ∈ S(B)
ε (X|z)|Z = z) < 1−√

ε}
≤ ε+

√
ε

≤ 2
√
ε,

and thus Pr(S
(B)
ε (X,Z)) ≥ 1− 2

√
ε.

B. Proof of Lemma 5.2-3)

Consider B sufficiently large. We have

Pr(Z /∈ S(B)
ε (Z|x, I))

= Pr(f(Z) = I, (X,Z) /∈ S(B)
ε (X,Z))

≤ 2
√
ε.

On the other hand,

Pr(Z /∈ S(B)
ε (Z|x, I))

=
∑

(x,i)∈S
(B)
ε (X,I)

Pr(Z /∈ S(B)
ε (Z|x, I)|X = x, I = i)p(x, i)

+
∑

(x,i)/∈S
(B)
ε (X,I)

Pr(Z /∈ S(B)
ε (Z|x, I)|X = x, I = i)p(x, i)

≥ 4
√
ε · Pr((X, I) /∈ S(B)

ε (X, I)).

Therefore, Pr((X, I) /∈ S
(B)
ε (X, I)) ≤ 2

√
ε/ 4
√
ε = 2 4

√
ε, and

Pr((X, I) ∈ S
(B)
ε (X, I)) ≥ 1− 2 4

√
ε.

Consider any (x, i) ∈ S
(B)
ε (X, I). From the definition of

S
(B)
ε (X, I),

Pr(Z ∈ S(B)
ε (Z|x, i)|X = x, I = i) ≥ 1− 4

√
ε.

Therefore, S
(B)
ε (Z|x, i) must be nonempty, i.e., there exists

at least one z ∈ S
(B)
ε (Z|x, i). Pick up any z ∈ S

(B)
ε (Z|x, i).

By the definition of S
(B)
ε (Z|x, i), we have i) f(z) = i and

ii) (x, z) ∈ S
(B)
ε (X,Z) such that (x, z, i) ∈ S

(B)
ε (X,Z, I).

Then, it follows from the definition of S
(B)
ε (X,Z, I) that

2−nB(an+ε) ≤ p(i|x) ≤ 2−nB(an−ε).

Furthermore,

Pr(Z ∈ S(B)
ε (Z|x, i)|X = x)

=
Pr(f(Z) = i|X = x)Pr(Z ∈ S

(B)
ε (Z|x, i)|X = x, f(Z) = i)

Pr(f(Z) = i|Z ∈ S
(B)
ε (Z|x, i),X = x)

= p(i|x)Pr(S(B)
ε (Z|x, i)|X = x, I = i)

≥ 2−nB(an+ε)(1− 4
√
ε)

≥ 2−nB(an+2ε)

for sufficiently large B.
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C. Proof of Lemma 5.2-4)

For B sufficiently large,

Pr(I ∈ S(B)
ε (I))

≥ Pr

{

i : Pr(X ∈ S(B)
ε (X|i)|I = i) ≥ 1−

√

2 4
√
ε

}

≥ 1−
√

2 4
√
ε

≥ 1− 2 8
√
ε.

APPENDIX D

Consider the following upper bound jointly imposed by (8)–

(9) and (67),















R ≤ 1

2
log

(

1 +
P

N1
+

P

N2

)

(78)

R ≤ 1

2
log

(

1 +
P

N2

)

+R0 − a∗ (79)

where a∗ is the solution to the equation

1

2
log

(

1 +
P

N2

)

+R0 −
1

2
log

(

1 +
P

N1

)

=

(

N1

N2
+ 1

)

a∗ +

√

N1

N2

(

N1

N2
2a∗ ln 2 + 1− N1

N2

)

log e.

(80)

To show that the largest gap between our bound in Proposition

6.1 and the cut-set bound in (3)–(4) remains to be ∆∗ =
0.0535, it suffices to show that the above bound and the cut-

set bound differ from each other at most 0.0535.

Similarly as in Appendix A, one can argue that the largest

gap between the above bound and the cut-set bound happens

only when (79) and (4) are active respectively, in which case

the gap is given by the a∗ satisfying (80). Note that for (4) to

be active in the cut-set bound, one must have

1

2
log

(

1 +
P

N2

)

+R0 ≤ 1

2
log

(

1 +
P

N1
+

P

N2

)

.

Then to find the largest a∗ we impose the following relation:

1

2
log

(

1 +
P

N1
+

P

N2

)

− 1

2
log

(

1 +
P

N1

)

=

(

N1

N2
+ 1

)

a∗ +

√

N1

N2

(

N1

N2
2a∗ ln 2 + 1− N1

N2

)

log e.

Letting xi =
P
Ni

for i ∈ {1, 2} and solving the above equation,

we have (81), where the maximum value a∗ = 0.0535 is

attained when x1 = x2 = ∞. This shows that the largest gap

between our bound in Proposition 6.1 and the cut-set bound

remains to be 0.0535.
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(x2

x1
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1+x1
) + 2

x2
2

x2
1

2(x2

x1
+ 1)2 ln 2

−

√

((x2

x1
+ 1) ln(1 + x2

1+x1
) + 2

x2
2

x2
1
)2 − (x2

x1
+ 1)2[ln2(1 + x2
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x1
(x2

x1
− 1)]
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x1
+ 1)2 ln 2
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