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a b s t r a c t

Completeness and bounded-completeness conditions are used increasingly in econometrics to obtain
nonparametric identification in a variety of models from nonparametric instrumental variable regression
to non-classical measurement error models. However, distributions that are known to be complete or
boundedly complete are somewhat scarce. In this paper, we consider an L2-completeness condition that
lies between completeness and bounded completeness. We construct broad (nonparametric) classes of
distributions that are L2-complete and boundedly complete. The distributions can have any marginal
distributions and a wide range of strengths of dependence. Examples of L2-incomplete distributions also
are provided.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Some of Robert Basmann’s contributions concerned issues of
identification in structural model estimation, see Basmann (1957,
1959). This paper considers closely related issues of identification
in a variety of nonparametric models.

Lehmann and Scheffé (1950) and Lehmann (1955) introduce
the concept of completeness and use it to determine estimators
with minimal risk in classes of unbiased estimators and to char-
acterize tests that are similar. More recently, completeness and
the weaker concept of bounded completeness have been used in
the econometrics literature to obtain global and local identifica-
tion conditions for a variety of nonparametric and semiparametric
models. See the references below. In consequence, it is important
to have available a broad array of distributions that are known to
satisfy or fail these conditions.

A number of papers in the literature provide sufficient con-
ditions for completeness and bounded completeness. Newey and
Powell (2003) give a rank condition for completeness of distribu-
tions with finite support. Lehmann (1986) and Newey and Powell
(2003) give sufficient conditions for parametric families in the ex-
ponential family, with the leading case being multivariate normal
distributions. Ghosh and Singh (1966), Isenbeck and Ruschendorf
(1992), and Mattner (1992) give conditions for location and scale
families. Hu and Shiu (2012) provide some additional results.

d’Haultfoeuille (2011) provides sufficient conditions for
bounded completeness for random vectors X and Z that satisfy
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µ(X) = ν(Z) + ε for some functions µ(·) and ν(·), where Z and
ε are independent, ν(Z) is absolutely continuous with respect to
(wrt) Lebesgue measure with full support RdX , and ε is absolutely
continuous wrt Lebesgue measure with nowhere vanishing char-
acteristic function. These are quite useful results but they do not
allow for unbounded regression functions in the nonparametric
instrumental variables (IV) regressionmodel or non-classical mea-
surement error in measurement error models, and the full support
condition can be restrictive. d’Haultfoeuille (2011) also provides
some sufficient conditions for completeness, but these conditions
are quite restrictive.

In addition, several other papers in the literature provide ex-
amples of distributions that are boundedly complete, but not
complete. These include Hoeffding (1977), Bar-Lev and Plachky
(1989), andMattner (1993). The boundedly complete distributions
in these papers are restrictive and are not very suitable for typical
econometric applications.

In this paper, we provide additional examples of distributions
that satisfy completeness-type conditions and others that fail
them. We consider the concept of L2-completeness. This concept,
or at least very closely related concepts, have been used by oth-
ers, e.g., Florens et al. (1990, Ch. 5), Isenbeck and Ruschendorf
(1992), Mattner (1992, 1996), San Martin and Mouchart (2007),
and Severini and Tripathi (2006). Completeness and bounded com-
pleteness can be viewed as L1-completeness and L∞-completeness,
respectively, so L2-completeness lies between the two (because,
as defined below, Lj = Lj(FX ) for a probability distribution FX for
j = 1, 2). It allows for unbounded regression functions in the
nonparametric IV regression model and related semiparametric
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models, which are ruled out when the bounded completeness
condition is used. The joint distribution of two random vectors
X and Z is L2-complete wrt X if and only if every non-constant
square-integrable function of X is correlated with some square-
integrable function of Z .

We construct distributions of (X, Z) that are L2-complete or L2-
incomplete wrt X by starting with (i) anymarginal distributions FX
and FZ , respectively, (ii) two arbitrary sets of bounded orthonormal
functions in L2(FX ) and L2(FZ ), and (iii) a sequence of constants
{τj : j ≥ 1}. The constructed bivariate density is

kτ (x, z) = 1 +

rZ∑
j=1

τjp(j)(x)q(j)(z), (1.1)

where the density is wrt the product of the marginal distributions
FX × FZ , {p(j) : j = 0, . . . , rX } is an orthonormal basis of L2(FX )
consisting of bounded functions, p(0)(x) = 1 ∀x, and {q(j) : j =

1, . . . , rZ } is a set of bounded orthonormal functions in L2(FZ ).
Under a condition on {τj}, kτ (x, z) is a proper density—it integrates
to one and is non-negative. The resulting bivariate distribution
is L2-complete wrt X if and only if rZ = rX and τj ̸= 0 for all
j = 1, . . . , rZ . Hence, one can construct easily a broad array of
bivariate distributions that are L2-complete and also a broad array
that are L2-incomplete. The method of construction employs the
method used in a simple example of Lancaster (1958), which does
not consider completeness.

If X and Z are absolutely continuous wrt Lebesgue measure,
then the bivariate density kτ wrt to the product of the marginals
FX and FZ can be converted easily into a standard bivariate density
wrt Lebesgue measure on RdX+dZ , where dX and dZ denote the
dimensions of X and Z , respectively.

StartingwithDarolles et al. (2011), it is common in the nonpara-
metric IV regression literature, to obtain identification as follows.
Given the conditional distribution of X and Z , one defines the con-
ditional expectation operator, say T , one obtains the singular value
decomposition (SVD) of T using standard operator results, e.g., see
Kress (1999, Sec. 15.4), and one assumes that the eigenvalues of T
are all non-zero. The SVD yields a density of the form in (1.1).

The L2-completeness results of this paper give a converse to
this procedure. Startingwith orthonormal functions {p(j)} and {q(j)}
and constants {τj}, one can define a function kτ (x, z) as in (1.1).
But, such a function is not necessarily a density because the or-
thonormal functions {p(j)} and {q(j)} take on positive and negative
values and, hence, kτ (x, z) can be negative. This paper provides a
simple set of sufficient conditions to guarantee that kτ (x, z) is a
proper density. The conditions given are sufficiently weak that one
can construct a broad (i.e., nonparametric) class of distributions
that are L2-complete. In a certain sense, the distributions that are
L2-complete wrt X are generic in the class of distributions that
are constructed. (The sense considered follows the concepts of
shyness and prevalence introduced in Christensen (1974), Hunt
et al. (1992), and Anderson and Zame (2001).) Nevertheless, one
also can construct many L2-incomplete distributions.

We now briefly discuss the use of completeness conditions in
the econometrics literature. Completeness, L2-completeness, and
bounded completeness conditions can be used to obtain global or
local identification in a variety of models. These models include:
(i) the nonparametric IV regression model, see Newey and Powell
(2003), Hall and Horowitz (2005), Darolles et al. (2011), and refer-
ences inHorowitz (2011), (ii) semiparametric IVmodels, see Ai and
Chen (2003), Blundell et al. (2007), and Chen and Pouzo (2009), (iii)
nonparametric IV quantile models, see Chernozhukov and Hansen
(2005), Chernozhukov et al. (2007), Horowitz and Lee (2007), Chen
and Pouzo (2012), and Chen et al. (2014), (iv) measurement er-
ror models, see Bissantz et al. (2007), Hu and Schennach (2008),
Carroll et al. (2009), An and Hu (2012), Song (2015), and Wilhelm

(2015), (v) demand models, see Berry and Haile (2009b, 2014),
(vi) dynamic optimization models, see Hu and Shum (2012), (vii)
generalized regression models with group effects, see Berry and
Haile (2009a), (viii) asset pricing models, see Chen and Ludvigson
(2009), and (ix) missing data models, see Sasaki (2011).

Papers that address testing for completeness include Canay
et al. (2013) and Freyberger (2017).

The remainder of the paper is organized as follows. Section 2
discusses the L2-completeness condition. Section 3 gives classes
of bivariate distributions of random variables and vectors that are
L2-complete and others that are L2-incomplete. Section 4 provides
proofs.

2. L2-completeness

In this section,we define the concept of L2-completeness,which
is very closely related to thewell-known concepts of completeness
and bounded completeness, see Lehmann (1986, p. 173). In conse-
quence, L2-completeness can be used to give conditions for non-
parametric identification in a variety of models. L2-completeness
is not original to this paper.1

Let X and Z be random elements that take values in complete
separable metric spaces X and Z , respectively, and are defined
on the same probability space. In applications, X and Z typically
are random variables or vectors, possibly of different dimensions,
but they could be stochastic processes. We say that a bivariate
distribution FXZ of random elements X and Z is L2-complete wrt X
if ∀h ∈ L2(FX ),

E(h(X)|Z) = 0 a.s.[FZ ] implies that h(X) = 0 a.s.[FX ], (2.1)

where the expectation is taken under FXZ .2, 3, 4 In words, L2-
completeness means that if h ∈ L2(FX ) has conditional mean zero
given Z , then h equals zero a.s. In contrast to the well-known con-
ditions of completeness and bounded completeness, the family of
functions h considered here is L2(FX ), rather than L1(FX ) or L∞(FX ),
respectively. Although L2-completeness imposes a secondmoment
condition, rather than the weaker first moment condition imposed
by a completeness condition, it is still useful in most applications
for which unbounded functions h are of interest.

For example, consider the nonparametric IV regression model
with regressor X , IV Z , and regression function h(X). The use of
L2-completeness wrt X to identify h, rather than completeness,
imposes the restriction h ∈ L2(FX ), rather than h ∈ L1(FX ), but
allows for a much broader class of joint distributions of X and
Z . Unlike the bounded completeness condition, L2-completeness
does not require that h is bounded, which can be restrictive.

1 See the Introduction for references to its use in the literature.
2 The L2-completeness of a bivariate distribution FXZ wrt X depends on FXZ

through the conditional distribution of X given Z , the marginal distribution of X
(because L2(FX ) enters the definition), and the collection of null sets of Z (be-
cause a.s.[FZ ] enters the definition). The marginal distribution of Z only affects L2-
completeness through its collection of null sets.
3 An L2 version of Oosterhoff and Schriever’s (1987) definition of P∗ complete-

ness (which is an L1 definition) is almost the same as the definition used here.
4 One can give a closely-related definition of L2-completeness that is more akin

to the definition of completeness given in Lehmann and Scheffé (1950). One can
define a family of distributions F ∈ {FX,θ : θ ∈ Θ} of the random vector X to be
L2-complete if ∀h ∈ L2(FX ),

Eh(X) = 0 ∀FX,θ ∈ F implies that h(X) = 0 a.s.[FX,θ ] ∀θ ∈ Θ, (2.2)

where the expectation of X is taken under FX,θ . Here, θ is a fixed parameter and its
parameter space isΘ , which play the role of z and the support of FZ , respectively, in
(2.1), and FX,θ is the distribution of X , which plays the role of the conditional distri-
bution of X given Z = z in (2.1). For the purposes of identification in nonparametric
models, the definition of L2-completeness of the bivariate distribution FXZ wrt X
given in (2.1) is more convenient than the definition given in (2.2).
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The definition above can be weakened to bounded complete-
ness of the bivariate distribution FXZ wrt X by requiring the func-
tion h in the definition to be a bounded function. Obviously,
L2-completeness of FXZ wrt X implies bounded completeness of FXZ
wrt X .

We say that a random variable is non-constant if its distribution
is not a point mass distribution.

A simple and intuitive characterization of L2-completeness is
the following result, which is a slightly different statement of
Lemma 2.1 of Severini and Tripathi (2006):

Proposition 1. FXZ is L2-complete wrt X if and only if every non-
constant rv λ(X) ∈ L2(FX ) is correlated with some rv φ(Z) ∈ L2(FZ ).5

3. Examples of L2-complete distributions

In this section, we construct bivariate distributions FXZ,τ that
are L2-complete and others that are L2-incomplete. The marginal
distributions can be any distributions FX and FZ of interest.

3.1. Bivariate distributions FXZ,τ of random elements X and Z

Given any marginal distributions FX and FZ , we construct a
distribution FXZ,τ by specifying its density kτ (x, z) wrt the product
of itsmarginal distributions FX ×FZ .6 To do so, we use the following
assumptions.

Assumption 1. {p(j) : 0 ≤ j ≤ rX } is an orthonormal basis of
L2(FX ) with p(0)(x) = 1 ∀x ∈ X and {q(j) : 0 ≤ j ≤ rZ } is a set of
orthonormal functions in L2(FZ ) with q(0)(z) = 1 ∀z ∈ Z , where
0 ≤ rX , rZ ≤ ∞.7

Assumption 2. The functions {p(j)} and {q(j)} are bounded in abso-
lute value on the supports of FX and FZ , respectively, with bounds
{BX,j : 0 ≤ j ≤ rX } and {BZ,j : 0 ≤ j ≤ rZ }.

Assumption 3. {τj : j = 1, . . . , rZ } is a sequence of constants that
satisfies

∑rZ
j=1|τj|BX,jBZ,j ≤ 1, where 0 ≤ rZ ≤ rX .

Assumptions 1 and 2 hold for a wide variety of functions. Some
examples are given below. However, Assumption 2 does rule out
some orthonormal functions, such as the Hermite polynomials on
R or Rd, which appear in an orthonormal expansion of the bivariate
normal distribution, see Lancaster (1957). Note that an orthonor-
mal basis of L2(FX ) contains rX + 1 (≤∞) functions if and only if
the support of FX contains rX + 1 (≤∞) points. (See Section 4 for
a proof.) When rZ = ∞, Assumption 3 can hold for sequences that
converge to zero arbitrarily quickly, as well as those that converge
as slowly as |τj|

−(1+δ) for any δ > 0 when supj≥1(BX,jBZ,j) < ∞.
Define the density kτ (x, z) by

kτ (x, z) = 1 +

rZ∑
j=1

τjp(j)(x)q(j)(z). (3.1)

Theorem 1 shows that kτ (x, z) is a density function wrt FX × FZ for
any choice of functions {p(j)} and {q(j)} and any constants {τj} that
satisfy Assumptions 1–3. In particular, Assumption 1 guarantees
that kτ (x, z) integrates to one and Assumptions 2 and 3 ensure that

5 By definition, h ∈ L2(FX ) means
∫
h2(x)dFX (x) < ∞. For convenience, but with

some abuse of notation, we let h(X) ∈ L2(FX ) mean that the random variable h(X)
satisfies Eh2(X) < ∞ when X ∼ FX . Thus, h ∈ L2(FX ) and h(X) ∈ L2(FX ) are
equivalent. This notation also is used for functions φ(Z) of Z ∼ FZ .
6 That is, we are starting with marginal distributions FX and FZ and we are

specifying a density kτ (x, z) that yields a joint distribution FXZ,τ . We are not starting
with FX , FZ , and FXZ,τ and determining the density kτ (x, z).
7 In Assumption 1, {q(j) : 0 ≤ j ≤ rZ } need not be an orthonormal basis of L2(FZ ).

kτ (x, z) is non-negative. Let FXZ,τ denote the bivariate distribution
of X and Z that corresponds to the density kτ (x, z) and themarginal
distributions FX and FZ .

Example 1. Nowwe illustrate functions {p(j)} and {q(j)} that satisfy
Assumptions 1 and 2 in the case of absolutely continuous ran-
dom vectors X and Z with dimensions dX and dZ , respectively.
Consider bounded functions {u(j)

: j = 0, 1, . . . , rX } and {v(j)
:

j = 0, 1, . . . , rZ } on [0, 1]dX and [0, 1]dZ , respectively, that are
orthonormal wrt Lebesgue measure, have u(0)(x) = v(0)(z) = 1
∀x ∈ [0, 1]dX , z ∈ [0, 1]dZ , and for which {u(j)

: j = 0, 1, . . . , rX }
is a basis of the set of L2 functions (wrt Lebesgue measure) on
[0, 1]dX . Products of trigonometric functions (each scaled to lie in
[0, 1]dm , rather than [0, 2π ]

dm , for m = X, Z) provide one ex-
ample. Products of shifted Legendre polynomials provide another
example. In fact, any countably dense sets of bounded functions on
[0, 1]dX and [0, 1]dZ that are orthonormalized, e.g., by the Gram–
Schmidt process, yield other examples. The type of orthonormal
functions for X , e.g., trigonometric functions, can be different from
the orthonormal functions for Z , e.g., shifted Legendre polynomials.
Shuffling the orders of the functions {u(j)

} and {v(j)
} (so that differ-

ent u(j) functions match up with different v(j) functions) provides
additional examples.

Then, the functions

{p(j) = u(j)
◦ FX : j = 0, 1, . . .} and

{q(j) = v(j)
◦ FZ : j = 0, 1, . . . , rZ }

(3.2)

satisfy Assumptions 1 and 2 with rX = ∞.8 □

Example 2. Suppose FX and FZ are uniform on [0, 1]dX and [0, 1]dZ ,
respectively. Then, the density kτ (x, z) of FXZ,τ is a copula density
on [0, 1]dX+dZ , which we denote by cτ (x, z). Using the functions
{u(j)

} and {v(j)
} defined in Example 1, the following function is a

copula density provided Assumption 3 holds:

cτ (x, z) = 1 +

rZ∑
j=1

τju(j)(x)v(j)(z). □ (3.3)

Example 3. As above, suppose FX and FZ are absolutely continuous
with densities fX and fZ wrt Lebesgue measure on [0, 1]dX and
[0, 1]dZ , respectively. Then, the following functions, kτ and fτ , are
proper densities wrt FX × FZ and wrt Lebesgue measure on RdX+dZ ,
respectively, of a bivariate distribution FXZ,τ :

kτ (x, z) = cτ (FX (x), FZ (z)) and

fτ (x, z) = cτ (FX (x), FZ (z))fX (x)fZ (z) (3.4)

provided Assumption 3 holds. Given any copula density cτ as in
(3.3) one obtains bivariate distributions FXZ,τ with any absolutely
continuous marginal distributions FX and FZ that are desired. □

3.2. L2-completeness of FXZ,τ

The L2-completeness of FXZ,τ wrt X depends on whether the
following Assumption holds or not.

Assumption 4. (i) τj ̸= 0 ∀j = 1, . . . , rZ and (ii) rZ = rX .

If Assumption 4 holds, then every basis function p(j) for j =

0, . . . , rX enters the density kτ (x, z) with a non-zero coefficient.
Given this, one can show that every non-constant function λ(X) ∈

L2(FX ) is correlated with some function φ(Z) ∈ L2(FZ ), see Theo-
rem 1.

8 By definition, (u(j)
◦ FX )(x) = u(j)(FX (x)) for x ∈ RdX and likewise for v(j)

◦ FZ .
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If the support of X is finite, then Assumption 4(ii) requires that
the number of points in the support of Z is greater than or equal
to the number in the support of X . If the support of X is infinite,
then Assumption 4 requires rZ = ∞ and τj ̸= 0 ∀j ≥ 1. But,
Assumption 4 does not require that {q(j) : 0 ≤ j ≤ rZ } is an
orthonormal basis of L2(FZ ). For example, {q(j) : 0 ≤ j ≤ rZ } could
consist of the odd-numbered terms of some orthonormal basis of
L2(FZ ).

The following theorem is the main result of the paper.

Theorem 1. Suppose Assumptions 1–3 hold. Then,
(a) kτ (x, z) is a proper bivariate density function wrt FX × FZ and
(b) the bivariate distribution FXZ,τ defined by the density kτ is L2-

complete wrt X if and only if Assumption 4 holds.

Comments 1. Given anymarginal distributions FX and FZ , consider
the class of bivariate distributions with densities kτ (wrt FX ×

FZ ) of the form in (3.1) that is generated by a fixed choice of
orthonormal functions {p(j)} and {q(j)} that satisfy Assumptions 1
and 2 and all sequences of constants {τj : j = 1, . . . , rZ } that
satisfy Assumptions 3 and 4. This is a nonparametric (i.e., infinite-
dimensional) class of L2-complete distributions wrt X when rZ =

∞. Re-ordering the orthonormal functions {p(j)} and {q(j)} leads
to additional nonparametric classes of L2-complete distributions.
Different orthonormal functions {p(j)} and {q(j)} lead to additional
nonparametric classes of L2-complete distributions. Taking unions
of the preceding classes of L2-complete distributions over different
marginal distributions leads to larger nonparametric classes of L2-
complete distributions.
2. The question naturally arises: Howmany bivariate distributions
FXZ can be written in the form of FXZ,τ? Results of Lancaster (1958,
1963) for bivariate distributions and results of Darolles et al. (2011)
based on the singular value decomposition of the conditional ex-
pectation operator (see Kress (1999, Sec 15.4)) show that the
answer is that many are of this form. Let FXZ ≪ FX ×FZ denote that
FXZ is absolutely continuous wrt FX × FZ . Consider the following
assumption:

Assumption A. (i) FXZ ≪ FX × FZ and (ii) k ∈ L2(FX × FZ ), where k
is the Radon–Nikodym derivative of FXZ wrt FX × FZ .

Assumption A(i) rules out joint distributions of (X, Z) for which
X is a deterministic function of Z and vice versa. In econometric
applications of completeness or L2-completeness, this usually is
not restrictive. Note that FXZ,τ and kτ satisfy Assumption A under
Assumptions 1–3.9 The references immediately above show that
any bivariate distribution FXZ that satisfies Assumption A has a
density k wrt FX × FZ of the form in (3.1) and Assumption 1 holds.

Theorem1(a) is a partial converse to these results. Theorem1(a)
says that given suitable orthonormal functions and some condi-
tions on the constants {τj} one obtains a proper bivariate distribu-
tion.
3. Assumptions 2 and 3 in Theorem 1 can be replaced by the more
general, but less easily verified, condition:

Assumption 2∗. (i) kτ (x, z) ≥ 0 a.s. [FX × FZ ] and (ii) kτ ∈

L2(FX × FZ ).

Several bivariate distributions in the literature have been
shown to satisfy Assumptions 1 and 2∗, but not 2 and 3, includ-
ing the bivariate normal, gamma, Poisson, binomial, hypergeo-
metric, and negative binomial, see Campbell (1934), Aitken and
Gonin (1935), Kibble (1941), Eagleson (1964), and Hamdan and
Al-Bayyani (1971).10 In all cases, Assumption 4 holds with rX =

9 This holds because k2τ (x, z) = (1+
∑rZ

j=1τjp
(j)q(j))2 ≤ (1+

∑rZ
j=1|τj|BX,jBZ,j)2 ≤ 4

by Assumption 3.
10 I thank Daniel Wilhelm for references.

rZ = ∞, so the distributions are L2-complete wrt both X and Z by
Theorem 1.11
4. Using the canonical correlation representation of Lancaster
(1958, 1963), it can be shown that when (X, Z) has density kτ ,
as in (3.1), then p(1)(X) and q(1)(Z) are the mean-zero variance-
one functions of X and Z , respectively, that maximize the corre-
lation between X and Z . In addition, by direct calculation, τ1 =

Corr(p(1)(X), q(1)(Z)). Furthermore, for j = 2, . . . , rZ , p(j)(X) and
q(j)(Z) are the mean-zero variance-one functions of X and Z that
maximize the correlation between X and Z subject to being un-
correlated with {p(j)(X) : m = 1, . . . , j − 1} and {q(m)(Z) : m =

1, . . . , j − 1}, respectively. Also, τj = Corr(p(j)(X), q(j)(Z)).
5. It is sometimes of interest to view X as a function of Z and
some unobservable V . Suppose (X, Z) have a joint df FXZ,τ as in
Theorem 1, X is a scalar random variable, and Z is a random vector
(or a random element). Then, one can generate X via the equation

X = h(Z, V ), (3.5)

where Z and V are independent random variables, Z ∼ FZ , V ∼ FV
for any distribution FV that is absolutely continuous wrt Lebesgue
measure on R, and h(z, v) is a suitably chosen function.12 Hence, if
FXZ,τ satisfies Assumption 4, then (X, Z) generated as in (3.5) are
L2-complete wrt X but otherwise are not.
6. Suppose rX = rZ = ∞. Consider the space of ℓp sequences for
some 1 ≤ p ≤ ∞ that satisfy Assumption 3:

CB =

⎧⎨⎩{τj : j ≥ 1} ∈ ℓp :

∞∑
j=1

|τj|BX,jBZ,j ≤ 1

⎫⎬⎭ . (3.6)

One can ask: for sequences in CB, howgeneric is the property τj ̸= 0
∀j ≥ 1? That is, howgeneric is the completeness property specified
by Assumption 4? For finite-dimensional spaces, a property often
is said to be generic if the set of points for which the property fails
has Lebesgue measure zero. In infinite-dimensional spaces, such
as CB, the concept of genericity is more complicated. Topological
notions of genericity often are too weak, see Anderson and Zame
(2001) and Stinchcombe (2002). Measure-theoretic notions are
more useful. Christensen (1974) and Hunt et al. (1992) (indepen-
dently) develop ameasure-theoretic notion of ‘‘genericity’’ for vec-
tor spaces that the latter authors call prevalence. A set is prevalent
if its complement is shy. The shyness of a set is a natural extension
to an infinite-dimensional vector space of a set having Lebesgue
measure zero in a finite-dimensional space.

The set CB is not a vector space. In fact, it is a shy set in the
vector space ℓp. Thus, the definition of shyness and prevalence
in Christensen (1974) and Hunt et al. (1992) cannot be applied
here. However, the same issue that the space of interest is not a
vector space also arises in various areas of economic theory where
it is natural to ask whether a property is generic. In consequence,
Anderson and Zame (2001) have extended the concept of shyness
and prevalence to convex subsets of vector spaces. The set CB is
convex and hence their definition is applicable here.

11 One cannot use the bivariate density expansions just listed to obtain non-
parametric classes of L2-complete distributions just by perturbing the coefficients
{τj : j ≥ 1} in these expansions. The reason is that the resulting functions are
not necessarily non-negative. Note that the basis functions {p(j) : j ≥ 1} and
{q(j) : j ≥ 1} necessarily take negative values because they integrate to zero wrt
FX and FZ , respectively.
12 Let FX |Z,τ (x|z) denote the conditional distribution of X given Z = z under FXZ,τ .
Let h∗(z, u) = F−1

X |Z,τ (u|z) for u ∈ [0, 1], where F−1
X |Z,τ (u|z) is the uth quantile of

FX |Z,τ (·|z). Let h(z, v) = h∗(z, FV (v)). Let X = h(Z, V ). We claim that (X, Z) ∼ FXZ,τ .
Under the assumptions, U = FV (V ) ∼ U[0, 1]. We have X = h∗(Z,U) = F−1

X |Z,τ (u|z).
The conditional distribution of X given Z = z is the distribution of F−1

X |Z,τ (U |z). But,
this is the conditional distribution FX |Z,τ (·|z) as desired, because for any distribution
F , X̃ = F−1(U) ∼ F . This holds whether or not FX |Z,τ (·|z) is a continuous conditional
distribution.
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Their definition is as follows. Let X be a topological vector space
and let C ⊂ X be a subset that is completely metrizable in the
relative topology induced from X . Let c ∈ C . A set E ⊂ C which is
universally measurable in X is said to be shy in C at c if for each
δ > 0 and each neighborhood W of 0 in X , there is a regular
Borel probability measure µ on X with compact support such that
supp(µ) ⊂ [δ(C − c)+ c] ∩ (W + c) and µ(E + x) = 0 ∀x ∈ X .13 By
definition, E is shy in C if it is shy in C at c for all c ∈ C . An arbitrary
subset F ⊂ C is shy in C if it is contained in a shy universally
measurable set. A subset S ⊂ C is prevalent in C if its complement
C \ S is shy in C . Anderson and Zame (2001, p. 12) show that if E is
shy at some c ∈ C then it is shy at every c ∈ C and hence is shy at C .

See Hunt et al. (1992) and Anderson and Zame (2001) for dis-
cussions of why the concept of shyness is a suitable extension to
infinite-dimensional spaces of a set (in a finite-dimensional space)
having Lebesgue measure zero. The key is that a set E in Rk is shy
if and only if it has Lebesgue measure zero. See Hunt et al. (1992,
p. 219).

We have the following genericity result for Assumption 4.

Lemma 1. Suppose rX = rZ . The set of sequences S = {{τj} ∈ CB :

τj ̸= 0∀j ≥ 1} is a prevalent subset of CB.

7. Because the definition of prevalence is somewhat complicated,
we give an alternative genericity result here. Consider the space of
sequences Sτ = {{τj : j ≥ 1} : |τj| ≤ DB−1

X,jB
−1
Z,j j

−1−δ
∀j ≥ 1} for

some δ > 0 and D = (
∑

∞

j=1j
−1−δ)−1. Such sequences all satisfy

Assumption 3. How generic is the property τj ̸= 0 ∀j ≥ 1? If
one considers a property to be generic if the µ-measure of the set
for which the property fails is zero for some measure µ, then the
property τj ̸= 0 ∀j ≥ 1 is generic for anymeasureµ on Sτ (coupled
with some σ -field FSτ ) for which the induced measure on any
set of finite subsequences is absolutely continuous wrt Lebesgue
measure.14
8. Given any marginal distributions FX and FZ , consider the class of
bivariate distributionswith densities kτ (wrt FX ×FZ ) of the form in
(3.1) that is generated by a fixed choice of orthonormal functions
{p(j)} and {q(j)} that satisfy Assumptions 1 and 2 and all sequences
of constants {τj : j = 1, . . . , rZ } that satisfy Assumption 3 for some
fixed constants {BX,j : 1 ≤ j ≤ rX } and {BZ,j : 1 ≤ j ≤ rZ }.
The set of incomplete distributions in this class (i.e., those that fail
Assumption 4) is a dense subset (under the L2(FX × FZ ) metric).

See Santos (2012, Lemma 2.1), for a related L∞-denseness result
for incomplete distributions (roughly speaking) in the class of
distributions with compact support and smooth density functions
wrt Lebesgue measure.

4. Proofs

4.1. Proof of Proposition 1

The proof of Proposition 1 uses the following Lemma.

Lemma 2. For any non-constant λ(X) ∈ L2(FX ) with Eλ(X) = 0,

E(λ(X)|Z) = 0 a.s.[FZ ]
iff Corr(λ(X), φ(Z)) = 0 for all non-constant φ(Z) ∈ L2(FZ ).

13 A Borel measure µ is regular if, for every Borel set B, µ(B) = sup{µ(C) : C ⊂

B, Ccompact} = inf{µ(D) : D ⊃ B,Dopen}. A subsetC ⊂ X isuniversallymeasurable
if it is measurable with respect to the completion of every regular Borel probability
measure on X .
14 That is, the condition on µ is that µ{j1,...,jK } is absolutely continuous wrt to
Lebesguemeasure on RK for any non-redundant finite positive integers {j1, . . . , jK },
where µ{j1,...,jK } is the measure defined by µ{j1,...,jK }({{τjk : k = 1, . . . , K } :

|τjk | ≤ CB−1
X,jk

B−1
Z,jk

j−1−δ
k for k = 1, . . . , K }) = µ({{τj : j ≥ 1} : |τjk | ≤

CB−1
X,jk

B−1
Z,jk

j−1−δ
k for k = 1, . . . , K }).

Proof of Lemma2. Let σ 2
λ = Var(λ(X)) > 0 and σ 2

φ = Var(φ(Z)) >
0. We have

Corr(λ(X), φ(Z)) = Eλ(X)φ(Z)/(σλσφ)
= E[E(λ(X)|Z)φ(Z)]/(σλσφ), (4.1)

where the first equality uses Eλ(X) = 0 and the second holds by
iterated expectations.

If E(λ(X)|Z) = 0 a.s.[FZ ], then the right-hand side of (4.1) equals
zero, which establishes the ‘‘only if’’ statement of the Lemma.

To prove the ‘‘if’’ statement, take φ(Z) = E(λ(X)|Z) in (4.1) to
obtain

Corr(λ(X), φ(Z)) = E[E(λ(X)|Z)]2/(σλσφ). (4.2)

Then, Corr(λ(X), φ(Z)) = 0 implies E(λ(X)|Z) = 0 a.s.[FZ ] and the
proof is complete. □

Proof of Proposition 1. The following are equivalent:
1. Every non-constant rv λ(X) ∈ L2(FX ) is correlated with some

rv φ(Z) ∈ L2(FZ ).
2. Every mean zero, non-constant rv λ(X) ∈ L2(FX ) is correlated

with some rv φ(Z) ∈ L2(FZ ).
3. For every mean zero, non-constant rv λ(X) ∈ L2(FX ),

E(λ(X)|Z) = 0 a.s.[FZ ] fails to hold.
4. For every mean zero rv λ(X) ∈ L2(FX ), if λ(X) = 0 a.s.[FX ] fails

to hold, then E(λ(X)|Z) = 0 a.s.[FZ ] fails to hold.
5. If h(X) ∈ L2(FX ) and E(h(X)|Z) = 0 a.s.[FZ ], then h(X) = 0

a.s.[FX ].
6. FXZ is L2-complete wrt X .
The equivalences of 1 and 2, 3 and 4, and 4 and 5 are straight-

forward. The equivalence of 2 and 3 holds by Lemma 2. The equiv-
alence of 5 and 6 holds by the definition of L2-completeness. □

4.2. Proof of Theorem 1

First, we provide some useful expressions for h ∈ L2(FX ) and
E(h(X)|Z = z) when (X, Z) ∼ FXZ,τ . These results are used in the
proof of Theorem 1. Define the inner products ⟨·, ·⟩FX and ⟨·, ·⟩FZ by

⟨h1, h2⟩FX =

∫
h1(x)h2(x)dFX (x) and

⟨m1,m2⟩FZ =

∫
m1(z)m2(z)dFZ (z)

(4.3)

for h1, h2 ∈ L2(FX ) and m1,m2 ∈ L2(FZ ). Note that ⟨h1, p(j)⟩FX =

Cov(h1(X), p(j)(X)) and ⟨m1, q(j)⟩FX = Cov(m1(Z), q(j)(Z)) for any
functions p(j) and q(j) as in Assumption 1 and (3.1) for j =

1, . . . , rZ .15
For h ∈ L2(FX ), let

hZ (z) = E(h(X)|Z = z). (4.4)

Define τ0 = 1. Let SX,τ denote the linear subspace of L2(FX ) that
is generated by the functions {p(j)1(τj ̸= 0) : j = 0, . . . , rZ }. Let S⊥

X,τ

denote the orthogonal complement of SX,τ in L2(FX ).

Lemma 3. Suppose FXZ,τ satisfies Assumptions 1–3. Then,
(a) for h ∈ L2(FX ),

hZ (z) =

rZ∑
j=0

τj⟨h, p(j)⟩FX q(j)(z) a.s. [FZ ],

(b) for h ∈ L2(FX ) and j = 0, . . . , rZ with τj ̸= 0,

⟨h, p(j)⟩FX = τ−1
j ⟨hZ , q(j)⟩FZ ,

15 This holds because p(0)(x) = q(0)(z) = 1 ∀x ∈ X , ∀z ∈ Z implies that
EFX p

(j)(X) = 0 and EFZ q
(j)(Z) = 0 ∀j ≥ 1.
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(c) if FXZ,τ satisfies Assumption 4, then for h ∈ L2(FX ),

h(x) =

rZ∑
j=0

τ−1
j ⟨hZ , q(j)⟩FZ p

(j)(x) a.s.[FX ], and

(d) for h ∈ S⊥

X,τ , hZ (z) = 0 a.s.[FZ ].

Comment. Lemma 3(a) provides an expression for the conditional
meanof a function in termsof the function itself and the orthogonal
functions and constants {τj} of FXZ,τ . Lemma 3(b) provides an
expression for certainweighted averages of a function h in terms of
its conditionalmean hZ and the orthogonal functions and constants
{τj} of FXZ,τ . Lemma 3(c) provides an expression for a function h
in terms of its conditional mean hZ and the orthogonal functions
and constants {τj} of FXZ,τ that holds when Assumption 4 holds.
Lemma 3(d) shows that the conditional mean given Z of a function
in S⊥

X,τ is zero.

Proof of Theorem 1. We have kτ ∈ L2(FX × FZ ) because k2τ (x, z) =

(1 +
∑rZ

j=1τjp
(j)(x)q(j)(z))2 ≤ (1 +

∑rZ
j=1|τj|BX,jBZ,j)2 ≤ 4 ∀x ∈

X , z ∈ Z by Assumption 3. Let ⟨·.·⟩FX×FZ denote the inner product
on L2(FX × FZ ).

Now we apply the Parseval–Bessel equality, e.g., see Dudley
(1989, Thm. 5.4.4), to show that the density kτ integrates to one:
⟨kτ , 1⟩FX×FZ =

∫ ∫
kτ (x, z)dFX (x)dFZ (z) = 1. The Parseval–Bessel

equality says: If {eα} is an orthonormal set in a Hilbert spaceH over
the real numbers, x ∈ H , y ∈ H , x =

∑
α∈Ixαeα for scalars {xα}, and

y =
∑

α∈Iyαeα for scalars {yα}, then ⟨x, y⟩ =
∑

α∈Ixαyα , where ⟨·, ·⟩

is the inner product on H .
We apply this result with (i) H = L2(FX × FZ ), (ii) {eα} equal

to the functions {p(j)q(j) : j = 0, . . . , rZ }, which are orthonormal
in L2(FX × FZ ), (iii) x = kτ =

∑rZ
j=0τjp

(j)q(j) (= 1 +
∑rZ

j=1τjp
(j)q(j)),

and (iv) y = 1 =
∑rZ

j=0τ
∗

j p
(j)q(j), where τ ∗

0 = 1 and τ ∗

j = 0 for
j = 1, . . . , rZ . This yields∫ ∫

kτ (x, z)dFX (x)dFZ (z) = ⟨kτ , 1⟩FX×FZ =

rZ∑
j=0

τjτ
∗

j = 1. (4.5)

Next, we have

kτ (x, z) = 1 +

rZ∑
j=1

τjp(j)(x)q(j)(z) ≥ 1 −

rZ∑
j=1

τjBX,jBZ,j ≥ 0 (4.6)

for all x and z in the supports of FX and FZ , respectively, using As-
sumption 3. Because kτ (x, z) integrates to one and is non-negative
on the support FX × FZ , it is a proper density function wrt FX × FZ ,
which proves part (a).

Now, we prove one direction of the if and only if result of
Theorem 1(b). Suppose Assumption 4 holds. If hZ (z) = 0 a.s.[FZ ],
then ⟨hZ , q(j)⟩FZ = 0 for j = 0, . . . , rZ . This and Lemma 3(c) (which
applies because Assumption 4 holds) yield h(x) = 0 a.s.[FX ], which
establishes that FXZ,τ is L2-complete.

Next, we prove the other direction of the if and only if result of
Theorem 1(b). Suppose Assumption 4 does not hold. Then, τj = 0
for some j = 1, . . . , rZ or rZ < rX . This implies that dim(S⊥

X,τ ) > 0
and the orthonormal basis {p(j) : j = rZ +1, . . . , rX if rZ < rX or j ≤

rZ&τj = 0} of S⊥

X,τ has at least one element. Let p(1)∗ denote any
element in this basis. We show that the function p(1)∗ ∈ S⊥

X,τ ⊂

L2(FX ) satisfies (i) E(p
(1)
∗ (X)|Z = z) = 0 a.s.[FZ ] and (ii) p(1)∗ (x) = 0

a.s.[FX ] does not hold, which implies that FXZ,τ is not L2-complete
wrtX . Property (i) holds by Lemma3(d). Property (ii) holds because
∥p(1)∗ ∥

2
=

∫
[p(1)∗ ]

2dFX = 1 by orthonormality. □

Proof of Lemma 3. First, we establish Lemma 3(a) and (b). Let SZ
denote the linear subspace of L2(FZ ) generated by the orthonormal

functions {q(j) : 0 ≤ j ≤ rZ }. Let S⊥

Z denote the orthogonal
complement to SZ in L2(FZ ). Let {q(j)∗ : j = 1, . . . , rZ∗} be an
orthonormal basis for S⊥

Z , where 0 ≤ rZ∗ ≤ ∞. If {q(j) : j ≤ rZ }
is a basis of L2(FX ), then rZ∗ = 0 and {q(j)∗ } is the empty set. By
construction, {q(j)} ∪ {q(j)∗ } is an orthonormal basis of L2(FZ ).

By definition, kτ (x, z) is the density of FXZ,τ wrt FX × FZ . The
density of FX wrt FX is the constant function 1. Hence, kτ (x, z) also
is the conditional density of FXZ,τ wrt FX × FZ . This yields

hZ (z) =

∫
h(x)kτ (x, z)dFX (x) a.s.[FZ ]. (4.7)

The second equality of the following equation holds by (4.7): for
m = 0, . . . , rZ ,

⟨hZ , q(m)
⟩FZ =

∫
hZ (z)q(m)(z)dFZ (z)

=

∫ ∫
h(x)kτ (x, z)dFX (x)q(m)(z)dFZ (z)

= ⟨hq(m), kτ ⟩FX×FZ , (4.8)

where ⟨·, ·⟩FX×FZ denotes the L2(FX × FZ ) inner product. Eq. (4.8)
also holds with q(m)

∗ in place of q(m) for m = 1, . . . , rZ∗.
Now we apply the Parseval–Bessel equality, see the proof of

Theorem 1, to the right-hand side of (4.8). For eachm = 0, . . . , rZ ,
we apply the Parseval–Bessel equality with (i) H = L2(FX × FZ ),
(ii) {eα} equal to the functions {p(j)q(ℓ) : 0 ≤ j ≤ rX , 0 ≤ ℓ ≤

rZ } ∪ {p(j)q(ℓ)∗ : 0 ≤ j ≤ rX , 1 ≤ ℓ ≤ rZ∗}, which are orthonormal in
L2(FX × FZ ),

(iii) x = hq(m)
=

rX∑
j=0

⟨h, p(j)⟩FX p
(j)q(m), (4.9)

where the second equality holds a.s.[FX ] because {p(j) : 0 ≤ j ≤ rX }
is an orthonormal basis of L2(FX ), and

(iv) y = kτ = 1 +

rZ∑
j=1

τjp(j)q(j), (4.10)

where the second equality holds by definition, see (3.1). We have
kτ ∈ L2(FX × FZ ) because k2τ (x, z) = (1 +

∑rZ
j=1τjp

(j)q(j))2 ≤

(1 +
∑rZ

j=1|τj|BX,jBZ,j)2 ≤ 4 by Assumption 3. In addition, hq(m)
∈

L2(FX × FZ ) because h ∈ L2(FX ) and q(m)
∈ L2(FZ ). By the Parseval–

Bessel equality, we have

⟨hq(m), kτ ⟩FX×FZ = τm⟨h, p(m)
⟩FX for m = 0, . . . , rZ , (4.11)

because p(m)q(m) is the only orthonormal basis function of L2(FX ×

FZ ) that {p(j)q(m)
: 0 ≤ j ≤ rX } and {p(j)q(j) : 0 ≤ j ≤ rX } have in

common.
By the same argument as in (4.9)–(4.11) but with q(m)

∗ in place
of q(m), we obtain

⟨hq(m)
∗

, kτ ⟩FX×FZ = 0 form = 1, . . . , rZ∗ (4.12)

because {p(j)q(m)
∗ : 0 ≤ j ≤ rX } and {p(j)q(j) : 0 ≤ j ≤ rX } have no

functions in common.
Eqs. (4.8), (4.11), and (4.12) combine to give

⟨hZ , q(m)
⟩FZ = τm⟨h, p(m)

⟩FX for m = 0, . . . , rZ and

⟨hZ , q(m)
∗

⟩FZ = 0 form = 1, . . . , rZ∗. (4.13)

Because {q(m)
: 0 ≤ m ≤ rZ } ∪ {q(m)

∗ : 1 ≤ m ≤ rZ∗} is an
orthonormal basis of L2(FZ ), this yields the result of Lemma 3(a).
It also gives the result of Lemma 3(b).

To prove Lemma 3(c), suppose Assumption 4 holds. Then, rZ =

rX and {p(j) : 0 ≤ j ≤ rZ } is an orthonormal basis of L2(FX ). In
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consequence,

h(x) =

rZ∑
j=0

⟨h, p(j)⟩FX p
(j)(x) =

rZ∑
j=0

τ−1
j ⟨hZ , q(j)⟩FZ p

(j)(x), (4.14)

where both equalities hold a.s.[FX ], the first equality holds by the
definition of an orthonormal basis, and the second equality holds
by Lemma 3(b) and Assumption 4(i).

Lemma 3(d) follows from Lemma 3(a) because h ∈ S⊥

X,τ implies
that ⟨h, p(j)⟩FX = 0 for those p(j) for which τj ̸= 0 for j =

0, . . . , rZ . □

4.3. Proof of Lemma 1

Proof of Lemma 1. The set CB is a closed convex subset of ℓp.
Hence, it is completely metrizable in the relative topology induced
from X . We show that the (universally measurable) set E, defined
by

E = {{τj} ∈ CB : τj = 0 for some j ≥ 1}, (4.15)

is a shy subset of CB. By Facts 0 and 3 in Anderson and Zame (2001,
p. 12), it suffices to show that the set E(1) is shy in C at c = 0,where

E(1) = {{τj} ∈ CB : τ1 = 0} (4.16)

(because E is a countable union of sets of the form E(k) = {{τj} ∈

CB : τk = 0} and a set being shy at some c ∈ C implies that it is shy
at all c ∈ C). Given δ > 0 and a neighborhood W of 0, define µδ,W
by

µδ,W (A) = λLeb(A1)/λLeb(CB,1) for A ⊂ CB, where
A1 = {τ1 : {τj} ∈ A ∩ [δCB] ∩ W },

CB,1 = {τ1 : {τj} ∈ CB ∩ [δCB] ∩ W }, (4.17)

and λLeb denotes Lebesgue measure on R. The support of µδ,W is
in [δCB] ∩ W . Because δCB is compact, the support of µδ,W is in a
compact set, as required. Note that λLeb(CB,1) > 0, so µδ,W is well
defined.

Given the definition of µδ,W , we have

µδ,W (E(1)) = λLeb(E1(1))/λLeb(CB,1) = 0, (4.18)

where E1(1) = {τ1 : {τj} ∈ E(1)} = {0}. Similarly, for all x ∈ ℓp,

µδ,W (E(1) + x) = λLeb((E(1) + x)1)/λLeb(CB,1) = 0. (4.19)

This holds because E(1) + x = {{τj} ∈ CB + x : τ1 = x1}, where
x1 is the first element in the sequence x, (E(1) + x)1 = {τ1 : {τj} ∈

(E(1)+ x)∩ [δCB] ∩W }, and the latter set equals {x1} or φ. (The set
(E(1) + x)1 could be the null set φ because (E(1) + x) ∩ [δCB] ∩ W
could be empty. In contrast, E(1)∩ [δCB] ∩W contains 0 and hence
is not empty.) By (4.19), E(1) is a shy set at c = 0 and the proof is
complete. □

4.4. Number of points in the support of FX

Here we prove the claim made following Assumptions 1–3 in
Section 3 that an orthonormal basis of L2(FX ) contains rX +1 (≤∞)
functions if and only if the support of FX contains rX + 1 (≤∞)
points.

Let S denote the number of support points of FX . Let {p(j) : 0 ≤

j ≤ rX } denote an orthonormal basis of L2(FX ). Define p(X) =

(p(0)(X), . . . , p(rX )(X))′ ∈ RrX+1.
First, suppose S < ∞ and rX < ∞. Define W (X) = (1(X =

x1), . . . , 1(X = xs))′ ∈ RS , where {x1, . . . , xS} denotes the support
of FX . We have EW (X)W (X)′ = Diag{P(X = x1), . . . , P(X = xS)}

and P(X = xs) > 0 for all s ≤ S. Hence, rk(EW (X)W (X)′) = S < ∞.
The elements ofW (X) are bounded and, hence, in L2(FX ). In conse-
quence, they can bewritten as linear combinations of the elements
of p(X). That is, W (X) = Ap(X) a.s.[FX ], where A ∈ RS×(rX+1) is a
matrix of constants. Thus, EW (X)W (X)′ = AEp(X)p(X)′A′

= AA′

and rk(EW (X)W (X)′) ≤ min{S, rX + 1}. Thus, S = min{S, rX + 1},
which implies that rX + 1 ≥ S.

On the other hand, by orthonormality of p(X), Ep(X)p(X)′ =

IrX+1 and rk(Ep(X) × p(X)′) = rX + 1 < ∞. Using S < ∞, each
element of p(X) can be written as a linear combination of the ele-
ments ofW (X). That is, p(X) = CW (X) a.s.[FX ], where C ∈ R(rX+1)×S

is a matrix of constants. Thus, Ep(X)p(X)′ = CEW (X)W (X)′C ′
=

CDiag{P(X = x1), . . . , P(X = xS)}C ′ and rk(Ep(X)p(X)′) ≤ min{rX+

1, S}. Hence, rX +1 = min{S, rX +1} and S ≥ rX +1. Thus, if S < ∞

and rX < ∞, then S = rX + 1.
Now, suppose S = ∞ and rX + 1 < ∞. Then, there exist rX + 2

disjoint sets {Ds : s = 1, . . . , rX + 2} with P(X ∈ Ds) > 0 for all
s ≤ rX + 2. Let D(X) = (1(X ∈ D1), . . . , 1(X ∈ DS))′ ∈ RrX+2.
We have ED(X)D(X)′ = Diag{P(X ∈ D1), . . . , P(X ∈ DrX+2)}
and rk(ED(X)D(X)′) = rX + 2. The elements of D(X) are bounded
and, hence, in L2(FX ). In consequence, they can be written as linear
combinations of the elements of p(X). That is, D(X) = Bp(X)
a.s.[FX ], where B ∈ R(rX+2)×(rX+1) is a matrix of constants. Thus,
ED(X)D(X)′ = BEp(X)p(X)′B′

= BB′ and rk(ED(X)D(X)′) ≤ min{rX +

2, rX + 1} = rX + 1. This is a contradiction. Hence, S = ∞ implies
rX + 1 = ∞.

Lastly, suppose S < ∞ and rX + 1 = ∞. Let p1(X) denote
the first S + 1 elements of p(X). Then, Ep1(X)p1(X)′ = IS+1 and
rk(Ep1(X)p1(X)′) = S + 1. Using S < ∞, each element of p1(X) can
be written as a linear combination of the elements of W (X). That
is, p1(X) = C1W (X) a.s.[FX ], where C1 ∈ R(S+1)×S is a matrix of con-
stants. Thus, Ep1(X)p1(X)′ = C1EW (X)W (X)′C ′

1 = C1Diag{P(X =

x1), . . . , P(X = xS)}C ′

1 and rk(Ep1(X)p1(X)′) ≤ min{S + 1, S} = S.
This is a contradiction. Hence, rX + 1 = ∞ implies S = ∞. This
completes the proof.
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