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An influential paper by Kleibergen (2005, Econometrica 73, 1103–1123) introduces
Lagrange multiplier (LM) and conditional likelihood ratio-like (CLR) tests for non-
linear moment condition models. These procedures aim to have good size perfor-
mance even when the parameters are unidentified or poorly identified. However, the
asymptotic size and similarity (in a uniform sense) of these procedures have not
been determined in the literature. This paper does so.

This paper shows that the LM test has correct asymptotic size and is asymptoti-
cally similar for a suitably chosen parameter space of null distributions. It shows that
the CLR tests also have these properties when the dimension p of the unknown pa-
rameter θ equals 1. When p ≥ 2, however, the asymptotic size properties are found
to depend on how the conditioning statistic, upon which the CLR tests depend, is
weighted. Two weighting methods have been suggested in the literature. The pa-
per shows that the CLR tests are guaranteed to have correct asymptotic size when
p ≥ 2 when the weighting is based on an estimator of the variance of the sample mo-
ments, i.e., moment-variance weighting, combined with the Robin and Smith (2000,
Econometric Theory 16, 151–175) rank statistic. The paper also determines a for-
mula for the asymptotic size of the CLR test when the weighting is based on
an estimator of the variance of the sample Jacobian. However, the results of the
paper do not guarantee correct asymptotic size when p ≥ 2 with the Jacobian-
variance weighting, combined with the Robin and Smith (2000, Econometric Theory
16, 151–175) rank statistic, because two key sample quantities are not necessarily
asymptotically independent under some identification scenarios.

Analogous results for confidence sets are provided. Even for the special case of
a linear instrumental variable regression model with two or more right-hand side
endogenous variables, the results of the paper are new to the literature.
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1. INTRODUCTION

We consider the moment condition model

EF g(Wi ,θ) = 0k, (1.1)

where 0k = (0, . . . ,0)′ ∈ Rk , the equality holds when θ ∈ � ⊂ R p is the true
value, {Wi ∈ Rm : i = 1, . . . ,n} are stationary and strong mixing observations
with distribution F, g is a known (possibly nonlinear) function from Rm+p to Rk

with k ≥ p, and EF (·) denotes expectation under F. This paper is concerned with
tests of the null hypothesis

H0 : θ = θ0 versus H1 : θ �= θ0. (1.2)

We consider the Lagrange Multiplier (LM) test of Kleibergen (2005) and adap-
tations of Moreira’s (2003) conditional likelihood ratio (CLR) test to the non-
linear moment condition model (1.1), as in Kleibergen (2005, 2007), Smith
(2007), Newey and Windmeijer (2009), and Guggenberger, Ramalho, and Smith
(2012). The LM and CLR tests are designed to have better overall power than the
Anderson and Rubin (1949)-type S-tests of Stock and Wright (2000) when k > p.

These tests aim to have good size even when the parameters are unidentified
or weakly identified. Weak identification and weak instruments (IV’s) can occur
in a wide variety of empirical applications in economics with linear and nonlin-
ear models. Examples include: new Keynesian Phillips curve models, dynamic
stochastic general equilibrium (DSGE) models, consumption capital asset pricing
models (CCAPM), interest rate dynamics models, Berry, Levinsohn, and Pakes
(1995) (BLP) models of demand for differentiated products, returns-to-schooling
equations, nonlinear regression, autoregressive-moving average models, GARCH
models, smooth transition autoregressive (STAR) models, parametric selection
models estimated by Heckman’s two step method or maximum likelihood, mix-
ture models, regime switching models, and all models where hypotheses test-
ing problems arise in which a nuisance parameter appears under the alternative
hypothesis, but not under the null. For references, see (for example) Andrews and
Guggenberger (2014a) (hereafter AG2).

The contribution of the paper is to determine the asymptotic sizes of the tests
listed above, and the confidence sets (CS’s) that correspond to them, for suitably
defined parameter spaces of distributions, and to see whether their asymptotic
sizes necessarily equal their nominal sizes. We also determine whether these tests
and CS’s are asymptotically similar in a uniform sense. The strength of identifi-
cation of θ depends on the magnitude of the singular values of the expectation of
the Jacobian

G(Wi ,θ) := ∂

∂θ ′ g(Wi ,θ) ∈ Rk×p (1.3)

of g(Wi ,θ). The parameter space we consider does not impose any restrictions on
the magnitude of these singular values. The results hold for arbitrary fixed k and
p with k ≥ p.
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1048 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

We show that Kleibergen’s LM test (and CS) has correct asymptotic size and is
uniformly asymptotically similar for a parameter space of null distributions that
is fairly general. But, the parameter space does require an eigenvalue condition
on the asymptotic variance of the conditioning statistic (onto which the sample
moments are projected). This condition guarantees that the asymptotic version of
the k × p conditioning statistic (after suitable normalization) is full rank p a.s.
This condition is shown not to be redundant in Section 14 in the Supplemental
Material to this paper, Andrews and Guggenberger (2014b), hereafter SM. The
parameter space also requires that the variance matrix of the moment functions is
nonsingular. This assumption is needed because the inverse of the sample variance
matrix is employed to make the conditioning statistic asymptotically independent
of the sample moments. This condition can be restrictive because in some models
lack of identification is accompanied by singularity of the variance matrix of the
moments. For example, this occurs in models in which for some null hypothesis
a nuisance parameter appears only under the alternative hypothesis.

The nonlinear CLR tests (and CS’s) that we consider depend on a rank statistic,
which measures the rank of the expectation of G(Wi ,θ). Following Kleibergen
(2005), the rank statistics that have been considered in the literature depend on
a weighted orthogonalized version of the sample Jacobian, n−1 ∑n

i=1 G(Wi ,θ),
where the orthogonalization is designed to create a conditioning statistic that
is asymptotically independent of the sample moments. Two weightings have
been considered. The first, proposed by Kleibergen (2005, 2007) and Smith
(2007), premultiplies the vectorized orthogonalized sample Jacobian by the neg-
ative square root of a consistent estimator of its kp × kp variance matrix. We
call this the Jacobian-variance weighting. The second, proposed by Newey and
Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012), multiplies the
k × p orthogonalized sample Jacobian by the negative square root of a consistent
estimator of the k × k variance matrix of the sample moments. We call this the
moment-variance weighting.

Given the weighting of the orthogonalized sample Jacobian, several functional
forms for the rank statistic have been considered in the literature, including the
rank statistics of Cragg and Donald (1996, 1997), Robin and Smith (2000), and
Kleibergen and Paap (2006). We provide results for a general form of the rank
statistic and verify the conditions imposed on the general form for the Robin and
Smith (2000) rank statistic. The latter is a popular choice because it is easy to
compute. Note that when p = 1, these rank statistics all reduce to the squared
Euclidean norm of the weighted orthogonalized sample Jacobian vector.

For the case where p = 1, we show that the CLR tests (and CS’s) based on
either weighting have correct asymptotic size and are asymptotically similar in a
uniform sense (for parameter spaces that are the same as those considered for the
LM test and CS, or slightly smaller, depending on the method of weighting).

For the case where p ≥ 2, we show that the CLR test (and CS) based on
the Robin and Smith (2000) rank statistic with the moment-variance weighting
has correct asymptotic size and is uniformly asymptotically similar for the same
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ASYMPTOTIC SIZE OF KLEIBERGEN’S LM AND CLR TESTS 1049

parameter spaces of distributions as considered for the LM test (and CS). On the
other hand, we cannot show that the CLR test (and CS) based on the Robin and
Smith (2000) rank statistic with the Jacobian-variance weighting necessarily has
correct asymptotic size. The reason is that the weighted orthogonalized sample
Jacobian is not necessarily asymptotically independent of the sample moments
under some sequences of null distributions. This occurs because the random vari-
ation of the kp × kp sample variance estimator turns out to affect the asymp-
totic distribution of the weighted orthogonalized sample Jacobian in some cases.
Roughly speaking, this occurs when some parameters are weakly identified and
some are strongly identified, or when some transformations of the parameters are
weakly identified and some transformations are strongly identified. (Obviously,
when p = 1 these scenarios cannot occur.) This phenomenon has not been demon-
strated previously in the literature. Problems of this sort are demonstrated for the
Robin and Smith (2000) rank statistic and may or may not occur with other rank
statistics.

Simulations in a linear IV regression model with two right-hand side endoge-
nous variables corroborate the existence of the asymptotic correlations discussed
in the previous paragraph. However, for the particular model and error distribu-
tions considered, these correlations have a small effect on the asymptotic null
rejection probabilities of the CLR test with Jacobian-variance weighting. These
probabilities are very close to the nominal size of the test.

The results of the paper show that weak identification occurs (i.e., some test
statistics have nonstandard asymptotic distributions due to identification defi-
ciency) when limn1/2spFn < ∞, where {sj F : j = 1, . . . , p} are the singular val-
ues of the expected Jacobian, EF G(Wi ,θ0), ordered to be nonincreasing in j,
F denotes a null distribution, {Fn : n ≥ 1} denotes a sequence of null distri-
butions for which the previous limit exists, and the limit is taken as n → ∞.
Strong or semistrong identification occurs when limn1/2spFn = ∞. Strong iden-
tification occurs when limspFn > 0 and semistrong identification occurs when
limn1/2spFn = ∞ and limspFn = 0. When p = 1, s1F = ||EF G(Wi ,θ0)|| and
weak identification occurs when limn1/2||EF G(Wi ,θ0)|| < ∞, where || · || de-
notes the Euclidean norm. However, when p ≥ 2, weak identification can take
many different forms. Weak identification in the standard sense, i.e., when all
parameters are weakly identified, e.g., as in Staiger and Stock (1997), occurs
when limn1/2s1Fn < ∞. This is a relatively easy case to analyze asymptotically.
Weak identification also occurs when limn1/2spFn < ∞, but limn1/2s1Fn = ∞,
i.e., different singular values behave differently asymptotically. We refer to this
as weak identification in a nonstandard sense. It includes the (some weak/some
strong) identification scenario considered in Stock and Wright (2000) based on
their Assumption C. The nonstandard weak identification scenario is the scenario
in which the weighted orthogonalized sample Jacobian may not be independent of
the sample moments when the Jacobian-variance weighting is employed. This case
is much more difficult to analyze asymptotically. A subset of this case, which we
refer to as joint weak identification, is a case in which the previous conditions hold
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1050 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

(i.e., limn1/2spFn < ∞ and limn1/2s1Fn = ∞) and limn1/2||EFn Gj (Wi ,θ0)|| =
∞ for all j ≤ p, where Gj (Wi ,θ0) denotes the j th column of G(Wi ,θ0). Un-
der joint weak identification, each column of the Jacobian behaves as though the
corresponding parameter is strongly or semistrongly identified, but jointly, weak
identification occurs (because limn1/2spFn < ∞). As discussed in Section 2 be-
low, no results in the literature on identification-robust tests consider all of the
cases of weak identification that may occur when p ≥ 2.1

For clarity, the results of the paper are stated and derived first for i.i.d. observa-
tions. Then, they are extended to cover time series observations that are station-
ary and strong mixing. This way of proceeding lets us provide somewhat weaker
assumptions in the i.i.d. case than if the i.i.d. case is treated as a special case of
the time series results.

All limits below are taken as n → ∞. The expression A := B denotes that A is
defined to equal B.

The paper is organized as follows. Section 2 discusses the related literature and
the contribution of this paper to the literature. Section 3 defines the moment con-
dition model. Section 4 defines and provides asymptotic results for Kleibergen’s
(2005) LM test. Section 5 does likewise for Kleibergen’s (2005) CLR test with
Jacobian-variance weighting. Section 6 does likewise for Kleibergen’s CLR
test with moment-variance weighting, as in Newey and Windmeijer (2009) and
Guggenberger, Ramalho, and Smith (2012). Section 7 provides results for the
tests with time series observations.

Because of space constraints, the proofs of the results of the paper and some
additional results are given in the SM.

2. DISCUSSION OF THE LITERATURE

To date in the literature it has only been shown that Kleibergen’s LM and CLR
tests control the limiting null rejection probability under certain strong instrument
and certain weak instrument sequences. For example, concerning the validity of
the LM and CLR tests, Kleibergen (2005, proofs of Thms. 1 and 3) deals only with
sequences of matrices EFn G(Wi ,θ) whose limits are a full column rank matrix
or a matrix of zeros. Kleibergen (2005) does not consider the cases where

(i) the limit of EFn G(Wi ,θ) exists and is nonzero, some of its columns are
equal to zero, and the remaining columns are linearly independent, and

(ii) the limit of EFn G(Wi ,θ) exists and is nonzero and some subset of its
columns are nonzero but less than full column rank, (2.1)

where {Fn : n ≥ 1} is a sequence of true null distributions that generates the data.
When limn1/2spFn < ∞, case (ii) is an example of what we refer to as “joint weak
identification” in which several parameters individually satisfy conditions that
indicate strong identification, but jointly exhibit weak identification. This paper is
the first to investigate joint weak identification for identification-robust tests like
Kleibergen’s LM and CLR tests. Sargan (1959, 1983) provides asymptotic results
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for estimators in some nonlinear-in-parameters, but linear-in-variables, models
that fall into cases (i) and (ii). Phillips (2016) establishes asymptotic results for
IV estimators, Wald tests, and tests of over-identifying restrictions in linear IV
regression models with nearly singular endogenous variables in the sense that
their covariance with the IV’s exhibits case (ii) behavior and simultaneously their
variance matrix is nearly singular. Results for cases (i) and (ii) are needed to
establish the asymptotic sizes of the LM and CLR tests.

Example
Consider as a simple example the linear IV regression model

y1i = Y ′
2iθ + ui ,

Y2i = π ′Zi + V2i , (2.2)

where y1i ∈ R and Y2i ∈ R p are endogenous variables, Zi ∈ Rk for k ≥ p is
a vector of IV’s, and π (= πF ) ∈ Rk×p is an unknown unrestricted parame-
ter matrix. For simplicity, no exogenous variables are included in the structural
equation. See Andrews, Cheng, and Guggenberger (2009) and Mikusheva (2010)
for asymptotic size results for the CLR test in linear IV regression models with
included exogenous variables, but with only one right-hand side endogenous
variable. Due to the latter feature, cases (i) and (ii) in (2.1) and case (iv) in (2.5)
below do not arise in the aforementioned papers.

The data {Wi = (y1i ,Y ′
2i , Z ′

i )
′ : i = 1, . . . ,n} are i.i.d. and EF ((ui ,V ′

2i )
′|Zi ) =

0p+1 a.s. Here m = 1 + p + k and

g(Wi ,θ) = Zi (y1i − Y ′
2iθ) and G(Wi ,θ) = −Zi Y

′
2i . (2.3)

By assumption, EF g(Wi ,θ) = EF Zi ui = 0k when θ is the true vector. In addition,
we have

EF G(Wi ,θ) = −EF Zi Z ′
iπ. (2.4)

The latter does not depend on θ but does depend on the reduced-form coefficient
matrix π which determines the strength of the IV’s. Stock and Wright (2000),
Guggenberger and Smith (2005), and Guggenberger, Ramalho, and Smith (2012)
consider weak/strong IV sequences πn = (π1n,π2n) ∈ Rk×(p1+p2), where π1n =
n−1/2h1 for a fixed h1 and π2n = π2 is a fixed matrix (that does not depend on n)
with full column rank p2. Specialized to the linear IV setting, the goal of this
paper is to establish that the LM and CLR tests of the hypotheses in (1.2) have
asymptotic sizes equal to their nominal sizes for a parameter space that does not
impose any restrictions on π .

Case (ii) identification in (2.1) occurs in model (2.2) with p ≥ 2 for sequences
πn where a subset of the columns of πn converge to nonzero vectors that are
linearly dependent. For example, this occurs when p = 2, πn ∈ Rk×2, and the
columns of πn are (1, . . . ,1)′ and (1 + o(1), . . . ,1 + o(1))′. Identification of this
type has not been dealt with in the literature on identification-robust LM and CLR
tests in linear IV models. We do so in this paper (for both linear and nonlinear
models).
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1052 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

We return now to the discussion of the general moment condition model. The
missing cases in Kleibergen’s (2005) proofs of Theorems 1 and 3 are important
because they are likely cases in practice. For example, the case where some pa-
rameters are strongly identified and others are weakly identified (likely) occurs
in Stock and Wright’s (2000) (SW) and Kleibergen’s (2005) consumption capital
asset pricing model (CCAPM) example.

SW deal with a subset of case (i) for GMM versions of the Anderson–Rubin
test. Their conditions rule out case (ii). Guggenberger and Smith (2005), Otsu
(2006), Inoue and Rossi (2011), Guggenberger, Ramalho, and Smith (2012),
and I. Andrews (2016) deal with a subset of case (i) for generalized empirical like-
lihood (GEL) and GMM versions of the LM and/or CLR tests, but rule out case
(ii) by assumption. Furthermore, their results for case (i) rely on Assumption C
of SW. (Inoue and Rossi (2011) and I. Andrews (2016, Appendix C) use condi-
tions that are much like Assumption C of SW, but they are not exactly the same.)
Assumption C of SW requires that the expected moment functions can be written
as n−1/2m1n(θ) + m2(β) for some functions m1n and m2 and some (α,β) such
that θ = (α′,β ′)′ and (∂/∂β ′)m2(β0) has full column rank, where β0 denotes
the true value of β. In addition, it requires that m1n(θ) → m1(θ) uniformly over
θ ∈ � for some real-valued function m1, m2(β0) = 0k, m2(β) �= 0k for β �= β0,
and (∂/∂β ′)m2(β) is continuous. This assumption is an innovative contribution
to the literature, and it provides a useful guide to the behavior of tests under some
types of weak identification. But, it has some significant drawbacks as a general
high-level condition.

First, while Assumption C is easy to verify or refute in linear IV models, it is
hard to verify or refute in many, or most, nonlinear models. As far as we are aware,
it has only been verified in the literature for one nonlinear model and that non-
linear model is only a local approximation to the model of interest. The model of
interest is the two parameter CCAPM considered in SW and Kleibergen (2005).
SW verify Assumption C for a local approximation to this model that is a poly-
nomial in the parameters, see p. 1093 of their Appendix B.2 It appears to be hard
to verify or refute Assumption C in the CCAPM of interest.

In addition, I. Andrews and Mikusheva (2016a, Section S8 of their Supplemental
Material) verify a generalization of Assumption C, which allows an O(n−1) er-
ror in the expected moment functions n−1/2m1n(θ)+ m2(β), in a highly-stylized
small-scale DSGE model for certain sequences of drifting parameters. Their ver-
ification exploits the additive separability in the moment conditions, between the
moments and the function of the parameters, which arises in minimum distance
models. It utilizes a reparametrization of the structural parameters. I. Andrews
and Mikusheva (2016a, Section S8) conclude “even in this highly stylized model
deriving the weakly and strongly identified directions in the parameter space is
messy, and such derivations will be difficult if not impossible in richer, more
empirically relevant models.” Note that to verify Assumption C of SW for some
sequences of parameters (and/or distributions) involves deriving the weakly and
strongly identified directions in the parameter space.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466616000347
Downloaded from https://www.cambridge.org/core. Yale University Library, on 20 Jun 2018 at 18:25:58, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466616000347
https://www.cambridge.org/core


ASYMPTOTIC SIZE OF KLEIBERGEN’S LM AND CLR TESTS 1053

Another example where Assumption C is hard to verify or refute is the follow-
ing simple nonlinear regression model with endogeneity, one weakly-identified
parameter, and one strongly-identified parameter: yi = f (Y1iθ1 + Y2iθ2) + ui ,
Y1i = Z ′

iπ1n + V1i , Y2i = Z ′
iπ2 + V2i , π1n = Cn−1/2 for some constant vector

C ∈ Rk, π2 �= 0k, f (·) is a known function, Zi is a vector of IV’s, and θ = (θ1,θ2)
′.

The moment functions take the form (yi − f (Y1iθ1 + Y2iθ2))Zi . For an arbi-
trary function f it is difficult to determine whether Assumption C holds or not.
If f is a quadratic function, or a polynomial, then it may be possible to verify
Assumption C. But, even for such functions, doing so does not seem easy.

Second, Assumption C is restrictive. For example, it fails to hold in a nonlinear
regression model with weak identification due to the coefficient on a nonlinear
regressor being close to zero. Suppose the model is yi = βh(Xi ,π)+ ui for i =
1, . . . ,n, where yi and Xi are observed, ui is an unobserved mean zero error, and
θ = (β,π)′. The parameter π is weakly identified when β = Cn−1/2 for some
constant C. It is shown in Appendix E of the Supplemental Material to Andrews
and Cheng (2012) that Assumption C fails in this case.

Another example where Assumption C fails is a linear IV model with joint
estimation of the right-hand side (rhs) endogenous variable parameter, which is
weakly identified, and the structural equation error variance, which is strongly
identified: y1i = Y2iθ1 + ui , Y2i = Ziπn + V2i , Zi ∈ R (for simplicity), πn =
Cn−1/2 for some constant C, V ar(ui) = θ2 > 0, θ = (θ1,θ2)

′, and Eui =
EV2i = E Zi ui = E Zi V2i = 0. The moment functions are (y1i − Y2iθ1)Zi and
(y1i − Y2iθ1)

2 − θ2. Assumption C fails in this model.3

The results of this paper do not impose any conditions on the functional form
of the expected moment conditions and their derivatives, like Assumption C does.
The conditions given are more general than the conditions used in the papers that
rely on Assumption C.

We also point out that no papers in the literature deal with cases where p ≥ 2
and the limit of EFn G(Wi ,θ) is zero, but n1/2||EFn Gj (Wi ,θ)|| → ∞ for some
j ≤ p, where, as above, Gj (Wi ,θ) denotes the j th column of G(Wi ,θ). In such
situations, analogues of cases (i) and (ii) arise in which suitably rescaled versions
of the columns j for which n1/2||EFn Gj (Wi ,θ)|| → ∞ have limits that are

(iii) nonzero and linearly independent and

(iv) nonzero and linearly dependent. (2.5)

Case (iv) sequences are examples of joint weak identification. Cases (iii) and (iv)
sequences need to be considered to establish the correct asymptotic sizes of the
LM and CLR tests.

For example, suppose p = 2. Let (Gi1,Gi2) = G(Wi ,θ) ∈ Rk×2. An exam-
ple of case (iii) occurs when Gi1 exhibits what might be called “semistrong
identification,” i.e., EFn Gi1 = C1nn−s for 0 < s < 1/2 and C1n → C1 ∈ Rk ,
where C1 �= 0k, and Gi2 exhibits the classic features of “weak identification,”
i.e., EFn Gi2 = C2n−1/2 for some C2 ∈ Rk . Then, EFn Gi1 → 0k, EFn Gi2 → 0k,
n1/2||EFn Gi1|| → ∞, and ns EFn Gi1 → C1 �= 0k .
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1054 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

An example of case (iv) occurs when EFn Gi1 is as above and EFn Gi2 =
C2nn−s2 for 0 < s2 < 1/2 and C2n → C2 ∈ Rk, where C2 �= 0k, and C1 and C2
are linearly dependent. If C1 and C2 are linearly independent, then this is another
example of case (iii).

For CLR tests, Guggenberger, Ramalho, and Smith (2012) establish the correct
asymptotic null rejection probabilities for GEL versions of the CLR test in a subset
of case (i) under Assumption C and the assumption that the conditioning statistic,
rkn(θ), either diverges to infinity or converges in distribution to a random variable
that is random only through its dependence on the limit of the estimated Jacobian.
Verifying this condition in cases (i)–(iv) is not easy. We do so in this paper for the
Robin and Smith (2000) rank statistic rkn(θ) with moment-variance weighting.
In sum, Guggenberger, Ramalho, and Smith (2012) do not establish the correct
asymptotic null rejection probabilities of the CLR test under Assumption C. They
do so only under an additional high level condition on the rank statistic.

Kleibergen’s (2005, Thm. 3) results for the CLR test rely on the claim that
the conditioning statistic rkn(θ) is asymptotically independent of the LM statistic
if rkn(θ) is a function of a weighting matrix, ṼDn say, and the orthogonalized
sample Jacobian, denoted by D̂n(θ) ∈ Rk×p . However, this claim does not hold in
general, as shown in Theorem 5.1 below and Section 19 in the SM.4 Newey and
Windmeijer (2009) consider the limiting null rejection probability of the CLR
test under “many instrument” asymptotics. They do not analyze the effects of
weak identification (such as in cases (i)–(iv)). Their Assumption 2 implies global
identification of θ.

As a special case of the asymptotic size results of this paper for nonlinear
models, this paper provides some new results for the linear IV regression model.
Specifically, the results of the present paper establish the correct asymptotic
size of LM and CLR tests in the linear IV model with an arbitrary number
of rhs endogenous variables, under some maintained assumptions. The results
allow for heteroskedasticity of the errors and stationary strong mixing errors and
observations.

In contrast, the relevant results available in the literature for the linear IV model
are as follows. Kleibergen (2002) shows that his LM test has correct asymptotic
null rejection probabilities under fixed full-rank reduced-form matrices, as well
as under standard weak IV asymptotics—that is, under the n−1/2-local to zero
sequences in Staiger and Stock (1997). Also see Moreira (2009). Moreira (2003)
proves that the limiting null rejection probability of the CLR test is correct under
standard weak IV asymptotics (i.e., of the type considered in Staiger and Stock
(1997)). None of these papers considers cases (i)–(iv) above. Mikusheva (2010)
establishes the correct asymptotic size of homoskedastic LM and CLR tests and
CS’s when there is only one endogenous rhs variable, i.e., p = 1, and the errors are
homoskedastic. Guggenberger, Ramalho, and Smith (2012) establishes the correct
asymptotic size of heteroskedasticity-robust LM and CLR tests in a heteroskedas-
tic model with p = 1. I. Andrews (2016) establishes the correct asymptotic size of
a class of conditional linear combination (CLC) tests when p = 1, which he shows
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are equivalent to a class of CLR tests. He provides some CLC tests that are de-
signed to have good power under heteroskedasticity and autocorrelation. Moreira
and Moreira (2013) introduce some tests that maximize weighted average power
in a linear IV model with heteroskedasticity and autocorrelation for the case where
p = 1. Note that when p = 1, i.e., only one rhs endogenous variable appears (and
the exogenous variables are projected out), cases (i), (ii), and (iv) above do not
arise (because EF G(Wi ,θ) has a single column). Phillips (1989) and Choi and
Phillips (1992) provide asymptotic and finite sample results for estimators and
classical tests in simultaneous equations models with fixed π matrices that may
be unidentified or partially identified when p ≥ 1. Their results do not cover weak
identification (of any type). Hillier (2009) provides exact finite sample results for
CLR tests in the linear IV model under the assumption of homoskedastic normal
errors and known covariance matrix.

We return now to the discussion of a general moment condition model. In this
paper, we show that a minimum eigenvalue condition that appears in the parameter
space F0 (defined below) for the null distributions F is necessary in some sense
to obtain correct asymptotic size for the LM and CLR tests. For example, in the
linear IV regression model, this eigenvalue condition rules out perfect correlation
between the structural and reduced-form errors. Without the eigenvalue condition,
we show that in some cases the LM statistic equals the AR statistic plus a op(1)
term. In consequence, the LM test (which uses a χ2

p critical value) over-rejects the
null hypothesis asymptotically when k > p. Furthermore, without it, we show that
in other cases the LM statistic equals zero a.s. for all n ≥ 1 and, hence, the LM
test rejects the null hypothesis with probability zero for all n ≥ 1. In such cases,
the LM test under-rejects the null asymptotically. These properties of the LM test
have not been recognized in the literature, e.g., see Kleibergen (2005, Thm. 1).

We note that the asymptotic framework and results given here should be useful
for establishing the asymptotic size of tests (and CS’s) for moment condition and
linear IV models that differ from the LM and CLR tests (and CS’s) considered
here, such as the tests in Moreira and Moreira (2013) and I. Andrews (2016). For
example, we provide sufficient conditions for a suitably renormalized version of
the moment-variance-weighted orthogonalized sample Jacobian to have full rank
almost surely asymptotically, which is needed in the latter paper when p ≥ 2.

AG2 is a sequel to this paper. It introduces two new nonlinear singularity-robust
conditional quasi-LR (SR-CQLR) tests and a singularity-robust Anderson–Rubin
(SR-AR) test. AG2 shows that these tests (and the corresponding CS’s) have cor-
rect asymptotic size for all p ≥ 1 under very weak conditions. For example, in
the i.i.d. case, one of the two SR-CQLR tests and the SR-AR test only require
the expected moment functions to equal zero at the true parameter and a certain
transformation of the sample moment functions to have 2+γ moments uniformly
bounded for some γ > 0. (The other SR-CQLR test imposes somewhat stronger
moment conditions.) In particular, none of the tests in AG2 impose any condi-
tions on the expectation of the Jacobian matrix of the moments or any conditions
on the variance matrices of the moment functions or the conditioning statistic,
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which is the meaning of “singularity-robust.” The two SR-CQLR tests are shown
to be asymptotically efficient in a GMM sense under strong and semistrong iden-
tification. The tests reduce, or essentially reduce, asymptotically to Moreira’s
(2003) CLR test in the homoskedastic linear IV model for all p ≥ 1. In conse-
quence, (a) no arbitrary choice of rank statistic is needed when p ≥ 2, and (b)
the tests have the desirable power properties of Moreira’s (2003) CLR test in
the homoskedastic normal linear IV model when p = 1, which have been estab-
lished in Andrews, Moreira, and Stock (2006, 2008), and Chernozhukov, Hansen,
and Jansson (2009). For related results, see Chamberlain (2007) and Mikusheva
(2010).

We also mention the recent paper by I. Andrews and Mikusheva (2016b) that
introduces a new conditional likelihood ratio test for moment condition models
that is robust to weak identification. This test is asymptotically similar conditional
on the entire sample mean process that is orthogonalized to be asymptotically
independent of the sample moments evaluated at the null parameter value.

The LM and CLR tests considered in this paper are for full vector inference.
To obtain subvector inference, one can employ the Bonferroni method or the
Scheffé projection method, see Cavanagh, Elliott, and Stock (1995), Chaudhuri,
Richardson, Robins, and Zivot (2010), Chaudhuri and Zivot (2011), and
McCloskey (2011) for Bonferroni’s method, and Dufour (1989) and Dufour and
Jasiak (2001) for the projection method. These methods are conservative.

Other methods for subvector inference include the following. Subvector infer-
ence in which nuisance parameters are profiled out is possible in the linear IV
regression model with homoskedastic errors using the AR test, but not the LM or
CLR tests, see Guggenberger, Kleibergen, Mavroeidis, and Chen (2012). Andrews
and Cheng (2012, 2013, 2014) provide subvector tests with correct asymptotic
size based on extremum estimator objective functions. These subvector methods
depend on the following: (a) one has knowledge of the source of the potential lack of
identification (i.e., which subvectors play the roles of β, π, and ζ in their notation),
(b) there is only one source of lack of identification, and (c) the estimator objective
function does not depend on the weakly identified parameters π (in their notation)
when β = 0, which rules out some weak IV’s models. Montiel Olea (2013) pro-
vides some subvector analysis in the extremum estimator context of Andrews and
Cheng (2012). His efficient conditionally similar tests apply to the subvector (π,ζ )
of (β,π,ζ ) (in the notation of Andrews and Cheng (2012)), where the parameter β
determines the strength of identification and is known to be strongly identified. This
subvector analysis is analogous to that of Stock and Wright (2000) and Kleibergen
(2004). Cheng (2015) provides subvector inference in a nonlinear regression model
with multiple nonlinear regressors and, in consequence, multiple potential sources
of lack of identification. I. Andrews and Mikusheva (2016a) provide subvector
inference methods in a minimum distance context based on Anderson–Rubin-type
statistics. I. Andrews and Mikusheva (2015) provide conditions under which sub-
vector inference is possible in exponential family models under an assumption of
linearity in any weakly-identified nuisance parameter.
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3. MOMENT CONDITION MODEL

3.1. Basic Statistics

First we introduce some notation. For notational simplicity, we let gi(θ) and
Gi (θ) abbreviate g(Wi ,θ) and G(Wi ,θ), respectively. We denote the j th column
of Gi (θ) by Gij (θ) and Gij = Gij (θ0), where θ0 denotes the (true) null value
of θ, for j = 1, . . . , p. Likewise, we often leave out the argument θ0 for other
functions as well. For example, we write gi and Gi rather than gi (θ0) and Gi (θ0).
We let Ir denote the r dimensional identity matrix. For a positive semidefinite
(p.s.d.) matrix A, we let λj (A) denote the j th largest eigenvalue of A.

Let

ĝn(θ) := n−1
n∑

i=1
gi(θ), Ĝn(θ) := n−1

n∑
i=1

Gi (θ), and

�̂n(θ) := n−1
n∑

i=1
gi(θ)gi (θ)′ − ĝn(θ)ĝn(θ)′. (3.1)

Any estimator �̂n(θ) that is consistent for Egi(θ)gi(θ)′ under the drifting subse-
quences of distributions considered in Section 10 in the SM can be used, such as
n−1 ∑n

i=1 gi(θ)gi (θ)′, without changing the asymptotic size results given below.
However, we recommend the definition in (3.1).

Next, following Kleibergen (2005), we define the orthogonalized sample
Jacobian, denoted by D̂n(θ), which equals the sample Jacobian Ĝn(θ) adjusted
to be asymptotically independent of the sample moments ĝn(θ):

D̂n(θ) := (
D̂1n(θ), . . . , D̂pn(θ)

) ∈ Rk×p ,

D̂jn(θ) := Ĝ jn(θ)− 
̂j n(θ)�̂−1
n (θ)ĝn(θ) ∈ Rk for j = 1, . . . , p,

Ĝn(θ) := (
Ĝ1n(θ), . . . , Ĝpn(θ)

) ∈ Rk×p , and


̂j n(θ) := n−1
n∑

i=1

(
Gij (θ)− Ĝ jn(θ)

)
gi(θ)′ ∈ Rk×k for j = 1, . . . , p. (3.2)

The D̂n(θ) statistic is a basic component of Kleibergen’s (2005) LM and CQLR
tests.

3.2. Definition of the Parameter Space for the Distributions F

For some γ,δ > 0 and M < ∞, define

F :=
{

F : {Wi : i ≥ 1} are i.i.d. under F, EF gi = 0k ,

EF ||(g′
i ,vec(Gi )

′)′||2+γ ≤ M, and λmin(EF gi g
′
i ) ≥ δ

}
, (3.3)

where λmin(·) denotes the smallest eigenvalue of a matrix and vec(·) denotes the
vector obtained by stacking the columns of a matrix. The first condition in F
specifies that the observations are i.i.d. For time series observations, see Section 7.
The second condition in F is the defining condition of the model. The third con-
dition in F is a mild moment condition on the moment functions gi and their
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derivatives Gi . The last condition in F rules out singularity and near singularity
of the variance matrix of the moments. For example, in the linear IV model it
rules out EF u2

i Zi Z ′
i being singular, which usually is not restrictive. Identification

issues arise when EF Gi has, or is close to having, less than full column rank
(which occurs when one or more of its singular values is zero or close to zero).
The conditions in F place no restrictions on the singular values or column rank
of EF Gi .

The condition λmin(EF gi g′
i) ≥ δ in F can be replaced by λmin(EF gi g′

i ) >
0 without affecting the asymptotic size and similarity results given in
Theorems 4.1 and 6.1 below, provided gi and Gi are replaced with g∗

i and G∗
i ,

respectively, in F and F0 (defined below), where g∗
i := (EF gi g′

i)
−1/2gi and

G∗
i := (EF gi g′

i )
−1/2Gi . (This holds because λmin(EF g∗

i g∗′
i ) = λmin(Ik) = 1 and

the proofs of the results given below go through with g∗
i and G∗

i in place of gi and
Gi throughout.) This allows for the variance matrix of gi to be arbitrarily close
to singular, which occurs in some cases when identification is weak, but rules
out singularity. Also note that the matrix (EF gi g′

i )
−1/2 that appears in the defini-

tion of g∗
i and G∗

i can be replaced by any nonsingular k × k matrix, say KF (θ0),
that yields λmin(EF g∗

i g∗′
i ) ≥ δ > 0. For example, in somewhat related contexts,

Andrews and Cheng (2013b) and I. Andrews and Mikusheva (2015) find it con-
venient to rescale moment conditions by diagonal matrices.

The parameter spaces for the distribution F that we consider in this paper are
subsets of F . The main parameter space that we consider is F0, which we now
define.

Let

�F := EF gi g
′
i . (3.4)

The following is a singular-value decomposition of �
−1/2
F EF Gi :

�
−1/2
F EF Gi = CFϒF B ′

F , where

ϒF :=
(

Diag{τ1F , . . . ,τpF }
0(k−p)×p

)
∈ Rk×p ,

(τ1F , . . . ,τpF ) denote the p singular values of �
−1/2
F EF Gi in nonincreasing

order, and BF and CF are p × p and k × k orthogonal matrices, respectively.

(3.5)

The singular values τ1F , . . . ,τpF are nonnegative and may be zero. The matrix BF

contains eigenvectors of (EF Gi )
′�−1

F (EF Gi ) ordered so that the corresponding
eigenvalues (κ1F , . . . ,κpF ) are nonincreasing. The matrix CF contains eigenvec-

tors of �
−1/2
F (EF Gi )(EF Gi )

′�−1/2
F ordered so that the corresponding eigenval-

ues are (κ1F , . . . ,κpF ,0, . . . ,0)′ ∈ Rk . Note that κj F = τ 2
j F for j ≤ p.

With some abuse of notation, for an integer 0 ≤ j ≤ p, let BF = (BF, j , BF,p− j )
denote the decomposition of BF into its first j and last p − j columns, where by
definition, when j = p, BF, j = BF and BF,p− j denotes a matrix with no columns
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and, when j = 0, BF, j denotes a matrix with no columns and BF,p− j = BF .
Analogously, for an integer 0 ≤ j ≤ k, let CF = (CF, j ,CF,k− j ) denote the de-
composition of CF into its first j and last k − j columns, where, when j = 0 or
j = k, CF, j and CF,k− j are defined analogously to BF, j and BF,p− j .

For an arbitrary square-integrable (under F) vector ai , let

�
ai
F := EF ai a

′
i , 


ai
F := EF ai g

′
i , and �

ai
F := �

ai
F −


ai
F �−1

F 

ai ′
F . (3.6)

The matrix �
ai
F is the expected outer product of the vector of residuals from the

L2(F) projections of the components of ai onto the space spanned by the compo-
nents of gi .

For 0 ≤ j ≤ p − 1 and ξ ∈ R p− j , define

�j F (ξ) := �
C ′

F,k− j �
−1/2
F Gi BF,p− j ξ

F . (3.7)

We can write

�j F (ξ) = (
ξ ′B ′

F,p− j ⊗ C ′
F,k− j �

−1/2
F

)
�

vec(Gi )
F

(
BF,p− jξ ⊗ �

−1/2
F CF,k− j

)
and

�
vec(Gi )
F = EF GFi G

′
Fi , where GFi := vec(Gi )−


vec(Gi )
F �−1

F gi ∈ R pk (3.8)

(using the general formula vec(ABC) = (C ′ ⊗ A)vec(B)). The random vector
GFi consists of the residuals from the L2(F) projections of the components of Gi

onto the space spanned by the components of gi . The matrix �
vec(Gi )
F is the ex-

pected outer-product of these residuals. Analogously, the matrix �j F(ξ) is the ex-
pected outer-product of the residuals from the L2(F) projections of the elements
of C ′

F,k− j �
−1/2
F Gi BF,p− jξ onto the space spanned by the components of gi .

For a given δ1 > 0, we define the parameter space of null distributions to be

F0 := ⋃p
j=0F0 j , where (3.9)

F0 j := {
F ∈ F : τj F ≥ δ1 and λp− j (�j F(ξ)) ≥ δ1 ∀ξ ∈ R p− j with ||ξ || = 1

}
,

τ0F := δ1, and λp− j
(
�j F(ξ)

)
:= δ1 for j = p.5 The matrices BF and CF are not

necessarily uniquely defined. But, this is not of consequence because the λp− j (·)
condition is invariant to the choice of BF and CF . We assume that F0 �= ∅.

The conditions in F0 are used to show that the estimator �̂
−1/2
n D̂n ∈ Rk×p of

the normalized orthogonalized population Jacobian matrix �
−1/2
F EF Gi has full

column rank p asymptotically with probability one after suitable normalization
(see Lemma 10.3(d) in the SM). This almost sure (a.s.) full column rank p prop-
erty is needed to obtain the desired asymptotic χ2

p null distribution of the LM
statistic (introduced below), which is used by the LM and CLR tests. The LM
statistic is a quadratic form in the sample moments with weight matrix given by
the projection matrix onto �̂

−1/2
n D̂n .

We obtain the a.s. full column rank property using conditions on both the
(asymptotic) mean and variance of �̂

−1/2
n D̂n . The index j on F0 j denotes the

contribution coming from the mean and p − j denotes the contribution coming
from the variance. For j = 0 (i.e., when the parameters are weakly identified in
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the standard sense), the τj F ≥ δ1 condition disappears, no restrictions are placed

on the mean �
−1/2
F EF Gi , and the a.s. full column rank property is obtained using

the λp− j (·) condition with j = 0. For j = p (i.e., when all parameters are strongly
identified), the λp− j (·) condition disappears (because BF,p− j is a matrix with no
columns when j = p) and the a.s. full rank property is obtained using only the
mean condition τpF ≥ δ1. For 0 < j < p (i.e., when the parameters are weakly
identified in the nonstandard sense), the a.s. full rank property is obtained partly
via the mean condition τj F ≥ δ1 and partly via the λp− j (·) condition. Sequences
of distributions in the semistrongly identified category can come from sets F0 j

for any j < p.
Linking the parameter spaces F0 j for j = 0, . . . , p with identification cat-

egories, as is done in the previous paragraph, provides a useful interpreta-
tion, but is somewhat heuristic. The reason is that the parameter spaces F0 j

place conditions on individual distributions F, whereas the asymptotic iden-
tification categories (i.e., strong, semistrong, and weak in the standard and
nonstandard senses) depend on the properties of sequences of distributions
{Fn : n ≥ 1}.

The “variance” (or variability) condition, λp− j (�j F(ξ)) ≥ δ1, can be inter-

preted as follows. The (k − j)× (p− j) matrix C ′
F,k− j �

−1/2
F Gi BF,p− j is a sub-

matrix of the k × p matrix C ′
F�

−1/2
F Gi BF , which is just �

−1/2
F Gi with its rows

and columns rotated. This submatrix C ′
F,k− j �

−1/2
F Gi BF,p− j has the j linear

combinations of the rows and columns of �
−1/2
F Gi removed for which the mean

component of �̂
−1/2
n D̂n, i.e., �

−1/2
F EF Gi , provides a column rank of magni-

tude j. (More specifically, the mean component of the j linear combinations of the
rows and columns of �

−1/2
F Gi that are removed equals C ′

F, j �
−1/2
F EF Gi BF, j =

Diag{τ1F , . . . ,τj F } ∈ R j× j and the column rank of Diag{τ1F , . . . ,τj F } is j by
the definition of F0 j .)

6 The λp− j
(
�j F (ξ)

) ≥ δ1 condition requires that every
linear combination ξ (with ||ξ || = 1) of the columns of the aforementioned sub-
matrix, i.e., C ′

F,k− j �
−1/2
F Gi BF,p− jξ, has enough variability to provide the req-

uisite additional column rank of magnitude p − j. Specifically, the (p − j)-th

largest eigenvalue of �j F (ξ) (:= �
C ′

F,k− j �
−1/2
F Gi BF,p− j ξ

F ) is bounded away from
zero. This allows for the minimal amount of variation that still delivers the in-
cremental p − j column rank that is required. Note that the matrix �j F(ξ) is not
actually a variance matrix. It is an expected outer-product matrix, which makes
the condition slightly weaker.

If some element of gi does not depend on some element of θ, then the corre-
sponding element of Gi is identically zero. For example, this occurs with simple
mean-variance moment conditions of the form gi (θ) = (Yi −θ1,(Yi −θ1)

2 −θ2)
′,

where θ1 is a mean parameter and θ2 is a variance parameter of the random vari-
able Yi . In such cases, �

vec(Gi )
F is singular. In consequence, it is important to

impose the weakest conditions possible on �
vec(Gi )
F or �

vec(�−1/2
F Gi )

F .
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In the simple mean-variance model, k = p = 2, EF Gi = −I2, both parameters
are strongly identified, and F0 contains F0p = {F ∈ F : τpF ≥ δ1}, where τpF

is the smallest singular value of �
−1/2
F (because EF Gi = −I2). In this model,

τpF is bounded away from zero if the fourth moment of Yi is bounded above,
which is implied by the condition in F that EF ||gi ||2+γ ≤ M. (This holds because
EF Gi = −I2 and �F has elements [�F ]11 = θ20, [�F ]12 = [�F ]21 =
EF Ui (U2

i − θ20), and [�F ]22 = EF (U2
i − θ20)

2, where θ20 := V arF (Yi ), Ui :=
Yi − θ10, θ10 := EF Yi , and θ0 = (θ10,θ20)

′ denotes the true null value.)
Hence, the condition τpF ≥ δ1 is redundant for δ1 sufficiently small in this
model.

If the condition λp− j (�j F(ξ)) ≥ δ1 > 0 in F0 j is weakened to λp− j (�j F (ξ)) >
0 and the variance and covariance matrix estimators �̂n and 
̂n defined below can
be any consistent estimators (under suitable sequences of distributions), then the
LM and CLR tests do not necessarily have correct asymptotic size. In particular,
we provide an example where the asymptotic distribution of the LM statistic is χ2

k
in this case, rather than the desired distribution χ2

p , which leads to over-rejection
under the null when k > p, see Section 14 in the SM. Hence, the restrictions on the
parameter space F0 are not redundant. This example consists of a standard linear
IV regression model with one rhs endogenous variable, IV’s that are irrelevant,
i.e., π = 0k , and a correlation between the structural and reduced-form equation
errors that equals one or converges to one as n → ∞. The example also can be
extended to cover weak IV cases (where π = πn �= 0k , but πn → 0k sufficiently
quickly as n → ∞), rather than the irrelevant IV case.

In contrast, the SR-AR and SR-CQLR type tests introduced in AG2 are shown
to have correct asymptotic size without any conditions on λp− j (�j F(ξ)) or
λmin(EF gi g′

i ). All that is required is the first two conditions in F . Hence, these
tests have advantages over the LM and CLR tests considered here in terms of the
robustness of their size properties.

Let C F,p− j ∈ Rk×(p− j ) denote a matrix that contains p − j columns from the
last k − j columns of CF . Six alternative sufficient conditions for the λp− j (·)
condition in F0 j , in increasing order of strength, are:

(i) λmin

(
�

vec(C
′
F,p− j �

−1/2
F Gi BF,p− j )

F

)
≥ δ1 for some matrix C F,p− j ,

(ii) λmin

(
�

vec(�−1/2
F Gi BF,p− j )

F

)
≥ δ1,

(iii) λmin

(
�

vec(�−1/2
F Gi )

F

)
≥ δ1,

(iv) λmin

(
�

vec(Gi )
F

)
≥ δ2 := δ1M2/(2+γ ),

(v) λmin(�
fi
F ) ≥ δ2, where �

fi
F := EF fi f ′

i and fi :=
( gi

vec(Gi )

)
, and

(vi) λmin(V arF ( fi )) ≥ δ2, (3.10)
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1062 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

where M and γ are as in (3.3) and δ1 is as in (3.9). Condition (i) holds if it holds
for any C F,p− j matrix corresponding to any CF matrix that satisfies the condition
in F0 j . Conditions (i) and (ii) are invariant to the choice of the matrix BF in cases
where BF is not uniquely defined. See Section 18 in the SM for a proof of the
sufficiency of these conditions. None of these conditions depend on ξ. Another
sufficient condition for the λp− j (·) condition in F0 j is

λp

(
�

�
−1/2
F Gi BF,p− j ξ

F

)
≥ δ1 ∀ξ ∈ R p− j with ||ξ || = 1. (3.11)

For the linear IV model in (2.2), we have �F = EF u2
i Zi Z ′

i ,

�
vec(Gi )
F = EFvec(Zi Y ′

2i )vec(Zi Y ′
2i )

′, 

vec(Gi )
F = −EFvec(ZiY ′

2i )Z ′
i ui ,

and EF ||(g′
i ,vec(Gi )

′)′||2+γ = EF ||(ui Z ′
i ,vec(Zi Y ′

2i )
′)′||2+γ . Sufficient condi-

tions for condition (vi) in (3.10) (and, hence, for the λp− j (·) condition in F0 j ) in
the linear IV regression model are as follows. We have

�
fi
F = EF

(
(ui ,−Y ′

2i )
′ ⊗ Zi

)(
(ui ,−Y ′

2i )
′ ⊗ Zi

)′
= EF (εi ⊗ Zi )(εi ⊗ Zi )

′ + EF si (π)si (π)′ and

V arF ( fi ) = EF (εi ⊗ Zi )(εi ⊗ Zi )
′ + EF si (π)si (π)′ − EF si (π)EF si (π)′

≥ EF (εiε
′
i ⊗ Zi Z ′

i ), where

εi := (ui ,−V ′
2i )

′, si (π) := (0k′,−(Zi Z ′
iπ1)

′, . . . ,−(Zi Z ′
iπp)

′)′, (3.12)

π = (π1, . . . ,πp) for πj ∈ Rk for j = 1, . . . , p, and the inequality holds in a p.s.d.
sense. Hence, λmin(V arF ( fi )) ≥ δ2 holds if λmin(EF (εiε

′
i ⊗ Zi Z ′

i )) ≥ δ2. When
εi is conditionally homoskedastic, i.e., �ε,F := V arF (εi ) = EF (εiε

′
i |Zi ) a.s., we

have EF (εiε
′
i ⊗ Zi Z ′

i ) = �ε,F ⊗ EF Zi Z ′
i . Hence, for example, λmin(V arF ( fi )) ≥

δ2 holds if �ε,F and EF Zi Z ′
i have minimum eigenvalues that are bounded away

from zero by δ
1/2
2 .

3.3. Definition of G(Wi,θ)

The k × p matrix G(Wi ,θ) does not need to equal (∂/∂θ ′)g(Wi ,θ), as defined
in (1.3). Rather, the asymptotic size results given below hold for any matrix
G(Wi ,θ) that satisfies the conditions in F0. For example, G(Wi ,θ) can be
the derivative of g(Wi ,θ) almost surely, rather than for all Wi , which allows
g(Wi ,θ) to have kinks. Alternatively, the function G(Wi ,θ) can be a numer-
ical derivative, such as ((g(Wi ,θ + εe1) − g(Wi ,θ))/ε, . . . , (g(Wi ,θ + εep)
− g(Wi ,θ))/ε) ∈ Rk×p for some ε > 0, where ej is the j th unit vector, e.g.,
e1 = (1,0, . . . ,0)′ ∈ R p . This choice of G(Wi ,θ) matrix may be useful for
models with quite complicated Jacobian matrices (∂/∂θ ′)g(Wi ,θ).

3.4. Definitions of Asymptotic Size and Asymptotic Similarity

Now, we define asymptotic size and asymptotic similarity of a test of H0 : θ = θ0
for some given parameter space F(θ0) of null distributions F. Let RPn(θ0, F,α)
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ASYMPTOTIC SIZE OF KLEIBERGEN’S LM AND CLR TESTS 1063

denote the null rejection probability of a nominal size α test with sample size
n when the distribution of the data is F. The asymptotic size of the test for the
parameter space F(θ0) is defined by

AsySz := limsup
n→∞

sup
F∈F(θ0)

RPn(θ0, F,α). (3.13)

The test is asymptotically similar (in a uniform sense) for the parameter space
F(θ0) if

liminf
n→∞ inf

F∈F(θ0)
RPn(θ0, F,α) = limsup

n→∞
sup

F∈F(θ0)

RPn(θ0, F,α). (3.14)

Next, we consider a CS that is obtained by inverting tests of H0 : θ = θ0
for all θ0 ∈ �. The asymptotic size of the CS for the parameter space F� :=
{(F,θ0) : F ∈F(θ0),θ0 ∈ �} is AsySz := liminf

n→∞ inf(F,θ0)∈F�
(1− RPn(θ0, F,α)).

The CS is asymptotically similar (in a uniform sense) for the parame-
ter space F� if liminf

n→∞ inf(F,θ0)∈F�
(1 − RPn(θ0, F,α)) = limsup

n→∞
sup(F,θ0)∈F�

(1 − RPn(θ0, F,α)).
As defined, asymptotic size and similarity of a CS require uniformity over the

null values θ0 ∈ �, as well as uniformity over null distributions F for each null
value θ0. This additional level of uniformity does not play a significant role in this
paper. The same proofs for tests give results for CS’s with only minor changes.
The reason is that to determine the asymptotic coverage probabilities of CS’s
under all identification scenarios one needs to consider all possible asymptotic
behavior of �

−1/2
Fn

EFn Gi . It does not matter whether �
−1/2
Fn

EFn Gi varies due to
variation of Fn, which is what occurs in the analysis of tests with a fixed null
hypothesis, or due to variation of both Fn and the (true) null parameter upon
which �

−1/2
Fn

EFn Gi depends, which is what occurs for CS’s. The analysis for
tests already covers all possible variations, so nothing new is needed for the CS
analysis beyond minor notational adjustments.

The dependence of the parameter spaceF0, defined in (3.9), on θ0 is suppressed
for notational simplicity. When dealing with CS’s, rather than tests, we make the
dependence explicit and write it as F0(θ0). The asymptotic size and similarity of
CS’s is considered for the parameter space F�,0 defined by

F�,0 := {(F,θ0) : F ∈ F0(θ0),θ0 ∈ �}. (3.15)

4. KLEIBERGEN’S NONLINEAR LM TEST

Here, we define and analyze Kleibergen’s (2005) nonlinear LM test for the non-
linear moment condition model in (1.1).

For any matrix A with r rows, we define the projection matrices

PA := A
(

A
′
A
)−

A′ and MA := Ir − PA, (4.1)

where (·)− denotes any g-inverse. If A has zero columns, we set MA = Ir .
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1064 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

Define the (nonlinear) Anderson and Rubin (1949) (AR) statistic of Stock and
Wright (2000), and the Lagrange Multiplier statistic of Kleibergen (2005) as
follows:

ARn(θ) := nĝn(θ)′�̂−1
n (θ)ĝn(θ) and

L Mn(θ) := nĝn(θ)′�̂−1/2
n (θ)P

�̂
−1/2
n (θ)D̂n(θ)

�̂
−1/2
n (θ)ĝn(θ), (4.2)

where ĝn(θ), �̂n(θ), and D̂n(θ) are defined in (3.1) and (3.2).
The nominal size α LM test rejects the null hypothesis in (1.2) when L Mn(θ0)

exceeds the 1 −α quantile of a χ2
p distribution, denoted by χ2

p,1−α. The nominal
size 1 −α LM CS is defined by

C SL M,n := {
θ0 ∈ � : L Mn(θ0) ≤ χ2

p,1−α

}
. (4.3)

The following result establishes the correct asymptotic size and asymptotic
similarity of Kleibergen’s (2005) LM test and CS for the parameter spaces F0
and F�,0, respectively.

THEOREM 4.1. The asymptotic size of the LM test equals its nominal size
α ∈ (0,1) for the parameter space F0 (defined in (3.9)). Furthermore, the LM test
is asymptotically similar (in a uniform sense). Analogous results hold for the LM
CS for the parameter space F�,0, defined in (3.15).

Comments. (i) Theorem 4.1 provides a more complete set of asymptotic
results under the null hypothesis for the LM statistic than in Kleibergen
(2005). See Section 2 for a detailed discussion.

(ii) In contrast to results in Kleibergen (2005), we impose regularity condi-
tions in the specification of F0 in order to establish our asymptotic results
for the LM test. We show in Section 14 in the SM that these regularity
conditions are not redundant. Without the λp− j (·) condition in F0 j , we
show that, for some models, some sequences of distributions, and some
(consistent) choices of variance and covariance estimators, the LM statis-
tic has a χ2

k asymptotic distribution. This leads to over-rejection of the
null when the standard χ2

p critical value is used and the parameters are
over-identified (i.e., k > p).

(iii) Kleibergen’s LM test is asymptotically efficient in a GMM sense under
strong IV’s because it is asymptotically equivalent under n−1/2 local al-
ternatives to t and/or Wald tests based on asymptotically efficient GMM
estimators, e.g., see Newey and West (1987b).

We now provide a brief description of how we obtain the asymptotic distribu-
tion of the projection matrix onto �̂

−1/2
n D̂n, which appears in the LM statistic,

using the conditions in F0. Projection matrices are invariant to multiplication by
scalars, such as n1/2, and postmultiplication by nonsingular p × p matrices. We
use this invariance when normalizing �̂

−1/2
n D̂n to obtain a nondegenerate limit of
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ASYMPTOTIC SIZE OF KLEIBERGEN’S LM AND CLR TESTS 1065

the projection matrix under a sequence of distributions {Fn ∈F0 : n ≥ 1}. The ap-
propriate normalization depends on the identification strength under {Fn : n ≥ 1}.
For sequences of distributions where all parameters are strongly identified, such
as distributions in F0p, no normalization is needed and �̂

−1/2
n D̂n converges in

probability to a nonstochastic matrix that has full column rank p.
For sequences of distributions that are weakly identified in the standard sense

(i.e., for which all parameters are weakly identified), such as suitable sequences
of distributions in F00, the expected Jacobian EFn Gi is O(n−1/2), we normal-

ize �̂
−1/2
n D̂n by n1/2, the vector vec(n1/2�̂

−1/2
n D̂n) has an asymptotic normal

distribution with possibly nonzero mean, and we obtain the desired a.s. full col-
umn rank property of the asymptotic version of n1/2�̂

−1/2
n D̂n using the λp− j (·)

condition in F00 for j = 0.
Sequences of distributions {Fn : n ≥ 1} that are weakly identified in the non-

standard sense are noticeably more complicated to analyze. For such sequences,
we multiply �̂

−1/2
n D̂n by n1/2 and postmultiply n1/2�̂

−1/2
n D̂n by a nonstochastic

nonsingular p × p matrix that rotates its columns and then differentially down-
weights (by suitable functions of n) the q rotated columns that are strongly or
semistrongly identified for q ∈ {1, . . . , p}, as determined by the magnitude of
the singular values {τj Fn : j ≤ p} of �

−1/2
Fn

EFn Gi for n ≥ 1. This eliminates the
otherwise explosive behavior of these columns. Such sequences of distributions
come from ∪q

j=0F0 j . For such sequences, the asymptotic version of the normal-

ized �̂
−1/2
n D̂n matrix has full column rank a.s. because, for all j ≤ q, (i) the

first j nonstochastic (rotated) columns have full column rank by the choice of
rotation and (ii) the expected outer-product matrix of every linear combination
of the remaining p − j asymptotically normal (rotated) rows and columns, i.e.,

�
C ′

F,k− j �
−1/2
F Gi BF,p− j ξ

F , satisfies the λp− j (·) lower bound condition in F0 j .

5. KLEIBERGEN’S CLR TEST WITH JACOBIAN-VARIANCE
WEIGHTING

In this section, we consider Kleibergen’s (2005, Section 5.1) nonlinear CLR test
that employs the Jacobian-variance weighting. This test utilizes a rank statistic,
rkn(θ), that is suitable for testing the hypothesis rank[EF Gi ] ≤ p − 1 against
rank[EF Gi ] = p. For example, the rank statistics of Cragg and Donald (1996,
1997), Robin and Smith (2000), and Kleibergen and Paap (2006) have been sug-
gested for this purpose. Given rkn(θ) and any p ≥ 1, Kleibergen (2005) defines
the nonlinear CLR test statistic as

C L Rn(θ) := 1

2

(
ARn(θ)−rkn(θ)+

√
(ARn(θ)− rkn(θ))2 + 4L Mn(θ) · rkn(θ)

)
.

(5.1)

This definition mimics the definition of the likelihood ratio (LR) statistic in the
homoskedastic normal linear IV regression model with fixed regressors when
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1066 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

p = 1, see Moreira (2003, equation (3)). However, it differs from the LR statistic
in the latter model when p ≥ 2. Smith (2007), Newey and Windmeijer (2009),
and Guggenberger, Ramalho, and Smith (2012) consider GEL versions of the
CLR statistic in (5.1).

The critical value of the CLR test is c(1 −α,rkn(θ)), where c(1 −α,r) is the
1 −α quantile of the distribution of

clr(r) := 1

2

(
χ2

p +χ2
k−p − r +

√
(χ2

p +χ2
k−p − r)2 + 4χ2

pr
)

(5.2)

for 0 ≤ r < ∞, where χ2
p and χ2

k−p are independent chi-square random variables
with p and k − p degrees of freedom, respectively. The CLR test rejects the null
hypothesis H0 : θ = θ0 if C L Rn(θ0) > c(1 −α,rkn(θ0)).

Kleibergen (2005, p. 1114) recommends using a rank statistic that is a function
of D̂n(θ) and a consistent estimator of the covariance matrix of the asymptotic dis-
tribution of vec(D̂n(θ)) (after suitable normalization), denoted ṼDn(θ) ∈ Rkp×kp .
(Also, see (37) of Kleibergen (2007).) In the i.i.d. case considered here, ṼDn(θ)
is defined by

ṼDn(θ) := n−1
n∑

i=1

vec(Gi(θ)− Ĝn(θ))vec(Gi(θ)− Ĝn(θ))′ − 
̂n(θ)�̂−1
n (θ)
̂n(θ)′,

where 
̂n(θ) := (
̂1n(θ)′, . . . , 
̂pn(θ)′)′ ∈ R pk×k . (5.3)

The Jacobian-variance weighted version of D̂n(θ) upon which the rank statistic
depends is

D̂†
n(θ) := vec−1

k,p(Ṽ −1/2
Dn (θ)vec(D̂n(θ)))

=
p∑

j=1

(M̃1 j n(θ)D̂jn(θ), . . . , M̃pjn(θ)D̂jn(θ)),

where M̃n(θ) =
⎡
⎢⎣

M̃11n(θ) · · · M̃1pn(θ)
...

. . .
...

M̃p1n(θ) · · · M̃ppn(θ)

⎤
⎥⎦ := Ṽ −1/2

Dn (θ) ∈ Rkp×kp

and M̃j�n(θ) ∈ Rk×k for j,� ≤ p. (5.4)

The function vec−1
k,p(·) is the inverse of the vec(·) function for k × p matrices.

Thus, the domain of vec−1
k,p(·) consists of kp-vectors and its range consists of k × p

matrices. Similarly, Smith’s (2007) nonlinear CLR test relies on a rank statistic
that is a function of D̂†

n(θ). We refer to D̂†
n(θ) as the Jacobian-variance-weighted

orthogonalized sample Jacobian.
For example, Kleibergen’s (2005, 2007) rank statistic based on the Robin and

Smith (2000) statistic is

rkn(θ) := λmin(n(D̂†
n(θ))′ D̂†

n(θ)). (5.5)

The asymptotic null distribution of n1/2 D̂†
n T †

n is given in the following theorem.
(As mentioned above, for notational simplicity, we often drop the dependence on
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θ0 for statistics that are computed under the null hypothesis value θ = θ0. Thus,
D̂†

n and T †
n denote D̂†

n(θ0) and T †
n (θ0), respectively.) Here T †

n is a nonstochastic
p × p matrix that rotates D̂†

n by an orthogonal matrix and then rescales the result-
ing columns so that n1/2 D̂†

n T †
n has a nondegenerate asymptotic distribution. We

let {λn,h : n ≥ 1} index a sequence of distributions {Fn : n ≥ 1} that has certain
properties, including convergence of

EFn Gi and V arFn

( f ∗
i

vech( f ∗
i f ∗′

i )

)
, where f ∗

i :=
( gi

vec(Gi − EFn Gi )

)
, (5.6)

and convergence (possibly to infinity) of certain functions of n1/2 EFn Gi . In (5.6),
vech(·) denotes the half vectorization operator that vectorizes the elements in
the columns of a symmetric matrix that are on and below the main diagonal. We
define T †

n and {λn,h : n ≥ 1} precisely in Section 19 in the SM, see (19.9) and
(19.26), rather than here. The reason is that it takes several pages to define these
quantities precisely, and the exact form of these quantities is not important. What
is important is the general form of the asymptotic distribution of n1/2 D̂†

n T †
n , which

can be specified without these definitions.
The following theorem is a key ingredient in determining the asymptotic size

of Kleibergen’s CLR test with Jacobian-variance weighting when p ≥ 2. For this
CLR test based on the Robin and Smith (2000) rank statistic (defined in (5.5)), the
asymptotic size is determined and a formula for it is stated in Section 19 in the
SM. The formula for asymptotic size is given by the supremum of the asymptotic
null rejection probabilities over sequences of distributions with different identifi-
cation strengths. For some sequences, the asymptotic versions of the sample mo-
ments and the (suitably normalized) Jacobian-variance weighted orthogonalized
sample Jacobian are independent, and the asymptotic null rejection probabilities
are necessarily equal to the nominal size α.

However, when p ≥ 2, for some sequences, these asymptotic quantities are not
necessarily independent, and the asymptotic null rejection probabilities are not
necessarily equal to the nominal size α. (The problematic sequences of distri-
butions are of the nonstandard weak identification type, which requires p ≥ 2.)
The asymptotic null rejection probabilities could be larger or smaller than α (or
both) depending on the model. If they are larger (or larger and smaller), the test
does not have correct asymptotic size and is not asymptotically similar. If they
are smaller, the test has correct asymptotic size, but is not asymptotically similar.
The outcome that obtains depends on the specific model and moment conditions.
Hence, when p ≥ 2, we cannot say that, under general conditions, the Jacobian-
variance weighted CLR test with the Robin and Smith (2000) rank statistic has
correct asymptotic size.

Although the asymptotic size formula for the Jacobian-variance weighted CLR
test with the Robin and Smith (2000) rank statistic is an important result of this
paper, it is stated in the SM because the notation and definitions needed to state
it are extremely lengthy. Instead, we state the following result here, which shows
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1068 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

why we cannot show that this CLR test necessarily has correct asymptotic size
when p ≥ 2.

THEOREM 5.1. Under the null hypothesis H0 : θ = θ0 and under all se-
quences {λn,h : n ≥ 1} with λn,h ∈ �K C L R ∀n ≥ 1 (as defined in Section 19.2

in the SM), n1/2
(
ĝn, D̂†

n T †
n
) →d

(
gh,�

†
h + M

†
h

)
, where

(
gh,�

†
h, M

†
h

)
has a

multivariate normal distribution whose mean and variance matrix depend on
lim V arFn

((
f ∗′
i ,vech( f ∗

i f ∗′
i )′

)′)
and on the limits of certain functions of EFn Gi

and gh and �
†
h are independent.

Comments. (i) The quantities gh , �
†
h, and M

†
h, which appear in

Theorem 5.1, are complicated nonrandom linear functions of a mean zero
multivariate normal random vector Lh whose variance matrix equals the
limit of the variance that appears in (5.6). These linear functions are given
explicitly in (19.13), (19.15), and (19.19) in Section 19 in the SM.

(ii) When trying to show that Kleibergen’s (2005, 2007) and Smith’s (2007)
CLR tests have correct asymptotic size, one needs the conditional asymp-
totic distributions of the LM statistic and the statistic Jn(θ0) := ARn(θ0)−
L Mn(θ0) given the asymptotic rank statistic, which is a nonrandom func-

tion of �
†
h + M

†
h , to be χ2

p and χ2
k−p distributions, respectively. See the

proof of Theorem 12.1 in the SM for details. The asymptotic distributions
of L Mn(θ0) and Jn(θ0) are quadratic forms in gh with random idempotent

weight matrices that depend on �
†
h + M

†
h . If M

†
h = 0k×p a.s., then condi-

tional on �
†
h , these asymptotic distributions are χ2

p and χ2
k−p distributions,

as desired, because gh and �
†
h are independent. Alternatively, if

(
M

†
h,�

†
h

)
is independent of gh , one obtains the desired conditional asymptotic distri-

butions given
(
M

†
h,�

†
h

)
. However, when M

†
h �= 0k×p with positive proba-

bility, one typically does not get the desired conditional asymptotic distri-

butions, because M
†
h and gh typically are correlated in this case.

(iii) In some scenarios, M
†
h = 0k×p a.s. This always occurs if p = 1. The proof

of this is given in Comment (ii) to Theorem 19.3 in the SM. If p ≥ 2, it
occurs if EFn Gi → 0k×p, which covers the cases where all of the parame-
ters are weakly identified in the standard sense or semistrongly identified.
If p ≥ 2, it also occurs if the smallest singular value of n1/2 EFn Gi di-
verges to infinity, which covers the case where all of the parameters are
strongly or semistrongly identified.

In addition,
(
M

†
h,�

†
h

)
is independent of gh, if gi and f ∗

i f ∗′
i are uncorre-

lated (for all F in the parameter space of interest), which holds in some
special cases. For example, in a homoskedastic linear IV model with p
rhs endogenous variables and fixed IV’s, it holds if (i) the reduced-form
equation error vector V2i is of the form V2i = K1ui + K2ξi , where ui is
the structural equation error, K1 is some constant p vector, K2 is some
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constant p× p matrix, and ξi is some mean zero random p vector, (ii) ui is
independent of ξi , and (iii) ui is symmetrically distributed about zero with
three moments finite. These conditions hold if

(
ui ,V ′

2i

)′ has a multivariate

normal distribution, but fail for most joint distributions of
(
ui ,V ′

2i

)′
.7 In

addition, lack of correlation between gi and f ∗
i f ∗′

i typically does not hold

if the IV’s are random and independent of
(
ui ,V ′

2i

)′
. This is a consequence

of EF Gi being different between the fixed and random IV cases.

Typically, M
†
h is nonzero (with positive probability) and correlated with gh

whenever some parameters are strongly identified and others are weakly
identified in either the standard sense or in a jointly weakly-identified
sense. In consequence, in general, when p ≥ 2, one cannot verify that
Kleibergen’s (2005, 2007) and Smith’s (2007) CLR tests with the Robin
and Smith (2000) rank statistic have correct asymptotic size using the stan-
dard proof. Depending upon the particular sequence of distributions con-
sidered and the particular moment functions considered, the correlation

between gh and �
†
h + M

†
h could increase or decrease the asymptotic null

rejection probability from the nominal probability α.

(iv) Numerical simulations of a linear IV model (with p = 2, one parameter
strongly identified, one parameter weakly identified, and a particular dis-

tribution of the errors) corroborate the finding that M
†
h and gh can be cor-

related asymptotically, see Section 19.3 in the SM for details. In the model
considered, the simulated asymptotic null rejection probabilities are found
to be in [4.99,5.11], which are quite close to the test’s nominal size of
5.00. Whether this occurs for a wide range of error distributions and for
other moment condition models is an open question. It appears that this
question needs to be answered on a case by case basis.

(v) If the random weight matrix Ṽ −1/2
Dn (θ) is replaced in the definition of

D̂†
n(θ) by the nonrandom quantity that it is estimating, call it V −1/2

Dn (θ),
then the asymptotic distribution of the quantities in Theorem 5.1 is given

by
(
gh,�

†
h

)
, where gh and �

†
h are independent. Thus, the appearance

of M
†
h in Theorem 5.1 is due to the estimation of the weight matrix. If

V −1/2
Dn (θ) is known (which almost never occurs in practice) and is used to

define D̂†
n(θ), then the Kleibergen (2005, 2007) and Smith (2007) CLR

tests can be shown to have correct asymptotic size even when p ≥ 2.

(vi) The reason that the estimator Ṽ −1/2
Dn affects the limit distribution of

n1/2 D̂†
n T †

n is because it weights the columns of D̂n differently. If one
bases the rank statistic on W̃n D̂n, where W̃n (= W̃n(θ0)) is some random
k ×k matrix that converges in probability to a nonsingular matrix, then the
nondegenerate asymptotic distribution of W̃n (after suitable normalization)
does not affect the asymptotic distribution of W̃n D̂n, only the plim of W̃n

does (and the corresponding CLR test has correct asymptotic size). The
proof is given in Section 19.5 in the SM.
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1070 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

(vii) In Section 19.1 in the SM, we provide an example that illustrates the re-
sults of Theorem 5.1 and Comments (iv) and (v) to Theorem 5.1.

(viii) Given the result of Theorem 5.1, we do not recommend using the CLR test
with the Robin and Smith (2000) rank statistic based on an estimator of the
asymptotic variance matrix of vec

(
D̂n

(
θ
))

(after suitable normalization)
when p ≥ 2.

(ix) The CLR test with Jacobian-variance weighting (in the rank statistic)
is asymptotically efficient in a GMM sense under strong IV’s provided
rkn(θ) →p ∞ under strong IV’s, which is the case for all of the rank tests
considered in the literature.8

Next, we provide a result that gives an upper bound on the possible asymptotic
size distortion of any CLR test, including the Jacobian-variance weighted CLR
test. Consider the test that rejects H0 : θ = θ0 when

sup
r∈[0,∞]

[
1

2

(
ARn(θ0)− r +

√
(ARn(θ0)− r)2 +4L Mn(θ0) ·r

)
− c(1−α,r)

]
(5.7)

is positive, where c(1 − α,r) is defined in (5.2). This test rejects whenever
the CLR test defined in (5.1)–(5.2) rejects, no matter how the rank statistic
rkn(θ0) ∈ R+ is defined. Therefore, the asymptotic size of the test in (5.7) pro-
vides an upper bound on the asymptotic size of the CLR test for any rank statistic
rkn(θ0) ∈ R+.9

LEMMA 5.2. The asymptotic size of the test in (5.7) for the parameter space
F0 (defined in (3.9)) equals the probability that

sup
r∈[0,∞]

[
1

2

(
χ2

p +χ2
k−p − r +

√
(χ2

p +χ2
k−p − r)2 +4χ2

p ·r
)

− c(1−α,r)

]
> 0, (5.8)

where χ2
p and χ2

k−p are independent random variables with chi-square distribu-
tions with p and k − p degrees of freedom, respectively.

Comments. (i) The probability of the event in (5.8) only depends on p,
k, and α and can be computed easily by simulation. Using 106 simulation
repetitions, a grid for r given by {0, .5,1,1.5, . . . ,100,∞}, and α = 0.05,
we find that for p = 2 and k = 3,5,10,15,20, . . . ,50,75,100 the prob-
ability of the event in (5.8) times 100 equals 7.00, 8.11, 9.00, 9.36,
9.57, 9.71, 9.81, 9.88, 9.95, 10.00, 10.04, 10.14, and 10.01, respectively.
When p = 5 and k = 6,10,15,20, . . . ,50,75,100, the probability times
100 equals 6.38, 7.85, 8.54, 8.90, 9.17, 9.31, 9.45, 9.56, 9.63, 9.68,
9.91, and 9.91, respectively.

(ii) The simulation results in (i) imply that the potential asymptotic size distor-
tion (times 100) of the nominal size 5% CLR test with Jacobian-variance
weighting is bounded above by the quantities in (i) minus 5.00 for the
various choices of p and k.
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(iii) The proof of Lemma 5.2 is given in Section 19.7 in the SM. It uses
the decomposition ARn(θ) = L Mn(θ)+ Jn(θ) and shows that asymptotic
versions of L Mn(θ0) and Jn(θ0) are independent and distributed as χ2

p and

χ2
k−p, respectively, conditional on a certain random matrix. Because their

conditional distribution does not depend on the conditioning matrix, their
unconditional and conditional distributions are the same.

As indicated in Comment (iii) to Theorem 5.1, when p = 1, M
†
h = 0k×p a.s.

In consequence, Kleibergen’s (2005) Jacobian-variance weighted CLR test has
correct asymptotic size when p = 1 for a suitable parameter space of distributions
F and a suitable rank statistic, such as that in (5.5). We consider the parameter
space

FJ V W,p=1 := {F ∈ F : λmin(�
Gi
F − EF Gi EF G′

i ) ≥ δ3} (5.9)

for some δ3 > 0. For the corresponding CS, we consider the parameter space
F�,J V W,p=1 := {(F,θ0) : F ∈ FJ V W,p=1(θ0),θ0 ∈ �}, where FJ V W,p=1(θ0)
denotes the set FJ V W,p=1 defined in (5.9) with its dependence on θ0 made
explicit.

We have FJ V W,p=1 ⊂ F00 (⊂ F0) when δ3 = δ2 (by (3.9) and condition (iv)
in (3.10)), where F00 = F0 j with j = 0 (for F0 j defined in (3.9)) and F0 is the
parameter space for which the moment-variance weighted CLR test has correct
asymptotic size, see Theorem 6.1 below. When p = 1, F0 = F00 ∪F01 and the
set F01 places no restrictions on the variance matrix or outer-product matrix
of the orthogonalized sample Jacobian (i.e., �1F (ξ)). The parameter space
FJ V W,p=1 cannot be enlarged to include a set like F01, because the condition on

the variance matrix of the orthogonalized sample Jacobian �
Gi
F − EF Gi EF G′

i
in FJ V W,p=1 is needed to obtain the nonsingularity of the probability limit of the
weight matrix ṼDn.

When p = 1, the Robin and Smith (2000) rank statistic given in (5.5) (with
θ = θ0), which is based on Kleibergen’s (2005, 2007) recommended Jacobian-
variance weight matrix Ṽ −1/2

Dn , reduces to

rkn := nD̂n
′Ṽ −1

Dn D̂n . (5.10)

THEOREM 5.3. Suppose p = 1. The asymptotic size of the CLR test with
Jacobian-variance weighting, defined by (5.1), (5.2), and (5.10), equals its nomi-
nal size α ∈ (0,1) for the parameter space FJ V W,p=1. Furthermore, this CLR test
is asymptotically similar (in a uniform sense) for this parameter space. Analogous
results hold for the CLR CS with Jacobian-variance weighting for the parameter
space F�,J V W,p=1.

Comment. Correct asymptotic size holds for Kleibergen’s CLR test with
Jacobian-variance weighting when p = 1 because D̂n has only one column in
this case, so it is impossible to have unequal column weights.
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1072 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

6. KLEIBERGEN’S CLR TEST WITH MOMENT-VARIANCE
WEIGHTING

Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012)
consider a version of Kleibergen’s (2005) CLR test that uses a rank statistic that
depends on

�̂
−1/2
n (θ)D̂n(θ), (6.1)

rather than D̂†
n(θ). We refer to �̂

−1/2
n (θ)D̂n(θ) as the moment-variance-weighted

orthogonalized sample Jacobian. This choice gives equal weight to each of the
columns of D̂n . In this section, we show that this choice combined with the Robin
and Smith (2000) rank statistic yields a nonlinear CLR test that has correct asymp-
totic size for the parameter space F0. In this case, the rank statistic is

rkn(θ) := λmin(nD̂n(θ)′�̂−1
n (θ)D̂n(θ)). (6.2)

THEOREM 6.1. The asymptotic size of the CLR test with moment-variance
weighting, defined by (5.1), (5.2), and (6.2), equals its nominal size α ∈ (0,1) for
the parameter space F0 (defined in (3.9)). Furthermore, this CLR test is asymp-
totically similar (in a uniform sense) for this parameter space. Analogous results
hold for the CLR CS with moment-variance weighting for the parameter space
F�,0, defined in (3.15).

Comments. (i) Neither Newey and Windmeijer (2009) nor Guggenberger,
Ramalho, and Smith (2012) provide an asymptotic size result like that in
Theorem 6.1. Guggenberger, Ramalho, and Smith (2012) provide asymp-
totic null rejection probabilities only under Stock and Wright’s (2000)
Assumption C, plus a high-level condition that involves the asymptotic
behavior of the rank statistic. Verifying this high-level assumption under
parameter sequences that satisfy Assumption C turns out to be very chal-
lenging. We do so in this paper, also see Comment (ii). But note that the
proof of Theorem 6.1, given in Section 12 in the SM to this paper, involves
much more than this. It is complicated because it needs to consider a broad
array of different types of identification ranging from standard weak identi-
fication, to joint weak identification, to semistrong and strong identification.

(ii) The proof of Theorem 6.1 actually allows for the use of any rank statis-
tic that satisfies an assumption called Assumption R, which is stated in
Section 12 in the SM, not just the rank statistic rkn(θ) in (6.2). As-
sumption R is verified using Theorem 10.4 in the SM for the rank
statistic in (6.2). With some changes, Assumption R can be verified us-
ing Theorem 10.4 when the rank statistic is of an “equally-weighted”
Robin-Smith form, but with a different weight matrix than in (6.2). That
is, Assumption R can be verified when rkn(θ) is as in (6.2) but with
�̂

−1/2
n (θ)D̂n(θ) replaced by W̃n(θ)D̂n(θ) for some k × k weight matrix

W̃n(θ) that is positive definite (pd) asymptotically. (This is what we mean
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by equally-weighted.) This is done in Section 19.5 in the SM. In con-
trast, by Theorem 5.1, when p ≥ 2, Assumption R typically does not
hold for any rank statistic that depends on the Jacobian-variance weighted
statistic D̂†

n(θ).

(iii) The CLR test considered in Theorem 6.1 is asymptotically efficient in a
GMM sense under strong IV’s provided rkn(θ) →p ∞ under strong IV’s,
see Comment (iii) to Theorem 4.1 for more details.

(iv) Assumption R likely holds for the Cragg and Donald (1996, 1997) and
Kleibergen and Paap (2006) rank statistics when they are based on an
equally-weighted function of D̂n(θ). However, this is just a conjecture.
Proving or disproving it seems to be difficult.

Although the rank statistic in (6.2) yields a test with correct asymptotic size,
it has some drawbacks. The use of the premultiplication weight matrix �̂

−1/2
n (θ)

and no postmultiplication weight matrix for D̂n(θ) is arbitrary. The choice of
these weight matrices is important for power purposes because it is a major de-
terminant of the magnitude of rkn(θ) and the latter enters both the test statistic
and the data-dependent critical value function. We show in Section 16 in the Sup-
plemental Material to AG2 that the rank statistic in (6.2) does not reduce to the
rank statistic in Moreira’s (2003) CLR test in the homoskedastic normal linear IV
regression model with fixed regressors even when p = 1. Specifically, the rkn(θ)
statistic in (6.2) differs asymptotically from the rank statistic in Moreira’s CLR
test by a scale factor that can range between 0 and ∞ depending on the scenario
considered, see Lemma 16.3 in the Supplemental Material to AG2. This is un-
desirable because Moreira’s CLR test has been shown to have some approximate
optimal power properties in the aforementioned model when p = 1.

In addition, the CLR test with moment-variance weighting, which is considered
in this section, has correct asymptotic size for the parameter space F0, but not
necessarily for the larger parameter space F .

These disadvantages motivate interest in the SR-CQLR type tests considered
in AG2.

7. TIME SERIES OBSERVATIONS

In this section, we generalize the results of Theorems 4.1, 5.3, and 6.1 from
i.i.d. observations to strictly stationary strong mixing observations. In the time
series case, F denotes the distribution of the stationary infinite sequence {Wi : i =
. . . ,0,1, . . .}. Asymptotics under drifting sequences of true distributions {Fn : n ≥
1} are used to establish the correct asymptotic size of the LM and CLR tests. Un-
der such sequences, the observations form a triangular array of row-wise strictly
stationary observations. Let ai be a random vector that depends on Wi , such as
vec(Gi ) or C ′

F,k− j �
−1/2
F Gi BF,p− jξ. In the time series case, we define �F and

�
ai
F differently from their definitions in (3.6) for the i.i.d. case. For the time series

case, we define �
ai
F , 


ai
F , �F , and �

ai
F as follows:
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1074 DONALD W.K. ANDREWS AND PATRIK GUGGENBERGER

�
ai
F :=

∞∑
m=−∞

EF (ai − EF ai )(ai−m − EF ai−m)′, 

ai
F :=

∞∑
m=−∞

EF ai g
′
i−m ,

�F :=
∞∑

m=−∞
EF gi g

′
i−m , and �

ai
F := �

ai
F −


ai
F �−1

F 

ai ′
F . (7.1)

Note that �
ai
F = lim V arF (n−1/2 ∑n

i=1(ai −

ai
F �−1

F gi )).
10 The definition of �

ai
F

in (7.1) differs from its definition in (3.6) in two ways. First, there are the lag m �=
0 terms. Second, there is the re-centering of ai by its mean EF ai . Re-centering is
needed in the time series context to ensure that �

ai
F is a convergent sum. In the

i.i.d. case, we avoid re-centering because without it the restriction in F0, defined
in (3.9), is weaker.

The time series analogue FT S of the space of distributions F , defined in
(3.3), is

FT S := {
F : {Wi : i = . . . ,0,1, . . .} are stationary and strong mixing under F with

strong mixing numbers {αF (m) : m ≥ 1} that satisfy αF (m) ≤ Cm−d ,

EF gi = 0k , EF ||(g′
i ,vec

(
Gi

)′)′||2+γ ≤ M, and λmin(�F ) ≥ δ
}

(7.2)

for some γ,δ > 0, d > (2 +γ )/γ, and C, M < ∞, where �F is defined in (7.1).
We define the time series parameter spaces of distributions FT S,0 and {FT S,0 j :

0 ≤ j ≤ p} as F0 and {F0 j : 0 ≤ j ≤ p} are defined in (3.9), but with FT S in place
of F , with �

ai
F defined as in (7.1), and with the definitions of (τ1F , . . . ,τpF ),

BF , and CF in (3.5) employing the definition of �F in (7.1). We define the
time series parameter space of distributions FT S,J VW,p=1 as FJ V W,p=1 is de-

fined in (5.9), but with FT S in place of F , with �
Gi
F defined as in (7.1), and with

EF Gi EF G′
i deleted (because �

Gi
F := �

Gi
F −


Gi
F �−1

F 

Gi ′
F and �

Gi
F is defined to

be EF (Gi − EF Gi )(Gi − EF Gi )
′ in the time series case, rather than EF Gi G′

i ).

That is, FT S,J V W,p=1 := {
F ∈FT S : λmin

(
�

Gi
F

) ≥ δ3
}

for some δ3 > 0. For CS’s,
we use the parameter spaces F�,T S,0 := {(F,θ0) : F ∈ FT S,0(θ0),θ0 ∈ �} and
F�,T S,J V W,p=1 := {(F,θ0) : F ∈ FT S,J V W,p=1(θ0),θ0 ∈ �}, where FT S,0(θ0)
and FT S,J V W,p=1(θ0) denote FT S,0 and FT S,J V W,p=1 with their dependence on
θ0 made explicit.

The sufficient conditions for the λp− j (·) condition in F0 j provided in (3.10)
and (3.11) also hold in the time series setting with �

ai
F and �

ai
F defined as

in (7.1).
Now, we define the LM and CLR test statistics in the time series context. To do

so, we let

VF := lim V arF

(
n−1/2

n∑
i=1

( gi

vec(Gi )

))

=
∞∑

m=−∞
EF

( gi

vec(Gi − EF Gi )

)( gi−m

vec(Gi−m − EF Gi−m )

)′
. (7.3)
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The second equality holds for all F ∈ FT S (as shown in the proof of Lemma 20.1
in Section 20 in the SM).

The test statistics depend on an estimator V̂n(θ0) of VF . This estimator is (typi-
cally) a heteroskedasticity and autocorrelation consistent (HAC) variance estima-
tor based on the observations

{
fi − f̂n : i ≤ n

}
, where fi := (g′

i ,vec(Gi )
′)′ and

f̂n(θ) := (
ĝ′

n,vec
(
Ĝn

)′)′
. There are a number of HAC estimators available in the

literature, e.g., see Newey and West (1987a) and Andrews (1991). The asymp-
totic size and similarity properties of the tests are the same for any consistent
HAC estimator. Hence, for generality, we do not specify a particular estimator
V̂n(θ0). Rather, we state results that hold for any estimator V̂n(θ0) that satisfies
the following consistency condition when the null value θ0 is the true value.

Assumption V. V̂n(θ0) − VFn →p 0(p+1)k×(p+1)k under {Fn : n ≥ 1} for any
sequence {Fn ∈ FT S : n ≥ 1} for which VFn → V for some pd matrix V .

We write the (p+1)k ×(p+1)k matrix V̂n(θ) in terms of its k ×k submatrices:

V̂n(θ) =

⎡
⎢⎢⎢⎢⎢⎣

�̂n(θ) 
̂1n(θ)′ · · · 
̂pn(θ)′


̂1n(θ) V̂G11n(θ) · · · V̂ ′
G p1n(θ)

...
...

. . .
...


̂pn(θ) V̂G p1n(θ) · · · V̂G ppn(θ)

⎤
⎥⎥⎥⎥⎥⎦ . (7.4)

Under Assumption V, �̂n(θ0) →p �F under F and 
̂n(θ0) =(

̂1n(θ0)

′, . . . , 
̂pn(θ0)
′)′ →p 


vec(Gi )
F under F.

In the time series case, for the LM test, the CLR test with moment-variance
weighting, and when p = 1 the CLR test with Jacobian-variance weighting, the def-
initions of the statistics ĝn(θ), Ĝn(θ), ARn(θ), L Mn(θ), D̂n(θ), C L Rn(θ), and
rkn(θ) are the same as in (3.1)–(5.1), but with �̂n(θ) and 
̂j n(θ) for j = 1, . . . , p
defined as in Assumption V and (7.4) rather than as in Sections 4 and 5. In addition,
when p = 1, for the CLR test with Jacobian-variance weighting, in the definition
of ṼDn in (5.3), the matrix n−1 ∑n

i=1 vec
(
Gi (θ)− Ĝn(θ)

)
vec

(
Gi (θ)− Ĝn(θ)

)′ is
replaced by the lower right pk × pk submatrix of V̂n(θ) in (7.4) (and �̂n(θ) and

̂j n(θ) for j = 1, . . . , p are defined as in (7.4)). With these changes, the critical
values for the time series case are defined in the same way as in the i.i.d. case.

For the time series case, the asymptotic size and similarity results for the tests
described above are as follows.

THEOREM 7.1. Suppose the LM test, the CLR test with moment-variance
weighting, and when p = 1 the CLR test with Jacobian-variance weighting are
defined as in this section, the parameter space for F is FT S,0 for the first two tests
and FT S,J V W,p=1 for the third test, and Assumption V holds. Then, these tests
have asymptotic sizes equal to their nominal size α ∈ (0,1) and are asymptotically
similar (in a uniform sense). Analogous results hold for the corresponding CS’s
for the parameter spaces F�,T S,0 and F�,T S,J V W,p=1.
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Comment. Theorem 7.1 shows that the results of Theorems 4.1, 5.3, and 6.1
for i.i.d. observations generalize to strictly stationary strong mixing observations,
provided the space of distributions F is adjusted suitably and the variance esti-
mator V̂n(θ0) of VF is defined appropriately.

8. CONCLUSION

This paper analyzes the asymptotic properties of the LM and CLR tests and confi-
dence sets introduced in Kleibergen (2005) for nonlinear moment condition mod-
els. These procedures aim to be identification robust. This paper determines the
asymptotic size and similarity (in a uniform sense) of these procedures for suit-
ably specified parameter spaces of null distributions of the observations.

The LM test is found to have correct asymptotic size and to be asymptotically
similar for a suitably chosen parameter space of null distributions. The same is
true for the CLR tests when p = 1, where p is the dimension of the unknown
parameter θ. However, when p ≥ 2, the asymptotic sizes of the CLR tests are
found to depend on how the conditioning statistic employed by CLR tests is
weighted. When the weighting is based on an estimator of the variance of the
sample moments, i.e., moment-variance weighting, combined with the Robin and
Smith (2000) rank statistic, the paper finds that the CLR tests are guaranteed to
have correct asymptotic size when p ≥ 2. When the weighting is based on an esti-
mator of the variance of the sample Jacobian, the paper determines a formula for
the asymptotic size of the CLR test. However, the results of the paper do not guar-
antee correct asymptotic size when p ≥ 2 with the Jacobian-variance weighting,
combined with the Robin and Smith (2000) rank statistic, because two key sample
quantities are not necessarily asymptotically independent under some identifica-
tion scenarios.

The results of this paper are employed in AG2, which develops some new
identification-robust tests and confidence sets that allow for a broader specifi-
cation of the parameter space of null distributions that generate the data than the
procedures considered in this paper.

NOTES

1. Thedefinitionsof the identification categoriesgivenhere, whichare basedon{sj Fn : j ≤ p,n ≥ 1},
where sj F is the j th largest singular value of EF G(Wi ,θ0), are suitable when λmin(V arF (g(Wi ,θ0)))

is bounded away from zero over the parameter space of distributions F. When the latter con-
dition does not hold, but λmin(V arF (g(Wi ,θ0))) > 0 for all distributions F, then sj F should

be defined to be the j th largest singular value of the normalized expected Jacobian V ar−1/2
F

(g(Wi ,θ0))EF G(Wi ,θ0) in order to obtain the appropriate definitions of the identification categories.
2. The approximate model for which SW verify Assumption C is a local approximation to the

model of interest based on a Taylor series expansion about a reference parameter value γ0, in their
notation. This approximation is necessarily accurate only for γ close to γ0. For other values of γ, the
approximate model may be different from the model of interest. Note that Assumption C is a global
assumption. So, the fact that it holds for the approximate model local to γ0 does not imply that it
approximately holds for the original model.
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3. Assumption C of SW fails in the present example because the expected moment functions are
E(y1i −Y2i θ1)Zi = −n−1/2 E Z2

i C(θ1 −θ10) and E(y1i −Y2i θ1)2 −θ2 = n−1 E Z2
i C2(θ1 −θ10)2 +

a(θ), where a(θ) := σ 2
V (θ1 − θ10)2 − 2σuV (θ1 − θ10) + θ20 − θ2, θ0 = (θ10,θ20)′ denotes the true

value of θ, σ 2
V := V ar(V2i ), σuV := Cov(ui ,V2i ), and σ 2

V and σuV do not depend on n. Because a(θ)

does not depend on n, but does depend on both θ1 and θ2, one must take β = θ and m2(β) = (0,a(θ))′
in Assumption C. In this case, (∂/∂β′)m2(β0) is a 2 × 2 matrix with less than full rank, because its
first row is zero, which violates Assumption C.

4. Under sequences Fn such that n1/2 EFn G(Wi ,θ) converges to a finite matrix, n1/2 D̂n(θ) and

n1/2 ĝn(θ) (= n−1/2 ∑n
i=1 g(Wi ,θ)) are asymptotically independent (see Lemmas 10.2 and 10.3 in

Section 10 in the SM). Therefore, if r(V̂n ,n1/2 D̂n(θ)) is a continuous function of n1/2 D̂n(θ) and a
weighting matrix V̂n (that converges in probability to a positive definite matrix), then by the continuous
mapping theorem (CMT), n1/2ĝn (θ) and r(V̂n ,n1/2 D̂n(θ)) are also asymptotically independent.

However, under sequences for which a component of n1/2 EFn G(Wi ,θ) diverges to plus or

minus infinity, the CMT cannot be applied because n1/2 D̂n(θ) does not converge in distribution, but
rather, some component of it diverges to plus or minus infinity in probability (see Lemma 10.3 in
Section 10 in the SM when h1, j = ∞ for some j ≤ p). In this case, r(V̂n ,n1/2 D̂n(θ)) may not

have an asymptotic distribution, and if it does, r(V̂n ,n1/2 D̂n(θ)) and n1/2ĝn(θ) are not necessarily
asymptotically independent. A simple example is given at the beginning of Section 19 in the SM.

5. Note that Kleibergen (2005) does not impose any rank restrictions on the variance matrix of the
limiting distribution of n−1/2 ∑

(g′
i ,vec(Gi )

′ − Evec(Gi )
′)′. As simple examples show, however, to

derive the limiting distribution of the LM test statistic, one needs to impose some restrictions of the
type in F0. For example, the case gi (θ) = 0 with probability one for all θ vectors is compatible with
Kleibergen’s (2005) assumptions but violates the nonsingularity claim in the statement of Theorem 1
in Kleibergen (2005).

6. The stated equality holds because (i) by (3.5) �
−1/2
F EF Gi = CF Diag(τF )B ′

F , where
Diag(τF ) is the k × p matrix whose (m,m) element equals τm F for m = 1, . . . , p and whose other

elements all equal zero, (ii) C ′
F�

−1/2
F EF Gi BF = Diag(τF ) by the orthogonality of CF and BF ,

and, hence, (iii) C ′
F, j�

−1/2
F EF Gi BF, j = Diag{τ1F , . . . ,τj F }.

7. The correlation between gi and f ∗
i f ∗′

i is zero in this case by the following: y1i = Y ′
2i θ + ui ,

Y2i = Z ′
i π + V2i , gi = Zi ui , Gi = −Zi Y2i , and f ∗

i = (ui ,−V ′
2i )

′ ⊗ Zi . In consequence, the prod-
uct of any element of gi and any element of f ∗

i f ∗′
i is of the form of a constant times Zis Zit Zi�

times a linear combination (with constant coefficients) of u3
i , uiξ

2
i j , ui ξi j ξim , and u2

i ξi j for some
s, t,�, j,m ≥ 1, where Zis and ξi j denote the sth element of Zi and the j th element of ξi , respec-
tively. The expectations of these terms are all zero under conditions (i)–(iii).

8. This holds because all CLR tests of the form in (5.1) and (5.2) are asymptotically equivalent
to the LM test in (4.2) under the null and n−1/2 local alternatives under strong IV’s, by (12.3) and
(12.4) in the proof of Theorem 12.1 in Section 12 in the SM, and, as noted above, the LM test is
asymptotically efficient in a GMM sense under strong IV’s. Note that, by definition in (4.2), the LM
statistic uses moment-variance weighting of D̂n(θ) in its projection matrix.

9. We thank a referee for suggesting an asymptotic size upper bound based on the test in (5.7).
10. This follows by calculations analogous to those in (20.3) and (20.4) in the proof of Theorem 7.1

in the SM.
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