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Abstract—The cut-set bound developed by Cover and El Gamal
in 1979 has since remained the best known upper bound on the
capacity of the Gaussian relay channel. We develop a new upper
bound on the capacity of the Gaussian primitive relay channel
which is tighter than the cut-set bound. Our proof uses Gaussian
measure concentration to establish geometric relations, satisfied
with high probability, between the n-letter random variables
associated with a reliable code for communicating over this
channel. We then translate these geometric relations into new
information inequalities that can not be obtained with classical
methods. Combined with a tensorization argument proposed by
Courtade and Ozgur in 2015, our result also implies that the
current capacity approximations for Gaussian relay networks,
which have linear gap to the cut-set bound in the number of
nodes, are order-optimal and leads to a lower bound on the pre-
constant.

Index Terms—Gaussian relay channel, cut-set bound, converse,
capacity approximation, information inequality, geometry

I. INTRODUCTION

The single-relay channel is one of the simplest examples of
a network information theory problem, which defies our com-
plete understanding despite decades of research. The Gaussian
version of this problem models the communication scenario
where a wireless link is assisted by a single relay. Motivated
by the need to increase the spectral efficiency of wireless
systems and the increasing importance of relaying for small
cells, it has been studied extensively since its formulation by
van der Meulen in 1971 [1]. However, the characterization
of its capacity still remains an open problem. Perhaps more
interestingly, the existing literature almost exclusively focuses
on developing achievable strategies for this channel as well as
larger relay networks. This has led to a plethora of relaying
schemes over the last decade, such as decode-and-forward,
compress-and-forward, amplify-and-forward, compute-and-
forward, quantize-map-and-forward, noisy network coding, etc
[2]-[8]. In sharp contrast, the only available upper bound on
the capacity of the Gaussian relay channel is the so called cut-
set bound developed by Cover and El Gamal in 1979 [2]. In
the 40-year long literature on the problem, the cut-set bound
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Fig. 1. Gaussian primitive relay channel.

has been consistently used as a benchmark for performance
—for example the recent approximation approach [6], [11], [8]
in wireless information theory focuses on bounding the gap of
the achievable strategies to the cut-set bound of the network—
however to our knowledge, whether the cut-set bound is indeed
achievable or not in a Gaussian relay channel (except in trivial
cases) remains unknown to date.

In this paper, we make progress on this problem by de-
veloping a new upper bound on the capacity of the Gaussian
primitive relay channel. This is a special case of the Gaussian
single relay channel where the multiple-access channel from
the source and the relay to the destination has orthogonal
components [9], [10]. See Fig. 1. Here, the relay can be
thought of as communicating to the destination over a Gaus-
sian channel in a separate frequency band. Our upper bound
is tighter than the cut-set bound for this channel for all (non-
trivial) channel parameters. While this result is developed for
the single-relay setting, it has implications also for networks
with multiple relays. In particular, combined with a recently
proposed tensorization argument [13], it implies that the linear
(in the number of nodes) gap to the cut-set bound in current
capacity approximations for Gaussian relay networks is indeed
fundamental. The capacity of Gaussian relay networks can
have linear gap to the cut-set bound and our result can be
used to obtain a lower bound on the pre-constant.

Proving that the cut-set bound is not tight requires to capture
the following phenomenon: if a relay is not able to decode
the transmitted message and therefore remove the noise in
its received signal by decoding, then the signal it forwards
necessarily contains noise along with information. The injected
noise then decreases the end-to-end achievable rate with
respect to the cut-set bound, where the latter simply upper
bounds the end-to-end capacity by the maximal information
flow over cuts of the network assuming all nodes on the



source side of the cut have noiseless access to the message
and all nodes on the destination side can freely cooperate
to decode the transmitted message. As basic as it sounds,
existing approaches for developing infeasibility results in
information theory seem insufficient to quantitatively capture
this phenomenon.!

In this and our concurrent work [15]-[17] on the discrete
memoryless version of this problem, we build a novel geo-
metric approach to capture this phenomenon. The main idea
is to study the geometric relations that are satisfied by typical
realizations of the n-letter random variables associated with a
reliable code for communicating over the relay channel. (E-
quivalently, these are the geometric relations that are satisfied
with high probability by these n-letter random variables.) We
then translate these geometric relations into new and surprising
relations between the entropies of the corresponding random
variables. A key ingredient in this approach is a measure
concentration result, namely the blowing-up lemma due to
Marton [29], which says that under a product measure slightly
blowing up any set with a small but exponentially significant
probability suffices to increase its probability to nearly 1.> This
lemma allows us to obtain distance relations between typical
sets, which we then translate to entropy relations.

While our bounds for the discrete memoryless relay channel
in [15]-[17] and the Gaussian case treated in the current paper
have similar flavor, these two cases also comprise some signif-
icant differences. In particular, the discrete memoryless case
seems easier to deal with as one can make explicit counting
arguments and rely on the standard notion of strong typicality.
Indeed, the Gaussian case has proven to be associated with
some inherent difficulty historically—for example, the earlier
results by Zhang [18], and Aleksic, Razaghi, and Yu [20] that
demonstrate the looseness of the cut-set bound in the discrete
memoryless case do not have counterparts in the Gaussian
case. Also, the recent upper bound developed by Xue [19] for
the discrete memoryless relay channel cannot be extended to
the Gaussian case, as it relies on a counting argument that is
valid only when the output alphabet is finite.> To develop an
upper bound on the capacity of the primitive relay channel
in the Gaussian case, this paper develops a new argument
for translating geometric relations between typical sets of
random variables into relations between their entropies. We
also construct a series of typical sets for a mixed set of discrete
and continuous random variables that enjoy some properties
of strong typical sets.

LA similar observation was pointed out in [14].

2For a more detailed discussions regarding concentration of measure,
and the blowing-up lemma along with its earlier applications in network
information theory, see the comprehensive monograph by Raginsky and Sason
[34]. In this context, it is also worth mentioning that tools related to Gaussian
concentration and Marton’s transportation-cost inequalities have also been
invoked in a recent work by Polyanskiy and Wu [33] to solve the “missing
corner point” problem for the two-user Gaussian interference channel.

3Note that this issue cannot be resolved by the standard discretization
procedure that is typically used for extending an achievability theorem for
a discrete memoryless channel to a continuous channel, because as the
quantization interval goes to zero the upper bound in [19] obtained by a
counting argument becomes arbitrarily large.

A. Organization of the Paper

The remainder of the paper is organized as follows. First
Section II introduces the channel model and reviews the clas-
sical cut-set bound on the capacity of the Gaussian primitive
relay channel. Then Section III presents our new upper bound
and discusses its implication on the capacity approximation
problem for Gaussian relay networks, followed by the proof
of our bound in Sections IV and V. Finally in Section VI,
we provide another bound which sharpens our main result
for certain regimes of the channel parameters. We include this
result as to illustrate that there may be significant potential for
improving our results by refining our method and arguments.

II. PRELIMINARIES
A. Channel Model

Consider a Gaussian primitive relay channel as depicted in
Fig. 1, where X € R denotes the source signal which is
constrained to average power P, and Z € Rand Y € R
denote the received signals of the relay and the destination.
We have

{Z:X—l—Wl
Y=X+W,

where W7 and W, are Gaussian noises that are independent of
each other and X, and have zero mean and variances N; and
N5 respectively. The relay can communicate to the destination
via an error-free digital link of rate Ry.

For this channel, a code of rate R and blocklength n,
denoted by

(C(n,R)v fn (Z”)7 gn(yna fn(’zn)>)a or Slmp]y7 (C(7L,R)7 fn7 gn)7

consists of the following:
1) A codebook at the source X,

Cin,ry = {2"(m),m € {1,2,..., Z”R}}

where
1 n
— E 3 (m) < P, Ym € {1,2,...,2"%};
n
i=1

2) An encoding function at the relay Z,
fn:R™ = {1,2,... 270}
3) A decoding function at the destination Y,
gn R x {1,2,..., 2" (12 . 2nRY
The average probability of error of the code is defined as
P =Pr(g, (Y™, fa(Z7)) # M),

where the message M is assumed to be uniformly drawn
from the message set {1,2,...,2"}. A rate R is said to
be achievable if there exists a sequence of codes

{(C(n,R)> fna gn)}zozl

such that the average probability of error P\") — 0 as n — occ.
The capacity of the primitive relay channel is the supremum
of all achievable rates, denoted by C(Ry).



B. The Cut-Set Bound

For the Gaussian primitive relay channel, the cut-set bound
can be stated as follows.

Proposition 2.1 (Cut-set Bound): For the Gaussian primi-
tive relay channel, if a rate R is achievable, then there exists
a random variable X satisfying E[X?] < P such that

R<I(X;Y,2) (D
{ R<I(X;Y)+R,. )

Note that constraints (1) and (2) correspond to the broadcast
channel X-Y Z and multiple-access channel X Z-Y', and hence
are generally known as the broadcast and multiple-access
constraints, respectively. Also it can be easily shown that both
I(X;Y,Z) and I(X;Y) in Proposition 2.1 are maximized
when X ~ N(0, P), which leads us to the following corollary.

Corollary 2.1: For the Gaussian primitive relay channel, if
a rate R is achievable, then

1 P P
< =1 14+ —+ —
R_2og<+N1+N2> 3)
1 P
< =1 14— . 4
R_2Og<+N2)+Ro 4)

III. MAIN RESULT

Our main result in this paper is the following theorem,
which provides a new upper bound on the capacity of the
Gaussian primitive relay channel that is tighter than the cut-
set bound. The proof of this theorem is given in Section IV.

Theorem 3.1: For the Gaussian primitive relay channel, if
a rate R is achievable, then there exists a random variable X
satisfying E[X?] < P and some a € [0, Ry] such that

R<I(X;Y, Z) &)
R<IX;Y)+Ryo—a (6)
R <max{I(X;Y),I(X;Z)} +a+ V2aln2loge.(7)

As in the cut-set bound, all the mutual information terms
I(X;Y,Z), I(X;Y) and I(X;Z) in the above theorem are
maximized when X ~ N(0, P), and therefore our bound
can be re-stated more explicitly in terms of the logarithmic
function as follows.

Corollary 3.1: For the Gaussian primitive relay channel, if
a rate R is achievable, then there exists some a € [0, Ry] such
that

1 P P

< =1 1+ — 4 —

R_2og( +N1+N2> (3
1 P

< =1 1+ — —

R_2og<+N2>+Ro a )
1 rP P

< =1 1 — —

R_Qog( +maX{Nl,N2})

+a+V2aln2loge. (10)

Since a > 0 in the above, our bound is in general tighter
than the cut-set bound in Corollary 2.1. In fact, our bound can
be strictly tighter than the cut-set bound when the multiple-
access constraint (4) is active in the cut-set bound. To see this,
first consider the symmetric case when N; = Ny =: N. For

this case, the cut-set bound in Corollary 2.1 says that if a rate
R is achievable, then

1 2P
< Z -
R_2log<1+N> (11
1 P

while our bound in Corollary 3.1 asserts that any achievable
rate R must satisfy

1 2P
R< -1 14+ — 13
< 5 log ( TN ) (13)
1 P
R< = log (1+N> + Ry —a*, (14)
where a* is the solution to the following equation:
Ro =2a" +V2a*In2loge, (15)

which is obtained by equating the R.H.S. of constraints (9) and
(10). Obviously, if Ry > 0, then a* > 0 and (14) is tighter
than (12). Therefore, when constraint (12) is more stringent
between (11) and (12), our bound is strictly tighter than the
cut-set bound. The same argument and conclusion also apply
when N; > Ns, in which case our bound reduces to

1 P P
< — J— J—
R< 2log <1+ - + N2> (16)
1 P
< - i —a*
R_210g<1+N2>+R0 a®, 17

where a* is similarly defined as in (15). Finally it can be easily
checked that when N; < N, our bound is also strictly tighter
than the cut-set bound as long as

1 1 P P
20g(1+Nl) 1og(1+NQ)+R0.

Note that both the cut-set bound and our bound depend on
the channel parameters through ,m and Ry. It is inter-
esting to evaluate the largest gap between these two bounds
over all parameter values ( NN, ,RO) For this we show in
Appendix A the following proposition, which says that the
largest gap occurs in the symmetric case when N% = NL; — 00
and Ry = 0.5.

Proposition 3.1: Let A ,N—Z R0> denote the gap be-
tween our bound and the Cut-set bound, and A* be its largest
possible value over all Gaussian primitive relay channels, i.e.,

P P
A* = A , R
P <N1 Ny’ 0)
Nl’N2

Then, A* = A(c0, 00,0.5) = 0.0535.

A. Gaussian Relay Networks

The primitive single-relay channel we consider in this paper
can be regarded as a special case of a Gaussian relay network.
However, the upper bound we develop for this special case
has also implications for larger Gaussian relay networks with
multiple relays. In particular, it can be used to infer how
tightly the capacity of general Gaussian relay networks can
be approximated by the cut-set bound. Consider a discrete



memoryless Gaussian relay network of N nodes, in which a
source node s aims to reliably communicate a message to a
destination node d.*. For each node i € {1,2,...,N} =: N,
we let R; and T; denote the numbers of receive-antennas
and transmit-antennas of node ¢, respectively. We adopt the
usual Gaussian relay network setting, where if x;[t] € R%7 is
the signal transmitted by node j at time instant ¢, the signal
received at node 7 is given by

viltl = Y Giyx;t] + zlt],
jEN

(18)

where G;; € RE*Ti is a known R; x T; matrix describing
the channel gain from node j to 4, z;[t] ~ N(0, Ir,xr,;) is
additive Gaussian noise with {z1[t],z2[t],... 2N [t]}i=1,2, ..
being mutually independent. We assume a per-antenna power
constraint at each node, equal to 1 without loss of generality.
In this manner, a Gaussian relay network is completely charac-
terized by the triple (G, s, d), where G denotes the collection
of channel gain matrices {G;; : i,j € N'}.> For a network
(G, s,d), it will be convenient to define the quantity

k(G,s,d) := Z max{T;, R;}
ieN

since it will be referred to frequently. When the network
(G, s,d) under consideration is clear from context, we will
abbreviate k = k(G, s,d). A code and an achievable rate for
a Gaussian relay network (G, s, d) and the capacity C(G, s, d)

are defined in the standard way (see for example [13]).
For a network (G, s, d), the cut-set bound [39] is given by:

19)

C G, ,d ES i I X ,Y c X <), 20
(G,s,d) .. (Xs; Yse|Xge), (20)
where the supremum 1is over all joint distributions

f(x1,...,xn) on Hfil R7: satisfying the power constraints
E[IIX;|?] < T;P for i € N, the minimum is over all
subsets S C A that separate s from d, and the conditional
distribution of y,...,yx given Xi,...,xy is induced by
the channel model (18).

Initiated by the work of Avestimehr, Diggavi and Tse [6],
there has been significant recent interest in approximating the
capacity of general Gaussian relay networks with the cut-
set bound, i.e. bounding the gap between the rates achieved
by specific schemes and the cut-set bound on capacity. In
particular, following a series of other works (e.g., [6], [11],
[8]), Lim, Kim and Kim [27] have proved the following
approximation result:

Proposition 3.2 ([27]): For any Gaussian relay network
(G, s,d),

C(G,s,d) > C(G,s,d) — 0.5k(G, s,d). 1)

Since C(G,s,d) < C(G,s,d) always, Proposition 3.2 es-
tablishes that the cut-set bound approximates the capacity

“We adopt the notation and formulation in [13].

SThe discussion in this section holds also under a per-node power constraint
instead of a per-antenna power constraint since Proposition 3.2, or more
precisely the results in[6], [11], [8], [27] that we refer to in this proposition,
hold under an average power constraint. We restrict attention to a per-node
power constraint since in this case the power constraint can be absorbed in
the channel gains and the network can be simply specified by the channel
gain matrix G.

C(G, s, d) within a factor that is linear in the parameter x but
independent of the channel gains GG. An interesting question
is whether (21) can be substantially improved. For example,
is it possible to replace the slack term 0.5 with 0.1k, or with
a sublinear term such as oz fc’)gn ? This was posed as an open
question by Niesen and Diggavi in [23] and by Avestimehr,
Diggavi, Tian and Tse in [21]. Some recent results [22], [23],
[24], [25] encourage this possibility by demonstrating that
a sublinear in x gap to the cut-set bound can be achieved
when additional constraints are imposed on the topology of the
network. As a specific example, it has been shown by Chern
and Ozgur [24] that, for the diamond network with N — 2
relays,

C(G,s,d) > C(G, s,d) — 2log(k — 2) (22)

when all nodes have one antenna (i.e., kK = N).

However, more recently Courtade and Ozgur observe in [13]
that such an improvement is impossible, unless the cut-set
bound is tight for all Gaussian relay networks. Toward doing
so, they define a general template for approximating capacity
via the cut-set bound. In the spirit of the approximation
results proved in [6], [11], [8], [26], [27], [22], [24], [23],
[25], a Gaussian Relay Network Approximation Theorem with
parameter  (abbreviated as y-GRNAT) is defined to be a
claim of the following form:

Claim 3.1: There exists a constant v > 0 and a function
f(n) = o(n) such that, for any Gaussian relay network
(G,s,d),

C(G,s,d) > C(G,s,d) — (vk + f(K)). (23)

It should be emphasized that a y-GRNAT makes an asser-
tion that is independent of network topology, channel SNRs,
and so forth. In particular, Proposition 3.2 provides a concrete
example of a 0.5-GRNAT, with the f(x) term being zero.

The main result of [13] is to show that improving the
linear term 0.5k in (21) to a sublinear term o(x) is equivalent
to proving the cut-set bound is tight for all Gaussian relay
networks. This is formally stated as follows:

Proposition 3.3 ([13]): A 0-GRNAT exists if and only if

C(G,s,d) = C(G,s,d) for all Gaussian relay networks
(G,s,d).
However, Courtade and Ozgur [13] also point out that they are
not aware of any results which show that the cut-set bound
is not tight for a Gaussian relay network. Combined with
the result of the current paper, which shows that the cut-set
bound is not tight for one specific Gaussian network, the above
theorem asserts that the ©(x) term in approximations of the
form (23) is fundamental. Note that the rate limited channel
from the relay to the destination in Fig. 1 can be equivalently
thought of as a Gaussian channel of the same capacity (c.f.
[12]) and therefore the primitive relay setting we consider here
can be thought of as one instance of a Gaussian relay network
where the destination is equipped with two receive antennas,
one directed to the source and one directed to the relay with
no interference in between.

Since Proposition 3.3 asserts that the ©(k) term in ap-
proximations of the form (23) is fundamental, the following



definition is well-motivated:

= inf{~ : a v-GRNAT holds}. (24)

In words, v* characterizes the best possible linear factor in
(23). Clearly, Propositions 3.2 and 3.3 imply that

0 <" <0.5. 25)

To this end, the following observation, noted in [13], implies
that an explicit gap to the cut-set bound for any specific
network with specific channel parameters and topology can
be used to obtain a lower bound on ~*:

Proposition 3.4 ([13]): If (G, s, d) is a Gaussian relay net-
work and C(G, s,d) < C(G, s,d) — j3, then
s P

~ k(G,s,d)
Therefore, the gap 0.0535 in Proposition 3.1 for the Gaus-

sian primitive relay channel combined with the fact that
k(G, s,d) = 4 for this network implies that

¥ (26)

A% > 0.01.

In other words, the capacity of Gaussian relay networks can
not be approximated by the cut-set bound within a gap that is
smaller than (0.0535/4)x =~ 0.01x. A more recent result we
prove in [28] demonstrates a gap of 0.2075 for the Gaussian
primitive relay channel and implies an improved lower bound
on ¥,

~* > 0.05.

IV. PROOF OF THEOREM 3.1

In this section we prove Theorem 3.1 for both the symmetric
(N7 = N3) and asymmetric (N7 # Ns) cases. The proofs
for both cases rely on the below lemma, which is the main
technical focus of this paper and whose proof is provided in
Section V. We now state this lemma and show how it leads
to the bound in Theorem 3.1.

Lemma 4.1: Consider any discrete random vector X" &
R™ Let Z" = X" + W and Y™ = X" 4+ W3, where both
W and W3 are i.i.d. sequences of Gaussian random variables
with zero mean and variance N and they are independent of
each other and X™. Also let I,, = f,,(Z™) be a function of Z"
which takes value on a finite set. Then, if H(I,|X") = na,,
we have

I(X™1,)—I(Y"™ I,)

< n(an + v2a,In2loge).

Note that I,, — Z™ — X" — Y™ in the above lemma form a
Markov chain and the result of the lemma can be equivalently
regarded as fixing I(X"; I,,) = H(I,) — na, and controlling
the second mutual information I(Y™;I,,). In this sense, there
is some similarity in flavor between our result (27) and
the strong data processing inequality [35]. However, when
deriving strong data processing inequalities one is typically
interested in upper bounding I(Y™; I,,) while we are interested
in lower bounding it. Moreover, here we assume more specific
structure for the Markov chain [,, — Z" — X" — Y™,

Equipped with the above lemma, we are now ready to prove
Theorem 3.1.

27)

A. Symmetric Case (N1 = N3)
First consider the symmetric case when N; = Ny := N.
Suppose a rate R is achievable. Then there exists a sequence

of codes

{(C(n,R), fnvgn)}zozl (28)
(n)

such that the average probability of error P
For this sequence of codes, we have

— 0asn — oo.

nR = H(M)
= I(M;Y™, Z") + H(M[Y™, Z")

<I(X™MY™MZM+ HMIY™, fo(Z7))

<I(X™Y™Z™) +np (29)

= [h(YiaZi‘Yiilﬁziil) —h()/@,ZJXZ)]—Fn,U
=1

Y;aZ (}/7,7Z1|X1)] —I—n,u

= ZI(Xi;Yi,Zi) +np

i=1
=n(I(Xq; Y, Zo|Q) + 1) (30)
=n(h(Yg, Zg|Q) — h(Yq, Zq|Q, Xq) + 1)
<n(h(Yq, Zg) — h(Yg, Zq|Xq) + 1)
=n(l(Xq; Y, Zq) + 1)
ie.,
R<I(Xq: Yo, Zo) + G1)

for any p > 0 and sufficiently large n, where (29) follows from
Fano’s inequality, (30) follows by defining the time sharing
random variable () to be uniformly distributed over [1 : n],
and

<P (32)

1 n
ZE;E[XZZ] =

Moreover, letting I,
and sufficiently large n,

lE znjxf
i=1

= fn(Z"), we have for any p > 0

nR = H(M)
= I(M;Y™,I,) + HM[Y™, L,
< I(X™ Y™ IL,)+np (33)
=I(X™"Y™") + I(X™0,)Y") +nu
=I(X™"Y")+H(I,|Y")— H(I,|X")+nu (34
<n(I(Xg;Yg)+ Ro — an + 1),
ie.,
R<I(Xqg;Yg)+ Ro—an+ 1, (35)
where a,, := 1 H(I,|X") satisfies
0 < an < Ry. (36)

Note that in (34) we use the fact that H([,|Y™, X") =
H(I,|X™) due to the Markov chain I, — X" —Y™.



Z’ﬂ

Set of Z" /Y™ jointly
typical with X"

Fig. 2. Jointly typical set with X ™.

So far we have made only standard information theoretic
arguments and in particular recovered the cut-set bound; note
that the fact that a,, > 0 together with (31), (32) and (35)
yields the cut-set bound given in Proposition 2.1. However,
instead of simply lower bounding a, by 0 in (35), in the
sequel we will apply Lemma 4.1 and prove a third inequality
involving a,, that forces a,, to be strictly larger than 0. Indeed,
it is intuitively easy to see that a, can not be arbitrarily
small. Assume a, = L1H(I,|X™) ~ 0. Roughly speaking,
this implies that given the transmitted codeword X", there is
no ambiguity about I,,, i.e. I,, is a deterministic function of
X™". Recalling that I,, is mapping of Z" to a set of integers,
this means that all the Z" sequences except on a set of
zero measure, i.e. all Z™ sequences jointly typical with X"
are mapped to a single I,,. See Fig. 2. However, since Y"
and Z" are statistically equivalent given X" (they share the
same typical set given X") this would imply that I,, can be
determined based on Y™ and therefore H(I,|Y™) ~ 0, which
forces the rate to be even smaller than I(X¢;Y() in view of
(34). In general, there is a trade-off between how close the rate
can get to the multiple-access bound I(Xq; Yo)+Ro and how
much it can exceed the point-to-point capacity I(Xq;Yp) of
the X-Y link. We capture this trade-off as follows.

Adding and subtracting H([,,) to the RH.S. of (34), we
have

nR<IX™Y")+I(X™"I,) - 1YY", L,) +nu.  (37)
We now apply Lemma 4.1 to upper bound I(X™;I,) —
I(Y™; I,,) in the above inequality. First note that the random
variables (I,,, Z™, X™, Y") associated with our relay channel
trivially satisfy the conditions of Lemma 4.1. In particular,
X™ in our case is a discrete random vector whose distribution
is dictated by the uniform distribution on the set of possible
messages and the source codebook, Y™ and Z™ are continuous
random vectors and [,, is an integer valued random variable.
In light of this, Lemma 4.1 combined with (37) immediately
yields that

nR <n(I(Xq;Yg) + an + v 2a,In2loge + ),
ie.,

R <I(Xg;Yg)+an+V2a,1In2loge + p. (38)

Combining (31), (35) and (38), we conclude that if a rate
R is achievable, then for any ;¢ > 0 and sufficiently large n,

R<I(Xq@;Yq. Zq) +
RSI(XQ;YQ)-FR()—CL”-I-/,L
R <I(Xg;Yg)+an+v2a,1In2loge + p

where E[X%] < P and a, € [0, Ry]. Since p can be made
arbitrarily small, this proves Theorem 3.1 for the symmetric
case.

B. Asymmetric Case (N7 # N3)

We now prove Theorem 3.1 for the asymmetric case when
N; # Ns. Note that the proofs of (5)—(6) in this case follow
exactly the same lines as their proofs in the symmetric case,
i.e., by applying Fano’s inequality and letting H([,|X") =
nan, so in the sequel we only prove (7) for Ny # No.

First assume N; < Ns. In this case we can equivalently
think of Z and Y as given by

{ Z=X+W
Y =X + Wy + W

where Wy, Wy, and Wsy are zero-mean Gaussian random
variables with variances N;, Ny and Ny — N respectively,
and they are independent of each other and X . Based on this,
we write

{ Z’VL — XTL + W{I (39)
Y™ = 2"+ Wi, (40)
where

Z" = X"+ Wi (41)

To prove (7) for Ny < N, we continue with (33) and modify
the proof for the symmetric case to be:

nR<I(X™Y" I,) +np

< I(X™ 2", 1) +np

=I(X"™Z2") + I(X"; 1) — 1(Z™; 1) + np,
where the second inequality follows from the data processing
inequality applied to the Markov chain X" — (Z",1,) —
(Y™, I,,). Now observe that (I,,, 2", X", Z") satisfy the con-
ditions of Lemma 4.1 and therefore we have

nR < nl(Xg; Zg) + nlan + v/2a, In2loge) + nu
=n(I(Xq;Zq) + an + V2a,1In2loge + p),

where a, = LH(I,|X™). This proves constraint (7) for the
N7 < Ns case.

Now consider the case when N; > N,. Construct an

auxiliary random variable Z" as
Z’n =YY" 4 Wn,’

where W is an i.i.d. sequence of Gaussian random variables
with zero mean and variance N; — N», and is independent
of the other random variables in the problem. Applying
Lemma 4.1 to (I, Z", X", Z™) we have

I(X"1,) — I(Z";1,) < n(an + \/2a, In2loge),



which combined with the Markov relation I,, — X" — Y™ — Z™
further implies that

I(X™ 1) — (Y™ I,) < n(an + \/mlog e).

Combining this with inequality (37) then proves constraint (7)
for the N7 > N> case and concludes the proof of Theorem
3.1

(42)

V. PROOF OF LEMMA 4.1

We now prove Lemma 4.1. For this, we first introduce some
auxiliary results that will be used in the proof.

A. Auxiliary Results

We begin with the following measure concentration result
which is a blowing-up lemma for general Gaussian random
variables.

Lemma 5.1: For any subset A C R™, let I'.(A) be its
blown-up set of radius r defined as

I (A):={p"eR":3a" € A st. d(a",b") <1},
where

d(a™,b") := |la™ — b"| (43)

denotes the Euclidean distance between the two sequences
a™ and b". Let Uy,Us,...,U, be n ii.d. Gaussian random
variables with U; ~ N'(0,N),Vi € {1,2,...,n}. Then, for
any A C R™ with Pr(U™ € A) > 27 "4n,

nt?
PHU™ € T avemzse (A) > 1 - 2737 vt > 0.

Lemma 5.1 is essentially due to Marton [29] (see also [30]—
[31]). In Appendix B, we provide a simple proof of Lemma
5.1 that extends from [32, eq. (1.6)], which is a version of
the lemma stated by Talagrand for standard Gaussian random
variables. For more discussions on the blowing-up lemma and
its applications, see the recent comprehensive monograph by
Raginsky and Sason [34].

The next lemma constructs a series of typical sets in a nested
manner (for a mixed set of continuous and discrete random
variables) which satisfy certain properties that will be used in
the proof of Lemma 4.1.

Lemma 5.2: Let X — Z — I form a Markov chain where
X and I are discrete random variables (or vectors), Z is a
continuous random variable (or vector) and [ is a deterministic
function of Z. Let (X,Z,I) be a B-length sequence i.i.d.
generated from the joint distribution of (X, Z, I'), with I being
a function of Z denoted by I = f(Z). Then one can construct
a series of typical sets satisfying certain properties as follows:

1) Let SE(B)(X, Z,I) be the set of (x,z,i) sequences

defined as

SBENX,Z,1) = {(x,2,i) :
2~ B(h(Z]X)+e) < f(zx) < Q_B(h(Z|X)—€)7
9~ BUHX[Z)+e) < p(x|z) < 9~ BUH(X|Z)—€)
9= B(H(I|X)+e) < p(ix) < 2—B(H(1\X)—e)’
2~ BHX|I)+e) < p(xi) < Q—B(H(le)—ﬁ)}.

Then for any € > 0 and B sufficiently large,
Pr((X,Z,1) € SBI(X,Z,1)) >1—e.

2) For any z, let Se(B)(X|Z) be the set of x sequences
defined as

SPN(X|z) = {x: (x,2, f(z)) € SP)(X,Z,1)},

and let SE(B)(X, Z) be the set of (x,z) sequences
defined as

SPN(X, Z) = {(x,2) :
x € SB)(X|z),Pr(X € SB)(X|2)|Z = 2) > 1 — V/e).
Then for any € > 0 and B sufficiently large,

Pr((X,Z) € SP)(X, Z)) > 1 - 2V/e.

3) For any (x,1), let SG(B)(Z|X, i) be the set of z sequences
defined as

SBN(Z|x,i) = {z: f(z) = i, (x,2) € SP)(X, 2)},
and let S (X, I) be the set of (x,1) sequences defined
as

SPIX,T) = {(x.1)
Pr(Z € SP)(Z|x,i)|X =x,T=1) > 1 — V/e}.
Then for any € > 0 and B sufficiently large,
Pr((X,1) € SPI(X, 1) > 1 -2

Furthermore, for any (x,1) € Se(B)(X, I),
9~ BUHUIX)He) < pi|x) < 9~ BHUIX)=o),

and for B sufficiently large,
Pr(Z € SP)(Z|x,1)|X = x) > 2~ BHUIIX)+2)

4) For any i, let SEB)(X |i) be the set of x sequences
defined as

SEPN X = {x: (x,1) € SIP(X, D)},
and let %) (I) be the set of i sequences defined as
SENN) ={i:Pr(X e SP(X[)T=1) >1—2e}.
Then for any € > 0 and B sufficiently large,
Pr(I € SBI(I)) > 1 — 2.

Note that if X, 7 I were all discrete, we could directly
use the strongly typical sets as defined in [38, Ch. 2] and
all the properties above will naturally follow.® Unfortunately,
there is no counterpart of strong typicality for continuous
random variables and if one uses weak typicality [39, Ch.
3] instead then the above properties can not be all guaranteed.
Under this circumstance, Lemma 5.2 says that by its discussed
nested construction one can still have typical sets satisfying
all these properties, however the proof of this lemma is more
complex than simply invoking weak typicality and is included
in Appendix C.

SIndeed, in our parallel paper [17] which considers improving on the cut-
set for discrete memoryless relay channels, we directly resort to the notion of
strong typicality instead of using the typicality sets as discussed in Lemma
5.2.
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B. Proof of Lemma 4.1

We are now ready to prove Lemma 4.1. For this we will
lift the random variables X", Y", Z™ and I, to a higher
dimensional, say nB dimensional space, and invoke the typical
sets as constructed in Lemma 5.2. Specifically, consider the
following B-length i.i.d. sequence

{(Xn(b)’yn(b)vzn(b)vIn(b))}bB:I’ (44)

where for any b € [1 : B], (X™(b),Y™(b),Z"(b), I.(D))
has the same distribution as (X", Y™ Z" I,). For no-
tational convenience, in the sequel we write the B-
length sequence [X™(1), X™(2),...,X"™(B)] as X and sim-
ilarly define Y,Z and I; note here we have I =
Fa(Z7 (), u(Z72)s . Fu(Z7(B))] = [(Z). Since the
random variables (X", Z™, I,,) under consideration satisfy the
condition of Lemma 5.2, i.e. X" — Z™ — I,, form a Markov
chain where X" and I,, are discrete, Z" is continuous and I,
is a deterministic function of Z", we have the series of typical
sets for (X, Z, 1) as described in Lemma 5.2. Our proof in the
sequel will build on these typical sets and their properties, as
well as the blowing-up lemma for Gaussian measure stated in
Lemma 5.1.

In particular, from Lemma 5.2-3), for any (x,i) €
SB)(X™, I,,) and B sufficiently large,

Pr(Z € SB)(Z"x,1)|X = x) > 27 BHUIX)+2¢)
— 2—nB(an+26)7 (45)

where a,, := L H(I,|X™). See Fig. 3. We now blow up the set

5P (Z™|x,1) and use Lemma 5.1 to show that if the blowing-
up radius is about v'nB+v/2Na,, In 2, then the resultant blown-
up set has probability nearly 1. In particular, noting that Z
is Gaussian given X and using Lemma 5.1, we have for B

Fig. 5.

o x € S (X"|z)
P4
O
o 25PNz,

vVnB+y/2Na, In 2—.% °
Yy nBN

Lower bound the conditional density f(y]|i).

sufficiently large,

>
>
>

Pr(Z € F\/n_B(\/m+3\/N_e)(Se(B)(Z"|X, i) X =x)

Pr(Z € T /rp( avarmeravemzs v (S0 (27 %, 1)1X = x)
1—2 "%
1—e

See Fig. 4. Since Y and Z are identically distributed given
X, we also have

>1—e.

Pr(Y € T g amartnzssvie (SO (27 %, 1)1 X = x)

(46)

We next lower bound the conditional density f(yli)

for each y € P@(W+SM)(S£B)(ZH|X, 1)) The

approach is

geometric and the readers may facilitate

their understanding by referring to Fig. 5. First, note

that for each y € Fm(mﬁm)(&(m(zﬂx,i)),
there exists (at least) one z € S’e(,B)(Z"|x,i) such that
d(y,z) < VnB(v/2Na, In2+3v/Ne¢). By the construction of
S¥)(Z7x, 1) as in Lemma 5.2-3), for this z € S (27 x, 1),
we have f(z) = i and (x,2) € SG(B)(X",Z"). Using the
definition of Se(B) (X™, Z™) in Lemma 5.2-2), we further have

Pr(X € SB)(X"2)|Z = z) > 1 — /e,

where, by Lemma 5.2-1) and 2), SE(B) (X™|z) consists of all
x satisfying the following properties:

9= B((Z"X")+e) < flzlx) < 9—B(h(Z"|X")=¢)
o= B(H(X"|Z")+e)

(47)
< p(x|z) < 27 BHXTIZI=9 - (48)
2~ BH(In|X")+e) < p(ilx) < 9~ BUH(In|X")=¢) (49)

o—B(H(X"|I,)+0) < p(x|i) < o—B(H(X"|In)~¢) (50)

Note that since by assumption Z" is Gaussian given X", we

have h(Z™|X") =

5 log 2meN and

1 _lly—x|?
ZX) = —— e 2N
J(zlx) (QWN)WQB

and therefore property (47) can be shown to imply that

d(x,2) € [\/nBN(1 — 2¢), /nBN (1 + 2¢)]. (51)



Moreover, with property (48) we can lower bound the size of
SS(B)(X "|z) by considering the following:

1—Ve<Pr(XeSP(X"2)|Z = 2)

>

xeSP) (X7 |z)
< 9~ BUH(X|Z2)=¢)

p(x|z)

S (X"[2),
ie.,
[SENX2)| 2 (1 = VeRBUHXTIED= . (52)

Based on (50), (51) and (52), we now lower bound f(y|i)

B) (e s
for each y € F@(m+3m)(sg )(Z |X, 1)) In
particular, we have for B sufficiently large,

Fiyl) =" fylx)pxli)
>

xeSP) (X1 |z)

Y

f(ylx)p(xli)

> o  PHXTL)Ta 3= f(y]x) (53)
xe8P) (xn|z)
> 2  PHETITI G (X" z)]  min  f(y]x)
xeSH) (X |z)
> (1 - fe)2~ BHX 1)+
x QBHEXTZM) =) min f(y]x), (54)

x€SP) (X|z)

where the z throughout the above is the z € Se(B)(Z”|x,i)
such that d(y,z) < vVnB(v/2Na, n2+3v/Ne), (53) follows
from (50), and (54) follows from (52). To lower bound the last
term in (54), note that for any x € SE(B)(X”|Z), we have due
to (51) that

d(x,y) < d(x,z) + d(z,y)
< VnB(/N(1 + 2€¢) + v/2Na,, In 2 + 3v/Ne)
=:VnB(VN + \/2Na, In2 + ¢;)
and thus,
1 _ly—x|?
flylx) = me

n a n € 2
— /B(m+'22NN"1 2te1) loge—2E log2n N

SN i3t el )2
_ —nB<(\/ﬁJr 21\;‘;\71"2+51) loge-l—%logZ‘n'N)

_. 27713(% log 2mreN+an++/2ay, In2log e+62)

where €1, €2 — 0 as € — 0. Plugging this into (54) yields that
flyl) > 1 - ﬁ)Q*B(H(X"\In)+6)23(H(X"\Z")*e)
% 2—nB(% log 27reN+an+\/Wloge+52)
> 2—B[H(X"|In)—H(X"\Z")+n(§ log 2meN +an+1v/2a, In 2 log e+e3)]
(55

B)(on)w
for any y € T g anarmaysvie (S0 (Z"1x.1)) and B
sufficiently large, where e3 — 0 as ¢ — 0.

For anyi € Se(B)(In), let ); be a set of y sequences defined

U

xeSP) (x i)

(B)

yi = F@(\/QNan, In 2+3\/N76)(SG (anx’ i))

Then for each y € ), there exists some x € SE(B)(X ™|i) such

B) /) s
that yc Fm(m+3m)(se( )(Z |X, 1))’ and by (55)
it follows that for B sufficiently large,

f(yli)

> 2—B[H(Xﬂ|]n)—H(Xn|Zn)+n(% log 2reN+ayn++v/2a,, In 2 log e+63)].
Moreover, for any i € SE(B) (I,,), we have for B sufficiently
large,

Pr(Y e I =1i)

> Pr(Y € WX = x)p(x]i)

>

xeSP) (X n i)

>

xeSP) (xn i)

v

Pr(Y € WX = x)p(x]i)

v

Pr(Y € T g amarmzsavive (SO (27x,1)| X = x)
x p(xli)
> (1—e)Pr(X € SB(X"[)[I = i) (56)
> (1—€)(1—2Ve) (57)
> 1-3Ve,

where (56) follows from (46) and (57) follows from Lemma
5.2-4). Finally, recalling from Lemma 5.2-4) that

Pr(I € SBI(I)) >1—2e

and choosing ¢ to be max{3 /e, €3}, we arrive at the following
proposition.

Proposition 5.1: For any § > 0 and sufficiently large B,
there exists a set Z of i such that

PrIeZ)>1-4,
and for any i € Z, there exists a set ); of y satisfying
Pr(Y e YilI=1i)>1-3,
and for any y € )}
flyli)

> 9= B(H(X"|I,)=H(X"|Z")+% log 2reN+na,+nv/2a, In 2 log e4nd)

We now use Proposition 5.1 to prove Lemma 4.1. For this,
first consider A(Y|i) for any i € Z. We have

R(Y)i) < h(Y[i) + 1 — I(Y;I(Y € W)li) (58)
=1+ r(Y[I(Y € W),i)
=1+Pr(Y e I=DA(Y[i,Y € )))
+Pr(Y ¢ I=1)h(YL,Y ¢))), (59



where I(A) is the indicator function defined as 1 if A holds
and 0 otherwise, and (58) follows since

IY; Y e W) < HI(Y e i) <1
To bound A(Y|i,Y € )}), we have by Proposition 5.1 that,
hYIi,Y € )))
—— |l Y € Dlog fyli Y € i)y
yei
< —/ fyli, Y € W) log f(yli)dy
yEVi

< B(H(X”|In) ~ H(X"|Z") + %log 2meN + nan

+ nv/2a, In2loge + nd /

fyli,Y € Vy)dy

NASAZ
= B(H(X"Hn) - H(X™Z™) + glog27reN + nay,
+ ny/2a, 111210ge+n6). (60)

Now consider E[||Y]|?|i] for any i. We have

B(IY|*li] = EIX[P[] + E[|W2|?[i] < nB(P + N),

where the equality follows from the independence between X
and W4 even conditioned on i. Therefore,

E[IY|1[i]

< nB(P+ N)
~ Pr(Y ¢ Jili)

~ Pr(Y ¢ Wili)’

E[IY[?[1,Y ¢ %] <
and

Pr(Y ¢ I =1)h(Y]i,Y ¢ )

nB P+ N
< —Pr(Y (I =1)log2ne ———F————
s 5 Y g ML =1)log 2me S o
< nbBdy, (61)
for some §; — 0 as 6 — 0.

Plugging (60) and (61) into (59), we have for any i € 7
and sufficiently large B,

h(Y i) < Pr(Y € BT = i)B(H(X”IIn) -

+ % log 2wreN + na, + nvy/2a, In2loge + n5)
< B(H(X"|I) -

H(X™Z")

H(X"™|Z™) + glog omeN

+ na, + ny/2a, In2loge + ndy + 1/B) (62)

for some §3 — 0 as & — 0. Therefore, for sufficiently large

B’
0 = St
= >_POAY[) + 3 _p()h
icZ i¢T
<3 nli) ( X|I,L)—H(X"|Z”)+glog27reN
ieZ

+ na, + ny/2a, In2loge + nds + 1/B)

nB
+ Zp(i)7 log 27e(P + N)
igT

< B(H(X"\In) — H(X"|Z") + glog 9meN

+ nay, +n\/m10ge+n63 + 1/B> (63)

for some d3 — 0 as 6 — 0. Observing that

B
hYT) = h(Y (b)) =
b=1

and noting that both d5 and 1/B in (63) can be made arbitrarily
small by choosing B sufficiently large, we obtain

Bh(Y"|I,,)

BV (L) < H(X"|L,) — H(X"[2") +
+ na, + nv/2a,In2loge.

Finally, using the relation (64), we have

% log 2me N
(64)

I(xX™1,)—I(Y"™ I,)

= H(X") = H(X"[I) = h(Y"™) + h(Y"|I,)

< H(X™)— H(X"I,)—h(Y")+ H(X"|I,,)
- H(X™Z™) + glog 2reN + na, + nv/2a, In2loge

= I(X™ Z") — [h(Y™) — glog 2meN]

+ na, +nyv/2a, In2loge

(65)

=1(X"Z") - I(X™Y"™) + na, +ny2a,In2loge
= na, + nv/2a,In2loge

where the last step follows because Z" and Y are condi-
tionally i.i.d. given X", i.e. I(X"™;Z™) = I(X™;Y"™). This
finishes the proof of Lemma 4.1.

VI. FURTHER IMPROVEMENT

In this section we show that in the case of N7 < N, our
bound in Theorem 3.1 can be further sharpened for certain
regimes of channel parameters. In particular, we will prove
the following proposition.

Proposition 6.1: For a Gaussian primitive relay channel
with N; < N,, if a rate R is achievable, then there exists
some a € [0, Rp] such that (8), (9) and the following two



constraints
1 P
R§2log<1+N>+a+v2aln2loge (66)
1
1 P Ny
R< =1 14— —
=3 Og( +N1>+N2a
N1 (N Ny
— | —2aln2+1—-—1 67
+\/N2<N2an—|— N2>oge 67)

are simultaneously satisfied.

Proposition 6.1 improves upon Theorem 3.1 for the N; <
Ny case by introducing a new constraint (67) that is structural-
ly similar to (66). Note that neither constraint (66) nor (67) is
dominating the other and which one is tighter depends on the
channel parameter. This makes the bound in Proposition 6.1
in general tighter than that in Theorem 3.1 for the N; < Nj
case. Nevertheless, in Appendix D we show that the largest
gap between the bound in Proposition 6.1 and the cut-set
bound remains to be 0.0535, which is still attained when
J\%:I\%%ooandR():Oﬁ.

To show Proposition 6.1, we only need to show the new
constraint (67), which follows immediately from the following
lemma.

Lemma 6.1: Consider any discrete random vector X" &
R”. Let Z" = X" + W{" and Y" = X" + W3, where W
and W3 are i.i.d. sequences of Gaussian random variables with
zero mean and variance N1 and Ny respectively, and they are
independent of each other and X". Also let I,, = f,,(Z") be
a function of Z" which takes value on a finite set. Then, if
N; < Ny and H(I,|X™) = na,, we have

I(X™I1,)—IY™ I, <I(X"Z") - I(X™"Y™")

N Ny (N N
+n (N:an + \/N; <N;2anln2 +1-— N;) loge> .
(68)

Note that Lemma 6.1 provides a new bound (68) on the
difference I(X";I,) — I(Y™;1,) under the assumption of
N; < Ns. Since the random variables (X™, Y™ Z" I,)
associated with the relay channel for the N; < Ny case
trivially satisfies the condition of Lemma 6.1, one can combine
(68) with (37), which immediately yields the new constraint
(67). In the sequel we focus on proving Lemma 6.1.

A. Proof of Lemma 6.1
Without of loss of generality, write Z™ and Y as
Z" = X"+ W/
{ Y™ = 2"+ Wi,
with

7" = X"+ Wy,

where W', W3, and W3, are ii.d. sequences of Gaussian
random variables with zero mean and variance Ni, N7 and
Ny — Nj respectively, and they are independent of each other
and X",

Consider the B-length i.i.d. extensions of the above random
variables. By applying the typicality argument and blowing-up

lemma along the same lines as in the proof of Lemma 4.1, we
have for any (x,i) € SB)(X" I,) and B sufficiently large,
Pr(Z S P@(m+3m) (SE(B)(Z’”|X, i))‘X = X)
>1—e (69)
Since Z and Z are identically distributed given X, (69) also
holds with Z replaced by Z. In other words, we have for any
(x,i) € SP)(X™ I,) and B sufficiently large,
Pr(3 z € S (Z"x,i) stt.
d(Z,z) < VnB(\/2Nia,In2 +3\/Nie)| X =x) > 1 —e.
(70
Consider any specific pair of (z,z) with d(z,z) <
vVnB(v/2Nja, In2 + 3y/Nie) and recall Y = Z + Was. We
have
d*(Y,2) = Y — 2|
= [Wa2 +2 — 2|
= [Wa2 + (2 — 2)] [Wao + (2 — 2)]
= [Wao|* + 2W5,(2 — 2) + [|(z — )|
= [Wa|* +2W5,(z — 2) + d*(2, 2).
From the weak law of large numbers, for any ¢ > 0 and
sufficiently large B, we have

Pr(|Was|?> € [nB(Ny — Ny — ¢/2),nB(N2 — Ny +¢/2)])
>1—¢/2

and

Pr(2W1,(z — z) € [-nBe/2,nBe/2]) > 1 —¢/2.
Therefore, by the union bound, for any € > 0 and sufficiently
large B,
1 —e<Pr(d*(Y,z) <nB(Ny — Ny +¢) +d*(z,2))

< Pr(d*(Y,z) < nB(Ny — Ny +¢)

+nB(v/2N1a, In2 + 3/Nye)?)

=Pr(d(Y,2) < VnBy/(Na + N1 (2a, 012 — 1) + €1)),
(71)

where ¢; is defined such that

(Ny — Ny +€) + (v/2N1a, In2 + 31/ Nye)?

= N2 +N1(2anln2— 1) + €1

and €; — 0 as € — 0. In light of (70) and (71), we have (72)
for any (x,i) € S(¥)(X", I,) and B sufficiently large.

Now along the similar lines as in the proof of Lem-
ma 4.1, we can lower bound the conditional density f(yl|i)

B)/onle s
for any y € F\/@\/N2+N1(2an1n2_1)+61(56( \(Z7|x, 1)),
(x,i) € SP)(X™ 1,). In particular, consider a specific
z € S (Z"|x, 1) such that

d(y,z) < \/nB\/Ng + Ni1(2a,In2 — 1) + €.

(73)

For any x € Se(B)(X "|z) where z is the one as described in
(73), we have by (51) that

d(x,z) < y/nBN;(1+ 2¢),



B n . .
PI'(Y € F\/@\/N2+N1(2an In2—1)4€; (SF( )(Z |X’ 1))‘X o X)

=Pr(3z € SP(Z"x,1) st. d(Y,z) < VnBy/No + N1 (2a,In2 — 1) + &1 |X = x)
> Pr(3 z € SP)(Z"|x,1) st. d(Z,2) < VnB(\/2N1a, In2 + 3y/Ny€)|X = x)
x Pr(3 z € S (Z"x,1) st. d(Y,2z) < VnBv/Na + Ny (2a,In2 — 1) +
X =x,3z€ SP(Z2"x,i) st. d(Z,2) < VnB(y/2Nia, n2 + 3v/Nie))

> (1-¢)?

(72)

and therefore by the triangle inequality,
d(x,y) < v/nBN1(1+ 2¢)

+VnBy/Na + N1 (2a,In2 — 1) + €1,

which leads to the following lower bound on f(y|x),

f(ylx)

N Ny (N N
27nB (% log 27reN2+N—;a"+\/N—; (N—;2an In 2+17N—;> log e+€2>

where €3 — 0 as € — 0. Plugging this into (54) yields that
Flyli) > 2—B(H(X"|In)—H(X"|Z")+%log27reN2)
27B (n(%a,ﬁ»\/% (%Zan In 2+17%) log e) +n53)

(74)

for any 'y < F\/@'\/N2+N1(2ar,L In2—1)+e1 (SE(B)(Zn|X’ i))’
(x,i) € SB)(X" 1,), where e — 0 as € — 0. Finally,
following the same procedure as in the proof of Lemma 4.1
to translate (74) to the upper bound on h(Y"|I,,), we have

WY™"|L,) < H(X"|L,) — H(X"|Z") + glog 9meNy

Nl N1 N1 Nl
—ay, — (—=—2a,In24+1—- — |1 ,
+n<N2a +\/N2 <N2 apIn2 + N2> 0ge>
which combined with (65) immediately yields the new bound

(68) on the difference I(X";I,)—I(Y™;I,). This concludes
the proof of Lemma 6.1.

VII. CONCLUSION

We consider the Gaussian primitive relay channel, and
establish a new upper bound on its capacity that is tighter than
the cut-set bound. Combined with a tensorization argument
[13], this result also implies that the current capacity approx-
imations for Gaussian relay networks, which have linear gap
to the cut-set bound in the number of nodes, are order-optimal
and leads to a lower bound on the pre-constant.

The proof of our bound involves quantitively characterizing
the tensions between the n-dimensional information measures
involved in the problem. The main idea is to use measure con-
centration to study the geometric relations that are satisfied by
typical realizations of the n-letter random variables associated
with the problem, and then translate these geometric relations
into new and surprising relations between the entropies of the
corresponding n-letter random variables. In our forthcoming

work [28], we further strengthen this geometric approach and
develop a tighter upper bound on the capacity of the Gaussian
primitive relay channel, which directly leads to a solution
of a long-standing open question posed by Cover [9] in the
Gaussian case.

APPENDIX A
PROOF OF PROPOSITION 3.1

First rewrite our new bound in Corollary 3.1 as

1 P P
R< =1 14+ —+— 75
_20g<+Nl+N2) (75)
1 P
< =1 1+ — —a”
R_2 0g< +N2>+RO a (76)

where a* is the solution to the following equation:

1 P 1 rP P

—1 1+ — Ry — =1 1 —_— —

20g< +N2)+ ’ QOg( +maX{N1’N2})
= 2a™ 4+ V2a*In2loge. 77)

Observe that the gap A(Nil, 1\%, Ry) between our new bound
and the cut-set bound is positive only if the channel parameters
(N%,N%J%O) are such that between (75) and (76) of our
bound, constraint (76) is active. This is because if in our bound
constraint (75) is active, then for the cut-set bound also (3) is
active and these two bounds become the same.

Thus to find the largest gap, one can without loss of
generality assume constraint (76) is active for our bound.
We now argue that the largest gap happens only when (4)
is active for the cut-set bound. Suppose this is not true,
i.e., when the largest gap happens constraint (3) instead of
(4) is active. Then this implies that the R.H.S. of (3) is
strictly less than that of (4) and thus one can reduce Ry to
further increase the gap, which contradicts with the largest
gap assumption. Therefore, only when (76) and (4) are active,
the gap attains the largest value that is given by the solution
a* to equation (77). The largest value that the L.H.S. of (77)
can take while still maintaining (76) and (4) are active is 0.5,
in which case the channel parameter (N%, ]\%7 Ry) has to be
(00, 00,0.5). Solving equation (77) with L.H.S. = 0.5, we
obtain A* = A(00, 00,0.5) = 0.0535.

APPENDIX B
PROOF OF LEMMA 5.1
Given A C R", let B := {b" € R" : VN € A} and

V; = %,Vi € {1,2,...,n}. Then V4, Va,...,V, are n iid.




standard Gaussian random variables with V; ~ N(0,1),Vi €
{1,2,...,n}, and

Pr(Vn € B) = Pr(\/ﬁvn c A) — Pr(U" c A) > 9—nan

We next invoke Gaussian measure concentration as stated in
(1.6) of [32]: for any B C R™ and

r>+\/—2InPr(V" € B),

we have
7;(T, —21nPr(V"€B))2
Pr(V" el (B)) >1—e¢ 2 '

Thus, for any ¢ > 0,
Pr(V" € Fﬁ(erﬁ)(B))
Pr(V" € F\/m+ %t(B))

2
> 1927 5N,

Y

Noting that

F\/ﬁ(\/2Nan In2+t) (A)
_ {\/Nb” 0" €T mTns

we have

(B)},

VN

Pr(U"™ €T vanvatnarn(4)
=Pr(VNV" €T s anvatnzin(4))
=Pr(V" €T r(ysa, ma+ ) (B))
>1-927%%

%

APPENDIX C
PROOF OF LEMMA 5.2

Lemma 5.2-1) is a simple consequence of the law of large
numbers. To prove Lemma 5.2-2)-4), we will repeatedly use
the following lemma, which has been proved in [18].

Lemma C.1: Let A C CxD.Forzx € C, use A, to denote
the set

Alz ={y € D: (z,y) € A}.
If Pr(A) > 1 —¢, then Pr(B) > 1 — /¢, where
B:={z € C:Pr(Als|z) > 1— e}

A. Proof of Lemma 5.2-2)

Consider B sufficiently large. Due to Lemma C.1 and the
fact that

Pr((X,Z,1) € SP(X, Z,1)) > 1 —¢,
we have
Pr{(x,z) : Pr
2 1- \/g7

ie.,

Pr{(x,2): Pr(X € SP)(X|z)|Z =2) > 1 — e} > 1— e

((X’Z7f<z)) € SE(B)(X7 Z,]>|Z = Z) >1- \/E}

Then by the definition of S% (X, 2),

Pr((X,2) ¢ S(P(X,2))
< Pr(X ¢ S (X|2))

+Pr{(x,z) : Pr(X € S (X|2)|Z = z) < 1 — e}
<e+e
< 2V,

and thus Pr(S%) (X, Z)) > 1 — 2\/c.

B. Proof of Lemma 5.2-3)
Consider B sufficiently large. We have
Pr(Z ¢ SO (Z)x,1))
= Pr(f(Z) =1,(X,Z) ¢ SV (X, 2))
< 2V/e.
On the other hand,

Pr(Z ¢ S (Zx,1))
= Y Pz ¢ SP(Zx DX =xT=i)px,i)
(x,1)esP) (x,1)
+ )
(x,1)2S P (X,1)
> e Pr((X,1) ¢ SP)(X, 1)).

Pr(Z ¢ S (Z]x,T)|X = x,T = i)p(x, i)

Therefore, Pr((X,I) ¢ SE(B)(X, 1)) < 2\/e/ e = 2e, and
Pr(X,T) € S (X, 1)) > 1 -2y

Consider any (x,1i) € SE(B)(X, I). From the definition of
s (x,1),

Pr(Z € SB(Z|x,i)|X =x,1=1) >1— Ve

Therefore, SE(B)(Z |x,1) must be nonempty, i.e., there exists
at least one z € SE(B)(Z|X, i). Pick up any z € SE(B)(Z|X, i).
By the definition of S (Z]x,1), we have i) f(z) = i and
ii) (x,2) € S%(X, Z) such that (x,z,i) € S% (X, Z,I).
Then, it follows from the definition of Se(B)(X ,Z,I) that

2an(an+e) < p(i‘X) < 27nB(an76).
Furthermore,

Pr(Z € S (Z|x,1)[X = x)
Pr(f(Z) = i|X = x)Pr(Z € S (Z|x,1)|X = x, f(Z) = i)

Pr(f(Z) =i|Z € S (Z]x,1),X = x)
= p(iJx)Pr(SP)(Z|x,1)|X = x,I = i)
> 2Bt - )
> 9—nB(an+2¢)

for sufficiently large B.



C. Proof of Lemma 5.2-4)
For B sufficiently large,

Pr(I € SB)(I))

i)

> Pr{i Pr(X e SB)(Xx

>1—2¥e

I=i)>1- 2\%}

APPENDIX D

Consider the following upper bound jointly imposed by (8)-
(9) and (67),

1 P P
R< -1 14+ —+ — 78
_20g<+Nl+N2) (78)
1 P
< =1 1+ — —a”
R_2 0g< +N2>—|—R0 a (79)

where a* is the solution to the equation
1 P 1 P
-1 14+ — Ry — -1 14+ —
2og<+N2)+ 0 2og(+N1>

N Ny (N N
= (N;+1) at 4y =L <N12a*1n2+1— Nl> loge.

N 2 2
(80)
To show that the largest gap between our bound in Proposition
6.1 and the cut-set bound in (3)—(4) remains to be A* =
0.0535, it suffices to show that the above bound and the cut-
set bound differ from each other at most 0.0535.

Similarly as in Appendix A, one can argue that the largest
gap between the above bound and the cut-set bound happens
only when (79) and (4) are active respectively, in which case
the gap is given by the a* satisfying (80). Note that for (4) to
be active in the cut-set bound, one must have

1 P 1 P P
-1 1+ — Ry < =1 1+—+—.
2og(+N2>+ 0_2og(+N1+N2>

Then to find the largest a* we impose the following relation:

11 1+ P + P 11 1+ P
“1o 4= )-Z1I0 —
2 B\ TN TN 2% U T
Ny Ny (N, Ny
=—+4+1)a" — ( —2a*In2+4+1— — ) loge.
(N2+)a+ N2<N2a n2-+ i oge
Letting z; = % for i € {1, 2} and solving the above equation,
we have (81), where the maximum value a* = 0.0535 is
attained when x; = x2 = oco. This shows that the largest gap

between our bound in Proposition 6.1 and the cut-set bound
remains to be 0.0535.
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