
Journal of Econometrics 196 (2017) 275–287
Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Inference based on many conditional moment inequalities
Donald W.K. Andrews a,∗, Xiaoxia Shi b
a Cowles Foundation, Yale University, P.O. Box 208281, New Haven, CT 06520-8281, United States
b Department of Economics, University of Wisconsin-Madison, United States

a r t i c l e i n f o

Article history:
Received 1 July 2015
Received in revised form
27 April 2016
Accepted 3 September 2016
Available online 7 October 2016

JEL classification:
C12
C15

Keywords:
Asymptotic size
Asymptotic power
Conditional moment inequalities
Confidence set
Cramér–von Mises
Kolmogorov–Smirnov
Moment inequalities

a b s t r a c t

Weconstruct confidence sets formodels definedbymany conditionalmoment inequalities/equalities. The
number of conditional moment restrictions can be up to infinitely many. To deal with the vast number of
moment restrictions, we exploit the manageability (Pollard (1990)) of the class of moment functions. We
verify this condition in five examples from the recent partial identification literature.

The confidence sets are shown to have correct uniform asymptotic size and to exclude parameter
values outside the identified set with probability approaching one. Monte Carlo experiments for a
conditional stochastic dominance example and a random-coefficient binary-outcome example support
the theoretical results.
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1. Introduction

In this paper, we extend the results in Andrews and Shi
(2013a,b) (AS1, AS2) to cover models defined by many conditional
moment inequalities and/or equalities (‘‘MCMI’’ in short). The
number of conditional moment inequalities/equalities can be
countable or uncountable. Examples of models covered by the
results include (1) conditional stochastic dominance, (2) random-
coefficients binary-outcome models with instrumental variables,
see Chesher and Rosen (2014), (3) convex moment prediction
models, see Beresteanu et al. (2010), (4) ordered-choice models
with endogeneity and instruments, see Chesher and Smoliński
(2012), and (5) discrete games identified by revealed preference,
see Pakes et al. (2015).

The main feature of an MCMI model is that the number of
moment restrictions implied by the model is doubly ‘‘many’’. First,
there are many (countable or uncountable) conditional moment
restrictions, and second each conditional moment restriction
implies infinitely many moment conditions. As in AS1 and AS2,
we transform each conditional moment restriction into infinitely

∗ Corresponding author. Fax: +1 203 432 6167.
E-mail address: donald.andrews@yale.edu (D.W.K. Andrews).

http://dx.doi.org/10.1016/j.jeconom.2016.09.010
0304-4076/© 2016 Elsevier B.V. All rights reserved.
many unconditional ones using instrumental functions. After the
transformation, the unconditional moment functions of the model
form a class that is indexed by both the instrumental functions
and the indices of the conditional moment restrictions. We exploit
a manageability assumption on the class of conditional moment
functions. With this assumption, we show that the class of
transformed unconditional moment inequalities/equalities is also
manageable and, in consequence, can be treated similarly to those
in AS1 and AS2.

Thus, the manageability assumption on the class of conditional
moment functions is crucial for our theoretical framework. This as-
sumption is verified in the examples by deriving upper bounds on
the covering numbers of the functional classes that arise. The up-
per bounds in the first two examples are derived by bounding the
pseudo-dimensions of the functional classes. In the third exam-
ple, they are derived using the Lipschitz continuity of the moment
functions with respect to the index. These three examples are rep-
resentative of cases where there are a continuum of conditional
moment inequality/equalities. In the fourth and the fifth exam-
ples, the numbers of conditional moment inequalities/equalities
are countable. For countable functional classes, we treat their el-
ements as sequences and impose decreasing weights on them.
The weights guarantee an appropriate bound for the covering
numbers.

http://dx.doi.org/10.1016/j.jeconom.2016.09.010
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We note that the approach in this paper also is applica-
ble to models defined by many unconditional moment inequal-
ities/equalities. For such models, one simply omits the step that
transforms the conditional moments restrictions into uncondi-
tional ones using instrumental functions.

This paper belongs to the moment inequality literature, which
is now quite large. Themost closely related paper is Chernozhukov
et al. (Unpublished Manuscript), which studies models defined
by many moment inequalities. They construct two types of tests,
one based on a fixed critical value derived using a moderate
deviation inequality, and the other based on a bootstrap critical
value derived using distributional approximation theory for
suprema of empirical processes developed in Chernozhukov et al.
(UnpublishedManuscript, 2014b). Both are based on a supremum-
type test statistic, which is similar to, but different from, the KS
statistic considered here. In one Monte Carlo example considered
here, the one-step and two-step versions of their tests do not
perform as well as the MCMI tests proposed in this paper. In
the other Monte Carlo example considered here, their two-step
bootstrap-based method performs better than the MCMI methods
proposed in this paper at a large sample size, but not as well at
smaller sample sizes.

Like this paper, Delgado and Escanciano (2013) consider
tests for conditional stochastic dominance. They take a different
approach from the approach in this paper.

Papers in the literature that consider conditional moment
inequalities, but not MCMI, include Kahn and Tamer (2009),
Chetverikov (Unpublished Manuscript), AS1, Armstrong and Chan
(2013), Chernozhukov et al. (2013), Gandhi et al. (Unpub-
lished Manuscript), Lee et al. (2013), Andrews and Shi (2014),
and Armstrong (2014a,b, 2015). Galichon and Henry (2009) pro-
vide related results. Papers in the literature that test a continuum
of unconditional moment inequalities include papers on testing
stochastic dominance and stochasticmonotonicity, see Linton et al.
(2010) and references therein. Papers in the literature that test a
continuum of inequalities that are not moment inequalities and,
hence, to which the tests in this paper do not apply, include tests of
Lorenz dominance, see Dardanoni and Forcina (1999) and Barrett
et al. (2014), and tests of likelihood ratio (or density) ordering, see
Beare and Moon (2015), Beare and Shi (Unpublished Manuscript),
and references therein.

The rest of the paper is organized as follows. Section 2 specifies
the model and describes the examples. Section 3 introduces the
MCMI test statistics and confidence sets. Section 4 defines the
critical values and gives a step-by-step guide for implementation.
Section 5 shows the uniform asymptotic size of the proposed
tests and confidence sets in the general setup. Section 6 gives
the power results. Sections 7–9 verify the conditions imposed
in Sections 5 and 6 for each of the examples. Sections 7 and 8
also provide finite-sample Monte Carlo results for the problem
of testing conditional stochastic dominance and for the random-
coefficients binary-outcome model with instruments. Section 10
concludes. An Appendix available online provides proofs and some
additional simulation results.

For notational simplicity, throughout the paper, we let (ai)ni=1
denote the n-vector (a1, . . . , an)′ for ai ∈ R. We let A := B denote
that A equals B by definition or assumption.

2. Many conditional moment inequalities/equalities

2.1. Models

Themodels considered in this paper are of the following general
form:

EF0 [mj(Wi, θ0, τ )|Xi] ≥ 0 a.s. for j = 1, . . . , p and
EF0 [mj(Wi, θ0, τ )|Xi] = 0 a.s. for j = p + 1, . . . , p + v, ∀τ ∈ T ,

(2.1)
where T is a set of indices that may contain an infinite number of
elements, θ0 is the unknown true parameter value that belongs to
a parameter space Θ ⊂ Rdθ , the observations {Wi : i ≤ n} are i.i.d.,
F0 is the unknown true distribution of Wi, Xi is a sub-vector of Wi,
and m(w, θ, τ ) := (m1(w, θ, τ ), . . . ,mp+v(w, θ, τ ))′ is a vector
of known moment functions.1

In contrast, the parameter τ ∈ T does not appear in the
moment inequality/equality models considered in AS1 and AS2.

The object of interest is θ0, which is not assumed to be point
identified. The model restricts θ0 to the identified set (which could
be a singleton), which is defined by

ΘF0 := {θ ∈ Θ : (2.1) holds with θ in place of θ0}. (2.2)

We are interested in confidence sets (CS’s) that cover the true
value θ0 with probability greater than or equal to 1 − α for
α ∈ (0, 1). We construct such CS’s by inverting tests of the null
hypothesis that θ is the true value for each θ ∈ Θ. Let Tn (θ) be a
test statistic and cn,1−α (θ) be a corresponding critical value for a
test with nominal significance level α. Then, a nominal level 1− α
CS for the true value θ0 is

CSn := {θ ∈ Θ : Tn (θ) ≤ cn,1−α (θ)}. (2.3)

At each θ ∈ Θ , we test the validity of the moment conditions in
(2.1) with θ0 replaced with θ . The tests are of interest in their own
right when (i) there is no parameter to estimate in the moment
conditions, as in Example 1, or (ii) the validity of the moment
conditions at a given θ has policy implications.

2.2. Examples

Models of the form described in (2.1) arise in many empirically
relevant situations. Below are some examples.

Example 1 (Conditional Stochastic Dominance). Let W := (Y1, Y2,
X). Some economic theories imply that the distribution of Y1
stochastically dominates that of Y2 conditional on X . For an integer
s ≥ 1, the sth-order conditional stochastic dominance of Y1 over
Y2 can be written as conditional moment inequalities:

EF0 [Gs(Y2, τ ) − Gs(Y1, τ )|X]≥ 0 a.s. ∀τ ∈ T , where

Gs(y, τ ) := (τ − y)s−11{y≤ τ } (2.4)

and T contains the supports of Y1 and Y2. The tests developed
below are directly applicable in this example without being
inverted into a confidence set.

Stochastic dominance relationships have been used in in-
come and welfare analysis, for example, in Anderson (1996,
2004), Davidson and Duclos (2000), and Bishop et al. (Unpub-
lished Manuscript). Stochastic dominance relationships also have
been used in the study of auctions, e.g., in Guerre et al. (2009). Con-
ditional stochastic dominance implies that the relationship holds
for every subgroup of the population defined by X and is useful
in all of these applications. See Delgado and Escanciano (2013) for
a different approach to testing conditional stochastic dominance
from the one considered here.

Sometimes, one may be interested in the conditional stochas-
tic dominance relationship among multiple distributions. For ex-
ample, for W = (Y1, Y2, Y3, X), one would like to know whether

1 The requirement that Xi is a sub-vector of Wi does not preclude Xi from
containing excluded instruments becausem(Wi, θ0, τ ) is not required to vary with
every element of Wi.
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Y1 sth order stochastically dominates Y2 and Y2 dominates Y3 con-
ditional on X . The corresponding conditional moment inequalities
to be tested are as follows,

EF0 [Gs(Y2, τ ) − Gs(Y1, τ )|X] ≥ 0 and
EF0 [Gs(Y3, τ ) − Gs(Y2, τ )|X] ≥ 0 a.s. ∀τ ∈ T , (2.5)

where T contains the supports of Y1, Y2, and Y3. For example,
the comparison of multiple distributions has been considered in
Dardanoni and Forcina (1999) for Lorenz dominance.

Example 2 (Random-Coefficients Binary-Outcome Models with In-
strumental Variables). Consider the random-coefficients binary-
outcome model with instrumental variables (IV’s) studied in
Chesher and Rosen (2014) (CR):

Y1 = 1{β0 + X ′

1β1 + Y ′

2β2 ≥ 0}, (2.6)

where β := (β0, β
′

1, β
′

2)
′ are random coefficients that belong to

the space Rdβ . The covariate vector X1 is assumed to be exogenous
(i.e., independent of β), while the covariate vector Y2 may be
endogenous. Let X2 be a vector of instrumental variables that
is independent of β . Suppose the parameter of interest is the
marginal distribution of β , denoted by Fβ . Theorem 1 of CR implies
that under their Assumptions A1–A3, the sharp identified set for Fβ

is defined by the following moment inequalities:

EF0 [Fβ(S) − 1{S(Y1, Y2, X1) ⊂ S}|X1, X2] ≥ 0 a.s. ∀S ∈ S, (2.7)

where

S(y1, y2, x1) := cl{b = (b0, b′

1, b
′

2)
′
∈ Rdβ :

y1 = 1{b0 + x′

1b1 + y′

2b2 ≥ 0}},

S := {cl(∪c∈C H(c)) : C ⊂ Rdβ },

H(c) := {b ∈ Rdβ : b′c ≥ 0} for c ∈ Rdβ , (2.8)

cl denotes ‘‘closure,’’ and H(c) is the half-space orthogonal to c ∈

Rdβ .

Often one may wish to parameterize Fβ by assuming Fβ(·) =

Fβ(·; θ) for a known distribution function Fβ(·; ·) and an unknown
finite-dimensional parameter θ ∈ Θ . Then, the sharp identified set
for θ is defined by the moment inequalities:

EF0 [Fβ(S, θ) − 1{S(Y1, Y2, X1) ⊂ S}|X1, X2] ≥ 0 a.s. ∀S ∈ S. (2.9)

This fits into the framework of (2.1) with W = (Y1, Y ′

2, X
′

1, X
′

2)
′,

X = (X ′

1, X
′

2)
′, τ = S, T = S, p = 1, v = 0, and m(w, θ, τ ) =

Fβ(S, θ) − 1{S(y1, y2, x1) ⊂ S}.

Example 3 (Convex Moment Prediction Models—Support Function
Approach). Beresteanu et al. (2010) (BMM) establish a framework
to characterize the sharp identified set for a general class of in-
complete models with convex moment predictions using random
set theory. Examples of such models include static, simultaneous
move, finite gameswith complete or incomplete information in the
presence of multiple equilibria, best linear prediction models with
interval outcome and/or regressor data, and randomutilitymodels
ofmultinomial choicewith interval regressor data. BMMshow that
the sharp identified set for these models can be characterized by a
continuum of conditional moment inequalities using the support
function of the set. For parameter inference, BMMsuggest applying
the procedure in this paper and they verify the high-level assump-
tions in an earlier version of this paper in two examples. Here, we
describe their identification framework briefly.

Consider a model based on an observed random vector W and
an unobserved random vector V . The model maps each value of
(W , V ) to a closed set Qθ (W , V ) ⊆ Rd, where θ is the model
parameter that belongs to a parameter space Θ , and d is a positive
integer. Let X be a sub-vector of W with support contained in X
and let q(x) : X → Rd be a known function. Suppose (W , V ) and
W take values in some setsWV andW , respectively. BMM assume
that the sharp identified set of θ implied by the model is

ΘI = {θ ∈ Θ : q(X) ∈ EF0 [Qθ (W , V )|X] a.s. [X]}, (2.10)

where EF0 [·] stands for the Aumann expectation of the random set
inside the square brackets under the true distribution F0 of (W , V ).
BMM show that the event q(X) ∈ EF0 [Qθ (W , V )|X] can be written
equivalently as the following set of moment inequalities

EF0 [h(Qθ (W , V ), u) − u′q(X)|X] ≥ 0 a.s.[X],

∀u ∈ Rd s.t. ∥u∥ ≤ 1, (2.11)

where h(Q , u) is the support function of Q in the direction given
by u, that is, h(Q , u) = supq∈Q q′u.

The inequalities (2.11) do not fall immediately into our
general framework because of the unobservable V . However, in
applications, one typically has that either Qθ (W , V ) = Qθ (W )
(so that V does not appear in (2.11)) or the distribution of V
given X (denoted FV |X (v|x; θ)) is known to the researcher up to an
unknown parameter θ . In the former case, (2.11) fits the form of
(2.1). In the latter case, we write (2.11) as

EF0


h(Qθ (W , v), u)dFV |X (v|X; θ) − u′q(X)|X


≥ 0 a.s. [X],

∀u ∈ Rd s.t. ∥u∥ ≤ 1, (2.12)

which fits the formof (2.1). The former case includes the best linear
predictor example in BMM, and the latter case includes the entry
game example in BMM.

Example 4 (IV Ordered-Choice Models). Chesher and Smoliński
(2012) show that the sharp identified set for a nonparametric
single equation instrumental variable (SEIV) model with ordered
outcome and discrete endogenous regressors can be characterized
by a finite, but potentially very large, number of moment
inequalities. Consider the non-separable model

Y = h (Z,U) , (2.13)

where Y ∈ {1, 2, . . . ,M} and Z ∈ {z1, . . . , zK }, the error term U
is normalized to be uniformly distributed in [0, 1]. Assume that
there is a vector of instrumental variables X that is independent
of U . Then, one has a SEIV model. Further, assume that h is weakly
increasing in U . Then, h has a threshold crossing representation:
for m = 1, . . . ,M and z ∈ {z1, . . . , zK }:

h (z, u) = m if u ∈ (hm−1(z), hm(z)] (2.14)

for some constants 0 = h0(z) < · · · < hM(z) = 1. Thus, esti-
mating h (z, u) amounts to estimating the J = (M − 1)K threshold
parameters γ = (γ11, . . . , γ(M−1)1, . . . , γ1K , . . . , γ(M−1)K )′, where

γmk = hm (zk) ∀m = 1, . . . ,M − 1, ∀k = 1, . . . , K . (2.15)

Chesher and Smoliński (2012) show that the sharp identified set
for γ can be characterized by the following moment inequalities

EF0


γℓs −

K
k=1

M−1
m=1

1{Y = m, Z = zk, γmk ≤ γℓs}

 X


≥ 0 a.s. [X] and

EF0


K

k=1

M−1
m=1

1{Y = m, Z = zk, γ(m−1)k < γℓs} − γℓs

 X


≥ 0 a.s. [X] ∀ℓ ≤ M − 1, ∀s ≤ K ,

EF0 [γℓs − γms − 1{m < Y ≤ ℓ, Z = zs}| X] ≥ 0 a.s. [X]

∀ℓ > m, ∀ℓ,m ≤ M − 1, ∀s ≤ K . (2.16)
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We arrange the above N := 2(M − 1)K + (M − 2)(M − 1)K/2
inequalities into a column, and index them by τ for τ = 1, . . . ,N .
Let W = (Y , X, Z ′)′ and let m(W , γ , τ ) be the expression inside
the conditional expectation in the τ th inequality. Then, this exam-
ple falls into the framework of (2.1) with θ = γ .

One may wish to parameterize the threshold functions γ via
γ = Γ (θ). In that case, the same set of moment inequalities as
above defines the sharp identified set for θ . For example, Chesher
and Smoliński (2012) show that, for the linear ordered-probit
model,

γmk := hm(zk) = Φ(cm − a1zk) ∀m = 1, . . . ,M − 1,
∀k = 1, . . . , K , (2.17)

where c1, . . . , cM−1 are the threshold values, a1 is the slope
parameter, and Φ(·) is the standard normal distribution function.

Example 5 (Revealed Preference Approach in Discrete Games). Pakes
et al. (2015) formalize the idea of using the revealed preference
principle to estimate games in which a finite number of players
have a discrete set of actions to choose from. Observing the players’
equilibrium play, the econometrician can write down moment
inequalities that are implied by the revealed preference principle.
These moment inequalities allow one to estimate the structural
parameters without solving for the equilibrium. Here we describe
a simplified version of their framework.

Suppose that all players make decisions based on the same in-
formation set and the econometrician observes the information
set. Players make decisions based on expected utility maximiza-
tion. Suppose there are J players and each player has a feasible
action set Aj that is discrete (i.e., finite or countably infinite). Let
πj


aj, a−j, Z; θ


be the utility of player j given her own action aj,

her opponents’ actions a−j and the covariates Z . Let X be a sub-
vector of Z that generates the information set of the players. Let
the boldfaced aj and a−j be the observed actions of player j and her
opponents. The function πj is known up to the finite dimensional
parameter θ . Then, the moment inequalities are

EF0

πj


aj, a−j, Z; θ


− πj


a′

j, a−j, Z; θ
 X

≥ 0

∀a′

j ∈ Aj, ∀j = 1, . . . , J. (2.18)

When J is large or the number of elements in Aj is large, there
aremany (possibly countably infinitelymany) conditionalmoment
inequalities.

2.3. Parameter space

Let (θ, F) denote a generic value of the parameter and the
distribution of Wi. Let F denote the parameter space for the true
values (θ0, F0), which satisfy the conditional moment inequalities
and equalities. To specify F , we first introduce some additional
notation. For each distribution F , let FX denote the marginal
distribution of Xi under F . Let k := p + v.

Below, we employ a ‘‘manageability’’ condition that regulates
the complexity of T . It ensures that a functional central
limit theorem (CLT) holds, which is used in the proof of the
uniform coverage probability results for the CS’s. The concept of
manageability is from Pollard (1990) and is defined in Section B.3
of the Appendix. This concept also is used in AS1 to regulate the
complexity of the set of instrumental functions. Themanageability
condition could be replaced by some other condition from the
literature that is sufficient for a functional central limit theorem
to hold for the appropriate quantities.

The test consistency results given below apply to (θ, F) pairs
that do not satisfy the conditional moment inequalities and
equalities. For this reason, we introduce a set F+ that is a superset
of F and does not impose the inequalities and equalities. Let F+

be some collection of (θ, F) that satisfy the following parameter
space (PS) Assumptions PS1 and PS2 for given constants δ >
0 and C1 < ∞ and given deterministic function of (θ, F):
σF (θ) := (σF ,1(θ), . . . , σF ,k(θ))′. The function σF (θ) is useful for
the standardization of certain forms of the test statistic, and is
specified in greater detail in sections below.
Assumption PS1. For any (θ, F) ∈ F+,

(a) θ ∈ Θ,
(b) {Wi : i ≥ 1} are i.i.d. under F ,
(c) σF ,j(θ) > 0, ∀j = 1, . . . , k,
(d) |mj(w, θ, τ )/σF ,j(θ)| ≤ M(w), ∀w ∈ Rdw , ∀j = 1, . . . , k,

∀τ ∈ T , for some functionM : Rdw → [0, ∞), and
(e) EFM2+δ(Wi) ≤ C1.

Assumption PS2. For all sequences {(θn, Fn) ∈ F+ : n ≥ 1}, the
triangular array of processes {(mj(Wn,i, θn, τ )/σFn,j(θn))

k
j=1 : τ ∈

T , i ≤ n, n ≥ 1} is manageable with respect to the envelopes
{M(Wn,i) : i ≤ n, n ≥ 1}, where {Wn,i : i ≤ n, n ≥ 1} is a row-
wise i.i.d. triangular array withWn,i ∼ Fn ∀i ≤ n, n ≥ 1.

The parameter space F for the conditional moment inequality
model is the subset of F+ that satisfies:
Assumption PS3. (a) EF [mj(Wi, θ, τ )|Xi] ≥ 0 a.s. [FX ] for j =

1, . . . , p, ∀τ ∈ T ,
(b) EF [mj(Wi, θ, τ )|Xi] = 0 a.s. [FX ] for j = p+1, . . . , k,∀τ ∈ T .

3. Tests and confidence sets

In this section, we describe the MCMI test statistics. To do so,
we first transform the conditional moment inequalities/equalities
into equivalent unconditional ones using instrumental functions.
The unconditional moment conditions are as follows:

EF0 [mj(Wi, θ0, τ )gj(Xi)] ≥ 0 for j = 1, . . . , p and
EF0 [mj(Wi, θ0, τ )gj(Xi)] = 0 for j = p + 1, . . . , k,

∀τ ∈ T and ∀g = (g1, . . . , gk)′ ∈ Gc-cube, (3.1)

where g is a vector of instruments that depends on Xi and Gc-cube is
a collection of instrumental functions g defined below.

We constructMCMI test statistics based on (3.1). Let the sample
moment functions be

mn(θ, τ , g) := n−1
n

i=1

m(Wi, θ, τ , g) for g ∈ Gc-cube and

m(Wi, θ, τ , g) := (m1(Wi, θ, τ )g1(Xi), . . . ,mk(Wi, θ, τ )gk(Xi))
′ .

(3.2)

The sample variance matrix of n1/2mn(θ, g, τ ) is useful for most
versions of the test statistic and for the critical values. It is defined
as

Σn(θ, τ , g) := n−1
n

i=1

(m(Wi, θ, τ , g)

−mn(θ, τ , g))(m(Wi, θ, τ , g) − mn(θ, τ , g))′. (3.3)

When the sample variance is used, we would like it to be
nonsingular because it is used to Studentize the sample moment
functions. However, the matrix Σn(θ, τ , g) may be singular or
nearly singular with non-negligible probability for some (τ , g).
Thus, we add a small positive definite matrix to Σn(θ, τ , g):

Σn(θ, τ , g) := Σn(θ, τ , g) + ε · Diag(σ 2
n,1(θ), . . . ,σ 2

n,k(θ))

for (τ , g) ∈ T × Gc-cube and ε = 1/20, (3.4)

where σn,j(θ) is a consistent estimator of the σF ,j(θ) introduced
just above Assumption PS1.
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In practice, if the moment functions have a natural scale (say,
being a probability or the difference of two probabilities), one can
takeσn,j(θ) = σF ,j(θ) = 1 for all j, (θ, F), and n. Otherwise,we rec-
ommend taking σn,j(θ) and σF ,j(θ) such that σ−1

n,j (θ)mj(Wi, θ, τ )

and σ−1
F ,j (θ)mj(Wi, θ, τ ) are invariant to the rescaling of the mo-

ment functions, because this yields a test with the same property.
We discuss specific choices for the examples in later sections.

We assume that the estimators {σn,j(θ) : j ≤ k} satisfy the
following uniform consistency condition.
Assumption SIG1. For all ζ > 0, sup(θ,F)∈F Pr (maxj≤k |σ 2

n,j(θ)/

σ 2
F ,j(θ) − 1| > ζ) → 0.
The functions g that we consider are hypercubes in [0, 1]dX .

Hence, we transform each element of Xi to lie in [0, 1]. (There is
no loss in information in doing so.) For notational convenience,
we suppose XĎ

i ∈ RdX denotes the non-transformed IV vector and
we let Xi denote the transformed IV vector. We transform XĎ

i via a
shift and rotation and then apply the standard normal distribution
function Φ(x). Specifically, let

Xi := Φ(Σ−1/2
X,n (XĎ

i − X
Ď

n)), where Φ(x) := (Φ(x1), . . . , Φ(xdX ))
′

for x = (x1, . . . , xdX )
′,ΣX,n := n−1Σn

i=1(X
Ď
i − X

Ď

n)(X
Ď
i − X

Ď

n)
′, and X

Ď

n := n−1Σn
i=1X

Ď
i . (3.5)

We consider the class of indicator functions of cubes with side
lengths that are (2r)−1 for all large positive integers r . The cubes
partition [0, 1]dx for each r . This class is countable:

Gc-cube := {ga,r : ga,r(x) := 1{x ∈ Ca,r} · 1k for Ca,r ∈ Cc-cube},

where Cc-cube :=


Car :=

dx
u=1

((au − 1)/(2r), au/(2r)]

∈ [0, 1]dx : a = (a1, . . . , adx)
′, au ∈ {1, 2, . . . , 2r}

for u = 1, . . . , dx and r = r0, r0 + 1, . . .


(3.6)

for some positive integer r0 and 1k := (1, . . . , 1)′ ∈ Rk.2 The
terminology ‘‘c-cube’’ abbreviates countable cubes. Note that Ca,r is
a hypercube in [0, 1]dx with smallest vertex indexed by a and side
lengths equal to (2r)−1.

TheMCMI test statistic T n,r1,n(θ) is either a Cramér–von-Mises-
type (CvM) or Kolmogorov–Smirnov-type (KS) statistic. The CvM
statistic is

T n,r1,n(θ) := sup
τ∈T

r1,n
r=1

(r2 + 100)−1

×


a∈{1,...,2r}dX

(2r)−dxS(n1/2mn(θ, τ , ga,r), Σn(θ, τ , ga,r)), (3.7)

where S = S1, S2, S3, or S4 as defined in (3.9), (r2 + 100)−1 is a
weight function, and r1,n is a truncation parameter. The asymptotic
size and consistency results for the CS’s and tests based on T n,r1,n(θ)
allow for more general forms of the weight function and hold
whether r1,n = ∞ or r1,n < ∞ and r1,n → ∞ as n → ∞. (No rate
at which r1,n → ∞ is needed for these results.) For computational
tractability, we typically take r1,n < ∞.

The Kolmogorov–Smirnov-type (KS) statistic is

T n,r1,n(θ) := sup
τ∈T

sup
ga,r∈Gc-cube,r1,n

S(n1/2mn(θ, τ , ga,r), Σn(θ, τ , ga,r)),

(3.8)

2 When au = 1, the left endpoint of the interval (0, 1/(2r)] is included in the
interval.
where Gc-cube,r1,n = {ga,r ∈ Gc-cube : r ≤ r1,n}. For brevity, the
discussion in this paper focuses on CvM statistics and all results
stated concern CvM statistics. Similar results hold for KS statistics.3

The functions S1–S4 are defined by

S1 (m, Σ) :=

p
j=1


mj/σj

2
−

+

p+v
j=p+1


mj/σj

2
,

S2 (m, Σ) := inf
t=(t ′1,0

′
v)′:t1∈Rp

+,∞

(m − t)′ Σ−1 (m − t) ,

S3(m, Σ) := max{[m1/σ1]
2
−
, . . . , [mp/σp]

2
−
,

(mp+1/σp+1)
2, . . . , (mp+v/σp+v)

2
}, and

S4 (m, Σ) := inf
t=(t ′1,0

′
v)′:t1∈Rp

+,∞

(m − t)′ (m − t)

=

p
j=1

[mj]
2
−

+

p+v
j=p+1

m2
j , (3.9)

where mj is the jth element of the vector m, σ 2
j is the jth diagonal

element of the matrix Σ , and [x]− := −x if x < 0 and [x]− := 0
if x ≥ 0, R+,∞ := {x ∈ R : x ≥ 0} ∪ {+∞}, and Rp

+,∞ :=

R+,∞ × · · · × R+,∞ with p copies. The functions S1, S2, and S3
are referred to as the modified method of moments (MMM) or
Sum function, the quasi-likelihood ratio (QLR) function, and the
Max function, respectively. The function S4 is referred to as the
identity-weighted MMM function. The test statistic based on S4
is not invariant to scale changes of the moment functions, which
may be a disadvantage in some examples. But, in other examples
(e.g., Examples 2 and 4 and the s = 1 case of Example 1), the
moment functions are naturally on a probability scale (i.e., they
take values in [−1, 1]) and scale invariance is not an issue. In such
cases, S4 is a desirable choice for its simplicity.

4. Critical values

In this section we define critical values based on bootstrap
simulations for the MCMI test statistics. The critical values are of
the generalized moment selection (GMS) type, and are obtained
via the following steps.4

Step 1. Compute the GMS function ϕn(θ, τ , ga,r) for (τ , ga,r) ∈

T ×Gc-cube,r1,n , where ϕn(θ, ga,r) is defined as follows. For g = ga,r ,
let

ξn(θ, τ , g) := κ−1
n n1/2D

−1/2
n (θ, τ , g)mn(θ, τ , g), where

Dn(θ, τ , g) := Diag(Σn(θ, τ , g)), κn := (0.3 ln(n))1/2, (4.1)

and Σn(θ, τ , g) is defined in (3.4). The jth element of ξn(θ, τ , g),
denoted ξn,j(θ, τ , g), measures the slackness of the moment
inequality EFmj(Wi, θ, τ , g) ≥ 0 for j = 1, . . . , p. It is shrunk
towards zero via κ−1

n to ensure that one does not over-estimate
the slackness.

Define ϕn(θ, τ , g) := (ϕn,1(θ, τ , g), . . . , ϕn,p(θ, τ , g), 0, . . . ,
0)′ ∈ Rk by

ϕn,j(θ, τ , g) := Σ
1/2
n,j (θ, τ , g)Bn1{ξn,j(θ, τ , g) > 1} for j ≤ p and

Bn := (0.4 ln(n)/ ln ln(n))1/2, (4.2)

where Σn,j(θ, τ , g) denotes the (j, j) element of Σn(θ, τ , g).

3 Such results can be established by extending the results given in Section 13.1
of Appendix B of AS2 and proved in Section 15.1 of Appendix D of AS2.
4 As demonstrated inAndrews and Soares (2010), Andrews and Shi (2013a, 2014),

etc., the GMS-type critical value is preferable to the plug-in asymptotic (PA)-type
critical value. In consequence, we omit a discussion of PA critical values.
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Step 2. Generate B bootstrap samples {W ∗

i,s : i = 1, . . . , n} for s =

1, . . . , B using the standard nonparametric i.i.d. bootstrap. That is,
draw W ∗

i,s randomly with replacement from {Wℓ : ℓ = 1, . . . , n}
for i = 1, . . . , n and s = 1, . . . , B.

Step 3. For each bootstrap sample, transform the regressors as
in (3.5) (using the bootstrap sample in place of the original
sample) and compute m∗

n,s(θ, τ , ga,r) and Σ
∗

n,s(θ, τ , ga,r) just
as mn(θ, τ , ga,r) and Σn(θ, τ , ga,r) are computed, but with the
bootstrap sample in place of the original sample.5

Step 4. For each bootstrap sample, compute the bootstrap
test statistic T

∗

n,r1,n,s(θ) as T
CvM
n,r1,n(θ) (or T

KS
n,r1,n(θ)) is com-

puted in (3.7) (or (3.8)) but with n1/2mn(θ, τ , ga,r) replaced by
n1/2(m∗

n,s(θ, τ , ga,r) − mn(θ, τ , ga,r)) + ϕn(θ, τ , ga,r) and with
Σn(θ, τ , ga,r) replaced by Σ

∗

n,s(θ, τ , ga,r).6 When standardizing
the instrumental variables for the bootstrap sample, the orig-
inal sample mean and sample covariance matrix are used for
re-centering and rescaling. Using the bootstrap sample mean and
covariance matrix for re-centering and rescaling should yield sim-
ilar results.

Step 5. Take the bootstrapGMS critical value cGMS,∗
n,1−α(θ) to be the 1−

α + η sample quantile of the bootstrap test statistics {T
∗

n,r1,n,s(θ) :

s = 1, . . . , B} plus η, where η is an infinitesimal positive number
that facilitate the proofs but is inconsequential and can be set to
zero in practice.

The MCMI CvM (or KS) CS is defined in (2.3) with Tn(θ) =

T
CvM
n,r1,n(θ) (or T

KS
n,r1,n(θ)) and cn,1−α(θ) = cGMS,∗

n,1−α(θ). The MCMI CvM

test of H0 : θ = θ∗ rejects H0 if T
CvM
n,r1,n(θ∗) > cGMS,∗

n,1−α(θ∗). The MCMI

KS test is defined likewise using T
KS
n,r1,n(θ∗) and the KS GMS critical

value.
The choices of ε, κn, and Bn above are the same as those used in

AS1, AS2, and Andrews and Shi (2014). These choices are based on
some experimentation (in the simulation results reported in AS1
and AS2). They work well in all seven of the simulation examples
in those papers as well as in the two simulation examples in this
paper. The asymptotic results reported in the Appendix allow for
other choices. The robustness of the finite-sample properties of the
tests to the choice of these tuning parameters is documented in
the Appendix for the two simulation examples considered in this
paper.

The number of cubes with side-edge length indexed by r is
(2r)dX , where dX denotes the dimension of the covariate Xi. The
computation time is approximately linear in the number of cubes.
Hence, it is linear in Ng :=

r1,n
r=1(2r)

dX .

When there are discrete variables in Xi, the sets Ca,r can
be formed by taking interactions of each value of the discrete
variable(s) with cubes based on the other variable(s).

5. Correct asymptotic size

In this section, we show that the CS defined above has correct
asymptotic size.

5 If the test statistic uses function S4 defined above, Σ∗

n(θ, τ , ga,r ) does need to
be computed.
6 If the function S4 is used, Σn(θ, τ , ga,r ) does not appear in the test statistic, and

thus Σ
∗

n(θ, τ , ga,r ) does not enter the calculation of the bootstrap statistic.
5.1. Main result

First, we introduce some additional notation. Define the
asymptotic variance–covariance kernel, {h2,F (θ, τ , g, τ Ď, gĎ) :

(τ , g), (τ Ď, gĎ) ∈ T × Gc-cube}, of n1/2mn(θ, τ , g) after normaliza-
tion via a diagonal matrix D−1/2

F (θ). That is, we define

h2,F (θ, τ , g, τ Ď, gĎ) := D−1/2
F (θ)ΣF (θ, τ , g, τ Ď, gĎ)D−1/2

F (θ),

where
ΣF (θ, τ , g, τ Ď, gĎ) :=CovF (m(Wi, θ, τ , g),m(Wi, θ, τ Ď, gĎ)), (5.1)
DF (θ) := Diag(σ 2

F ,1(θ), . . . , σ 2
F ,k(θ)),

and {σF ,j(θ) : j = 1, . . . , k} are specified just before Assumption
PS1. For simplicity, let h2,F (θ) abbreviate {h2,F (θ, τ , g, τ Ď, gĎ) :

(τ , g), (τ Ď, gĎ) ∈ T × Gc-cube}.
Define the set of variance–covariance kernels

H2 := {h2,F (θ) : (θ, F) ∈ F }, (5.2)

where, as defined at the end of Section 2, F is the subset of F+

that satisfies Assumption PS3. On the space of k× kmatrix-valued
covariance kernels on (T × Gc-cube)

2, which is a superset ofH2, we
use the uniform metric d defined by

d(h(1)
2 , h(2)

2 ) := sup
(τ ,g),(τĎ,gĎ)∈T ×Gc-cube

∥h(1)
2 (τ , g, τ Ď, gĎ)

− h(2)
2 (τ , g, τ Ď, gĎ)∥. (5.3)

Correct asymptotic size is established in the following theorem.
The theorem is implied by Lemmas D.1 and D.2 in online Appendix
D, where the lemmas are also proved. We provide a brief sketch of
the proof in the next subsection, highlighting the difference with
the analogous result in AS1. The role of η is also explained in the
next subsection.

Theorem 5.1. Suppose Assumption SIG1 holds. For any compact
subset H2,cpt of H2, theMCMI confidence set CSn satisfies

lim inf
n→∞

inf
(θ,F)∈F :

h2,F (θ)∈H2,cpt

PF (θ ∈ CSn) ≥ 1 − α.

Comments. 1. Theorem 5.1 shows that the MCMI CS has correct
uniform asymptotic size over compact sets of covariance kernels.
The uniformity results hold whether the moment conditions
involve ‘‘weak’’ or ‘‘strong’’ IV’s Xi. That is, weak identification
of the parameter θ due to a low correlation between Xi and the
functionsmj(Wi, θ, τ ) does not affect the uniformity results.

2. The proofs in the Appendix take the transformation of the
IV’s to be non-data dependent. One could extend the results to
allow for data-dependence by considering random hypercubes as
in Pollard (1979) and Andrews (1988). These results show that
one obtains the same asymptotic results with random hypercubes
as with nonrandom hypercubes that converge in probability to
nonrandom hypercubes (in an L2 sense). For brevity, we do not do
so.

5.2. Sketch of the proof of Theorem 5.1 and the role of η

A sketch of the proof of Theorem 5.1. The theorem is proved us-
ing several steps. While the steps are the same as those used to
prove the analogous result (Theorem 2(a)) in AS1, notational mod-
ifications, and occasionally more substantial modifications to the
arguments that complete each step are needed.

First, we use the compactness of H2,cpt and the definitions
of infimum and lim inf to write lim inf

n→∞
inf

(θ,F)∈F :

h2,F (θ)∈H2,cpt

PF (θ ∈ CSn)

as limn→∞ PFan (T an,r1,an (θan) ≤ cGMS,∗
an,1−α(θan)), where {an}n≥1 is a
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subsequence of {n}, and {(θan , Fan)} is a sequence in F such that
h2,Fan (θan) → h2 for some h2 ∈ H2,cpt . This step is the same as the
analogous step in the proof of Theorem 2(a) of AS1.

Next, we show an asymptotic distributional approximation for
T an,r1,an (θan):

lim inf
n→∞


Pr Fan (T an,r1,an (θan) ≤ x + c) − Pr (T an,Fan (θan) ≤ x)


≥ 0, (5.4)

for any x ∈ R and c > 0, where

T n,Fn(θn)

= sup
τ∈T

r1,n
r=1

(r2 + 100)−1


a∈{1,...,2r}dX

(2r)−dx × S(νh2,Fn (θn)(τ , ga,r)

+ h1,n,Fn(θn, τ , ga,r), hε
2,Fn(θn, τ , ga,r)), (5.5)

νh2,Fn (θn) is a Gaussian process indexed by (τ , ga,r) with vari-
ance–covariance kernel h2,Fn(θn, τ1, g1, τ2, g2), h1,n,Fn(θn, τ , g) =

n1/2EFnm(Wi, θn, τ , g), and hε
2,Fn(θn, τ , g) = h2,Fn(θn, τ , g, τ , g) +

εIk. The approximation (5.4) is proved using theweak convergence
of the empirical process {a1/2n [man(θan , τ , g)−EFanm(Wi, θan , τ , g)] :

(τ , g) ∈ T × G} to the Gaussian process, the in-probability con-
vergence of {Σan(θan , τ , g) : (τ , g) ∈ T × G}, and the continuity
of the S function. This step is similar to the analogous step in the
proof of Theorem 2(a) in AS1 (which is composed of the proofs of
Theorem 1 and Lemma A1 in AS2), but substantively differs from
the latter in two places:

• Lemma A1 of AS1 establishes the weak convergence for the
empirical process involved in AS1, which is indexed by g only.
In the present paper, the empirical process is indexed by both τ

and g . To account for the double index, we present and prove a
lemma (Lemma D.5) that takes advantage of a stability formula
for covering numbers.

• The proof of Theorem 2(a) of AS1 employs a dominated
convergence argument that is suitable for the pure CvM-
type test statistic considered in AS1. On the other hand, we
consider a KS-CvM hybrid statistic that takes a supremum over
τ and integrates over g , for which the dominated convergence
argument does not apply. Instead, we rewrite Assumption S2 of
AS1, which is the continuity assumption on S, in an equivalent
but more convenient form, and use that to establish sup-norm
convergence. Detailed arguments are given at the end of the
proof of Theorem D.3 in the Appendix.

The result (5.4) implies immediately that

lim inf
n→∞

Pr Fan (T an,r1,an (θan) ≤ can,1−α(θan) + c) ≥ 1 − α, (5.6)

for any c > 0, where cn,1−α(θn) is the 1 − α quantile of T n,Fn(θn).
The rest of the proof shows that the bootstrap critical value satisfies

lim sup
n→∞

Pr Fan (c
GMS,0
an,1−α+c(θan) ≤ can,1−α(θan) − c1) = 0, (5.7)

for any positive constants c, c1, where cGMS,0
an,1−α+c(θan) is defined

as cGMS,∗
an,1−α+c(θan) is defined except with η = 0. This step is

similar to the analogous step in the proof of Theorem 2(a) of AS1.
However, AS1 gives explicit arguments only for the asymptotic
approximation critical value and not for the bootstrap critical
value. In the present paper, we prove bootstrap validity explicitly.
The arguments for the bootstrap are given in Lemma D.4 in online
Appendix D. �
Next we explain the role of η in the above proof. First, note that
the infinitesimal number η is added to two places in the critical
value: to the conditional quantile and to the confidence level. The
η added to the conditional quantile is needed due to the c in (5.4)
and (5.6). Tomake these two equations holdwith c = 0, onewould
need to establish a uniform (over n) anti-concentration bound
for the distribution of T an,Fan (θan). While such a bound has been
derived in Chernozhukov et al. (UnpublishedManuscript,U, 2014b)
for the supremum of a Gaussian process, it is to our knowledge not
available for T an,Fan (θan), which is not a supremum of a Gaussian
process even for the KS test statistic.

The η added to the confidence level is due to the c in (5.7). There
are two ways to eliminate this η. One is by imposing a uniform
(over n) lower bound on the slope of the distribution function of
T an,Fan (θan) around its 1 − α quantile. This would make (5.7) hold
with c = 0. However, such a bound is difficult to verify. Another
way is to strengthen (5.7) so that c is replaced by cn → 0, as
done in Chernozhukov et al. (UnpublishedManuscript). Thiswould
require either a Berry–Esseen type distributional convergence
rate result for the empirical process {a1/2n [man(θan , τ , g) −

EFanm(Wi, θan , τ , g)] : (τ , g) ∈ T × G} or such a result for the
KS or CvM test statistic. Neither is available to our knowledge.

6. Power against fixed alternatives

We now show that the power of the MCMI test converges to
one as n → ∞ for all fixed alternatives (for which Assumptions
PS1 and PS2 hold). This implies that for any fixed distribution F0
and any parameter value θ∗ not in the identified set ΘF0 , the MCMI
CS excludes θ∗ with probability approaching one. In this sense,
the MCMI CS based on Tn(θ) fully exploits the infinite number of
conditional moment inequalities/equalities. CS’s based on a finite
number of unconditional moment inequalities/equalities do not
have this property.7

The null hypothesis is

H0 : EF0 [mj(Wi, θ∗, τ )|Xi] ≥ 0 a.s. [FX,0] for j = 1, . . . , p and
EF0 [mj(Wi, θ∗, τ )|Xi] = 0 a.s. [FX,0] for j = p + 1, . . . , k,

∀τ ∈ T , (6.1)

where θ∗ denotes the null parameter value and F0 denotes the fixed
true distribution of the data. The alternative hypothesis is H1 : H0
does not hold. The following assumption specifies the properties
of fixed alternatives (FA).

LetF+ be as defined in Section 2.3. Note thatF+ includes (θ, F)
pairs for which θ lies outside of the identified set ΘF as well as all
values in the identified set.

The set XF (θ, τ ) of values x for which the moment inequalities
or equalities evaluated at θ are violated under F is defined
as follows. For any θ ∈ Θ and any distribution F with
EF [∥m(Wi, θ, τ )∥] < ∞, let

XF (θ, τ ) := {x ∈ Rdx : EF [mj (Wi, θ, τ ) |Xi = x] < 0

for some j ≤ p or EF [mj (Wi, θ, τ ) |Xi = x] ≠ 0

for some j = p + 1, . . . , k}. (6.2)

The next assumption, AssumptionMFA, states that violations of
the conditionalmoment inequalities or equalities occur for the null

7 This holds because the identified set based on a finite number of moment
inequalities typically is larger than the identified set based on all the conditional
moment inequalities. In consequence, CI’s based on a finite number of inequalities
include points in the difference between these two identified sets with probability
whose limit infimum as n → ∞ is 1−α or larger even though these points are not
in the identified set based on the conditional moment inequalities.
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parameter θ∗ for Xi values in a set with positive probability under
F0 for some τ ∈ T . Thus, under Assumption MFA, the moment
conditions specified in (6.1) do not hold.
Assumption MFA. The null value θ∗ ∈ Θ and the true distribution
F0 satisfy: (a) for some τ∗ ∈ T , PF0(Xi ∈ XF0(θ∗, τ∗)) > 0 and (b)
(θ∗, F0) ∈ F+.

We employ the following assumption on the weights {σ 2
n,j(θ) :

j ≤ k, n ≥ 1}.
Assumption SIG2. For all ζ > 0, Pr F0(maxj≤k |σ 2

n,j(θ∗)/σ
2
F0,j

(θ∗)

− 1| > ζ) → 0.
Note that Assumption SIG2 is not implied by Assumption SIG1

because (θ∗, F0) does not belong to F .
The following Theorem shows that the MCMI test is consistent

against all fixed alternatives that satisfy Assumption MFA.

Theorem 6.1. Suppose Assumptions MFA and SIG2 hold. Then,
theMCMI test satisfies

lim
n→∞

PF0(Tn(θ∗) > cGMS,∗
n,1−α(θ∗)) = 1.

Theorem 6.1 is implied by Theorem E.1 in online Appendix E,
where the latter is proved. The proof is composed of two parts.
First, we show that n−1Tn(θ∗) converges in probability to a positive
quantity, and second, we show that the critical value is Op(1). The
first part combines the proofs of the fixed alternative results for the
KS and CvM cases in AS1 and AS2. The second part is the same as
the analogous part in AS2 up to notational changes.

7. Example 1: Conditional stochastic dominance

In this section, we apply the general theory developed above
to Example 1. We first establish primitive sufficient conditions for
Assumptions PS1 and PS2 for this example, and then carry out a
simple Monte Carlo experiment for testing first-order stochastic
dominance.

7.1. Verification of assumptions

We treat the first-order stochastic dominance case separately
in our discussion from the higher-order stochastic dominance case
because it allows for weaker assumptions on the distributions of
Y1 and Y2.

7.1.1. First-order stochastic dominance
Recall that the conditional moment inequalities implied by

first-order conditional stochastic dominance are

EF0 [1{Y2 ≤ τ } − 1{Y1 ≤ τ }|X] ≥ 0 a.s. ∀τ ∈ T . (7.1)

The moment conditions for this model do not depend on a
parameter θ. Hence, to fit the notation with that of the general
theory, we set Θ = {0} (without loss of generality). Also observe
that p = k = 1 in this example.

For this example, we use σF ,1(0) = σn,1(0) = 1 for all F because
themoment function has a natural scale. Hence, Assumptions SIG1
and SIG2 hold.

Lemma 7.1. Let F+ be the set of (0, F) such that {(Y1,i, Y2,i, X ′

i )
′
:

i ≥ 1} are i.i.d. under F . Then, F+ satisfies Assumptions PS1 and
PS2 with M(w) = 1, δ > 0, and C1 = 1.

The proof of the lemma is given in online Appendix F. The core
part of the proof is the verification of Assumption PS2, which is
done via the pseudo-dimension bound on the covering numbers
of the set {1{y2 ≤ τ } − 1{y1 ≤ τ } : τ ∈ T } and the fact that
the pseudo-dimension of the set is at most one (by Lemma 4.4 of
Pollard (1990)).
7.1.2. Higher-order stochastic dominance
The conditional moment inequalities implied by sth-order

conditional stochastic dominance for s > 1 are

EF0 [(τ − Y2)
s−11{Y2 ≤ τ } − (τ − Y1)

s−11{Y1 ≤ τ }|X] ≥ 0

a.s. ∀τ ∈ T . (7.2)

As above, we set Θ = {0}. In this example, p = k = 1.
For this example, we use σ 2

F ,1(0) = EF [(Y1−E(Y1))
2
]+EF [(Y2−

E(Y2))
2
] and σ 2

n,1(0) = n−1 n
i=1[(Y1,i − Y 1,n)

2
+ (Y2,i − Y 2,n)

2
],

where Y j,n = n−1 n
i=1 Yj,n for j = 1, 2.

Lemma 7.2. Suppose s > 1. Let σ > 0 and B ∈ (0, ∞) be constants.
Let F+ be the set of (θ, F) for which (i) θ ∈ Θ , (ii) {(Y1,i, Y2,i, X ′

i )
′
:

i ≥ 1} are i.i.d. under F , (iii) σ 2
F ,1(0) ≥ σ 2, and (iv) T ⊂ [−B, B].

Then,
(a) F+ satisfies Assumptions PS1 and PS2 with M(w) = [(B −

y2)s−1
+ (B − y1)s−1

]/σF ,1(0), δ > 0, and C1 = 2s(2+δ)

B(s−1)(2+δ)σ−(2+δ), and
(b) Assumptions SIG1 and SIG2 hold.

The verification of Assumption PS2 in this case also uses the
pseudo-dimension bound on the covering numbers. Unlike in
Lemma 7.1, the pseudo-dimension of the set of standardized
moment functions is not obvious. We prove that the pseudo-
dimension is at most one.

7.2. Monte Carlo results

In this subsection, we report Monte Carlo results for testing
the first-order conditional stochastic dominance between the
conditional distributions of Y1 and Y2 given X . That is, we test the
null hypothesis:

EF0 [1{Y2 ≤ τ } − 1{Y1 ≤ τ }|X] ≥ 0 a.s. ∀τ ∈ T ≡ R, (7.3)

where Y1, Y2, X are scalar random variables. We consider the
MCMI tests proposed above based on the CvM and KS test
statistics combined with the GMS critical value. For comparative
purposes, we also consider the CvM and KS test statistics
combined with sub-sampling critical values, as well as the two-
step multiplier bootstrap method (CCK-MB) and the two-step
empirical bootstrap method (CCK-EB) proposed in Chernozhukov
et al. (Unpublished Manuscript), CCK hereafter).8

In this example, we take the instrument X to have the
uniform [0, 1] distribution and take Y1 and Y2 to have log-normal
distributions given X:

Y1 = exp(σ1(X)Z1 + µ1(X)) and
Y2 = exp(σ2(X)Z2 + µ2(X)), (7.4)

whereσ1(X),µ1(X),σ2(X), andµ2(X)determinewhether andhow
the null hypothesis that Y1 first-order stochastically dominates Y2
given X is violated.

To generate the simulated data, we let µ1(X) = c1X + c3,
σ1(X) = c2X + c4, µ2(X) = 0.85, and σ2(X) = 0.6. These
data-generating processes (DGPs) are adapted from Barrett and
Donald (2003). Four values of c := (c1, c2, c3, c4) are consid-
ered: cA = (0, 0, 0.85, 0.6), cB = (0.15, 0, 0.85, 0.6), cC =

(−0.25, 0.2, 0.85, 0.6), and cD = (0.35, 0, 0.85, 0.23). With cA
and cB, the null that Y1 first-order stochastically dominates Y2 con-
ditional on X holds, while with cC and cD, the null hypothesis is

8 These methods have the best power among the six one-step and two-step
methods proposed in CCK. The three-step methods proposed in CCK are not
applicable in this model.
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Fig. 1. Conditional CDF’s of Y1 (dashed blue) and Y2 (solid red) given X = 1. In all graphs, Y2 ∼ Log Normal (0.85, 0.6).
violated. To visualize the nature of the DGPs, we draw in Fig. 1 the
conditional cdf’s of Y1 and Y2 given X = 1 at these four c values.

Note that with cA, Y1 and Y2 have identical distributions
conditional on X . In this case, all of the moment inequalities are
binding. The test should ideally have rejection probability equal
to its nominal level in this boundary case. For this reason, we use
this DGP to size-correct the rejection probabilities under the two
alternative DGP’s cC and cD.

In the implementation of the tests, we compute the supremum
over T by discretization. Specifically, we approximate T by Nτ

points in T for a positive integerNτ . TheNτ points on T are chosen
as follows: first pool the n observations of Y1 and those of Y2 to get
a sample of size 2n. Then use as grid points the 1/(Nτ +1), 2/(Nτ +

1), . . . ,Nτ/(Nτ + 1) percentiles of this 2n sample.
For the sample size and the tuning parameters of all tests

considered, we consider a base case with the sample size n =

250, the hypercube parameter r1,n = 3, and Nτ = 25. Then,
for comparison, we also consider three variations of the base case
where each differs from the base case in only one dimension.9
We set η to zero in all cases for our methods. For the sub-
sampling critical values, we use a subsample size of 20. For the CCK
methods, we take the tuning parameters from CCK’s Monte Carlo
simulations.

Simulated rejection probabilities based on 1000 simulation
repetitions are reported in Tables 1 and 2. Table 1 reports the
rejection probabilities under the twonull DGP’s and Table 2 reports
the size-corrected rejection probabilities under the two alternative
DGP’s. As the tables show, the CvM/GMS test performs the best
overall in that it has the most accurate size and the highest power.
The KS/GMS test has somewhat worse power perhaps due to
the DGP designs. The CvM/Sub-sampling test has greater over-
rejections than, and comparable power to, the CvM/GMS test,

9 More variations are considered in the additional Monte Carlo exercise in online
Appendix G.
while the KS/Sub-sampling test exhibit severe over-rejections. The
CCK tests have good size control, but somewhat lower power than
the KS/GMS test and significantly lower (size-corrected) power
than the CvM/GMS test.

8. Example 2: Random-coefficients binary-outcome models
with instrumental variables

We focus on the model given in (2.9), and restated here for the
reader’s convenience:

EF0 [Fβ(S, θ) − 1{S(Y1, Y2, X1) ⊂ S}|X1, X2] ≥ 0 a.s. ∀S ∈ S, (8.1)

where Y1 is the binary dependent variable, Y2 is a d2-dimensional
endogenous covariate, X1 is a d1-dimensional exogenous covariate,
and X2 is a vector of instruments.

8.1. Verification of assumptions

Wefirst note that,whend1+d2 > 1, themanageability assump-
tion, Assumption PS2, does not hold in general because the Vap-
nik–Chervonenkis (VC) dimension of the set {(1{S(Y1,i, Y2,i, X1,i) ⊂

S})ni=1 : S ∈ S} typically diverges to infinity as n → ∞. Thus, we
need to restrict attention to a subset of S. Fortunately, in many ap-
plications, restriction to an appropriate subset of S (specified be-
low) does not affect the set identification power of the model. We
apply our general theory to such applications.

For a positive integer m, we consider subsets of S of the form:
Sm := {∪

m
j=1 H(cj) : cj ∈ Rdβ \ {0dβ }}. That is, Sm is the collection

of at most m unions of half-spaces in Rdβ through the origin. Let
ΘF (Sm) := {θ ∈ Θ : EF [Fβ(S, θ) − 1{S(Y1, Y2, X1) ⊂ S}|X1, X2] ≥

0 a.s. ∀S ∈ Sm}. Define ΘF (S) analogously. The applications we
consider are required to satisfy the following assumption. This
assumption is satisfied in Example 2 of CR with m = 2 and
Example 3 of CR with m = 4. This assumption is always satisfied
when d1 + d2 = 1 because in that case Sm = S form = 2.



284 D.W.K. Andrews, X. Shi / Journal of Econometrics 196 (2017) 275–287
Table 1
Null rejection probabilities for nominal 0.05 first-order stochastic dominance tests.

CvM/GMS KS/GMS CvM/Sub KS/Sub CCK-MB CCK-EB

Null 1: (c1, c2, c3, c4) = (0, 0, 0.85, 0.6)

Base case:
(n = 250, r1,n = 3, Nτ = 25) 0.057 0.064 0.071 0.213 0.035 0.018
n = 500 0.049 0.052 0.079 0.212 0.032 0.029
r1,n = 4 0.059 0.055 0.098 0.282 0.027 0.010
Nτ = 30 0.062 0.068 0.085 0.239 0.034 0.014

Null 2: (c1, c2, c3, c4) = (0.15, 0, 0.85, 0.6)

Base case:
(n = 250, r1,n = 3, Nτ = 25) 0.014 0.019 0.029 0.131 0.011 0.006
n = 500 0.009 0.014 0.017 0.089 0.013 0.010
r1,n = 4 0.014 0.019 0.039 0.192 0.007 0.006
Nτ = 30 0.018 0.019 0.037 0.137 0.011 0.007

Note: For computation reasons, not all subsamples are used. The bootstrap and sub-sampling critical values both use 1000 repetitions to
simulate the critical values. The two-step version of CCK’s MB and EB methods are used.
Table 2
Size-corrected power for nominal 0.05 first-order stochastic dominance tests.

CvM/GMS KS/GMS CvM/Sub KS/Sub CCK-MB CCK-EB

Alternative 1: (c1, c2, c3, c4) = (−0.25, 0.2, 0.85, 0.6)

Base case:
(n = 250, r1,n = 3, Nτ = 25) 0.505 0.379 0.463 0.281 0.301 0.210
n = 500 0.809 0.689 0.806 0.603 0.596 0.525
r1,n = 4 0.509 0.367 0.475 0.272 0.254 0.148
Nτ = 30 0.470 0.405 0.443 0.297 0.309 0.202

Alternative 2: (c1, c2, c3, c4) = (0.35, 0, 0.85, 0.23)

Base case:
(n = 250, r1,n = 3, Nτ = 25) 0.581 0.295 0.622 0.346 0.204 0.178
n = 500 0.942 0.768 0.946 0.767 0.670 0.665
r1,n = 4 0.609 0.246 0.643 0.335 0.168 0.131
Nτ = 30 0.539 0.309 0.598 0.350 0.208 0.172

Note: The bootstrap and sub-sampling critical values use 1000 repetitions to simulate the critical values. Size correction is carried out
using the null DGP with (c1, c2, c3, c4) = (0, 0, 0.85, 0.6).
Assumption V1. ΘF0(Sm) = ΘF0(S).

Under this assumption, we can base inference on the condi-
tional moment inequality model:

EF [Fβ(S, θ) − 1{S(Y1, Y2, X1) ⊂ S}|X1, X2] ≥ 0 a.s. ∀S ∈ Sm. (8.2)

We first write S(y1, y2, x1) in the canonical form of a half-space:

S(y1, y2, x1)
= cl{b = (b0, b′

1, b
′

2)
′
∈ Rdβ : y1 = 1{b0 + b′

1x1 + b′

2y2 ≥ 0}}

= H((y1 − 1/2)(1, x′

1, y
′

2)
′). (8.3)

The following lemma yields a convenient representation of the
event {S(Y1, Y2, X1) ⊂ S} for S ∈ Sm.

Lemma 8.1. For any c1, . . . , cm ∈ Rdβ \ {0dβ } (not necessarily
distinct from each other), there exists a dβ × M real matrix

B(c1, . . . , cm) with M = maxj∈{1,...,dβ }

 m
min{j,m}−1


+ 2(dβ − j)


such that, for any c̄ ∈ Rdβ \ {0dβ }, the following statements are
equivalent:

(a) H(c̄) ⊂ ∪
m
j=1 H(cj),

(b) c̄ =
m

j=1 λjcj for some λ1, . . . , λm ≥ 0, and
(c) B(c1, . . . , cm)′c̄ ≥ 0M .

The lemma implies that the conditional moment inequality
model (8.2) has the following equivalent representation:

EF [Fβ(S(τ ), θ) − 1{(Y1 − 1/2)B(τ )′(1, X ′

1, Y
′

2)
′
≥ 0}|X1, X2]

≥ 0 a.s. ∀τ ∈ T , (8.4)

where T = {τ = (c1, . . . , cm) : c1, . . . , cm ∈ Rdβ \ {0dβ }},
B(τ ) := B(c1, . . . , cm), and S(τ ) = ∪

m
j=1 H(cj).
The equivalent representation just given is instrumental in
proving the lemma below, which verifies the high-level conditions
for this example. Note that in this example, p = k = 1. We use
σF ,1(θ) = σn,1(θ) = 1 for all (θ, F) because the moment function
has a natural scale. Hence, Assumptions SIG1 and SIG2 hold.

Lemma 8.2. For the model in (8.2), let F+ be the set of (θ, F) such
that θ ∈ Θ and {(Y1,i, Y ′

2,i, X
′

i )
′

: i ≥ 1} are i.i.d. under F . Then
F+ satisfies Assumptions PS1 and PS2 with M(w) = 1, δ > 0, and
C1 = 1.

The main part of the proof of Lemma 8.2 is the verification
of Assumption PS2. To verify this assumption, we use a pseudo-
dimension bound for covering numbers (specifically, Lemma 4.1
of Pollard (1990)). We show that the pseudo-dimension is finite
by applying Lemma 4.4 of Pollard (1990) to the equivalent
representation in (8.4).10

8.2. Monte Carlo results

In this subsection, we report Monte Carlo results for a binary
choice model similar to the numerical example in CR. The model
has one endogenous regressor (Y2), one instrument variable (X),

10 Note that the representation (8.4) is simply a technical device useful for the
theory and for intuitive understanding, and is not needed in practice. Thus, we do
not need to know the form of themapping B(·). This is important because its form is
typically complicated. Mathematically, each column of B is the polar of a facet of the
convex (pointed) polyhedral cone spanned by c1, . . . , cm . Algebraic representations
of facets of convex polyhedral cones are complicated.
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and no exogenous regressors. That is,

Y1 = 1{β0 + β1Y2 < 0} with (β0, β1) ⊥ X . (8.5)

Further, we take β0 and β1 to be jointly normally distributed: β0 =

α0 + U0 and β1 = α1 + U1, where
U0
U1


∼ N


0
0


,


1 γ0

γ0 γ1 + γ 2
0


.

Thus, themodel contains the unknown parameter θ = (α0, α1, γ0,
γ1)

′. CR show that the sharp identified set for θ is characterized by
the following conditional moment inequalities:

EF0 [Fβ(S, θ) − 1{S(Y1, Y2) ⊂ S}|X] ≥ 0 a.s. ∀S ∈ S, (8.6)

where, using the half-space notation H(·) defined in (2.8),

S(y1, y2) = H((y1 − 1/2)(1, y2)′),
S = {Sτ1,τ2 = H(cos τ1, sin τ1) ∪ H(cos τ2, sin τ2) :

0 ≤ τ1 ≤ τ2 ≤ 2π},

Fβ(Sτ1,τ2 , θ) = 1 − Φ(−m1, −m2, ρ), (8.7)

Φ(x1, x2, ρ) is cdf of the bivariate normal N(0, [1, ρ; ρ, 1]), mj is
the mean divided by the standard deviation of β0 cos τj + β1 sin τj,
for j = 1, 2, and ρ is the correlation coefficient betweenβ0 cos τ1+
β1 sin τ1 and β0 cos τ2 + β1 sin τ2.

To generate the data, we let

Y2 = δ1X + δ2U0 + δ3U1 + δ4V , (8.8)

where X ∼ N(0, 1) is independent of (U0,U1) and V ∼ N(0, 1)
is independent of (X,U0,U1). Let θ = (0, −1, −1, 1)′, and δ :=

(δ1, δ2, δ3, δ4)
′
= (1, 0.577, −0.577, 0.577)′.11

We compute the probabilities that the CS’s for θ cover given
values of θ . For the given values of θ , we consider θ =

(0, α1, −1, 1)′, where α1 runs from −1 to 1.4. Note that (0, −1, 1)
is the true value of (α0, γ0, γ1), and −1 is the true value of α1.
Thus, (0, −1, −1, 1) is in the identified set, and should ideally be
covered by the CS’s with at least the nominal coverage probability.
Numerical calculation of the boundary of the identified set shows
that (0, α1, −1, 1) is outside the identified set for any α1 >
−0.8274 and, hence, it is desirable that CS’s cover such α1 values
with low probabilities.12

We consider CS’s based on the CvM and KS statistics and the
GMS and sub-sampling critical values. For comparative purposes,
we also consider the two-step CCK-EB and two-step CCK-SN (self-
normalizing) based CS’s.13 For all CS’s, we choose r1,n = 3 and

11 This value of δ is theweak-identification specification in CR. Since identification
strength is irrelevant for evaluating the property of theMCMI tests, we focus on this
weak-identification specification and do not consider other specifications.
12 Specifically, the way we compute the boundary is as follows. First we construct
the criterion function Q (θ) = minx∈XNx

minτ∈TNτ
Fβ (S(τ ), θ) − E[1{S(Y1, Y2) ⊆

Sτ1,τ2 }|X = x], where XNx is the set of Nx = 20 equally-spaced grid points
in the interval [−4, 4], TNτ is the approximation of T described in footnote 14,
Fβ (Sτ , θ) is computed using the bivariate-normal cdf function in Aptech Gauss, and
E[1{S(Y1, Y2) ⊆ Sτ1,τ2 }|X = x] is computed using i.i.d. Monte Carlo simulations
with 107 simulation repetitions. Then we fix α0, γ0, γ1 at their true values, and
search for a1 > −1 that makes Q (α0, a1, γ0, γ1) zero. The function Q (α0, ·, γ0, γ1)

appears to bemonotonically decreasing in the range [−1, 2] and changes signs from
one end point to the other.
13 The two-step CCK methods perform better than the one-step CCK methods
in this example. The performance of the CCK-MB method lies in between that of
the CCK-EB and the CCK-SN. We do not consider the three-step CCK methods for
two reasons. First, those methods require the derivative of Fβ (S, θ) with respect
to θ , the analytical form of which is complicated because Fβ (S, θ) is a quadrant
probability of a bivariate normal with both the mean and the variance–covariance
matrix dependent on θ . Second, the potential gain of using the three-step CCK
methods is likely small because, for every S, we expect Fβ (S, θ) to depend strongly
on the mean and the variance of the bivariate normal, and hence on θ . CCK also do
not provide any simulation results for their three-step methods.
approximate T by grid points.14 For the GMS CS’s, we set η to zero.
For the sub-sampling CS’s, we set the subsample size to 20. For
the CCK-EB CS, we take the tuning parameter values from CCK’s
Monte Carlo simulations. We use 1001 repetitions to simulate the
bootstrap critical values and we use 1001 subsamples to construct
the sub-sampling critical values. We employ 1000 Monte Carlo
repetitions to obtain the simulated coverage probabilities of given
points of θ.

Fig. 2 provides coverage probability graphs for sample sizes
n = 250, 500, 1000, and 2000. As the figure shows, the coverage
probabilities of the CS’s equal one at the boundary (α1 = −0.8274)
of the identified set for all of the CS’s except the CCK-EB CS for the
case of n = 250. This is probably due to the fact that the boundary
of the identified set is determined by X values in a set with
Lebesgue measure zero. For n = 250, the coverage probability of
the CCK-EB CS is closer to the nominal size 0.95 at the boundary of
the identified set than the other CS’s, but its coverage probabilities
decrease more slowly than those of the other CS’s as α1 deviates
from the identified set (i.e., as α1 increases beyond −0.8274).

The coverage probabilities of all of the CS’s for points outside the
identified set decrease with the sample size (with the exception
of the CCK CS’s for points close to the identified set) and with the
magnitude of the deviation from the identified set, as expected. The
best performing CS’s (lowest curves) are the KS/GMS and KS/sub-
sampling CS’s at n = 500, where the coverage probability curves
of the KS/GMS and KS/Sub-sampling CS’s overlap completely and
form the lowest curve in the graph. At n = 1000, the KS/GMS and
the CCK-EB curves overlap and form the lowest curve in the graph.
At n = 2000, the CCK-EB performs better than the other CS’s. For
each of the four sample sizes considered, the CvM-based CS’s do
not perform as well as the other CS’s.

9. Examples 3–5

In this section, we verify the high-level assumptions for
Examples 3, 4, and 5.

9.1. Example 3: Convex moment prediction models—support function
approach

As mentioned above, Beresteanu et al. (2010) verify a version
of the high-level conditions given in an earlier version of our
paper for the best linear predictor and entry-game applications of
this example. In this subsection, we verify our current high-level
conditions for the general BMM framework in (2.12).

We focus on the moment inequality model in (2.12) because it
includes the case where Qθ (W , V ) = Qθ (W ) as a special case. For
this model, p = k = 1. For simplicity, we takeσn,1(θ) = σF ,1(θ) =

1 for all (θ, F) and all n, and henceAssumptions SIG1 and SIG2hold.
Alternatively, one could choose σF ,1(θ) and σn,1(θ) that are scale
equivariant in the spirit of those in Section 7.1.2.

Lemma 9.1. For the model in (2.12), let F+ be the set of (θ, F) such
that (i) θ ∈ Θ , (ii) {Wi : i ≥ 1} are i.i.d. under F , (iii) Qθ (w, v) ⊆

{q ∈ Rd
: ∥q∥ ≤ M(w)/2} for some measurable function M(w)

∀(w, v) ∈ WV , (iv) ∥q(x)∥ ≤ M(w)/2 ∀x ∈ X, ∀w ∈ W ,
and (v) EF [M(W )2+δ

] ≤ C1 for some δ > 0 and C1 < ∞. Then, F+

satisfies Assumptions PS1 and PS2 with M(w), δ, and C1 as defined
immediately above.

14 We consider Nτ2 equally-spaced grid points for τ2 in [0, 2π ], and grid points for
τ1 in [0, τ2] with the same spacing. We set Nτ2 = 15 for our CS’s, which results in
120 points in {(τ1, τ2) ∈ [0, 2π ] : τ1 ≤ τ2}. We set Nτ2 = 14 for the CCK-EB CS,
because when Nτ2 = 15, some of the moments have very small variance, which
causes the CCK-EB CS to have a zero coverage probability for the true value.
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Fig. 2. Coverage probabilities in the IV random-coefficients binary-outcome model. (Nominal size =0.95, (α0, γ0, γ1) = (0, −1, 1), and (α0, α1, γ0, γ1) is in the identified
set if and only if α1 ≤ −0.8274.)
The verification of Assumption PS2 in this case relies on a direct
calculation of the covering numbers using the Lipschitz continuity
of the moment function with respect to the index u.

9.2. Examples 4 and 5: countable conditional moment inequalities

In this subsection, we verify the high-level assumptions for
models with countably many conditional moment inequalities.
Examples 4 and 5 are of this type.

Suppose that the identification theory implies the following
moment inequality model:

EF0 [m(W , θ, τ )|X] ≥ 0, for τ = 1, 2, 3, . . . , (9.1)

where m(W , θ, τ ) is a real-valued moment function. For example,
these moment conditions could be the ones in (2.16) or (2.18).

In general, the raw moment functions m(W , θ, τ ) may not sat-
isfy Assumption PS2. Thus, we rescale them with weights that de-
creasewith τ . LetwT (τ ) : [1,∞) → (0, 1]be a strictly decreasing,
positive, weight function with inverse function λT (ξ) : (0, 1] →

[1, ∞) that satisfies
 1
0

√
log(λT (ξ))dξ < ∞. Then, we let

m(W , θ, τ ) = wT (τ )m(W , θ, τ ) ∀τ = 1, 2, . . . . (9.2)

In consequence, the moment inequality model (9.1) is equivalent
to

EF0 [m(W , θ, τ )|X] ≥ 0 ∀τ = 1, 2, . . . . (9.3)

We verify the high-level assumptions given above for this rescaled
form of the moment inequalities.

For this model, p = k = 1, and we use σ 2
F ,1(θ) = VarF

(m(W , θ, 1)) and σ 2
n,1(θ) = n−1 n

i=1[m(Wi, θ, 1) − mn(θ, 1)]2,
wheremn(θ, 1) = n−1 n

i=1 m(Wi, θ, 1).

Lemma 9.2. For the model in (9.3), let F+ be the set of (θ, F) such
that (i) θ ∈ Θ , (ii) {Wi : i ≥ 1} are i.i.d. under F , (iii) σ 2

F ,1(θ) ≥
σ 2 for some constant σ 2 > 0, (iv) |m(w, θ, τ )| ≤ B(w) ∀w ∈

W , ∀τ ∈ T , ∀τ ∈ Θ , for some measurable function B(w),
and (v) E[(B(W )/σ )2+δ

] ≤ C1 for some δ > 0 and C1 < ∞. Let
wT (τ ) be a weight function that satisfies the definition above. Then,

(a) F+ satisfies Assumptions PS1 and PS2 with M(w) = B(w)/σ
and with C1 and δ defined immediately above, and

(b) Assumptions SIG1 and SIG2 hold.

The verification of Assumption PS2 in this case relies on a direct
calculation of the covering numbers. The covering numbers are
properly bounded due to the decreasing weight wT (τ ).

We note that the weighting scheme requires an ordering of the
moment conditions. A natural ordering of the moment conditions
is often available. For example, in Example 4, suppose that M (the
number of values that the dependent variable Y can take) is small
but the number of values that Z can take is large, one natural order
of the moment conditions is according to the empirical probability
Z = zs, while treating moment conditions with the same s but
different ℓ, m (indices for the value of Y ) as ties in the ordering. In
Example 5, one can order the actions according to how close they
are to the optimal (observed) action. A similar ordering may be
used for the dynamic model of imperfect competition in Example
3 of CCK.

When there are no ties in the ordering, an example of theweight
is wT (τ ) = τ−b for some b > 0. Then λT (ξ) = ξ−1/b and 1

0


log(ξ−1/b)dξ =


1/b

 1

0


log(ξ−1)dξ

= b−1/2


∞

0
2x2e−x2dx < ∞, (9.4)

where the last equality holds by change of variables with x =
log(ξ−1) (or, equivalently, ξ = e−x2 ). When there are ties,

one can consider the tied moment conditions as one, assign the
decreasingweights as just described, and give equal weights to the
tied observations.
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10. Conclusion

In this paper, we construct confidence sets for models
defined by many conditional moment inequalities/equalities. The
conditional moment restrictions in the models can be finite,
countably infinite, or uncountably infinite. To deal with the
complication brought about by the vast number of moment
restrictions, we exploit the manageability (Pollard, 1990) of the
class of moment functions. We verify the manageability condition
in five examples from the recent partial-identification literature.

The proposed confidence sets are constructed by inverting joint
tests that employ all of the moment restrictions. The confidence
sets are shown to have correct asymptotic size in a uniform
sense and to exclude parameter values outside the identified
set with probability approaching one. Monte Carlo experiments
for a conditional stochastic dominance example and a random-
coefficients binary-outcome example support the theoretical
results.
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