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ABSTRACT

When estimating high-frequency covariance (quadratic covariation) of two arbitrary assets observed
asynchronously, simple assumptions, such as independence, are usually imposed on the relationship
between the prices process and the observation times. In this paper, we introduce a general endogenous
two-dimensional nonparametric model. Because an observation is generated whenever an auxiliary
process called observation time process hits one of the two boundary processes, it is called the
hitting boundary process with time process (HBT) model. We establish a central limit theorem for the
Hayashi-Yoshida (HY) estimator under HBT in the case where the price process and the observation price
process follow a continuous Itd process. We obtain an asymptotic bias. We provide an estimator of the
latter as well as a bias-corrected HY estimator of the high-frequency covariance. In addition, we give a
consistent estimator of the associated standard error.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction process
O ._ M (D) 147D
Covariation between two assets is a crucial quantity in finance. X" = e dt + o dW (1)
Fundamental examples include optimal asset allocation and risk  gx® = uPdr + 62dw?, 2)

management. In the past few years, using the increasing amount of o @ @
high-frequency data available, many papers have been published where w;’, ui”, 0p 7, 0y

2) (1)

are random processes, and W, and

about estimating this covariance. Suppose that the latent log-price sz) are standard Brownian motions, with (random) high-

of two arbitrary assets X; =

", X follows a continuous Ito  frequency correlation d(W™, W®), = p.dt. Econometrics usu-

ally seeks to infer the integrated covariation

t
505, = [ oo
0
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Earlier results were focused on estimating the integrated vari-
ance of a single asset, starting from the probabilistic point of view
(Genon-Catalot and Jacod, 1993; Jacod, 1994). Barndorff-Nielsen
and Shephard (2001, 2002) introduced the problem in economet-
rics. Adapted to two dimensions, if each process is observed simul-
taneously at (possibly random) times 7y, := 0, 71, ..., Tn,,n the
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realized covariation [X“), X(Z)][ is defined as the sum of cross log
returns

[X(]),X(z) Z AX(])AX(Z) (3)

Tin’
Tin=

where for any positive integer i, AX{ —Xr(x"i —X® corresponds

to the increment of the kth process between the last two sampling
times. As the observation intervals At; , get closer (and the number

of observations N, goes to infinity), [X(V, X®], LXMW, Xy, (see
e.g. Theorem 1.4.47 in Jacod and Shiryaev (2003)). Furthermore,
when the observation times t; , are independent of the prices pro-
cess X;, its estimation error follows a mixed normal distribution
(Jacod and Protter, 1998; Zhang, 2001; Mykland and Zhang, 2006).
This gives us insight on how to estimate the integrated covariation.
However, in practice, these two assumptions are usually not satis-
fied. The observation times of the two assets are rarely synchronous
and there is endogeneity in the price sampling times.

The first issue has been studied for a long time. The lack
of synchronicity often creates undesirable effects in inference. If
we sample at very high frequencies, we observe the Epps effect
(Epps, 1979), i.e. the correlation estimates are drastically decreased
compared to an estimate with sparse observations. Hayashi and
Yoshida (2005) introduced the so-called Hayashi-Yoshida estimator
(HY)

1D w2)\HY
(XM, X@)7
_ (1)
- (1)2() X (])AX <2)1{[Ti(—1) p TN J(ﬁ))#”}’ )
T T <t

where r<k) are the observation times of the kth asset. Note that
if the observatlons of both processes occur simultaneously, (3)
and (4) are equal. The consistency of this estimator was achieved
in Hayashi and Yoshida (2005) and Hayashi and Kusuoka (2008).
The corresponding central limit theorems were investigated in
Hayashi and Yoshida (2008, 2011) under strong predictability
of observation times, which is a more restrictive assumption
than only assuming they are stopping times but still allows
some dependence between prices and observation times. Recently,
Koike (2014, 2015) extended the pre-averaged Hayashi-Yoshida
estimator first under predictability of observation times, and then
under a more general endogenous setting of stopping times. Other
examples of high-frequency covariance estimators can be found
in Zhang (2011), Barndorff-Nielsen et al. (2011), Ait-Sahalia et al.
(2010), Christensen et al. (2010, 2013).

In a general one-dimensional endogenous model, the asymp-
totic behavior of the realized volatility (3) has been investigated in
the case of sampling times given by hitting times on a grid (Fuka-
sawa, 2010a; Robert and Rosenbaum, 2011, 2012; Fukasawa and
Rosenbaum, 2012). Due to the regularity of those three models
(see the discussion in the latter paper), they do not obtain any
bias in the limit distribution of the normalized error. Also, the case
of strongly predictable stopping times is treated in Hayashi and
Yoshida (2011). Finally, two general results (Fukasawa, 2010b; Li
et al., 2014) showed that we can identify and estimate the asymp-
totic bias.

The primary goal of this paper is to bias-correct the HY. Note
that estimating the bias is more challenging than in the volatility
case because observations are asynchronous. In particular, the
estimator will involve a quantity that can be considered as the
tricity of Li et al. (2014), but with a more intricate definition
because of the asynchronicity in sampling times. This new
definition can be seen as an analogy with the generalization of the
RV estimator (3) by the HY estimator (4).

Another very important issue to address is the estimation of the
asymptotic standard deviation. First, because the model is more

general than in the no-endogeneity work, the theoretical asymp-
totic variance will be different. Consequently, a new variance es-
timator, which takes into proper account the endogeneity, will be
given.

The authors want to take no position on the joint distribution
of the log-return and the next observation time that corresponds
to an asset price change because they know that their unknown
relationship is most likely contributing to the bias and the
variance of the high-frequency covariance’s estimate when we
(wrongly) assume full independence between the price process
and observation times. For this purpose, they introduce the hitting
boundary process with time process (HBT) model.

Finally, techniques developed in the proofs are innovative
in the sense that they reduce the normalized error of the
Hayashi-Yoshida estimator to a discrete process, which is locally a
uniformly ergodic homogeneous Markov chain. Thus, the problem
can be solved locally, and because we assume that the volatility of
assets is continuous, the error of approximation between the local
Markov structure and the real structure of the normalized error
vanishes asymptotically. This technique is not problem-specific,
and it can very much be applied to other estimators dealing with
temporal data.

The paper is organized as follows. We introduce the HBT model
in Section 2. Examples covered by this model are given in Section 3.
The main theorem of this work, the limit distribution of the
normalized error is given in Section 4. Estimators of the asymptotic
bias and variance are provided in Section 5. We carry out numerical
simulations in Section 6 to corroborate the theory. Proofs are
developed in the Appendix.

2. Definition of the HBT model

We first introduce the model in 1-dimension. We assume that
for any positive integer i, 7,1 is the next arrival time (after t;)
that corresponds to an actual change of price. In particular, several
trades can occur at the same price Z;; between 7; and 741, but no
trade can occur with a price different than Z;, before ;1. We also
assume that X; is the efficient (log) price of the security of interest.
In addition, we assume that the observations are noisy and that we
observe Z;, := X, + €; where the microstructure noise €, can be
expressed as a known function of the observed prices Zy, ..., Z.
As an example, Robert and Rosenbaum (2012) showed in (2.3) in
p. 5 that the model with uncertainty zones can be written with that
noise structure if we assume that we know the friction parameter
n. Finally, we define @« > 0 as the tick size, and we assume that
the observed price Z;; lays on the tick grid, i.e. there exist positive
integers m; such that Z;, := mjar.

Empirically, no economical model based on rational behaviors
of agents on the stock markets, that shed light on the relationship
between the efficient return AX;, and time before the next price
change At; = 1; — 7;_1, has won unanimous support. When arrival
times are independent of the asset price, it follows directly from
the continuous It6-assumption that the dependence structure is
such that the return AX, is a function of At;. The longer we wait,
the bigger the variance of the return is expected to be. In this
paper, we take the opposite point of view by building a model in
which 7; is defined as a function of the efficient price path. For
that purpose, we define the observation time process Xt(t) that will
drive the observation times. We also define the down process d; (s)
and the up process u;(s). Note that for any t > 0, we assume
that d; and u; are functions on R*. We also assume that the down
process takes only negative values and that the up process takes
only positive values. A new observation time will be generated
whenever one of those two processes is hit by the increment of the
observation time process. Then, the increment of the observation
time process will start again from 0, and the next observation time
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lllustration of the HBT model
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Fig. 1. This is an illustration of the HBT model when starting at time 7o = 0 and
with Xo = 100. The stochastic process in the middle represents X;, the upper line
stands for 100 + u,(t) and the lower line for 100 + d, (t). Furthermore, we assume

that Xf[) = X,;. The second observation 7 is obtained when X; crosses the upper
line for the first time.

will be generated whenever it hits the up or the down process.
Fig. 1 illustrates the HBT model. Formally, we define 7, := 0 and
for any positive integer i as

T = inf{t > Ti_q: AX[(T[,) il 4 [dt (t —T1_q1),u (t — tH)]}, (5)

where AY[qp; := Y, — Y,. Note that if the observation time process

Xt(t) is equal to the price process X; itself, then the price will go
up (respectively go down) whenever it hits the up process (down
process). Note also that if the time process, the up process and the
down process are independent of the efficient price process, then
the arrival times are independent of the efficient price process.
We assume that the two-dimensional process (X, Xt(t)) is an Ito-
process. Section 3.1 provides examples of the literature identifying
the observation time process, the down process and the up
process.

Generalizing to two dimensions is straightforward. We define
Xt(t‘k) for k = 1, 2 to be the observation time process associated
with the kth price process, uﬁk) the up process, dﬁk) the down
process, and the arrival times r,-(k) generated by (5). We also define
the four dimensional process Y; := (Xt“), r(z)’ X[(t’]), Xt(t’z)), and
assume Y; follows an It6-process with volatility

1,1 1,2 1,3 1,4

Ot O Ot Ot

B Utz'] atz,z 0[2,3 Ut2'4

Or = 31 3,2 3,3 3,4
Ot Ot Ot Ot

41 42 43 4.4
Ot O¢ o] Ot

In particular, we have dY; = u.dt + o:dW;, where W; is a four
dimensional standard Brownian motion (for i = 1,...,4 and
j = 1,...,4suchthati # j, Wt(') is independent of Wt(’) ). If
we set {; = ototT, then the integrated covariance (or quadratic

covariation) process is given by (Y,Y), = fot Lds. Let p; be the
associated correlation pr(')qes‘slof Y, ie.fori = 1,...,4andj =
1,...,4weset p’ = (¢~ Finally, it is useful sometimes
to see Y; as a four dimensional vector expressed as in Egs. (1) and
(2).Fork = 1,..., 4 we define the volatility of the kth process as

1
cr[(k) = ({tk‘k)f, we can thus express Y[(k) as
dYt(k) = ufk)dt + at(k) dBﬁ")

where Bik) is a standard Brownian motion, which typically depends
onBED fori=1,...,4

3. Examples

We insist on the fact that estimators of covariance and
associated asymptotic variance given in this paper do not require
any knowledge of the structure of the observation time process, the
up process and the down process. Nonetheless, for financial and
economic interpretation purposes, the reader might be interested
in getting an idea on how those processes behave in practice. We
provide in this section several examples from the literature as
well as possible extensions of the model with uncertainty zones
of Robert and Rosenbaum (2011) that can be expressed as HBT
models.

3.1. Endogenous models contained in the HBT class

Example 1 (Hitting Constant Boundaries). The simplest endoge-
nous semi-parametric model we can think of is a model where the

time process Xt(t) is equal to the price process X;, and times are gen-
erated by hitting a constant barrier. Formally, it means that there
exists a two-dimensional parameter (6,, 63) such that the up pro-
cess is equal to 6, and the down process is equal to 3. We do not
assume noise in that model.

Example 2 (Hitting Constant Boundaries of the Tick Size). One issue
with Example 1 is that the efficient price X, which is observed
because no microstructure noise is assumed in the model, is not
necessarily a modulo of the tick size « if 6, and 6, are not multiples
of @. To make Example 1 feasible in practice, we assume here that
the constant barriers 6, and 6, are respectively equal to the tick
size  and its additive inverse —a. We also assume that Z;; := X,.

Example 3 (Hitting Constant Boundaries of the Jump Size). The issue
with Example 2 is that the absolute jump size of the observed price
Z; is a. On the contrary, in practice the absolute jump size can
actually be bigger than the tick size «. In the notation of Robert
and Rosenbaum (2011), for any positive integer i, we introduce
discrete variables L; which correspond to the observed price jump’s
tick number between t; and 71, with [; > 1. We assume that L; is
bounded. The arrival times are defined recursively as 7o := 0 and
for any positive integer i as

T = inf{t > T Xt =X, —LiciaorXe =X, + Li,la}.

We assume that L; are IID and independent of the other quantities.
We finally assume that Z;; := X;. The up and down processes are
piecewise constant in t and constant in s, defined for any s > 0 as

di(s) = —Liqa fort e (7i—1, 7l
ut(s) = L fort e ('L',',1, ‘L’,’].

Example 4 (Model with Uncertainty Zones). We go one step further
than Example 3 and introduce now the model with uncertainty
zones of Robert and Rosenbaum (2011). In a frictionless market,
we can assume that a trade with change of price Z;, will occur
whenever the efficient price process crosses one of the mid-tick
values Z,_, + 5 or Z,_, — 7. In that case, if the efficient price
process hits the former value, we would observe an increment of
the observed price Z;; = Z;,_, + o and if it hits the former value,
we would observe a decrement Z;; = Z; , — «. There are two
reasons why in practice such a frictionless model is too simplistic.
The first reason is that the absolute value of the increment (or
the decrement) of the observed price can be bigger than the tick
size o and was already pointed out in Example 3. We will thus
keep the notation L; in this example. The second reason is that
the frictions induce that the transaction will not exactly occur
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when the efficient process is equal to the mid-tick values. For
this purpose in the notation of Robert and Rosenbaum (2012), let
0 < n < 1 be a parameter that quantifies the aversion to price
changes of the market participants. If we let Xt(“) be the value of
X; rounded to the nearest multiple of «, the sampling times are
defined recursively as 1y := 0 and for any positive integer i as

Ti—1

1
T = inf{t > T X = X9 —a(LH 3 + n)

1
orX, =X, +a(Lis - 5+ n)}

The observed price is equal to the rounded efficient price Z;, :=
Xg”. The time process Xt(t) is again equal to the price process X;
itself in this model. The up and down processes are piecewise
constant in t and constant in s, defined for any s > 0 as

de(s) = —Lisialx,  <x, 1 — @n+ L — Dol  -x, )
fort € (ti_1, Tl

u(s) = Loy, sx, 3+ @n+Llicg— Dol <x, )
fort € (ti_1, il

where 14 is the indicator function of A. Note that in the case where
n= %, we are back to Example 3.

Example 5 (Times Generated by Hitting an Irregular Grid Model). The
fourth model we are looking at is called times generated by hitting
an irregular grid model. We follow the notation of Fukasawa and
Rosenbaum (2012) and consider the irregular grid ¢ = {pi}kez,
with pr < prs+1. We set 7o = O and fori > 1

T = inf[t >T1:X €4 — {XrH}},

where § — {X;,_,} is the set obtained by removing {X;, ,} from §.
We can rewrite it as an element of the HBT model where the time
process is equal to the price process, and for all s > 0 the up and
down processes are defined as

di(s) = pr—1 — px fort € (zi_q, 7]
ur(s) = prr1 — p fort € (riq, 7l,

where k is the (random) index such that py = X, ;.

Example 6 (Structural Autoregressive Conditional Duration Model).
There have been several drafts for this model. We follow here
a former version (Renault et al., 2009), because we can directly
express it as an element of the HBT model.? In the structural
autoregressive conditional duration model, the time 7; when the
next event occurs is given by tgo = 0 and fori > 0

T = inf{t > Tt A— A, = a,H orA; — A, , = E,H} (6)

where A; is a standard Brownian motion (not necessarily
independent of X; ). Expressed as an element of the HBT model, we
have that the time process Xt(t) is equal to the Brownian motion A;
and foralls > 0

de(s) = dy_, for t € (ti_1, 1]
ur(s) = G, for t e (ri-1, wl.

2 Generating the sampling times (5) of the HBT model as a first hitting-time of
a unique barrier instead of the first hitting time of one of two barriers as in the
latter version of Renault et al. (2014) would not change much the proofs of this
paper, but we chose the two-boundaries setting because it seems more natural if
interpretation of time processes, up processes and down processes is needed.

3.2. Possible extensions of the model with uncertainty zones

The model with uncertainty zones of Robert and Rosenbaum
(2011) introduced in Example 4, which is semi-parametric,
assumes that the observed price is the efficient price rounded to
the nearest tick value Z;, = XT(;’) and thus the noise is equal to ¢; :=

a(3 — ) if the last trade increased the price and €; := —a (3 — 1)
if the last trade decreased the price. In particular, the noise is auto-
correlated and correlated to the efficient price. Because of this
specific noise distribution, it is directly possible to estimate the
underlying friction parameter n without any data pre-processing
such as preaveraging (see Robert and Rosenbaum (2012)). We
believe the model with uncertainty zones is a very interesting
starting point, because all the endogenous and noise structure
of the model is reduced to the estimation of the 1-dimensional
friction parameter 7. Nevertheless, as this semi-parametric model
wants to be the simplest, it suffers from several issues. We will
investigate two of them in the following.

First, the model does not allow for asymmetric information
between the buyers and the sellers. Define n* and #~, which are
respectively the aversion to a positive price change and a negative
price change. As a positive price change means that a buyer decided
to put an order at the best ask price and a negative price change
corresponds to a seller that puts an order at the best bid price (if we
assume that cancel and repost orders are not the reason why the
price changed), the difference n* — n~ can be seen as a measure
of information asymmetry. We define 7y := 0 and recursively for i
any positive integer

. 1 _
T = 1nf{t > T X =X9 — oz(L,- 3 +n )

Ti—1
@ T+
orX; = X", +a(L,~ -3 +n )}

Note that the HBT class contains this model and that it can be
directly fitted if we slightly modify 7 in Robert and Rosenbaum
(2012) to estimate n* and 1. One possible application would be
to build a test of asymmetric information n™ := 5. This is beyond
the scope of this paper.

One other issue is that the authors do not do any model checking
in their work. According to their empirical work (see pp. 359-361
of Robert and Rosenbaum (2011)), the estimated values for 7 are
stable across days for the ten French assets tested. Stability of
n favors their model but by doing so, the model does not allow
any other structure than the full-endogeneity for the sampling
times. Even if the true structure of sampling times is (mostly)
independent of the asset price, we will still estimate an n that will
be stable across days. If we allow the time process to be different
from the price process itself, we can estimate the correlation p'3
between them and see how endogenous the sampling times are
(the bigger ]pm | is, the more endogenous the sampling times are).
We would need to add more general microstructure noise in the
model, and thus this is left for further work.

4. Main result
4.1. Assumptions and theorem

Without loss of generality, we fix the horizon time T := 1, and
we consider [0, 1] to represent the course of an economic event,
such as a trading day. We first introduce the definition of stable
convergence, which is a little bit stronger than usual convergence
in distribution and needed for statistical purposes of inference,
such as the prediction value of the high-frequency covariance and
the construction of a confidence interval at a given confidence
level.
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Definition 1. We suppose that the random processes Y;, u; and
oy are adapted to a filtration (#;). Let Z, be a sequence of #i-
measurable random variables. We say that Z, converges stably in
distribution to Z as n — oo if Z is measurable with respect to
an extension of #7 so that for all A € #; and for all bounded
continuous® functions f, E[14f (Z,)] = E[14f (Z)] asn — oo.

In the setting of Section 2, the target of inference, the integrated
covariation, can be written forall t € [0, 1] as

t
XD, x@y, .= / oW ® pl24s
? N N S S N
0
We are providing now the asymptotics. We want to make the
number of observations go to infinity asymptotically. The idea is
to scale and thus keep the structure that drives the next return
and the next observation time, while making the tick size vanish
(and thus the number of observations explode on [0, 1]). Formally,
we let the tick gize a > 0 and we define the observation times
Ty = {{y };=y * such that for k = 1,2 we have 74} := 0 and for i
any positive integer

ri(k) = inf[t >0 AXt(t’k)

N3 i—1l,«a

k k k K
¢ [ad® (t — 7%, ), cu® (t — 7 )]}.

i—1,a

We define the HY estimator when the tick size is equal to « as

D w)\HY
(x(l), X( )>t,a
(1) ()
= AX  AX a0 oo @ . (7)
(;2) ri;) ij? {[Ti—l,oz’ri,u( )Q[Tj—l.a‘rj.a )7&”}
0<Ti,a T <t

We now give the assumptions needed to prove the central limit
theorem of (7). We need to introduce some definitions for this
purpose. In view of the different models introduced in Section
3, there are three different possible assumptions regarding the
correlation between the time processes Xt(r) and the price processes
X;. The first possibility is that they can be equal for all 0 <
t < T. In this case we define )\{“i“ as the smallest eigen-value
of (oY} The second scenario is that for one k € 1,2 we
have Xt(k) = Xt(t’k), but the other time process is different from its
associated price process. In that case, we define /\{“i“ the smallest
. (i.j)\i€(1,2,3,4) — (k+2) . . L
eigen-value of (o} ™ )ic(1'3/3.4)—(k12)- 1he third possible setting is
that the time process is different %rom its associated asset price
for both assets, and we let A™" the smallest eigen-value of o;
in that case. Assumption (A1) provides conditions on the price
processes X[(]) and Xt(z), the time processes Xt(“) and Xf(t‘z) as well
as their covariance matrix o;. There are two types of assumptions
in (A1). First, we want to get rid of the drift in the proofs, and
this will be done using condition (A1) together with the Girsanov
theorem and local arguments (see e.g. pp. 158-161 in Mykland
and Zhang (2012)). This is a very standard assumption in the
literature of financial econometrics. Furthermore, we assume that
the covariance matrix o; is continuous.

Assumption (A1). The drift u,, the volatility matrix o; and the
(four dimensional) Brownian motion W, are adapted to a filtration
(F¢). Also, i, is integrable and locally bounded. Furthermore, o; is
continuous. Finally, we assume that infi¢ (o 1 A{"i" > 0a.s.

3 Note that the continuity of f refers to continuity with respect to the Skorokhod
topology of D[0, 1]. Nevertheless, we can also use continuity given by the sup-norm,
because all our limits are in C[0, 1]. One can look at Chapter VI of Jacod and Shiryaev
(2003) as a reference. For further definition of stable convergence, one can look
at Rényi (1963), Aldous and Eagleson (1978), Chapter 3 (p. 56) of Hall and Heyde
(1980), Rootzén (1980), and Section 2 (pp. 169-170) of Jacod and Protter (1998).

Remark 1 (Robustness to Jumps in Volatility). The proof techniques,
holding the volatility constant on small blocks, require the
“continuity of volatility”. This is the same strategy as in Mykland
and Zhang (2009) and Mykland (2012) where the volatility process
follows a continuous It6 process. Nonetheless, following the same
line of reasoning as for the proof of Remark 6, we can add a finite
number of jumps in the volatility matrix. The proof of Theorem 1
will break in the case of infinite number of jumps in o;.

The following condition roughly assumes that both time
processes cannot be equal to each other, even on a very small
time interval. Specifically, we will assume that there is a constant
strictly smaller than 1 such that the module of the instantaneous
high-frequency correlation pf “ cannot be bigger than this constant.
In practice, Assumption (A2) is harmless.

Assumption (A2). Forallt € [0, 1] we have

pet e [p>, p2Y, (8)

where max(| p>* |, | p2* ) < 1.

The next assumption deals with the down process d; and the
up process u;. It is clear that d; and u; have to be known with
information at time t, which is why we assume that they are
adapted to (). The rest of Assumption (A3) is very technical and
we only try to be as general as we can with respect to the proof
techniques we will use. The reader should understand Assump-
tion (A3) as “assume the worst dependence structure possible be-
tween the return AX;, and the time increment At;, knowing that
they follow the HBT model”. We insist once again on the fact that
we only make the dependence structure as bad as we can in our
model so that we can investigate how biased the HY estimator can
be in practice, and how much the estimates of the variance assum-
ing no endogeneity are wrong.

Assumption (A3). For both assets k = 1, 2, define the couple of
the down process and the up process g[(k) = (dﬁk), uE’o) and let
g = (gt( b, gt(z)). We assume that
g¥: R" - (R*" >R xR")
(k)

t = g
is adapted to (#;). Moreover, there exist two non-random
constants 0 < g~ < g% such that a.s. for any t € [0, 1] and for
anys >0

g~ <min(—d¥ (s), u® (s)) < max(—d¥ s), u¥ () <g*. (9)

Furthermore, there exist non-random constants K > O and d >
1/2 such that a.s.

Vs > K, g (s) = g (K), (10)
Vt > 0, g is differentiable and Vs > 0,
max (| (@) )1, [y ()]) <K, (11)

Y (u, v) € [0, 1]2 st.0<u<v,
gy — gulloo < Klv —u|*,
where [|(f1, 2)[lco = Supy>o max (If1 (w) |, Ifz (w) ).

(12)

Remark 2. Consider the space C of constants defined in Assump-
tion (A3)

1
e= {(g—,g+,1<,d) st0<g <gt K>0.d> 5}.

For any ¢ € G, we define 4(c) to be the functional subspace of
Rt — (RT — R~ x R")? such that Vg € §, g satisfies (9),
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(10), (11) and (12). When there is no room for confusion, we use
g. Assumption (A3) is equivalent to

dc e st Vte[0,1],g € 4(c).

Remark 3. The advised reader will have noticed that Examples 3-
5and Example 6, where time processes are piecewise-constant and
may depend on 11, do not follow Assumption (A3). The adaptation of
Theorem 1 proofs in those examples is discussed in Appendix A.5.
We have made the choice not to state more general conditions to
keep tractability of Assumption (A3).

The last assumption is only technical, and also appears in the
literature (Mykland and Zhang, 2012; Li et al., 2014).

Assumption (A4). The filtration (£;) is generated by finitely many
Brownian motions.

We can now state the main theorem.

Theorem 1. Assume (A1)-(A4). Then, there exist processes AB, and
AV, adapted to (F;) such that stably in law as the tick size « — 0,

S t
! (DX, — XV X)) > a, + [ avy 2z
0
(13)

where Z; is a Brownian motion independent of the underlying o -field.
The asymptotic bias AB; and the asymptotic variance AV, are defined
in Section 4.3 and estimated in Section 5.

Remark 4 (Path-Bias). Note that the asymptotic bias term AB; on
the right-hand side of (13) does not mean that the Hayashi-Yoshida
estimator is biased, but rather path-biased. The latter is a weaker
statement which means that once we have seen a path, there is a
bias for the HY estimator on this specific path of value AB;. In prac-
tice, we only get to see one path and thus bias and path-bias can
be confused easily. When doing simulations, we can observe many
paths and the reader should keep in mind that the path-bias will be
different for each path. In addition, note that if we assume that o
is bounded and bounded away from 0 on [0, T], there is no bias in
Theorem 1 because E[AB;] = 0.

Remark 5 (Convergence Rate). At first glance, the convergence rate
o~ looks different from the optimal rate of convergence n'/? we
obtain in the no-endogeneity case. This is merely a change of
perspective because we are looking from the tick size point-of-
view. Actually, if for k = 1,2 we define Nf’fﬂ as the number of
observations before t of the kth asset and the sum of observations

of both processes Nt(sof = N[(B + Nt(zof we have that Nr(soz is

exactly of order Op(a‘z). Thus, if we define the expected number

of observations n := E[N{)], we obtain the optimal rate of
1

convergence n2 in (13).

Remark 6 (Robustness to Jumps in Price Processes). We assume that
we add a jump component to the price process

dx® = uPdt + o aB® + g (14)

1, 2, where J; denotes a 2-dimensional finite activity

for k =

jump process and d]t(") is either zero (no jump) or a real number
indicating the size of the jump at time t. We follow exactly the
setting of p. 2 in Andersen et al. (2012). We assume that J; is a
general Poisson process independent of the other quantities. Under
the same assumptions the conclusion of Theorem 1 remains valid.
The proof can be found in Appendix A.6. The infinitely many jumps

case is complex and beyond the scope of this paper. This was

already the case in the 1-dimensional case (see Remark 4 in p. 586
of Li et al. (2014)).

Remark 7 (Grid on the Original Non-Log Scale). Theorem 1 covers
the particular case where X; corresponds to the log-price and
observations are obtained when the price on the original scale hits
a boundary. This can be done by a reparametrization of gfk) by

575) = (—exp(—d®), exp)).

Remark 8 (Arbitrary Number of Assets). The authors chose for
simplicity to work only with two assets, but they conjecture that
this result would stay true for an arbitrary number of assets, and
that our proofs would adapt to show it, at the cost of more involved
notations and definitions.

4.2. Definition of the bias-corrected HY estimator

Assume that we have a consistent estimator* /@m of the bias
AB;, := oAB;. Such estimator will be provided in Section 5.

We define the new estimator (X(‘),X(z))ffx of high-frequency
covariance_as the estimate obtained when removing the bias
estimate AB; , from the Hayashi-Yoshida estimator

(XD, X@)BC = (x( XM _ 4B, . (15)

With the bias-corrected estimator (XD, X@)BC 'we get rid of the
asymptotic bias and keep the same asymptotic variance as we can
see in the following corollary.

Corollary 2. Assume (A1)-(A4). Then, stably in law as o« — O,

— t
o (XD XN, — (X0 XP),) / (AV)'?dz,.  (16)
0

4.3. Computation of the theoretical asymptotic bias and asymptotic
variance

We warn the reader interested in implementing the bias-
corrected estimator that this section is highly technical and we
advise her to go directly to Section 5 and refer to this section
only for the definitions. On the contrary, if the reader wants to
understand the main ideas of the proofs, she should take this
section as a reference. We also want to emphasize on the fact that
the theoretical values of asymptotic bias and asymptotic variance
found at the end of this section are rather abstract and do not shed
easily light on how the change of parameters o; and g; in the model
would influence the asymptotic bias and asymptotic variance. The
main purpose of this paper is that we do not need to know the
theoretical values in order to compute the estimators in Section 5.

We need to introduce some definitions in order to compute the
theoretical asymptotic bias AB; and the asymptotic variance term
AV;. We first need to rewrite the HY estimator (7) in a different
way. For any positive integer i, consider the ith sampling time of
the firstasset 7.} . We define two random times, 7, _ and 7.

i—1l,a° »i—1,a i—1,a

which are functions of 7"} and all the observation times of the

i—1,a
second asset {iji) }j=0, and which correspond respectively to the
closest sampling time of the second asset that is strictly smaller

4 ;\EZW is consistent means that a’U@m = o 'AB; o + 0p(1).



26 Y. Potiron, P.A. Mykland / Journal of Econometrics 197 (2017) 20-41

(1

than 7;_; ,,” and the closest sampling time of the second asset that
(1)
is (not necessarily strictly) bigger than z;_; , as
Too =0, (17)
T, = max{t2 : 72 < 1) }fori> 2, (18)
= min{z; (2) : ‘L'](i) > 'L'(U o fori>1. (19)

We consider AX (,)% the increment of the second asset between
i,a
- +
T 14 and T,

AX? = ax? (20)
i,a [Tz 1o’ 1 D(]

Rearranging the terms in (7) gives us (except for a few terms at the

edge)

XM, X@), Z Ax% X@.+~ (21)

The representation in(21)is very useful in the sense that it gives
a natural order between the terms in the sum. Nevertheless, any
term of this sum is a priori correlated with the other terms. We will
rearrange once again the terms in (21), so that each term is only
correlated with the previous and the next term of the sum. In this
case, we say that they are 1-correlated. For this purpose, we need to
introduce some notation. We remind the reader that T, is the two-
dimensional vector of sampling times, where for each k = 1,2
the kth component TV is equal to the sequence of sampling times
associated with the kth asset. We will construct a subsequence T}¢
of T{V that also depends on the observation times of the second
asset T2, and will be such that we can write the Hayashi-Yoshida
estimator as a 1-correlated sum similar to (21), except the new
sampling times ‘L']C will replace the original observation times

(]) . The new sampling times r
1C (1)

C are obtained using the following

algorlthm. We define 7,, = 714, and recursively for i any
nonnegative integer
75 o = min{z") : thereexistsj € N

such that 7!$ < 72 < (L} (22)

In words, if we sit at the observation time r C of the first asset, we
wait first to hit an observation time of the second asset, and we
then choose the next strictly bigger observation time of the first
asset. In analogy with (17)-(19) and (20), we define the following
times

. =0 (23)
t"]f{;‘ = max{r}@ j(zzx) < til—CLa} fori > 2 (24)
filfijx = min{rjfz) : J(i) 7 o) fori > 1, (25)
Axf(i%‘** = AX[(zil),c;;_’Tilgﬁl fori> 1. (26)

First, observe that, except for maybe a few terms at the edge, we
can rewrite (21) as

X0, X@), Z Ax<}§ Ax(fé . (27)

> Connoisseurs will have noticed that T,_, o IS NOt a F;-stopping time, which will
not be a problem in the proofs.

Also, we define the following compensated increments of the HY
estimator
1c

M Ay @ b
Nio = AXL1CAXZ_1C,—,+ - _/1(

Lo i,a Ti—l,o(
Note that they are compensated in the sense that they are centered
(if we decompose AX(K _ into a left (—), a central and a right

¢ 2 ds. (28)

(+) part and condltlon the expectation, this is straightforward to
show). Similarly, we can show that they are 1-correlated.

The idea of the proof is the following. If we consider the
volatility matrix oy and the grid function g; to be constant over
time, we can express the conditional returns of the normalized
error of HY as a homogeneous Markov chain (of order 1), show that
the Markov chain is uniformly ergodic and thus use results in the
limit theory of Markov chains (see, e.g., Meyn and Tweedie (2009))
to show that it has a stationary distribution. Then, we prove that
we can approximate locally the returns of the normalized error
when the volatility matrix and grid function are not constant by
the returns when holding them constant on a small block. Finally,
using limit theory techniques developed in Mykland and Zhang
(2012) together with standard probability results of conditional
distribution (see, e.g., Breiman (1992)), we can bound uniformly
in time the error of the returns when holding the volatility matrix
and grid function constant.

Based on the definitions introduced in Appendix A.1, we can
define the instantaneous variance of the normalized HY estimate’s
error (29), which depends on the volatility matrix & and the grid
g. Similarly, we also define the instantaneous covariance between
the normalized HY's error and the first asset price (30), and the
instantaneous covariance between the error and the second asset
price (31). Finally, we define the instantaneous 1-correlated time,

which is the approximation of E_ ic [Athz] where if 7 is a (F;)-

stopping time, E, [Y] is defined as the conditional distribution of Y
given ¥;.

Yy, 8. % u) = E[NJ + 2N,Ns], (29)
VG, g% w = B[R aXie], (30)
A6, 8, = E[ 2AX(]C_+], (31)
Y (6,8, xu) = E[ALC]. (32)

Remark 9. The reader might expect Nj in lieu of N, in (29)-(31)
and (32). Actually, we cannot use N: directly from the definition
because the corresponding time %Olc ~ = 0. We would need to set
it to —u to alter the definition of (29)-(31) and (32), which we have
chosen not to do for the sake of clarity.

Set Zy := (x, u) and for any positive integer i

7= (Angc,jilc], 7O 719, (33)
For any nonnegative integer i, we consider 7;(¢, g, x, u) the
distribution of Z;. We also introduce the notation 7(5, g,x,u) =
{mi(6, g, X, u)}i>o. By the strong Markov property of Brownian
motion, we can show that Z; is a homogeneous Markov chain (of
order 1) on the state space ;. In the following lemma, we show
that there exists a stationary distribution of 7; (¢, g, X, u).

Lemma 3. Letc := (g7, g™, K, d) be a four-dimensional vector such
that ¢ € C and consider ¢ a constant volatility matrix such that
xmin > 0andg e 4(c) a constant grid. Then, there exists a stationary
distribution 7 (&, g).
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The proof of Lemma 3 can be found in the Appendix (proof of
Lemma 14). The next definition is the average (regarding the sta-
tionary distributions) of the instantaneous variance, covariances
and 1-correlated time. For any 6 € {AV, AC1, AC2, t},

¢ (6.2) = / ¥ (5.8.7.v) d7 (5.8) 0 v).
R
We introduce the notation ¢¢ = ¢? (o5, g) and consider the

following quantities needed to compute the asymptotic bias and
variance.

R A I G (O (34)
ksl,J_ — (-l _ (psl.Z)Z)*l((o_S(Z))—2¢?C2
— @Pa ) p M) (7). (35)

We express now AV, the quantity integrated to obtain the
asymptotic variance.

AV, = (¢ _|_2(k(1>(0(1)) 15@ pl2pACt
= kP + kD)) (1)
+(05(1))2(k§1))2 I (05(2)) (

The asymptotic bias is defined as AB;
fot AB® dx? where

(01)?) (k). (36)

= [yABdxY +

ABD = Kk — k!t p] : (37)
AB? = k!t (38)

202 (o 1)

Remark 10 (Asymptotic Bias). Looking at the expressions for AB(U
and ABEZ), one can be tempted to think that because of the (1 —
(p*)?)”" term in k!, the bias will increase drastically when
both assets are highly correlated. In this case, the reader should
keep in mind that the second term of ABS), when integrated with
respect to Xs(l), and AB§2), when integrated with respect to Xs(z),
will be roughly of the same magnitude, with opposite signs, and
thus there is no explosion of asymptotic bias. We chose the above
asymptotic bias’ representation because it is straightforward to
build estimators from it. We can also express the asymptotic bias
differently. For this purpose, we can rewrite the log-price process
as

X = oVap.

A = pl a8 + (1- (o) o b,

where Bi” and BE’L are independent Brownian motions. Let

1/2
ax = (1= (o!*)) "o as; (39)

that is not correlated with X M We can express
= [ AB X" + [! 4B dBIL. In this

be the part of Xt(z)
the asymptotic bias as AB;
case, A~B£ = k" and

A~£) lim (M, B4,

n—-oo

where M" is defined in the proofs. We can show that this
limit exists, and does not explode when both assets are highly
correlated.

5. Estimation of the bias and variance

We need to introduce some new notations. We recall that N, (”
the number of observations corresponding to the first asset before

1 and we also define N{, the number of 1-correlated observations
before 1,i.e. N{¢, := max{i € Ns.t. 7'{ < 1}.In practice, the first
step is to transform the returns of the first asset

M N
{(AX s At , )}i=1

into 1-correlated returns
N1C
1Cc 1C 1,
{(AX 1c Ti,a)}i:la

using algorithm (22). Then, for each asset, we will chop the data
into B, blocks and on each blocki = 1, ..., B, we will estimate
AV i /@fg and 1@,(2 pretending that the volatility matrix o; and
grid g; are block-constant.

Because there is asynchronicity in the observation times, the
blocks of each asset are not exactly equal. Let h, be the block
size. For the first asset, we consider block 1V := [0, 7,1, block
20 = [, Ty ], etc. For the second asset, we let block 1% :=
(55" r,,lc(;r] block 2® = [1,.", 1,1, etc. In the following,
we w1ll sayj € block 1(1) when r ¢ block iV, Similarly, we say

j € block i® when r] ) e block 1(2>. Finally, we define j € block i if
je{(i—1h,+1,...,ih,}.First, we estimate the volatility of both
assets using the corrected estimator in Li et al. (2014). To do this,
we need to define an estimate of the spot volatility on each block
for each asset k = 1, 2 by

1/2
Gl - ® |2
5= Y @x®y)
jeblock i Je
Then, we estimate the asymptotic bias of the volatility via

— (k) (k) \3
ABolY = P D (Axip)’
( ) jeblock i) G

We obtain the bias-corrected estimators of volatility on each block:

~ - k
(k) _ aék) ABo ()

lOt_

Then, we estimate the correlation between both assets using the
naive HY estimator

1

~1,2

Pia = 7oA

Lo Ui(l)U(Z) Z

i, jeblocki

1 (2)
AX 1c AX L1C—+"

}Ot jot

We then build an estimator of the compensated increments of the
HY estimator, following the definition in (28),

1cA(1)A(2)A12
Atla lot Iotplot'

Nia = AX Q0 AXS

La i,a
The next step is to estimate the instantaneous variance (29), both
instantaneous covariances (30) and (31) and the instantaneous
1-correlated time (32) on each block. This is done by taking the
sample average of the corresponding estimated quantities. Note
that we do not directly estimate ¥4, ¢!, %A and 7, but
rather a scaling version of them, i.e. a2y, o, !, A% and
a, YT, In practice, we can always assume o, := 1 by scaling g; by
the tick size, and thus we match the definitions of the following
estimators with (29)-(32). For the sake of simplicity, we assume
that the number of 1-correlated observations of the last block B, is
also hy,,. In practice, this will be most likely different from h,, and
thus the denominator of (40)-(43) will have to be changed so that
it is equal to the number of 1-correlated observations in this last
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block. The estimates are given by

ol =0 D0 N+ 2Nl (40)
jeblock i

G =ht Y N AXUL, (41)
jeblock i .

¢AC2 = h ! Z IQJj!aAXﬁ)C_&, (42)
jeblock i Ja
D Ang. (43)
jeblock i

We estimate now the quantities (34) and (35) as

Ky = (60) 7S (8r) (44)
]}1:11 — (] (f)llaz)) (( (2)) ¢AC2
(G(l)A(Z)) 1lallaz¢Ag1)(¢la)71' (45)

We follow (37) and (38) to estimate the bias integrated terms AB§1)
and ABEZ) on each block

~) KD _jilp125@ (50

ABi,a '_lla klalota ta(la) ’

fﬁ?-(z) P

i,a fo *

For the variance term AV;, we decide not to use the direct definition
in (36) because it can provide negative estimates. Instead, we will
be using the following estimator

— - ) )
AViy = (( 3 R - ”(x( X0
jeblock i T~ 1hn,
2 @ 12A(2 (-1
_I ((X(lc+ Xier )— ,0“, )(o )
Tin T(i—1)hn.«
(M M 2
G =xR ).
lhnﬂl (1 Dhn,a

We define the final estimators of asymptotic bias and asymptotic
variance as

= ZAB(” (G, X0 ) B O X0 )

(46)
Bn

AV, = Z;‘.‘\/i»“ (r,-},ia — z(liﬁl)hw). (47)
i1

As a corollary of Theorem 1, we obtain the following result, which
states the consistency of (46) and (47).

Corollary 4. There exists a choice of the block size h,,® such that when
o — 0, we have

o~ 'AB, — ABi, (48)
a?AV, — / AVds. (49)
0
In particular, in view of Corollary 2, the bias-corrected estimator
(XD, X@)EC = (XD, X@)" — AB, is such that
(XD, XD — (xD, X@),
— — N(0,1). (50)
AV,

6 The exact assumptions on h, can be found in the proofs of Theorem 1.

Remark 11 (Exchanging X[(]) and Xt(z) ). When estimating the
asymptotic bias and the asymptotic variance, we considered one
specific asset to be X[“) and the other one to be Xt(z). We could

exchange Xt(]) and Xt(z) , and find new estimators AB, and AV,

according to the previous definitions. One could then take B +ABra

(respectively M)

(asymptotic varlance).

as final estimators of asymptotic bias

Remark 12 (Optimal Block Size). In practice, the optimal block size
hy, is not straightforward to choose. On the one hand, h, should be
as small as possible so that the volatility matrix o; and the grid
g: are almost constant on each block, and thus (40)-(43) are less
biased. On the other hand, we need as many observations as we can
on each block, so that the variance of approximations (40)-(43) is
not too big. We are facing here the usual bias-variance tradeoff.

6. Numerical simulations

We consider four different settings in this part. We describe
here the first one. We assume the same setting as the toy model
described in Example 1, in two dimensions. Thus, there exists a
four-dimensional parameter 6 : (0(1) 9(” 9(2) GQ)) such that
foranyt > Oandanys > 0, u l)(s) “) d<l)( ) = 0(”

tz) (s) = 9152) and dﬁz) (s) = 952). We assume that the two-
dimensional price process (X(l) XQ)) has a null-drift. Also, we as-

~(1
sume that the volatility of the first process is a( L ! where
= MY
o( ! := 0.016 and the volatility of the second process o( ) =6 !
2)

where o( := 0.02, and that the correlation between both assets
is p;* := 0.2. We set 6 := (0.0007, 0.0001, 0.0006, 0.0001). Ac-
cording to this rule, a change of price occurs whenever the price of
the first (respectively second) asset increases by 0.07% (0.06%) or
decreases by 0.01% (0.01%). Finally, we assume that the price pro-
cesses (X[(”, sz)) and the time processes (Xt(t’l), X[(t’z)) are equal.

The second setting is similar to the first setting, except that we
assume now a stochastic volatility Heston model. Specifically, we
assume that

ax® u®de + o dBy,

K(k)((g< e _

where the constant high-frequency covariance between Bfk) and
MO ~ (k) =() =) .
B, isfixedtop ,and (B, , B, )areuncorrelated with eachother.

We choose to work with drift (", ©®) = (0.03, 0.02), and
2
( )) are selected to be (—0.8, —0.7).

(4.5,5.5), the volatility of volatility
(0.4,0.5), and the volatility starting values

d(o)? — (0)?)dt + 8%, ©db,’

to add leverage effect (,5(1), P

Finally, (¢, xk®) =

(5(1) 5(2)) —

(O,él)’ (2)) & = (D &(2))
We consider now the third setting, which goes one step further

than the previous setting. We assume a jump-diffusion model for

both the price and the volatility. Formally, we assume that

ax®

1 ®de + 0P 4 q®,
~

«®(G")2 = @))dt + 5¥, WaE 4 g,
where the jumps (](1) t<2)7 1(1), 1(2)) follow a 4-dimensional Pois-
son process with intensity (A", A AW 1®) .= (12, 11, 10, 9).
The jump sizes are taken to be 1 or —1 with probability % for price
processes, and 0.0001 or —0.0001 with half-probability for volatil-
ity processes.

d(o)?
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Fig. 2. Histogram and Normal QQ-plot of the standardized estimates (50) in setting 1 on a 10-year period of observations.

Table 1

Summary statistics based on simulated endogenous data of 1, 5 and 10 years. The RMSE in the table corresponds to the
square root of the squared distance between the estimated value and the true value 6.4e—05. HY stands for the usual
Hayashi-Yoshida estimator (4), and BCHY represents the bias-corrected estimator (15).

No. years Estim Setting Sample Bias RMSE % Reduced RMSE

1 HY 1 5.41e—07 1.36e—05 -

1 BCHY 1 5.43e—07 1.19e—05 13%

5 HY 1 1.10e—07 1.42e—05 -

5 BCHY 1 1.07e—07 1.26e—05 11%
10 HY 1 5.54e—08 1.39e—05 -
10 BCHY 1 5.53e—08 1.20e—05 14%

1 HY 2 5.47e—07 1.66e—05 -

1 BCHY 2 5.44e—07 1.50e—05 9%

5 HY 2 1.13e—07 1.71e—05 -

5 BCHY 2 1.15e—07 1.58e—05 8%
10 HY 2 5.58e—08 1.70e—05 -
10 BCHY 2 5.60e—08 1.57e—05 8%

1 HY 3 5.61e—07 1.80e—05 -

1 BCHY 3 5.62-07 1.67e—05 7%

5 HY 3 1.14e—07 1.81e—05 -

5 BCHY 3 1.12e—07 1.68e—05 7%
10 HY 3 5.56e—08 1.80e—05 -
10 BCHY 3 5.55e—08 1.68e—05 7%

1 HY 4 4.41e—07 1.10e—05 -

1 BCHY 4 4.44e—07 1.11e—05 — 1%

5 HY 4 8.81e—08 1.10e—05 -

5 BCHY 4 8.80e—08 1.09e—05 1%
10 HY 4 4.39e—08 1.08e—05 -
10 BCHY 4 4.43e—08 1.08e—05 0%

In the fourth setting, we consider another model of arrival
times, namely Example 4. We set the tick size « = 0.0001 and
the friction parameter n = 0.15. Price and volatility processes are
assumed to follow the same model as in the second setting.

We simulate price processes and observation times for 10 years

of 252 business days. We choose h,, = n? for Settings 2-4. We
provide in Table 1 a summary of the comparison results between
HY and the bias-corrected HY. As expected from the theory, the
RMSE is improved when using the bias-corrected estimator in
Example 1. In Example 4, the bias-corrected HY does not seem to
perform better than HY. We conjecture that there is no asymptotic
bias in Example 4, and that this is the reason why we do not observe
any difference between the two estimators in that simple model.
In addition, the sample bias is almost the same when using HY and
the bias-corrected estimator for the four different settings, which is
also expected from Remark 4. Furthermore, this sample bias tends
to 0, which comes from the fact that both estimators are consistent.
Finally, the standardized feasible statistic (50) in the first setting is
reported in Table 2 and plotted in Fig. 2.

Table 2

In this table, we report the finite sample quartiles of the feasible standardized
statistic (50) in setting 1. The benchmark quartiles are those for the limit
distribution & (0, 1).

No. years 0.5% 2.5% 5% 95% 97.5% 99.5%
1 —2.48 —-1.99 —1.59 1.66 2.13 2.57
5 —2.60 —1.96 —1.64 1.64 2.05 2.62

10 —2.68 —1.98 —-1.60 1.65 2.01 2.73

7. Conclusion

We have introduced in this paper the HBT model, and we have
shown that it is more general than some of the endogenous models
of the literature. This model can be extended to a model including
more general noise structure in observations, and even noise in
sampling times. This is investigated in Potiron (2016).

Under this model, we have proved the central limit theorem
of the Hayashi-Yoshida estimator. Our main theorem states
that there is an asymptotic bias. Accordingly, we built a bias-
corrected HY estimator. We also computed the theoretical
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standard deviation, and we provided consistent estimates of it.
Numerical simulations corroborate the theory.

The techniques used for the proof of the main theorem could
be applied to more general models and to other problems such
as the estimation of the integrated variance of noise, integrated
betas, etc. In particular, independence between the efficient price
process and the noise is not needed in the model. As long as we can
approximate the joint distribution of the noise and the returns by
a Markov chain, ideas of our proof can be used.

Appendix

A.1. Definition of some quantities of approximation

We define in this section some quantities assuming the
volatility matrix o; and the grid function g; are constant. For
that purpose, let W, be a four dimensional Wiener process, ¢ =
(g7, g7, K, d) a four-dimensional vector such thatc € € and & a
constant volatility matrix such that the associated A™®, which is
the analog of )L‘tm“ defined in Section 4.1 when we replace o; by
7, is strictly bigger than 0 and g € 4.(c) a constant grid function.
In analogy with the definition of the grid function g; in (A3), we
assume that g can be written in terms of the down and up functions
of both assets, i.e.§ := (§V, §®) where for each k = 1, 2 we have
g0 = (d®, 7). Also, we introduce ; the subspace of R? defined
as

8 =1{(,v) e Rx R st.d?(v) <y < i®(v)}.

If we set X = 6W and the corresponding sampling times of both

assets T := (T, T®), where for k = 1, 2 we have T® := {%;};=0,
we define the observation times of the first asset as 7, ~( ) .= 0and
recursively for i any positive integer

~(1 1 >3 3 ~(1 ~ ~(1

Y =inflt > 7)1 AXP ¢ [dVc — 2, 1V - 201}

These stopping times will be seen as approximations of the
observation times of the first asset when we hold the volatility
matrix o; and the grid g; constant. We will always start our
approximation at a I-correlated observation time 7,'(, which
corresponds to an observation time of the first asset. As the
sampling times of the second asset are not synchronized with the
ones from the first asset, we need two more quantities (x, u) € 4;
to approximate the observation times of the second asset. They
correspond respectively to the increment of the second asset’s
time process X[(t’z) since the last observation of the second asset
occurred and the time elapsed since the last observation time of

the second asset. We define r(z) =0,

7@ =inf{t > 0: x+ AX? & [da(t + u), Ta(t + W]},
and for any integeri > 2

12 =inf{t > %) 1 AX? & [da(t — 2, Wt — 7))
Similarly, we define the analogs of (17)-(18), (19), (20), (22),
(23)-(24), (25), (26) and (28) respectively as 7,_;, fifl, AXf(Z,)#,

F1C— 1ot AX(Z) _, and N; by putting tildes on the quantities

Tic1 2 Timq
in the deﬁmtlons

A.2. Preliminary lemmas

Without loss of generality, we choose to work under the third
scenario defined in Section 4.1, i.e. the asset price is different from
the time process for both assets. Because we shall prove stable
convergence, and because of the local boundedness of o (because

by (A1) o is continuous), and that infi¢(g 1] )L{“i" > 0 we can
without loss of generality assume that for all t € [0, 1] there exist
some nonrandom constants ¢~ and o such that for any eigen-
value A of oy we have

0<o <A <o, (51)

by using a standard localization argument such that the one used
in Section 2.4.5 of Mykland and Zhang (2012). One can further
suppress u as in Section 2.2 (pp. 1407-1409) of Mykland and Zhang
(2009), and act as if X is a martingale.

We define the subspace M of matrices of dimension 4 x 4 such
that VM € M, for any eigen-value )y of M, we have

c” <y <o’ (52)

and EMMT)44 € [p_ ,p+ ] By (8) of (A2) and (51), we will assume

in the following that Vt € [0, 1], oy € M.
We define o P the process (of dimension 4 x 4) on R* such that

ol =0, Vtel0,1],
atp:m Vvt € [1, 00).

Define now X? the process such that forallt > 0

dXf = ofdw;,
X = Xo.

Because XP and X have the same initial value and follow the same
stochastic differential equation on [0, 1], they are equal for all
t € [0, 1]. For simplicity, we keep from now on the notation X
for XP.

In the following, C will be defining a constant which does not
depend on i or n, but that can vary from a line to another. Also, we
are going to use the notation 7/, as a substitute of 7/’ «,» Where 0 can
take various names, such that (l) (2) and so on. Leth: N — Na
(not strictly) increasing non-random sequence such that

h, — +o0, (53)
hpo, — 0. (54)
To keep notation as simple as possible, we define r” = 71%5 ,
o=y T =0 Wealso let Ay = {i > 1st.tlt |, <
t}, where t € [0, 1]. Also, we recall the notation (XG) t(4)) =

v, x 2>) Finally, for 6 € {(1), (2), 1C, h}, we define s! =
sup.o _r AT, We show that these quantities tend to 0 almost

surely in the followmg lemma.

Lemma 5. We have s, 9 2% 0.

Proof. We can follow the proof of Lemma 4.5 in Robert and

Rosenbaum (2012) to prove that for k € {1, 2}, s<k) — 0. Then, we
can notice thata.s.s}¢ < sV 452 to deduce that s}f %% 0. To show
that s" — 0, define the process Z such that Z, = 0 and Vi > 0 we

have

1C+
ln]’

(2)
Ax2e
Ti-1,n
(e))
AX[ G +Zzil—ci,+n

lln

—l—ZT}c] Vt € [‘E 1m0 Tie

i—1,n

Z =
t Vi € [tl1cltl’ 1c]

Substituting X in Lemma 4.5 of Robert and Rosenbaum’s proof by

our Z, we can follow the same reasoning. The only main change

will be that in their notation M,, < Ch,a,, but this tends to 0 by

(54). O

Let f be a random process, s a random number, we define

S¢.9) = sup fu —fol-

0<u,v=1,|u—v|<s
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Lemma 6. Let f be a bounded random process such that for all non-
random sequences (qn),o, if qn — O, then S (f, qy) £ 0. Letalsoa

random sequence (S,),>o such that s, £ 0. Then we have VI > 1that
l_l
S(f,sy,) —0.

Proof. As f is bounded, convergence in P implies convergence in
L' forany! > 1.Hence it is sufficient to show that S (f, s,) 5 0. Let
n > 0and € > 0, we want to show that 3N > 0 such that Vn > N,
we have
P(S(f,sn) >n) <e.
Jnon-random x > 0such thatIF’(S f.x)>n < %.Also, iN >0
such that Vn > N, P (s, > x) < §.Thus
P(S(fvsﬂ) > 77) = P(s(fvsﬂ) > U,Sn > X)
+]P)(S (fvsn) > 77a5n E X)
SPG>x)+PESEF x)>n) <e. O

We aim to define the approximations of observation times on
blocks

. h h
(K"’” = [ti,n’ ri—H,n])izo :

We need some definitions first. Let (Ct(i))izo be a sequence of

independent 4-dimensional Brownian motions (i.e. for each i, C[(i)
is a 4-dimensional Brownian motion), independent of everything
we have defined so far. We define Vi, n > 0,

AW, vt € [0, ATl 1,

Si n [Tl n"[il,ln+']
ro= G
>
AW[II",[H‘TI"LH,H] + Ct A I@»l n vt AT!+1 n’
and
k Ln (4) h h,—
(t']”)j>0k 127 <5 Ol » On8eh , AX [ Tin = Tin )

To keep symmetry in notations, we define for all integers i and
©)]

n positive integers, (‘L’i i n) consisting of the observation times
jz

, i.e. ‘L'(l) =

of the process 1 after ", i

,fﬂllj’n - rIEJL where i* is the (random) index on the orlgmal grid
(1)

of process 1 corresponding to r-“ (T =

@
we define 7,3,

subtracting the value of r
T

). For process 2,

@ )]

= 0 and for integers j > 1, Tijn = Tpgjotn —
(1)

T.

# o Where j* is the index on the original grid of process 2
corresponding to the smallest observation time of process 2 bigger

(not necessarily strictly) than r . We also define 7., 7%, 7€

ij,n “ijn tijn’
1C,— _1C+ ~— =~+ 1C 1C—

Tijn »Tijn » Tijne Sgm Tijom Tijn o ,1f+followmgtheconstructlon

ij,n » tijn 0t ij,n* “ij, i,
we used to define (17) (19) (22)-(24) and (25). We also set
~ i, 4 h h,—
(m’f’")jzo = (Sl n’ O-Tihn, angrih ’ X(r.27 h ]’ Ti’n - Ti’n ) )
’ ’ in

Lemma 7. For 6 € {(1), (2), 1C},anyreall > 0, any positive integer
i and n, any non-negative integer j, we have 0 < (;” < C,+ such that

Ca? <E [(A # n)] <Cra?, (55)
where A‘L’” 0= flgj n %i(?j—l,n and

I
Co? < [(Aff,'f,)> } <G, (56)

Proof. For 6 € {(1), (2)}, because of (51), we can deduce (55)
using well-known result on exit zone of a Brownian motion (see

for instance Borodin and Salminen (2002)). (56) can be deduced
using Dubins-Schwarz theorem for continuous local martingale
(see, e.g. Th. V.1.6 in Revuz and Yor (1999)). If & = 1C writing
AT, = (fi?jjnn - %fj_l,n> + (%,9]: - %fj’fl,n> and working those
two terms, we can obtain (55) and (56). O

Now, we define for 6 € {(1),(2), 1C, h} the number of

observation times before t as
< t}.
We have the following lemma.

N, = supfi:

ln

Lemma 8. For 6 € {(1), (2),1C}, we have that the sequence
(a2NZ,), ., is tight.

Proof. Here for & € {(1),(2)} we can follow the proof of
Lemma 4.6 in Robert and Rosenbaum (2012) together with
Lemma 5. Also, by definition we have N/$ < N} so we also de-
duce the tightness of («N/¢) . O

n>1

Lemma9. Let (U,),
and 6 € {(1), 2), 1CL.If

be an array of positive random variables

Loy 2.
Yu>0, > U,n—>0 (57)
i=1
1
then I M U, "> 0. Also, if Yu > 0, ZL“O‘" *hn) Uiy 20, then
Z, 1 Uin Zo.
Proof. Lete > Oand u > 0.
o2
i= uoy 241
o2
Z vanl(Lua;ZQNf”} > 6)
i=Nf 41
oy 2
<P Z Uin + Z Uind o2, op,) > €

i= uay 241

t,n
- €
Z Uisnl{Lua,;ZKNf_n} > 2

i=cuay 21

€
<r| > Uin> 5 | +P

i=1

-2
Loy <

<P| > Un> g + P (cuey *s < NE)

We take the lim sup,,_, o, and use (57). We obtain
NH
limsupP Z Upn > € | <limsupP (Luey, > < Nf,).

n—oo i=1 n—oo

We now tend u — oo and conclude using Lemma 8. The second
statement is proved in the same way. O

Lemma 10. Foranya > 0,0 € M,g € §, (x,u) € &, we have
that

vV (0.8, x,u) = YV (0, ag, ax, o’u),
Y (0, g. % u) =Y (0, ag, ax, o’u)
Ui (0, g, %, u) = a2 Y A (a, ag, ax, azu) ,

V(0,8 xu) =a Y (0, ag, ax, o’u).
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Proof. For any Brownian motion (W;),,, by the scale property

we have that (W), = («7'W,2,),- Thus, if we define r =
inf{t > 0st.W, & [d(t),u(t)]} and 7, = inf{t > Ost. W, ¢
[ad(t), cxu(t)]}, we have that

T Zinf{t > 0s.t. W, ¢ [ed(t), au(t)]} = o>
We deduce that

(T, Wo) = (@210, Wyay, ) = (0 200, aWy,) (58)

We can prove the lemma based on the way we proved (58), at
the cost of 2-dimension definitions that would be more involved
and straightforward applications of Strong Markov property of
Brownian motions that we will not write, so that we do not lose
ourselves in the technicality of this proof. O

We introduce the number of points in the ith block in the kth
process as the following

N(k) = max{j > Os.t. 7', + r,(]k)n <t

We also introduce the total number of points in the ith block N; , =

N,.(}l) + Nl.(fl). We show now that we can control uniformly the error
of the approximations of the observation times.

Lemma 11. Let [ > 1, we have that

[] = 0, (o)) (59)

sup E [‘Aru W — AT

Lj,n
i>0,2<j<hp
and
!
+ ~1C,—+| | _ 21
~ sup E[‘Ar”n — AT ‘] op (o). (60)
i>0,2<j<hp

Proof. We introduce the notation o/ where U stands for
“uniformly in i > 0”, meaning that the sup of the rests is of the
given order

First step: We define 3% = sup;.,, 75 . We show in this step
that

#50. (61)

We define the accumulated time of approximated durations, i.e.
I=
= Z Tl
I=
Using Lemma 7 together with Lemma 8, 3M > 0 such that
P (%ﬁh.n

We define Zj = 0and Vt € [T 1.0 lhn]

5M)—>1.

Ztn = Z;h + Sl_l ;

1—1,n

A slight modification of the proof of Lemma 5 will conclude.
Second step: We show that we can do a localization in the

number of observations in the ith block, i.e. there exists a non-

random M, such that

P (max (N N3) > M) (62)

converges uniformly (in i) towards 0 and M, increasing at most
linearly with h,,, i.e. we have M,, < Bh, where g8 > 0.

To prove (62), we need some definitions. Define for i > 0 the
order of observation times O; x , and the order of the approximated

observation times O; x. in the following way. Let T, := (5} ”)j>0

be the sorted set of all observation tlmes (corresponding to
processes 1 and 2) strictly greater than 'L' .Then forj > 1, we will

set O0;j, = 1 if the jth observation tlme in TO corresponds to an
observation of the first processand 0; j , = 2 1f1t corresponds to an

observation of the second process. Similarly, we set T, the sorted

. 0;jn are defined in
i

set of all approximated times ( l(]k)n)
Jj=>0,k:

the same way. There existsap > 0 such that for all integersi, j, n

P (0110 = 10410 =2) = pand P (01,0 = 2[00 = 1)
>p. (63)

Indeed, let | be the (random) index such that rl(,l)n = ‘L',S-,n.

Conditionally on {O,—,-n = 1} we know that Ojjp1, = 2 if
@
[r Wt 111 n ] 11 n’ y

—g~. Using (8) of (A2) and (51), we can easﬂy bound away from

0 this probability, thus we deduce (63). Now, using (22) together

with (63) and strong Markov property of Brownian motions, we

deduce (62).

Third step: let g = (d, u) such that (g,g) € §,0 € [07,07"]
and € < ‘%, We define 7 (g,0,¢) = inf{t > 0 : oW, =
u(t) + eoroW, = d(t) — €}, where W, is a standard Brownian
motion. We show that

crosses g+ or —g™ before AX[G; crosses g~ or

E[]r(gme) - r(g,o,Oﬂ <y0 () (64)

where y© () Z"0.
In order to show (64), let

'L'1 (g, g, 6) = lnf{t >0: O'W[+T(g_(,,0)
= min (u(t(g,0,0)) + Kt +¢,g7)

or 6Wiir(g,0,0) = max (d(r (g, 0,0)) — Kt —€,87)}.

By (9) and (11) of (A3
1! (g, 0, €). Conditionally on {7 (g, 0, €)
property of Brownian motions, we can show that E;g ;)

), we have 7(g,0,¢) — 7(g,0,0) <
, using strong Markov

L e
[‘rl (g, o, e)‘ ] 30 0 using Theorem 2 in Potzelberger and Wang

(2001) for instance.
Fourth step: Let k € {1, 2}. We show here that

(k) O 1] — U (2!
ZF‘U Tijn = T un]_op(an)' (65)
J=Mn
oo o w>_~®
The idea is to show that by recurrence inj, E | |7;;, — T;; | | can

be arbitrarily small when n grows. It is then a straightforward
analysis exercise to use the localization in second step and choose
a different sequence h if necessary, that will still be non-random
increasing and following (53) and (54), so that the sum in (65) will
be also arbitrarily small. Let us start withj = 1and k = 1.

1 1
_ (k) (k)
i|_E|:‘zln_riln 1Ei,ni|

1
(k) = (k)
+E |:’Ti,1 n~ Tiin 1EEﬂi| ’

E[ ® _ =0

xln i,1,n
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where E; , = Ei(’}f N E,-(’i) with

1 _ (1)
E, = { sup |AX -
se[r T; +r(1> %(1) 1 b

in’i,n xln i,l,n

@ 1 (1)
R I i R
el Tl 1 VE

d—12 _1/2
M = qnln, qn = max(“n » Zn )and Zn = SUPj<yy<4
1/2
(B[ (s (4. sh va)*]) By (58) and (64),
1
k k
E |:‘ l(l)n - Tl(l)n 1E1n:| 21 y(l) (2q ) + )/() ( 2q ))

Using Cauchy-Schwarz inequality and Lemma 7,
z c
[t ) =t o (- ()
AN 1/2
+ P((Eﬁ’) )) .

On the one hand,
P ((E;};)C>

-1 (1) (D
= (771,n E sup AX —AX
) M =1 ]| [T ,s] [Ti,n‘51|

se[r rl +Tln Tlln
1/2
r +1' VT 11) 2 /
<C ~ max E b ol — o't ) ds
- (nln 1<u,v<4 ( S ri}}n
1/2
(1 ~<1) W ochy, )2
<C(m.n)" 12};1)24]E|: T n v Titn S(U“”anSn)) ]
1/2
1 =1
SC(Thn) (]EI:I]VIVI]TI}) Zn
< CZ]/Z

where we used Markov inequality in the first inequality, con-
ditional Burkholder-Davis-Gundy inequality in the second in-
equality, Cauchy-Schwarz inequality in the fourth inequality, and
Lemma 7 in the last inequality. On the other hand,

C —
P((Ei(i)) ) = (771,n) 'E su%) " “ m _ (1) ”
‘L’ f ]

se[r

-1
=<C (771.11) E [(T(i)n 4 Tr(l)n) :|
< Cad 1/2
where we used Markov inequality in the first inequality, (12) of
(A3) in the second inequality, and Lemma 7 in the last inequality.
In summary, we have

E[ L0 =0 }

ij,n ij,n
< Cap (v @an) + v (=2q0) +2,”* +7)

which we can make arbitrarily small, because z, — 0 by first

step together with Lemma 6 and the continuity of o (A1). The case

with k = 2 is very similar. Finally, for j > 1, the same kind of

computation techniques, using in addition (11) of (A3), will work.
Fifth step: Prove that uniformly (in i)

P (Vj <My, Oijn= éi,j,n> - 1 (66)

To show (66), letj < M,. We define the (random) index v such that

0 =0 Modifying suitably h if needed, there exists (using

i,v,n ij,n®
fourth step) a sequence (¢,) such that

P ("qgﬁ)n — ‘I'ifji)n < ocﬁen> — 1, (67)
P (‘ti(,)v+1,n - ti(:)v,n = (136,1) — 0. (68)

Using (67) and (68), we can verify (66) by recurrence.
Sixth step: We prove here (59) and (60). Using Lemma 7 and
(66) we obtain
!
E [‘Arﬁf — AT/S 1

ij,n

!
1c 1c
] :E[‘At”n—Ar”n

ol (o).

The first term on the right part of the inequality can be bounded by

1C
C(E |:‘Ti,j,n - lJ n

~1C
+E |:‘ 1] 1,n Ti,j—l,n

(vj‘smn,oi‘,;nzé,-,j{n}]

1(VJ<Mn 0ij, n—oxj n}1|

1
1{V1<Mn.o,-.,~,n=6.-.,~,n}]) :

Both terms can be treated with the same trick. Using the second
step and Lemma 7, the first term is equal to

l
1c ~1C
2 E ‘ti,j,n = Tijn

v=Mp -

U (20
1{V]<Mn 0ij, n_Ol] n}l(‘[,]cn ‘El(l)‘n}] + OP (aﬂ ) :
The sum is obviously bounded by

[ e =1c|!
D E ’Ti-jm ~ Tijn
v<Mp L

and using (65), we prove (59). We can deduce (60) with the same
kind of computations. O

Let M" be the interpolated normalized error, i.e.

n_ -1 (1 @
My =, (ZAX[.LJC MrmM]Ax ‘C’m 1S el

i>1

t
_ / Us(l)Us(z)Ps]’zdS)-
0

M} corresponds exactly to the normalized error of the Hayashi-
Yoshida estimator if we observe the price of both assets at time t.
We recall the definition of

T.
M Ay @ b 2512
Ni,n = AXrJCAXrJC’*'* - / O'( ) ( ) dS
in in T

Lemma 12. We have

2
E n |:<AM“ > i|
i—1,n Tin
icAn

hn
_ 2
=a,’ ZEfih_l_n |:Z (Ni—thu)” + 2N(i1)hn+uN(i1)hn+u+l:|

ieAn u=2

+0,(1).

Proof. We obtain this equality noting that (N;,) _, are centered
and 1-correlated, and that the terms left converge to O in
probability. O
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We introduce the observation time at the start of a block, where
stands for “start”

u ”»

h 1C
= sup{ SLT, < Ty

Lemma 13. We have

o) B

i€An

hn
2
|:Z (Ni-1hy+u) +2N(11)hn+uN(i1)hn+u+1:|

hn—2

2 § § : AV -1 -2
= 0o, G h s gr_h , O X, o, U)
Rz 1n i—1,n

ieAp j=0
X d7i—1jn (X, v) + 0,(1).

Proof. First step: approximating with holding volatility constant.
Set

3 M @ T,
B = (o, AWe) (o AWae) = [ 6 s

C i—1,n
i—1

i—

where A is the ith component of the vector A. We want to show
that:

hn
_2 2
oy ZET{I_M |:22: (NG=1yru)” + 2N(i1)hn+uN(il)hn+u+1:|
u=.

i€An
~ 2 ~ ~
- Z |:Z (N(H)hﬁu) + 2N(11)hn+uN(i1)hn+u+1:|

i€An

+o,(1).

. 2 ~ < \2 -~
Noting Fin = (Nin)” +2NinNig 1.0 and Fin = (Rin )+ 2810
it is sufficient to show that

a;ZZE

s F.. —F
T U i,n i,n
i>1

N
that we can rewrite as o, Z,>1 @ [

P
I[Tisl,n<t}:| — 0,

Fi,n - ﬁi,n

1{¢1,n<rl]
Zo. Using Lemma 9, it is sufficient to show that Yu > 0:
ua,,

ot 2B

Thus, it is sufficient to show the convergence L' of this quantity,
i.e. that

zn_Fi,n

P
l{TiS—l,n<t}] — 0.

oy

S o[t

We have that

1{r <t}] — 0.

<B4+ 282

Ln?

‘Fi,n - Fi,n

where Bfln) = an — an . We

and B(Z) ‘N, 1,nNin — Nl 1, an n

have that

B <cy+c?+c)

nLn>’

where

2
(1 (¢Y) )
Ci,n = ‘(AXTWAX 1c,7,+>
in Tin
M @\?
= (o pawe) (o AWer)
L1c 2 L1C 2
@ in 12 in 1.2
Ci,n = ‘ / {S ds — / Cl_; ds
7 AT
‘A A

’

)

Tilrg
M 2) ’ 1,2
X X “ds
i fi?;f’_& ,/;K b

i—1,n

3 _
Ci,n -

) () ff}f 1.2
1.nAWTi}r§) (U’f—l,nAWTi?5’7'+> 1€ Cris—l,nds'

—1.n

(o

Let us show that ;2 ) .-"
itas Ci(;) < Dl(]") + D%, where

Ln’

2 2
(1)
1 2 2
= [(axaxs ) (o amwge) axi )
in in ' in
SRS 2
n = (O’Il 1 AW.#]E) sz]c,fgr
’ Ln
M @\ 2
_ (O‘Tis_LnAWTS,f) (Ufis—l.nAWt;,f'_’+>

We want to show that a2 Z”“” IZDi(,ln)l{Tis,md}iI — 0. We
define:

(1)
Ei,n

uory?

I:Cl'(,:l)lhis_lyn<f}i| — 0. We can write

=
|

9

=
i
|

[§)) 2
AX L1c XTIC -

Tin

4+

E?

in

W @
(U’is—l,nAWTil,f) AXTJC_f'Jr.
4 in

Using Cauchy-Schwarz inequality, we deduce:

ot ] = (50 +£2) () — ) 1]

M, @) D @)? ks
= (E |:<Ei,n +Ei,n) :IE |:(Ei,n _Ei,n> l{tf_1,n<f}i|) ‘

Using Cauchy-Schwarz inequality together with Burkholder-
Davis-Gundy inequality and Lemma 7, we obtain that:

2
E [(E{Q +E2) ] = 0" (of)

where U stands for “uniformly in 1 < i < uozn‘z". Another
application of Cauchy-Schwarz inequality gives us

2
1 2
E |:<Ei(,n) - Ei(.n)) 1{1151,n<t}:|
1 4
M AW, @ 1
<|E Axrgg —\%% ., e (a0 <t)

4\ 172

X IE|:<AX(?C—+) :|) :
lﬂ

Using once again Cauchy-Schwarz inequality together with
Burkholder-Davis-Gundy inequality and Lemma 7, we obtain that:

. |:<AXS%H+>4:| oY ().
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Similarly, we compute using conditional Burkholder-Davis-Gundy
in first inequality, Cauchy-Schwarz in third inequality, Lemmas 5-
7 together with the continuity of o (A1) in last equality.

o m\*
E AXTIJS — (UrisilvnAWng> 1{2_5714"«]
@ m\*
= |1, <Bqe, | (AX0 - (o0, AW,
4
T 0)
=B\ 1, <”Eflc1n (/r_lc ((05 Urlln)dws) )

i—1,n
1c 2
Tin ” il 2
<C sup E |1 »4E1c (ag' — o ) ds
1<j,l<4 Ln i—1n rilcl,n i—1.n
2
Ti}g | | 2
=C sup E| 1. (ag — ol ) ds
1<j,l<4 Ln ril—cl n i—1,n
1c TENIYAY U (.4
< C sup E|(A7/s (7)) | +o” (o)
1<j,l<4 ’

<cC (E [(Ar,.}n‘)“] E [12,1[24 (S (o, Sﬁ))s])l/z +0 (o)
=0Y (o).

-2
With the same kind of computations, we show that «,? Z”a”
-2

[D? )1“5 st ]] — 0, and we also can show ;2 /“" E

(21,

have also that a,, 2 Zfz’]‘ E [B< 1 <t}] — 0)and

<t}] — 0,02 ZW” [C-(3)1{rf_1n<t}] — 0 (thus we

ua;z
- 2
an2 2 E [Bi(,n)l{rf,l,n«}] — 0.
i=1

Second step: approximating using (%ivj~")ijn>0
(Tin); pmo- We set

- o @ Tij

~ ij,n 1.2

Nijn = (U n AW:ic ) (0' h AW~1C— - / ¢ i ds.
Tijon i,n Tijin .31(71 n Tin

We want to show that

. 2 .
@’ Z Eon |:Z (N(i—l)hn+u) + 2N(il)hn+uN(i1)hn+u+l:|
2

i€Ap u=.

nsz 2 = =z
= an_z Z Elih—l,n |:Z (Nifl,u,n> + 2Ni1,u,nNi,u+l,ni| +op(1).

i€An u=2

instead of

Using the same kind of computations as in the first step together
with Lemma 11, we conclude.

Third step: express the result as a function of ¥*V. Using
Lemma 10 in last equality, we deduce for any integer u such that
2 <u < h, that

i—1,n

= 2 = =
Erh I:(Nifl,u,n> + 2Ni71,u,nNi71,u+1,ni|
= / WAV (Uf!l ) ang-[,h , X, v) df[i,u—z,n (Xa v)
R2 i—1,n i—1,n

4 AV -1 ) ~
=, /2 v (afih ) n,gfih 0% X, a, v) dmiy—2n (X, v). O
R —1, —1,

Lemma 14. Yo € M, g € §, 3 (o, g) distribution such that:

hn—2
2 AV 1, -2 -
o, E E / v (UT{LI n’grih—l g a, X, o, u) dmi_1ja (X, 1)
icAn j=0 YR? ’ ’
_a2§ :hn¢AV( & )+op(1).
1—1.n
i€An '

Proof. We define the transition functions of the Markov chains
(Zi (o,g)) defined in (33). For (x,u) € 4, B € B(4)
i>0

(borelians of )

P(0.2)((x,u),B) =P (21 (0,8) €B|Z(0,2) = (x, u)) :
First step: We prove that Yo € M, Vg € §, the state space 4,
is v-small, i.e. there exists a non-trivial measure v on B(R?) such
that V(x,u) € 8;,VB € B(4;), P(0,8) ((x,u),B) > v (B). Let
B = [xa, Xp] X [ug, up]. We are choosing v such that v = 0 outside
_T’ T] X [3, 4]. Thus, without loss of generality, we have that
[Xa, Xp] X [Ug, up] C [—%-, £-1 x [3, 4]. We want to show that
dc > 0 such that uniformly

I3 (07 g) ((Xv u) ’ B) = (Xb - Xa) (ub - uﬂ) -

There are two useful ways to rewrite (X®, X®). The first one

is:

X = gPBO) (69)
_ N o\ 1/2 -

XD = pia @R 4 (1 — (0> ) o WB}t (70)

where B® and B> are independent, p>* € [p>*, p3?] and

max <—pi’4, pi"l) < 1(because o € M),

= (1-man () (22))) 7

The other way to rewrite it is:
X® = c@WB?, (72)

~3 ~4 2 1/2
X0 = OB + (1= ()

o VBt (73)

where B® and B** are independent. For (B;).., a standard
Brownian motion, a < x < b, we denote the exiting-zone time
of the Brownian motion

t®P —inf{t > 0s.t.x+ B, = aorx+ B, = b}

and p;(x, a, b, t) the density of ‘L')f’b. We also define p2(x,a,b,s,y)
the distribution of B; 4+ x conditioned on {r;"” > s}. Finally, let
p3(x, a, b, t) be the distribution of 7" b condltloned on {B_ ab = = b}.
All the formulas can be found in Borodin and Salmlnen (2002).
Consider the spaces C; = C3 = {(x,a,b,t) € R*st.a < x <
b,t >0},C ={(x,a,b,t,y) e R®°stta<x<bha<y<bhbt>
0}. The functions p; are continuous on C; and positive. Thus, for all
compact set K; C C;, we have

,3an pi(k) > 0. (74)

We can bound below

P(o,g) ((x,u),B)

ZP(EoﬂElﬂEzﬂEng4

ZO = (Xv u)) )
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where
EO e sup )2(3)‘ < w %1(2) < I(]
0<5<%<2) s 150+ -
~ €0
E; = { sup XSG)‘ < -7, su )ABB’_é)
1?1(2)5551(—0—1 100 ~(2)< <K+1 sl
g o
< 72}
4(ct)
- € _
E, = { sup x§3>‘ <, &% e[K+2, 1<+3]},
K+1<s<i? 5

Ey = {Vs e [£2, K + 41X € [di(K), u ()], X5,

€ [us (K) — 2€, up (K) — e]}

“ g
m[ sup ’AX[fQ) | < E]
2 <s<K+4 2

- ~2 @ : -3
Ey = {rf e+ up+ 521, inf AXP, > 26}
K+4=s<t)
v@ v@
ﬂ{ sup AX 0 ]‘ <g ,AX~(2) 20 € [xa,xb]},
K+4=s<il) i
where € = gz;;’; . Using extensively Bayes formula, we can rewrite

P(EoﬂElﬂEzﬂEng4ﬂ 71 € B}

=IxII xII xIV xV,

Zy = (x, U))

wherel = P (Eo

(Zo = (x, u)}), H="r (151

Eo ({20 = mmﬂ
and also Il =
<E3 E; (N Er (N Eo 2o = (x, u)}) and V. = ]P(E4
ﬂ%m%=mwﬂ

We prove that I is uniformly bounded away from 0. Using (52),
(69),(70) and (71), we deduce that Eél) N Eéz) C Ey where

P | E2|Ex (N Eo N{Zo = (x, u)}>, v P

Es(\E2(E1

~ eo min(o~, 1
EY = { sup BG)‘ L Eomin, 1) 5 )},
0<s<K 15(c™)
2 X =
EP = { sup % +B§*L‘
0<s<K

@ (1 _ (p3,4)2>

n o
. g €0~ min(o ,l)}

S0~ 15 (o+)?
Conditionally on{ = (x,u)}, Eé]) and E((,z) are independent. Thus,
we deduce
1> P(E“) {Zo = (x, u)}) (E(Z) {Zo = (x, u)})

Using Markov property of Brownian motions, we obtain that the
right part of the inequality is equal to
€o min(c~,1) €0~ min(o~

(1—/K (0— 1) t)dt)
, Prl% 15 (0+)?2 150+)?

K
[ ()
0

X @ _ gt €0~ min(o —,1) .
_x = £ 4 & T -7 which
0(4)(1,(03,4) )1/2 Yo o= T 15(c+)?
is uniformly (in x, o and g) bounded away from 0 using (52) and
(74).
We prove Ehat 11 is uniformly bounded away from 0. Condition-
ally onEg ({Zo = (x, u)}, the two quantities of E; are independent.

Thus, we bound below II (the same way we did for I) by

1 ! B® o O t)ar
B @ b1 {2 100+t6® 100 +t6®’
K+1 - - —
g o g o
(1 _/fm P (O’_4g+g<4>’ 4U+U<4)’t) dt)’
1

which is uniformly bounded away from 0 using (52) together with
(74).

We prove that IIl is uniformly bounded away from 0. Using (52),
(69),(70)and (71), we deduce that Eél) N E;z) C E; where

where y(])

M _ (3)
=, o= 5]
2

K+1<s<K+3 50+
EP = { sup ‘Al?_’é) <2 ap ‘ABg‘_é)

kriss<k+2! BTS00 20T gia<s<kasl (578

+

€
L e
o~ 507148

Conditionally on E;(Eo({Ze = (x,w)}, E{” and E are

independent. Thus, we deduce

> P <E§” Ev()Eo[ (2o = (x. u)}>
< P <E2(2) E1 ﬂEO ﬂ{ZO = (X, u)}) .

Using Markov property of Brownian motions, we obtain that the

right part of the inequality conditioned on {Bz(<34)-1a f’jé, -
'L’1 N

Ei(NEo ﬂ{zo

= (x, u)}} is equal to

xfz“l ’ (E e ) e didq(y)
,zg;lpl V" 7\ so- T 505 ) 50~ " 50ts’ aw.

where ¢ is the (conditional) distribution of AB* + By

I7] o K1)
conditioned on

-
T ~236L 20 Z-l .
AB™

=2

7 ),K-H]

Using the definition of E; together with (52) and (74), we have III
which is uniformly bounded away from 0.
We prove that IV is uniformly bounded away from 0. Using (72)

and (73), we deduce that Egl) N E§2) C E; where

€0
56+to@ ]
EY = {¥s e 57k +4] 4B oy € 0700

ABHL c® y@ }
[%2(2),K+4] [y3 7y3 ] 5
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1 di(K)+2¢/5 2 K)—2€e/5 3
with y( — 1K) 6/2 73 y(3) uy (K) 6/2 73 y(3) —
U(4>(],( 3.4) ) U(4>(1,(p3,4) )
uy(K)—8¢/5 uy(K)—7¢/5

172> as well as y<4) 17z - Conditionally

0(4)(1_(03,4) ) 0(4)(1_(03,4)2)
on E; (E1(Eo ﬂ{ZO = (x,u)}, E;l) and E;z) are independent.
Thus, we deduce

IV >P (E;” Ey(VEi[ )Eo[ )2 = x, u)}>
P (Eéz) Ex[\Ei()Eo[ )iZo = (x. u)}) :

Using Markov property of Brownian motions, we obtain that the

Ez mE]mEgm

right part of the inequality conditioned on {%2(2)

{20 = (x, u)}} is equal to
K+4-%2 o co
1—/0 D1 (O,—756+0(4),750+0(4),t> dt
K+4-5{)
x |1 —/ D1 (O ygl),ygz), t) dt
0

(4)

Y3
§ /<3> p2 (0.9 7 K+ 4=, y) dy,
V3

which is uniformly bounded away from 0 using (52), (71) and (74).
We prove that V > c(xp — x4) (up — ug). Using (69) and (70), we
deduce that E{" M E{? C E, where

ESV = {1: € g+ 52 up + 171, X2 = u1(1<)},
58~
<
12°
60 @ (1 _ (p3,4)2> /
AR

(2
[L+4,7] € [.y4 »Ya ]}a

@ =31
E, :{ sup | ABjy’ 4y

K+4<s<t

T =inf{t > K +4:X® = u;(K) or AX —2¢},

[1<+4 1=

v (4) @ (O -1 ( >(3) )
X, AX 4o K X,
o a =2 K] - p> (@@) " (u) — X2y

4 ]

o@ (1 _ (,03’4)2)1/2

40 ® (6®) ™ (ww0-%2,)

Xp— AR ()2)
@ _ 172 K+4)

. We have
(,(4)(1,(03,4)2)1/2

andy,

V=rp (X;'” = ul(K)>
x P (Ei” ﬂ EP |E; ﬂ E, ﬂ E, ﬂ Eo ﬂ{Zo =
ME = uwi@0)).

The first term on the right part of the equation is uniformly
bounded away from 0 (Borodin and Salminen, 2002). Because 7 is
a function of X® and B>~ is independent with X®, 7 and B>~ are
independent. Thus the second term on the right conditioned on

{J’S), J’f)» 12247 7-'2(2)’ ﬂ E; ﬂ Eq m Eo ﬂ{zo (x,w)}}

(x, w}

can be expressed as:

f“b“z” 40 / S (X X =2 wao
P3 ) ) )
ug+22 —k+4) Sy o® o® o®

5¢g~ 5g~
xm@_aﬁ;wym,
Vi Yy

12
wherey( = 60® (1 — (,03’4)2) .We have that y\" and y’ are

dominated by 77z - Using this together with (52), (71)

3g”
40(4)(1,(/,3,4)2)
and (74), we deduce that V > c(x, — xq) (Up — Ug).
Second step: We prove that H Vs H = sup YA
oEM,ZEG, (X,u)ESg

(0,8,x%, u)‘ < 00. To show this, we bound the term as

2
o (axgag . —geant) |
- - 2 2
< 2E <Ax;}24xf?cy_,+> +(<;“A%;C) :
2 Ty

The second term in the right hand-side of the inequality is
uniformly bounded using (52) and Lemma 7. Using successively
Cauchy-Schwarz and Burkholder-Davis-Gundy inequality, (52)
and Lemma 7, we can also bound uniformly the first term. The
other term of (29) can be bounded in the same way.

Third step: Define ¢ = (o, g, X, u) and

Q@={(o,g.x,u)st.o e M geg, (xu) € s}
Prove that Vq € @, there exists a measure 77 (o, g) such that

n—1

sup E
€|’ 1=y R2

vV (0,8,y,v)d7 (0,8, %, u) (v, V)

—n/2 vV (0, g,y,v)d7 (0,8) (v, v)
R
= no,(1).

To show this, we use first step together with Th.16.0.2 (v) (Meyn
and Tweedie, 2009). We obtain that there exists 7 (o, g) where

andr = 1 — v (R?). Thus, we deduce:

P"(0.8) ((x.u),.) — 7 (mg)”w <o

/2 vV (0,8, y,v)d7 (0,8, X, u) (v, V)
R:

- / vV (0,g,y,v)d7 (0,8) (¥, )
R

< e .sxn -7 e0], <2|o

We want to show that Ve > 0, 3N > 0 such that Vn > N:

. (75)

n—1
Z/ Y (0,8, y,v) di (0,8, %, 1) (v, V)
—o /R?

_n/2 WAV (G7g7y9 U)dﬁ (G7g) (y’ U)
R
< en. (76)

The rest is a straightforward analysis exercise. Let € > 0.3dN; >
0 such that ri < £. Choosing N > 8N;e~'||y4 || !, we first use
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the triangular inequality, and then split the sum of the left part of
(76) into two parts, one up to Ny and the other one up to N. We use
(75) in the second part to obtain (76).

Fourth step: Proving the Lemma. Let w > 0. From Lemma 9, we
just have to show that
Y

hn72
AV
/ 0 h ,gr e y, )
i=1 R? e :

~ AV
x dﬂi—l,j,n 0. v) = hu (U’ih—l n’ grih—l n)

Lway, h(n) 1,

tends to 0 in probability. Using third step together with standard
results on regular conditional distributions (see for instance
Section 4.3 (pp. 77-80) in Breiman (1992)), we prove the
lemma. O

Lemma 15. We have

ZZIEh

2 2
(1) 2 AV
(0. (o2, e )
icAn 1,n i—1,n —Ln =Ln

= E_n
4 ri—l,n
i€An

Proof. First step: Defining
hn—2
Ujp = o ,
b ; le ( Tihfl.n grih—l,
-1
AV h h
Ag = o, IG;HE h n |:hn¢ <0Tih—l,n’g‘[ihfl,n> Ari,n (Ezi’L] [Ari,n]> :| B
h -1

Ay = ZE b Yn’gfl.hfl_n> A, (“i,n) ]

AV
|:hn¢ (Urh
i€An i1

= A1 + 0, (1). To show this, in light of Lemma 11,

,X, u) At 1jn (X, 1),
n

we have that Ag
we have that

E_n
Ti—1,n

=hmG,

[A Tilfn] — Ll,"n

where C, tends to O in probability. From this, we can easily show
that Ag = Ay + 0, (1).
Second step: We have that

-1
— Z]Erih_] ) |:¢AV (O—Tih_] n,grih_] n) Afi’jn <¢;h ) :| + OP(])-
i€An ' ' ' e

To prove it, we can mimic the proof of Lemma 14, together with
Lemma11. O

A.3. Computation of the limits of (M");, (M™, XV}, and (M", X®),
(Mn>t = ]E h

2
. |:<AM':_,1 > i| +0,(1)
icAn b

hn
2 2
ZEl . |:Z Nii—1yhy+u) +2N(i1)hn+uN(i1)hn+u+l:|
u=2

icAn
hy—2
AV -1 -2
+0p(1)—a E E f O'h n’gfih—m’a” X, o u)
icA, j=0 ’ ’

X dii—1jn (X, u) 4+ 0p(1),

where we used Lemma 2.2.11 of Jacod and Protter (2012) in first
equality, Lemma 12 in second equality, and Lemma 13 in third
equality.

We deduce (using Lemma 14 in first equality and Lemma 15 in
third equality)

(M") = oz ) hao

i€An =n
-1
2 AV h h

@) B, [”" At (B, [adh)) ]* % (1)

-1

AV h

i—1,n |: rihf] nATi’n <¢;ihn) :| + Op(l).

i€An ’ ’

i€An
> e
Using Lemma 2.2.11 of Jacod and Protter (2012) again, we

deduce
—1
Zd’, MAT,.’},, (d);hn) +0p(1).

icAn

+0p(1)

Using Lemma 5 together with Prop. 1.4.44 (page 51) in Jacod
and Shiryaev (2003), we obtain

m, s / oM (¢7) " ds. (77)
0

Using the same approximations and computations, we also
compute

M, XDy, — / AR () s, (78)

(M", Xy, / @1 (¢7) " ds. (79)
0

A.4. Computation of the asymptotic bias and variance

We follow the idea in 1-dimension in pp. 155-156 of Mykland
and Zhang (2012), and define an auxiliary martingale

t t
M;’:Mg—/ kg‘)dx;U—/ kltdx !,

0 0
whereth’L

is defined in (39). Using (78), we deduce

t
= (M", Xy, —/ KD d (X D)

t
£ / ¢ (¢7) " ds — / KD (0M)? ds.
0

Hence, we choose

40 = o) 67)

By the same techniques that we used to compute (78), we have that

<M”,/ p120(2)dB(”> - /t(as(l)) 6@ p12gfCt (1)
t 0

(M", XDy,

(80)
Using (79) and (80) we compute

t
X0, = gt x4, — [,
0

. t
:<M",x<2> —fo psos(z)st(])> —/0 kitd(x ),
t

. t
= (M", X?) —<M",/O psas<2)d3§”> —/O kltd(x g
t
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g/t (¢?C2 _ (05(1)) (2) 12¢AC1) (¢ ) ds
0

[ (- ) )

Hence, we choose
et = (1= (1))
(@) 0 = (0o®) ™ pl0l) o)

By (A4), there exists S > 0 such that the S Brownian motions
{DD,...,D®} generate the filtration (%);»o. To show that
(M", D®), tends to 0 in probability, we decompose D® = Ds! +
D%? where D*! belongs to the space spanned by {XV, X®}, D52
is orthogonal to this space. By what precedes, we have clearly
(M", D>y, tends to O in probability. Also, D2 is a martingale
that is, conditionally on the observations times of both processes,
independent of M". Thus we also deduce that (M", D), converges
to 0 in probability.
We can now compute

("), :<M"—/'k§“dx;” —/'l<}’ldx;~i>
0 0 t
t
— o+ [ ( ) ()" as
+ / o)’ (p;,2)2> (k142 ds
0
t
-2 k(”d ki (X, M™),

0

) (2)/)51 2¢;xc1

M My, —
5 mtOZQSfV + 2(k§‘) (oV

— (K + k) 90?)) (91)
) () + @) (1= (1)) () s

By letting

AV, = (¢§‘V + 2(k§1> (@)
— (K7 + k) 91?)) (65)
+ (@) (K2) 4+ (02) (1= (7)) (k)

we deduce using Theorem 2.28 in Mykland and Zhang (2012) that
stably in law as o, — 0,

t t
-1 1 1 1.L 1,1
a, ' (RCV,y — RCVy) — /0 k¢ >dx§>+/0 kltdx]

t
+ / (AVy)'? dw,.
0

We have just shown Theorem 1. Now, we express the asymptotic
bias AB; = fot KV dxV + fot kl-+dx !+ differently as

t t 1/2
ABt=/ 1<§”dx§“+/ k-t (1—(;;;2)2) oPdBl+
0 0

t
=/ k(l)dx(l)_/ le 12 (Z)dB(l)+/ le 12 (Z)dB(l)
S S S S
0 0 0

t 1/2
2
+ /0 K (1= (002)7) 0@ aw
t
:/ (k(l) 1J_p120(2)( s(]))%)dxs(])_'_/ ksl,J_dXs(z).
0 0

We thus deduce the expression of ABS) and ABgz).

(2) 1, 2¢AC1

The proof of Corollary 4 follows in the same way as the proof
of Theorem 1. We hold constant the asymptotic variance and the
asymptotic bias on blocks of size h,. Moreover, we can see that

1
ABf 02 ,AB and AV, « are uniformly consistent estimators under the
constant model

A.5. Discussion on the adaptation of Theorem 1 proofs for more
general models

We discuss in this section how to adapt the proofs of Theorem 1
when considering Example 3 up to Example 6. In that case, the HBT
can be defined for each k = 1, 2 as 7y, := 0 and recursively as

ti(lr? = mf[t > ‘c,(k)1 . X(t(:f))
’ [z, T 1,n’ it]
(k) (k) (k) (k)
¢ [andlh(e = ), (e — 75,)]] (81)
for any positive integer i. In (81), the grid g(k) = (dgk,i, uﬁ";

depends on n, thus the term gf in the asymptotic variance
obtained in Theorem 1 will have a different interpretation. Indeed,
gt(k) will be seen as a (possibly multidimensional) continuous time-
varying parameter which generates (81) instead of the scaled grid
function itself. In particular, the approximations will not be carried

with holding g; , constant on each block, but rather with holding

g: constant on each block. Also, for any fixed t € [0, 1], g(k) will
not be a function on R™, but a simple vector. The reader can refer
to Potiron (2016) for the notion of time-varying parameter. Note
that Assumption (A3) is only used in Lemmas 11 and 14. Thus,
Lemmas 11 and 14 are the only parts in the proof which need to
be adapted.

A.5.1. Example 3 (hitting constant boundaries of the jump size)

For each asset k = 1, 2 we define the jump sizes as L?’o We

assume that Lm and L(Z) are independent of each other. We have

thatg(k)(s) = (— Lfk)l n,Lfk)] o) fort e (r,-(f)l’n, ,(k)] We also have
a non-time varying parameter g; := 1.

As the jump size Lﬂk) is IID and independent of the other

quantities, we can consider the same L(k) when making local
approximations. Note that in Lemma 11 the proof is made
recursively for each observation time of the block. Thus a “jump” of
8:.n 1s not a problem when it happens exactly at observation times,
as long as the same jump is also made in the approximation block.
Since L( ) is assumed to be bounded, it is straightforward to adapt
the proof of Lemma 11.

We discuss now how to adapt the proof of Lemma 14. To do
that, we consider the Markov chain Z; = (Af([(:l)cy, s Tlc —
), where i is such that %if]) = g€

~J(2) = 7“7, 1"V and L? are IID sequences independent of each

other which follows respectively the distribution of L 1 ) and L(Z)
Then, everything follows the same way as in the proof of Lemma 14

.‘i‘.]cf L(D L(Z)

i oLy

,j is such that
and

A.5.2. Example 4 (model with uncertainty zones)

This model is very similar to Example 3, except that the
sequence L(k) is obtained as a function of X("), where x*
corresponds to the continuous time-varying parameter x; of the
kth asset introduced in p. 5 of Robert and Rosenbaum (2012). We
thus consider g(k) = X[k) The proof of Lemma 11 can be extended

using the convenient construction ofL , providedin p. 11 of Robert
and Rosenbaum (2012). We extend thls construction in two-
dimension assuming that (W;)" and (W/)® are independent. As
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Example 4 is slightly more involved than Example 3, the Markov

chain Z; needs to include also the type of previous price change

(increment or decrement) for each asset. We thus consider Z; :=
v (2) ~1C ~1C,— (D) () (D : v (2

(AX[?_]CY, acp T TR S ,mgn(Astn), 51gn(AXf(2))),
i 4 i 7

and can follow the same line of reasoning as in Lemma 14.

A.5.3. Example 5 (times generated by hitting an irregular grid model)

In this case, the parameter gt(k) := 1 is non time-varying.

Lemma 11 can be adapted easily. To show Lemma 14, a further con-
(k). (k) (k)

dition is needed on q;" =p; —Dpj_;- Weassume that there exists
a positive number Q® such that for any non-negative number j
andany! € {0,...,Q® — 1} we have q;g)(km = q. We also de-

fine the Markov chain Z; := (Af([%)c,, ey A Y 1),
i U
where IV is the index such that there exists a non-negative num-

ber m with p,(;c)z(1>+z<1> = XS% and [? is the index such that there
1

exists a non-negative number m with p%(zmm = )?(?2 _. Under
7.
1

this assumption, we can show Lemma 14.

A.5.4. Example 6 (structural autoregressive conditional duration
model)

We assume that the mixing variables d® and ¢® are
interpolated by time-varying continuous stochastic paranﬂeters
(agk), Efk)). We have that gt(k) (&}’0, Et(k)). The central limit
theorem in Example 6 can be obtained as a straightforward
corollary of Theorem 1. If we define for any s > 0 the grid
functions gt(k) (s) = (&ﬁ"% 5t(k) ), the only difference between the
HBT model (5) and the structural ACD model (6) is that we hold
the grid between two observations in the latter model. In view
of this specific assumption which implicates that the quantities
of approximation are closer to the approximated quantities than
under the HBT model, the proof of Lemma 11 simplifies. The proof
of Lemma 14 remains unchanged as it deals only with quantities of
approximation.

A.6. Jump case: proof of Remark 6

We update in this section the proof in the jump case model (14).
The idea is to exclude all the blocks where we observe a jump. Such
blocks will be finitely counted, and we will have at most one jump
(either for Yt(l) or for Yt(z) but not for both prices at the same time)
in each block. This is the main difference with the one-dimensional
case.

We introduce the notation

Al = {i>1st.7,, <tand thereisnojumpson [/ . 7/ 1}.
The proof of Lemma 5 can be adapted because of the finiteness of
jumps. The proof of Lemma 6 remains unchanged. Lemma 7 and
Lemma 8 remain true in view of the finiteness of jumps. Lemmas 9
and 10 do not need any change. We modify Lemma 11 as follows.
Let [ > 1, we have that

Lj,n

sup E [‘Afi,lfn _ AzlC

] =)

icAT 2<j<hy
and
!
1C,—,+ ~1C,—,+ _ 21
sup E [’AT,-J’” — AT ‘ :| =0y ().
ieA™ 2<j<hy

The proof remains unchanged in view of the independence
assumption between jumps and the other quantities. Lemma 12

stays true with no further change. We introduce the new following
lemma to be inserted between Lemmas 12 and 13 in the proofs.

Lemma 16. We have

hn
—2 2
oy, Z]Erih—l,n Z (Ni=1phg+u)” + 2N 1phy+uNei= Dy +ut1
i€An u=2
hn ,
-2
=q, Z ]Efih—m Z(N(i—l)hnﬂl) ~+ 2Ni—1yhp+uNi—1)hn+u+1
iEA,({w) u=2

+0,(1).

Proof. This is a simple consequence to the fact that we have at
most one jump in AXSZ or AX (fz _, asymptotically, together with
in Tin

the finiteness of jumps. O

Starting from Lemma 13 up to the end of the proof of Theorem 1,

in view of Lemma 16, we can use “i € A"”” in lieu of “i € A,”. We
have thus proved that Theorem 1 is robust to jumps.
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