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a b s t r a c t

When estimating high-frequency covariance (quadratic covariation) of two arbitrary assets observed
asynchronously, simple assumptions, such as independence, are usually imposed on the relationship
between the prices process and the observation times. In this paper, we introduce a general endogenous
two-dimensional nonparametric model. Because an observation is generated whenever an auxiliary
process called observation time process hits one of the two boundary processes, it is called the
hitting boundary process with time process (HBT) model. We establish a central limit theorem for the
Hayashi–Yoshida (HY) estimator under HBT in the case where the price process and the observation price
process follow a continuous Itô process. We obtain an asymptotic bias. We provide an estimator of the
latter as well as a bias-corrected HY estimator of the high-frequency covariance. In addition, we give a
consistent estimator of the associated standard error.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Covariation between two assets is a crucial quantity in finance.
Fundamental examples include optimal asset allocation and risk
management. In the past few years, using the increasing amount of
high-frequency data available, many papers have been published
about estimating this covariance. Suppose that the latent log-price
of two arbitrary assets Xt = (X (1)t , X (2)t ) follows a continuous Itô
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process

dX (1)t := µ
(1)
t dt + σ

(1)
t dW (1)

t , (1)

dX (2)t := µ
(2)
t dt + σ

(2)
t dW (2)

t , (2)

where µ(1)t , µ
(2)
t , σ

(1)
t , σ

(2)
t are random processes, and W (1)

t and
W (2)

t are standard Brownian motions, with (random) high-
frequency correlation d⟨W (1),W (2)

⟩t = ρtdt . Econometrics usu-
ally seeks to infer the integrated covariation

⟨X (1), X (2)⟩t =

 t

0
ρuσ

(1)
u σ (2)u du.

Earlier results were focused on estimating the integrated vari-
ance of a single asset, starting from the probabilistic point of view
(Genon-Catalot and Jacod, 1993; Jacod, 1994). Barndorff-Nielsen
and Shephard (2001, 2002) introduced the problem in economet-
rics. Adapted to two dimensions, if each process is observed simul-
taneously at (possibly random) times τ0,n := 0, τ1,n, . . . , τNn,n the
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realized covariation

X (1), X (2)


t is defined as the sum of cross log

returns
X (1), X (2)


t =


τi,n≤t

∆X (1)τi,n∆X (2)τi,n , (3)

where for any positive integer i,∆X (k)τi,n = X (k)τi,n −X (k)τi−1,n
corresponds

to the increment of the kth process between the last two sampling
times. As the observation intervals∆τi,n get closer (and thenumber

of observationsNn goes to infinity),

X (1), X (2)


t

P
→⟨X (1), X (2)⟩t (see

e.g. Theorem I.4.47 in Jacod and Shiryaev (2003)). Furthermore,
when the observation times τi,n are independent of the prices pro-
cess Xt , its estimation error follows a mixed normal distribution
(Jacod and Protter, 1998; Zhang, 2001; Mykland and Zhang, 2006).
This gives us insight on how to estimate the integrated covariation.
However, in practice, these two assumptions are usually not satis-
fied. The observation times of the two assets are rarely synchronous
and there is endogeneity in the price sampling times.

The first issue has been studied for a long time. The lack
of synchronicity often creates undesirable effects in inference. If
we sample at very high frequencies, we observe the Epps effect
(Epps, 1979), i.e. the correlation estimates are drastically decreased
compared to an estimate with sparse observations. Hayashi and
Yoshida (2005) introduced the so-calledHayashi–Yoshida estimator
(HY)

⟨ X (1), X (2)⟩HYt

=


τ
(1)
i,n ,τ

(2)
j,n <t

∆X (1)
τ
(1)
i,n
∆X (2)

τ
(2)
j,n

1
[τ
(1)
i−1,n,τ

(1)
i,n )∩[τ

(2)
j−1,n,τ

(2)
j,n )≠∅

, (4)

where τ (k)i,n are the observation times of the kth asset. Note that
if the observations of both processes occur simultaneously, (3)
and (4) are equal. The consistency of this estimator was achieved
in Hayashi and Yoshida (2005) and Hayashi and Kusuoka (2008).
The corresponding central limit theorems were investigated in
Hayashi and Yoshida (2008, 2011) under strong predictability
of observation times, which is a more restrictive assumption
than only assuming they are stopping times but still allows
some dependence between prices and observation times. Recently,
Koike (2014, 2015) extended the pre-averaged Hayashi–Yoshida
estimator first under predictability of observation times, and then
under a more general endogenous setting of stopping times. Other
examples of high-frequency covariance estimators can be found
in Zhang (2011), Barndorff-Nielsen et al. (2011), Aït-Sahalia et al.
(2010), Christensen et al. (2010, 2013).

In a general one-dimensional endogenous model, the asymp-
totic behavior of the realized volatility (3) has been investigated in
the case of sampling times given by hitting times on a grid (Fuka-
sawa, 2010a; Robert and Rosenbaum, 2011, 2012; Fukasawa and
Rosenbaum, 2012). Due to the regularity of those three models
(see the discussion in the latter paper), they do not obtain any
bias in the limit distribution of the normalized error. Also, the case
of strongly predictable stopping times is treated in Hayashi and
Yoshida (2011). Finally, two general results (Fukasawa, 2010b; Li
et al., 2014) showed that we can identify and estimate the asymp-
totic bias.

The primary goal of this paper is to bias-correct the HY. Note
that estimating the bias is more challenging than in the volatility
case because observations are asynchronous. In particular, the
estimator will involve a quantity that can be considered as the
tricity of Li et al. (2014), but with a more intricate definition
because of the asynchronicity in sampling times. This new
definition can be seen as an analogy with the generalization of the
RV estimator (3) by the HY estimator (4).

Another very important issue to address is the estimation of the
asymptotic standard deviation. First, because the model is more
general than in the no-endogeneity work, the theoretical asymp-
totic variance will be different. Consequently, a new variance es-
timator, which takes into proper account the endogeneity, will be
given.

The authors want to take no position on the joint distribution
of the log-return and the next observation time that corresponds
to an asset price change because they know that their unknown
relationship is most likely contributing to the bias and the
variance of the high-frequency covariance’s estimate when we
(wrongly) assume full independence between the price process
and observation times. For this purpose, they introduce the hitting
boundary process with time process (HBT) model.

Finally, techniques developed in the proofs are innovative
in the sense that they reduce the normalized error of the
Hayashi–Yoshida estimator to a discrete process, which is locally a
uniformly ergodic homogeneous Markov chain. Thus, the problem
can be solved locally, and because we assume that the volatility of
assets is continuous, the error of approximation between the local
Markov structure and the real structure of the normalized error
vanishes asymptotically. This technique is not problem-specific,
and it can very much be applied to other estimators dealing with
temporal data.

The paper is organized as follows. We introduce the HBTmodel
in Section 2. Examples covered by thismodel are given in Section 3.
The main theorem of this work, the limit distribution of the
normalized error is given in Section 4. Estimators of the asymptotic
bias and variance are provided in Section 5.We carry out numerical
simulations in Section 6 to corroborate the theory. Proofs are
developed in the Appendix.

2. Definition of the HBT model

We first introduce the model in 1-dimension. We assume that
for any positive integer i, τi+1 is the next arrival time (after τi)
that corresponds to an actual change of price. In particular, several
trades can occur at the same price Zτi between τi and τi+1, but no
trade can occur with a price different than Zτi before τi+1. We also
assume that Xt is the efficient (log) price of the security of interest.
In addition, we assume that the observations are noisy and that we
observe Zτi := Xτi + ϵτi where the microstructure noise ϵτi can be
expressed as a known function of the observed prices Z0, . . . , Zτi .
As an example, Robert and Rosenbaum (2012) showed in (2.3) in
p. 5 that themodelwith uncertainty zones can bewrittenwith that
noise structure if we assume that we know the friction parameter
η. Finally, we define α > 0 as the tick size, and we assume that
the observed price Zτi lays on the tick grid, i.e. there exist positive
integersmi such that Zτi := miα.

Empirically, no economical model based on rational behaviors
of agents on the stock markets, that shed light on the relationship
between the efficient return ∆Xτi and time before the next price
change∆τi = τi −τi−1, has won unanimous support. When arrival
times are independent of the asset price, it follows directly from
the continuous Itô-assumption that the dependence structure is
such that the return ∆Xτi is a function of ∆τi. The longer we wait,
the bigger the variance of the return is expected to be. In this
paper, we take the opposite point of view by building a model in
which τi is defined as a function of the efficient price path. For
that purpose, we define the observation time process X (t)t that will
drive the observation times. We also define the down process dt(s)
and the up process ut(s). Note that for any t ≥ 0, we assume
that dt and ut are functions on R+. We also assume that the down
process takes only negative values and that the up process takes
only positive values. A new observation time will be generated
whenever one of those two processes is hit by the increment of the
observation time process. Then, the increment of the observation
time process will start again from 0, and the next observation time
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Fig. 1. This is an illustration of the HBT model when starting at time τ0 = 0 and
with X0 = 100. The stochastic process in the middle represents Xt , the upper line
stands for 100 + ut (t) and the lower line for 100 + dt (t). Furthermore, we assume
that X (t)t = Xt . The second observation τ1 is obtained when Xt crosses the upper
line for the first time.

will be generated whenever it hits the up or the down process.
Fig. 1 illustrates the HBT model. Formally, we define τ0 := 0 and
for any positive integer i as

τi := inf

t > τi−1 : ∆X (t)

[τi−1,t]
∉

dt (t − τi−1) , ut (t − τi−1)


, (5)

where∆Y[a,b] := Yb −Ya. Note that if the observation time process
X (t)t is equal to the price process Xt itself, then the price will go
up (respectively go down) whenever it hits the up process (down
process). Note also that if the time process, the up process and the
down process are independent of the efficient price process, then
the arrival times are independent of the efficient price process.
We assume that the two-dimensional process (Xt , X

(t)
t ) is an Itô-

process. Section 3.1 provides examples of the literature identifying
the observation time process, the down process and the up
process.

Generalizing to two dimensions is straightforward. We define
X (t,k)t for k = 1, 2 to be the observation time process associated
with the kth price process, u(k)t the up process, d(k)t the down
process, and the arrival times τ (k)i generated by (5). We also define
the four dimensional process Yt := (X (1)t , X (2)t , X (t,1)t , X (t,2)t ), and
assume Yt follows an Itô-process with volatility

σt :=


σ

1,1
t σ

1,2
t σ

1,3
t σ

1,4
t

σ
2,1
t σ

2,2
t σ

2,3
t σ

2,4
t

σ
3,1
t σ

3,2
t σ

3,3
t σ

3,4
t

σ
4,1
t σ

4,2
t σ

4,3
t σ

4,4
t

 .
In particular, we have dYt = µtdt + σtdWt , where Wt is a four
dimensional standard Brownian motion (for i = 1, . . . , 4 and
j = 1, . . . , 4 such that i ≠ j, W (i)

t is independent of W (j)
t ). If

we set ζt = σtσ
T
t , then the integrated covariance (or quadratic

covariation) process is given by ⟨Y , Y ⟩t =
 t
0 ζsds. Let ρt be the

associated correlation process of Yt , i.e. for i = 1, . . . , 4 and j =

1, . . . , 4 we set ρ i,j
t = ζ

i,j
t (ζ

i,i
t )

−1. Finally, it is useful sometimes
to see Yt as a four dimensional vector expressed as in Eqs. (1) and
(2). For k = 1, . . . , 4 we define the volatility of the kth process as
σ
(k)
t := (ζ

k,k
t )

1
2 , we can thus express Y (k)t as

dY (k)t = µ
(k)
t dt + σ

(k)
t dB(k)t

where B(k)t is a standard Brownianmotion,which typically depends
on B(l)t for l = 1, . . . , 4.
3. Examples

We insist on the fact that estimators of covariance and
associated asymptotic variance given in this paper do not require
any knowledge of the structure of the observation timeprocess, the
up process and the down process. Nonetheless, for financial and
economic interpretation purposes, the reader might be interested
in getting an idea on how those processes behave in practice. We
provide in this section several examples from the literature as
well as possible extensions of the model with uncertainty zones
of Robert and Rosenbaum (2011) that can be expressed as HBT
models.

3.1. Endogenous models contained in the HBT class

Example 1 (Hitting Constant Boundaries). The simplest endoge-
nous semi-parametric model we can think of is a model where the
time process X (t)t is equal to the price process Xt , and times are gen-
erated by hitting a constant barrier. Formally, it means that there
exists a two-dimensional parameter (θu, θd) such that the up pro-
cess is equal to θu and the down process is equal to θd. We do not
assume noise in that model.

Example 2 (Hitting Constant Boundaries of the Tick Size). One issue
with Example 1 is that the efficient price Xτi , which is observed
because no microstructure noise is assumed in the model, is not
necessarily amodulo of the tick size α if θu and θd are notmultiples
of α. To make Example 1 feasible in practice, we assume here that
the constant barriers θu and θd are respectively equal to the tick
size α and its additive inverse −α. We also assume that Zτi := Xτi .

Example 3 (Hitting Constant Boundaries of the Jump Size). The issue
with Example 2 is that the absolute jump size of the observed price
Zτi is α. On the contrary, in practice the absolute jump size can
actually be bigger than the tick size α. In the notation of Robert
and Rosenbaum (2011), for any positive integer i, we introduce
discrete variables Li which correspond to the observed price jump’s
tick number between τi and τi+1, with Li ≥ 1. We assume that Li is
bounded. The arrival times are defined recursively as τ0 := 0 and
for any positive integer i as

τi := inf

t > τi−1 : Xt = Xτi−1 − Li−1α or Xt = Xτi−1 + Li−1α


.

We assume that Li are IID and independent of the other quantities.
We finally assume that Zτi := Xτi . The up and down processes are
piecewise constant in t and constant in s, defined for any s ≥ 0 as

dt(s) = −Li−1α for t ∈ (τi−1, τi]

ut(s) = Li−1α for t ∈ (τi−1, τi].

Example 4 (Model with Uncertainty Zones).We go one step further
than Example 3 and introduce now the model with uncertainty
zones of Robert and Rosenbaum (2011). In a frictionless market,
we can assume that a trade with change of price Zτi will occur
whenever the efficient price process crosses one of the mid-tick
values Zτi−1 +

α
2 or Zτi−1 −

α
2 . In that case, if the efficient price

process hits the former value, we would observe an increment of
the observed price Zτi = Zτi−1 + α and if it hits the former value,
we would observe a decrement Zτi = Zτi−1 − α. There are two
reasons why in practice such a frictionless model is too simplistic.
The first reason is that the absolute value of the increment (or
the decrement) of the observed price can be bigger than the tick
size α and was already pointed out in Example 3. We will thus
keep the notation Li in this example. The second reason is that
the frictions induce that the transaction will not exactly occur
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when the efficient process is equal to the mid-tick values. For
this purpose in the notation of Robert and Rosenbaum (2012), let
0 < η < 1 be a parameter that quantifies the aversion to price
changes of the market participants. If we let X (α)t be the value of
Xt rounded to the nearest multiple of α, the sampling times are
defined recursively as τ0 := 0 and for any positive integer i as

τi := inf

t > τi−1 : Xt = X (α)τi−1

− α

Li−1 −

1
2

+ η


or Xt = X (α)τi−1
+ α


Li−1 −

1
2

+ η


The observed price is equal to the rounded efficient price Zτi :=

X (α)τi
. The time process X (t)t is again equal to the price process Xt

itself in this model. The up and down processes are piecewise
constant in t and constant in s, defined for any s ≥ 0 as

dt(s) = −Li−1α1{Xτi−1<Xτi−2 } − (2η + Li−1 − 1) α1{Xτi−1>Xτi−2 }

for t ∈ (τi−1, τi]

ut(s) = Li−1α1{Xτi−1>Xτi−2 } + (2η + Li−1 − 1) α1{Xτi−1<Xτi−2 }

for t ∈ (τi−1, τi]

where 1A is the indicator function of A. Note that in the case where
η =

1
2 , we are back to Example 3.

Example 5 (TimesGenerated byHitting an Irregular GridModel).The
fourth model we are looking at is called times generated by hitting
an irregular grid model. We follow the notation of Fukasawa and
Rosenbaum (2012) and consider the irregular grid G = {pk}k∈Z,
with pk < pk+1. We set τ0 = 0 and for i ≥ 1

τi = inf

t > τi−1 : Xt ∈ G − {Xτi−1}


,

where G − {Xτi−1} is the set obtained by removing {Xτi−1} from G.
We can rewrite it as an element of the HBT model where the time
process is equal to the price process, and for all s ≥ 0 the up and
down processes are defined as

dt(s) = pk−1 − pk for t ∈ (τi−1, τi]

ut(s) = pk+1 − pk for t ∈ (τi−1, τi],

where k is the (random) index such that pk = Xτi−1 .

Example 6 (Structural Autoregressive Conditional Duration Model).
There have been several drafts for this model. We follow here
a former version (Renault et al., 2009), because we can directly
express it as an element of the HBT model.2 In the structural
autoregressive conditional duration model, the time τi when the
next event occurs is given by τ0 = 0 and for i > 0

τi = inf

t > τi−1 : At − Aτi−1 = d̃τi−1 or At − Aτi−1 = c̃τi−1


(6)

where At is a standard Brownian motion (not necessarily
independent of Xt ). Expressed as an element of the HBT model, we
have that the time process X (t)t is equal to the Brownian motion At
and for all s ≥ 0

dt(s) = d̃τi−1 for t ∈ (τi−1, τi]

ut(s) = c̃τi−1 for t ∈ (τi−1, τi].

2 Generating the sampling times (5) of the HBT model as a first hitting-time of
a unique barrier instead of the first hitting time of one of two barriers as in the
latter version of Renault et al. (2014) would not change much the proofs of this
paper, but we chose the two-boundaries setting because it seems more natural if
interpretation of time processes, up processes and down processes is needed.
3.2. Possible extensions of the model with uncertainty zones

The model with uncertainty zones of Robert and Rosenbaum
(2011) introduced in Example 4, which is semi-parametric,
assumes that the observed price is the efficient price rounded to
the nearest tick value Zτi = X (α)τi

and thus the noise is equal to ϵi :=

α( 12 − η) if the last trade increased the price and ϵi := −α( 12 − η)
if the last trade decreased the price. In particular, the noise is auto-
correlated and correlated to the efficient price. Because of this
specific noise distribution, it is directly possible to estimate the
underlying friction parameter η without any data pre-processing
such as preaveraging (see Robert and Rosenbaum (2012)). We
believe the model with uncertainty zones is a very interesting
starting point, because all the endogenous and noise structure
of the model is reduced to the estimation of the 1-dimensional
friction parameter η. Nevertheless, as this semi-parametric model
wants to be the simplest, it suffers from several issues. We will
investigate two of them in the following.

First, the model does not allow for asymmetric information
between the buyers and the sellers. Define η+ and η−, which are
respectively the aversion to a positive price change and a negative
price change. As a positive price changemeans that a buyer decided
to put an order at the best ask price and a negative price change
corresponds to a seller that puts an order at the best bid price (if we
assume that cancel and repost orders are not the reason why the
price changed), the difference η+

− η− can be seen as a measure
of information asymmetry. We define τ0 := 0 and recursively for i
any positive integer

τi := inf

t > τi−1 : Xt = X (α)τi−1

− α

Li −

1
2

+ η−


or Xt = X (α)τi−1

+ α

Li −

1
2

+ η+


.

Note that the HBT class contains this model and that it can be
directly fitted if we slightly modify η̂ in Robert and Rosenbaum
(2012) to estimate η+ and η−. One possible application would be
to build a test of asymmetric information η+

:= η−. This is beyond
the scope of this paper.

Oneother issue is that the authors donot do anymodel checking
in their work. According to their empirical work (see pp. 359–361
of Robert and Rosenbaum (2011)), the estimated values for η are
stable across days for the ten French assets tested. Stability of
η favors their model but by doing so, the model does not allow
any other structure than the full-endogeneity for the sampling
times. Even if the true structure of sampling times is (mostly)
independent of the asset price, we will still estimate an η that will
be stable across days. If we allow the time process to be different
from the price process itself, we can estimate the correlation ρ1,3

between them and see how endogenous the sampling times are
(the bigger

ρ1,3
 is, themore endogenous the sampling times are).

We would need to add more general microstructure noise in the
model, and thus this is left for further work.

4. Main result

4.1. Assumptions and theorem

Without loss of generality, we fix the horizon time T := 1, and
we consider [0, 1] to represent the course of an economic event,
such as a trading day. We first introduce the definition of stable
convergence, which is a little bit stronger than usual convergence
in distribution and needed for statistical purposes of inference,
such as the prediction value of the high-frequency covariance and
the construction of a confidence interval at a given confidence
level.
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Definition 1. We suppose that the random processes Yt , µt and
σt are adapted to a filtration (Ft). Let Zn be a sequence of F1-
measurable random variables. We say that Zn converges stably in
distribution to Z as n → ∞ if Z is measurable with respect to
an extension of F1 so that for all A ∈ F1 and for all bounded
continuous3 functions f , E [1Af (Zn)] → E [1Af (Z)] as n → ∞.

In the setting of Section 2, the target of inference, the integrated
covariation, can be written for all t ∈ [0, 1] as

⟨X (1), X (2)⟩t :=

 t

0
σ (1)s σ (2)s ρ1,2

s ds.

We are providing now the asymptotics. We want to make the
number of observations go to infinity asymptotically. The idea is
to scale and thus keep the structure that drives the next return
and the next observation time, while making the tick size vanish
(and thus the number of observations explode on [0, 1]). Formally,
we let the tick size α > 0 and we define the observation times
Tα :=


τ
(k)
i,α

k=1,2
i≥0 such that for k = 1, 2 we have τ (k)0,α := 0 and for i

any positive integer

τ
(k)
i,α := inf


t > τ

(k)
i−1,α : ∆X (t,k)t

∉

αd(k)t (t − τ

(k)
i−1,α), αu

(k)
t (t − τ

(k)
i−1,α)


.

We define the HY estimator when the tick size is equal to α as

⟨ X (1), X (2)⟩HYt,α

:=


0<τ (1)i,α ,τ

(2)
j,α <t

∆X (1)
τ
(1)
i,α
∆X (2)

τ
(2)
j,α

1
[τ
(1)
i−1,α ,τ

(1)
i,α )∩[τ

(2)
j−1,α ,τ

(2)
j,α )≠∅

. (7)

We now give the assumptions needed to prove the central limit
theorem of (7). We need to introduce some definitions for this
purpose. In view of the different models introduced in Section
3, there are three different possible assumptions regarding the
correlation between the timeprocessesX (t)t and theprice processes
Xt . The first possibility is that they can be equal for all 0 ≤

t ≤ T . In this case we define λmin
t as the smallest eigen-value

of (σ (i,j)t )
j=1,2
i=1,2. The second scenario is that for one k ∈ 1, 2 we

have X (k)t := X (t,k)t , but the other time process is different from its
associated price process. In that case, we define λmin

t the smallest
eigen-value of (σ (i,j)t )

j∈{1,2,3,4}−{k+2}
i∈{1,2,3,4}−{k+2}. The third possible setting is

that the time process is different from its associated asset price
for both assets, and we let λmin

t the smallest eigen-value of σt
in that case. Assumption (A1) provides conditions on the price
processes X (1)t and X (2)t , the time processes X (t,1)t and X (t,2)t as well
as their covariance matrix σt . There are two types of assumptions
in (A1). First, we want to get rid of the drift in the proofs, and
this will be done using condition (A1) together with the Girsanov
theorem and local arguments (see e.g. pp. 158–161 in Mykland
and Zhang (2012)). This is a very standard assumption in the
literature of financial econometrics. Furthermore, we assume that
the covariance matrix σt is continuous.

Assumption (A1). The drift µt , the volatility matrix σt and the
(four dimensional) Brownian motionWt are adapted to a filtration
(Ft). Also, µt is integrable and locally bounded. Furthermore, σt is
continuous. Finally, we assume that inft∈(0,1] λmin

t > 0 a.s.

3 Note that the continuity of f refers to continuity with respect to the Skorokhod
topology ofD[0, 1]. Nevertheless,we can also use continuity given by the sup-norm,
because all our limits are inC[0, 1]. One can look at Chapter VI of Jacod and Shiryaev
(2003) as a reference. For further definition of stable convergence, one can look
at Rényi (1963), Aldous and Eagleson (1978), Chapter 3 (p. 56) of Hall and Heyde
(1980), Rootzén (1980), and Section 2 (pp. 169–170) of Jacod and Protter (1998).
Remark 1 (Robustness to Jumps in Volatility). The proof techniques,
holding the volatility constant on small blocks, require the
‘‘continuity of volatility’’. This is the same strategy as in Mykland
and Zhang (2009) andMykland (2012) where the volatility process
follows a continuous Itô process. Nonetheless, following the same
line of reasoning as for the proof of Remark 6, we can add a finite
number of jumps in the volatility matrix. The proof of Theorem 1
will break in the case of infinite number of jumps in σt .

The following condition roughly assumes that both time
processes cannot be equal to each other, even on a very small
time interval. Specifically, we will assume that there is a constant
strictly smaller than 1 such that the module of the instantaneous
high-frequency correlation ρ3,4

t cannot be bigger than this constant.
In practice, Assumption (A2) is harmless.

Assumption (A2). For all t ∈ [0, 1] we have

ρ
3,4
t ∈ [ρ

3,4
− , ρ

3,4
+ ], (8)

where max(| ρ3,4
− |, | ρ

3,4
+ |) < 1.

The next assumption deals with the down process dt and the
up process ut . It is clear that dt and ut have to be known with
information at time t , which is why we assume that they are
adapted to (Ft). The rest of Assumption (A3) is very technical and
we only try to be as general as we can with respect to the proof
techniques we will use. The reader should understand Assump-
tion (A3) as ‘‘assume the worst dependence structure possible be-
tween the return ∆Xτi and the time increment ∆τi, knowing that
they follow the HBT model’’. We insist once again on the fact that
we only make the dependence structure as bad as we can in our
model so that we can investigate how biased the HY estimator can
be in practice, and howmuch the estimates of the variance assum-
ing no endogeneity are wrong.

Assumption (A3). For both assets k = 1, 2, define the couple of
the down process and the up process g(k)t := (d(k)t , u

(k)
t ) and let

gt := (g(1)t , g(2)t ). We assume that

g(k) : R+
→


R+

→ R−
× R+


t → g(k)t

is adapted to (Ft). Moreover, there exist two non-random
constants 0 < g− < g+ such that a.s. for any t ∈ [0, 1] and for
any s ≥ 0

g−
≤ min(−d(k)t (s), u

(k)
t (s)) ≤ max(−d(k)t (s), u

(k)
t (s)) ≤ g+. (9)

Furthermore, there exist non-random constants K > 0 and d >
1/2 such that a.s.

∀s ≥ K , gt (s) = gt (K) , (10)
∀t ≥ 0, gt is differentiable and ∀s ≥ 0,

max

|(d(k)t )

′(s)|, |(u(k)t )
′(s)|


≤ K , (11)

∀ (u, v) ∈ [0, 1]2 s.t. 0 < u < v,

∥gv − gu∥∞ ≤ K |v − u|d,
(12)

where ∥(f1, f2)∥∞ = supw≥0 max (|f1 (w) |, |f2 (w) |).

Remark 2. Consider the space C of constants defined in Assump-
tion (A3)

C :=


(g−, g+, K , d) s.t. 0 < g− < g+, K > 0, d >

1
2


.

For any c ∈ C, we define G(c) to be the functional subspace of
R+

→ (R+
→ R−

× R+)2 such that ∀g ∈ G, g satisfies (9),



Y. Potiron, P.A. Mykland / Journal of Econometrics 197 (2017) 20–41 25
(10), (11) and (12). When there is no room for confusion, we use
G. Assumption (A3) is equivalent to

∃c ∈ C s.t. ∀t ∈ [0, 1], gt ∈ G(c).

Remark 3. The advised reader will have noticed that Examples 3–
5 and Example 6,where timeprocesses are piecewise-constant and
maydepend on n, do not followAssumption (A3). The adaptation of
Theorem 1 proofs in those examples is discussed in Appendix A.5.
We have made the choice not to state more general conditions to
keep tractability of Assumption (A3).

The last assumption is only technical, and also appears in the
literature (Mykland and Zhang, 2012; Li et al., 2014).

Assumption (A4). The filtration (Ft) is generated by finitelymany
Brownian motions.

We can now state the main theorem.

Theorem 1. Assume (A1)–(A4). Then, there exist processes ABt and
AVt adapted to (Ft) such that stably in law as the tick size α → 0,

α−1

⟨ X (1), X (2)⟩HYt,α − ⟨X (1), X (2)⟩t


→ ABt +

 t

0
(AVs)

1/2 dZs,

(13)

where Zt is a Brownian motion independent of the underlying σ -field.
The asymptotic bias ABt and the asymptotic variance AVt are defined
in Section 4.3 and estimated in Section 5.

Remark 4 (Path-Bias). Note that the asymptotic bias term ABt on
the right-hand side of (13) does notmean that theHayashi–Yoshida
estimator is biased, but rather path-biased. The latter is a weaker
statement which means that once we have seen a path, there is a
bias for the HY estimator on this specific path of value ABt . In prac-
tice, we only get to see one path and thus bias and path-bias can
be confused easily. When doing simulations, we can observe many
paths and the reader should keep inmind that the path-biaswill be
different for each path. In addition, note that if we assume that σt
is bounded and bounded away from 0 on [0, T ], there is no bias in
Theorem 1 because E[ABt ] = 0.

Remark 5 (Convergence Rate). At first glance, the convergence rate
α−1 looks different from the optimal rate of convergence n1/2 we
obtain in the no-endogeneity case. This is merely a change of
perspective because we are looking from the tick size point-of-
view. Actually, if for k = 1, 2 we define N (k)t,α as the number of
observations before t of the kth asset and the sum of observations
of both processes N (S)t,α := N (1)t,α + N (2)t,α , we have that N (S)t,α is
exactly of order Op(α

−2). Thus, if we define the expected number
of observations n := E


N (S)t,α


, we obtain the optimal rate of

convergence n
1
2 in (13).

Remark 6 (Robustness to Jumps in Price Processes).We assume that
we add a jump component to the price process

dX (k)t = µ
(k)
t dt + σ

(k)
t dB(k)t + dJ (k)t (14)

for k = 1, 2, where Jt denotes a 2-dimensional finite activity
jump process and dJ (k)t is either zero (no jump) or a real number
indicating the size of the jump at time t . We follow exactly the
setting of p. 2 in Andersen et al. (2012). We assume that Jt is a
general Poisson process independent of the other quantities. Under
the same assumptions the conclusion of Theorem 1 remains valid.
The proof can be found in Appendix A.6. The infinitely many jumps
case is complex and beyond the scope of this paper. This was
already the case in the 1-dimensional case (see Remark 4 in p. 586
of Li et al. (2014)).

Remark 7 (Grid on the Original Non-Log Scale). Theorem 1 covers
the particular case where Xt corresponds to the log-price and
observations are obtained when the price on the original scale hits
a boundary. This can be done by a reparametrization of g(k)t by
˜̃g
(k)
t (s) := (− exp(−d(k)t ), exp(u

(k)
t )).

Remark 8 (Arbitrary Number of Assets). The authors chose for
simplicity to work only with two assets, but they conjecture that
this result would stay true for an arbitrary number of assets, and
that our proofswould adapt to show it, at the cost ofmore involved
notations and definitions.

4.2. Definition of the bias-corrected HY estimator

Assume that we have a consistent estimator4 ABt,α of the bias
ABt,α := αABt . Such estimator will be provided in Section 5.
We define the new estimator ⟨ X (1), X (2)⟩BCt,α of high-frequency
covariance as the estimate obtained when removing the bias
estimate ABt,α from the Hayashi–Yoshida estimator

⟨ X (1), X (2)⟩BCt,α := ⟨ X (1), X (2)⟩HYt,α − ABt,α. (15)

With the bias-corrected estimator ⟨ X (1), X (2)⟩BCt,α , we get rid of the
asymptotic bias and keep the same asymptotic variance as we can
see in the following corollary.

Corollary 2. Assume (A1)–(A4). Then, stably in law as α → 0,

α−1

⟨ X (1), X (2)⟩BCt,α − ⟨X (1), X (2)⟩t


→

 t

0
(AVs)

1/2 dZs. (16)

4.3. Computation of the theoretical asymptotic bias and asymptotic
variance

We warn the reader interested in implementing the bias-
corrected estimator that this section is highly technical and we
advise her to go directly to Section 5 and refer to this section
only for the definitions. On the contrary, if the reader wants to
understand the main ideas of the proofs, she should take this
section as a reference. We also want to emphasize on the fact that
the theoretical values of asymptotic bias and asymptotic variance
found at the end of this section are rather abstract and do not shed
easily light on how the change of parameters σt and gt in themodel
would influence the asymptotic bias and asymptotic variance. The
main purpose of this paper is that we do not need to know the
theoretical values in order to compute the estimators in Section 5.

We need to introduce some definitions in order to compute the
theoretical asymptotic bias ABt and the asymptotic variance term
AVt . We first need to rewrite the HY estimator (7) in a different
way. For any positive integer i, consider the ith sampling time of
the first asset τ (1)i−1,α .We define two random times, τ−

i−1,α and τ
+

i−1,α ,
which are functions of τ (1)i−1,α and all the observation times of the
second asset {τ

(2)
j,α }j≥0, and which correspond respectively to the

closest sampling time of the second asset that is strictly smaller

4 ABt,α is consistent means that α−1ABt,α = α−1ABt,α + op(1).
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than τ (1)i−1,α ,
5 and the closest sampling time of the second asset that

is (not necessarily strictly) bigger than τ (1)i−1,α as

τ−

0,α = 0, (17)

τ−

i−1,α = max{τ (2)j,α : τ
(2)
j,α < τ

(1)
i−1,α} for i ≥ 2, (18)

τ+

i−1,α = min{τ
(2)
j,α : τ

(2)
j,α ≥ τ

(1)
i−1,α} for i ≥ 1. (19)

We consider ∆X (2)
τ
−,+
i,α

the increment of the second asset between

τ−

i−1,α and τ+

i,α

∆X (2)
τ
−,+
i,α

:= ∆X (2)
[τ−

i−1,α ,τ
+

i,α ]
. (20)

Rearranging the terms in (7) gives us (except for a few terms at the
edge)

⟨ X (1), X (2)⟩t,α =


τ+

i,α<t

∆X (1)
τ
(1)
i,α
∆X (2)

τ
−,+
i,α
. (21)

The representation in (21) is very useful in the sense that it gives
a natural order between the terms in the sum. Nevertheless, any
term of this sum is a priori correlatedwith the other terms.Wewill
rearrange once again the terms in (21), so that each term is only
correlated with the previous and the next term of the sum. In this
case, we say that they are 1-correlated. For this purpose, we need to
introduce some notation. We remind the reader that Tα is the two-
dimensional vector of sampling times, where for each k = 1, 2
the kth component T (k)α is equal to the sequence of sampling times
associated with the kth asset. Wewill construct a subsequence T 1C

α

of T (1)α that also depends on the observation times of the second
asset T (2)α , and will be such that we can write the Hayashi–Yoshida
estimator as a 1-correlated sum similar to (21), except the new
sampling times τ 1Ci,α will replace the original observation times
τ
(1)
i,α . The new sampling times τ 1Ci,α are obtained using the following
algorithm. We define τ 1C0,α := τ

(1)
0,α , and recursively for i any

nonnegative integer

τ 1C
i+1,α := min


τ (1)u,α : there exists j ∈ N

such that τ 1C
i,α ≤ τ

(2)
j,α < τ (1)u,α


. (22)

In words, if we sit at the observation time τ 1Ci,α of the first asset, we
wait first to hit an observation time of the second asset, and we
then choose the next strictly bigger observation time of the first
asset. In analogy with (17)–(19) and (20), we define the following
times

τ
1C,−
0,α := 0, (23)

τ
1C,−
i−1,α := max{τ (2)j,α : τ

(2)
j,α < τ 1Ci−1,α} for i ≥ 2 (24)

τ
1C,+
i−1,α := min{τ

(2)
j,α : τ

(2)
j,α ≥ τ 1Ci−1,α} for i ≥ 1, (25)

∆X (2)
τ
1C,−,+
i,α

:= ∆X (2)
[τ

1C,−
i−1,α ,τ

1C,+
i,α ]

for i ≥ 1. (26)

First, observe that, except for maybe a few terms at the edge, we
can rewrite (21) as

⟨X (1), X (2)⟩t,α =


τ
1C,+
i,α <t

∆X (1)
τ1Ci,α
∆X (2)

τ
1C,−,+
i,α

. (27)

5 Connoisseurs will have noticed that τ−

i−1,α is not a Ft -stopping time, which will
not be a problem in the proofs.
Also, we define the following compensated increments of the HY
estimator

Ni,α = ∆X (1)
τ1Ci,α
∆X (2)

τ
1C,−,+
i,α

−

 τ1Ci,α

τ1Ci−1,α

ζ 1,2
s ds. (28)

Note that they are compensated in the sense that they are centered
(if we decompose ∆X (2)

τ
1C,−,+
i,α

into a left (−), a central and a right

(+) part and condition the expectation, this is straightforward to
show). Similarly, we can show that they are 1-correlated.

The idea of the proof is the following. If we consider the
volatility matrix σt and the grid function gt to be constant over
time, we can express the conditional returns of the normalized
error of HY as a homogeneousMarkov chain (of order 1), show that
the Markov chain is uniformly ergodic and thus use results in the
limit theory of Markov chains (see, e.g., Meyn and Tweedie (2009))
to show that it has a stationary distribution. Then, we prove that
we can approximate locally the returns of the normalized error
when the volatility matrix and grid function are not constant by
the returns when holding them constant on a small block. Finally,
using limit theory techniques developed in Mykland and Zhang
(2012) together with standard probability results of conditional
distribution (see, e.g., Breiman (1992)), we can bound uniformly
in time the error of the returns when holding the volatility matrix
and grid function constant.

Based on the definitions introduced in Appendix A.1, we can
define the instantaneous variance of the normalized HY estimate’s
error (29), which depends on the volatility matrix σ̃ and the grid
g̃ . Similarly, we also define the instantaneous covariance between
the normalized HY’s error and the first asset price (30), and the
instantaneous covariance between the error and the second asset
price (31). Finally, we define the instantaneous 1-correlated time,
which is the approximation of Eτ1Ci,n


∆τ 1Ci+2


, where if τ is a (Ft)-

stopping time, Eτ [Y ] is defined as the conditional distribution of Y
given Fτ .

ψAV (σ̃ , g̃, x, u) := E

Ñ2

2 + 2Ñ2Ñ3

, (29)

ψAC1(σ̃ , g̃, x, u) := E

Ñ2∆X̃ (1)

τ̃1C2


, (30)

ψAC2(σ̃ , g̃, x, u) := E

Ñ2∆X̃ (2)

τ̃
1C,−,+
2


, (31)

ψτ (σ̃ , g̃, x, u) := E

∆τ̃ 1C2


. (32)

Remark 9. The reader might expect Ñ1 in lieu of Ñ2 in (29)–(31)
and (32). Actually, we cannot use Ñ1 directly from the definition
because the corresponding time τ̃ 1C,−0 = 0. We would need to set
it to−u to alter the definition of (29)–(31) and (32), whichwe have
chosen not to do for the sake of clarity.

Set Z̃0 := (x, u) and for any positive integer i

Z̃i :=

∆X̃ (4)

[τ̃
1C,−
i ,τ̃1Ci ]

, τ̃ 1Ci − τ̃
1C,−
i


. (33)

For any nonnegative integer i, we consider π̃i(σ̃ , g̃, x, u) the
distribution of Z̃i. We also introduce the notationΠ(σ̃ , g̃, x, u) :=

{π̃i(σ̃ , g̃, x, u)}i≥0. By the strong Markov property of Brownian
motion, we can show that Z̃i is a homogeneous Markov chain (of
order 1) on the state space Sg̃ . In the following lemma, we show
that there exists a stationary distribution of π̃i(σ̃ , g̃, x, u).

Lemma 3. Let c := (g−, g+, K , d) be a four-dimensional vector such
that c ∈ C and consider σ̃ a constant volatility matrix such that
λ̃min > 0 and g̃ ∈ G(c) a constant grid. Then, there exists a stationary
distribution π̃(σ̃ , g̃).
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The proof of Lemma 3 can be found in the Appendix (proof of
Lemma 14). The next definition is the average (regarding the sta-
tionary distributions) of the instantaneous variance, covariances
and 1-correlated time. For any θ ∈ {AV, AC1, AC2, τ },

φθ

σ̃ , g̃


:=


R2
ψθ


σ̃ , g̃, y, v


dπ̃

σ̃ , g̃


(y, v) .

We introduce the notation φθs := φθ (σs, gs) and consider the
following quantities needed to compute the asymptotic bias and
variance.

k(1)s :=

σ (1)s

−2
φAC1
s


φτs
−1
, (34)

k1,⊥s :=

1 − (ρ1,2

s )2
−1

(σ (2)s )−2φAC2
s

− (σ (1)s σ (2)s )−1ρ1,2
s φAC1

s


φτs
−1
. (35)

We express now AVs the quantity integrated to obtain the
asymptotic variance.

AVs :=

φAV
s + 2


k(1)s (σ

(1)
s )−1σ (2)s ρ1,2

s φAC1
s

− (k(1)s + k1,⊥s )φAC2
s


φτs
−1

+

σ (1)s

2k(1)s

2
+

σ (2)s

21 − (ρ1,2
s )2


k1,⊥s

2
. (36)

The asymptotic bias is defined as ABt :=
 t
0 AB(1)s dX (1)s + t

0 AB(2)s dX (2)s where

AB(1)s := k(1)s − k1,⊥s ρ1,2
s σ (2)s


σ (1)s

−1
, (37)

AB(2)s := k1,⊥s . (38)

Remark 10 (Asymptotic Bias). Looking at the expressions for AB(1)s

and AB(2)s , one can be tempted to think that because of the

1 −

(ρ1,2
s )2

−1 term in k1,⊥s , the bias will increase drastically when
both assets are highly correlated. In this case, the reader should
keep in mind that the second term of AB(1)s , when integrated with
respect to X (1)s , and AB(2)s , when integrated with respect to X (2)s ,
will be roughly of the same magnitude, with opposite signs, and
thus there is no explosion of asymptotic bias. We chose the above
asymptotic bias’ representation because it is straightforward to
build estimators from it. We can also express the asymptotic bias
differently. For this purpose, we can rewrite the log-price process
as

dX (1)t = σ
(1)
t dB(1)t ,

dX (2)t = ρ
1,2
t σ

(2)
t dB(1)t +


1 − (ρ

1,2
t )2

1/2
σ
(2)
t dB1,⊥

t ,

where B(1)t and B1,⊥
t are independent Brownian motions. Let

dX1,⊥
t =


1 − (ρ

1,2
t )2

1/2
σ
(2)
t dB1,⊥

t (39)

be the part of X (2)t that is not correlated with X (1)t . We can express
the asymptotic bias as ABt =

 t
0 ÃB

(1)
s dX (1)s +

 t
0 ÃB

(2)
s dB1,⊥

s . In this

case, ÃB
(1)
s = k(1)s and

ÃB
(2)
s = lim

n→∞
⟨Mn, B1,⊥

⟩s

where Mn is defined in the proofs. We can show that this
limit exists, and does not explode when both assets are highly
correlated.

5. Estimation of the bias and variance

Weneed to introduce somenewnotations.We recall thatN (1)1,α is
the number of observations corresponding to the first asset before
1 and we also define N1C
1,α the number of 1-correlated observations

before 1, i.e. N1C
1,α := max{i ∈ N s.t. τ 1Ci,α < 1}. In practice, the first

step is to transform the returns of the first asset


(∆X (1)

τ
(1)
i,α
,∆τ

(1)
i,α )

N(1)1,α
i=1

into 1-correlated returns
(∆X1C

τ1Ci,α
,∆τ 1Ci,α )

N1C
1,α

i=1

using algorithm (22). Then, for each asset, we will chop the data
into Bn blocks and on each block i = 1, . . . , Bn we will estimateAV i,α , AB(1)i,α and AB(2)i,α , pretending that the volatility matrix σt and
grid gt are block-constant.

Because there is asynchronicity in the observation times, the
blocks of each asset are not exactly equal. Let hn be the block
size. For the first asset, we consider block 1(1) := [0, τ 1Chn,α], block
2(1) := [τ 1Chn,α, τ

1C
2hn,α], etc. For the second asset, we let block 1(2) :=

[τ
1C,+
0,α , τ

1C,+
hn,α ], block 2(2) := [τ

1C,+
hn,α , τ

1C,+
2hn,α], etc. In the following,

we will say j ∈ block i(1) when τ (1)j,α ∈ block i(1). Similarly, we say
j ∈ block i(2) when τ (2)j,n ∈ block i(2). Finally, we define j ∈ block i if
j ∈ {(i−1)hn +1, . . . , ihn}. First, we estimate the volatility of both
assets using the corrected estimator in Li et al. (2014). To do this,
we need to define an estimate of the spot volatility on each block
for each asset k = 1, 2 by

σ̃
(k)
i,α :=

 
j∈block i(k)

(∆X (k)
τ
(k)
j,α
)2
1/2

.

Then, we estimate the asymptotic bias of the volatility via

ABσ (k)i,α =
2

3(σ̃ (k)i,α )
2


j∈block i(1)

(∆X (k)
τ
(k)
j,α
)3.

Weobtain the bias-corrected estimators of volatility on each block:

σ̂
(k)
i,α = σ̃

(k)
i,α − ABσ (k)i,α .

Then, we estimate the correlation between both assets using the
naive HY estimator

ρ̂
1,2
i,α =

1

σ̂
(1)
i,α σ̂

(2)
i,α


j∈block i

∆X (1)
τ1Cj,α
∆X (2)

τ
1C,−,+
j,α

.

We then build an estimator of the compensated increments of the
HY estimator, following the definition in (28),

Ni,α = ∆X (1)
τ1Ci,α
∆X (2)

τ
1C,−,+
i,α

−∆τ 1Ci,α σ̂
(1)
i,α σ̂

(2)
i,α ρ̂

1,2
i,α .

The next step is to estimate the instantaneous variance (29), both
instantaneous covariances (30) and (31) and the instantaneous
1-correlated time (32) on each block. This is done by taking the
sample average of the corresponding estimated quantities. Note
that we do not directly estimate ψAV , ψAC1, ψAC2 and ψτ , but
rather a scaling version of them, i.e. α2

nψ
AV , αnψ

AC1, αnψ
AC2 and

αnψ
τ . In practice, we can always assume αn := 1 by scaling gt by

the tick size, and thus we match the definitions of the following
estimators with (29)–(32). For the sake of simplicity, we assume
that the number of 1-correlated observations of the last block Bn is
also hn. In practice, this will be most likely different from hn, and
thus the denominator of (40)–(43) will have to be changed so that
it is equal to the number of 1-correlated observations in this last
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block. The estimates are given by

φ̂AV
i,α := h−1

n


j∈block i

N̂2
j,α + 2N̂j,αN̂j+1,α, (40)

φ̂AC1
i,α := h−1

n


j∈block i

N̂j,α∆X (1)
τ1Cj,α
, (41)

φ̂AC2
i,α := h−1

n


j∈block i

N̂j,α∆X (2)
τ
1C,−,+
j,α

, (42)

φ̂τi,α := h−1
n


j∈block i

∆τ 1Cj,α . (43)

We estimate now the quantities (34) and (35) as

k̂(1)i,α :=

σ̂
(1)
i,α

−2
φ̂AC1
i,α


φ̂τi,α

−1
, (44)

k̂1,⊥i,α :=

1 − (ρ̂

1,2
i,α )

2−1
(σ̂

(2)
i,α )

−2φ̂AC2
i,α

− (σ̂
(1)
i,α σ̂

(2)
i,α )

−1ρ̂
1,2
i,α φ̂

AC1
i,α


φ̂τi,α

−1
. (45)

We follow (37) and (38) to estimate the bias integrated terms AB(1)s

and AB(2)s on each blockAB(1)i,α := k̂(1)i,α − k̂1,⊥i,α ρ̂
1,2
i,α σ̂

(2)
i,α


σ̂
(1)
i,α

−1
,AB(2)i,α := k̂1,⊥i,α .

For the variance term AVs, we decide not to use the direct definition
in (36) because it can provide negative estimates. Instead, we will
be using the following estimatorAV i,α :=

 
j∈block i

Nj,α

− k̂(1)i,α (X

(1)
τ1Cihn,α

− X (1)
τ1C
(i−1)hn,α

)

− k̂⊥

i,α


(X (2)
τ
1C,+
ihn,α

− X (2)
τ
1C,+
(i−1)hn,α

)− ρ̂
1,2
i,α σ̂

(2)
i,α (σ̂

(1)
i,α )

−1

(X (1)
τ1Cihn,α

− X (1)
τ1C
(i−1)hn,α

)
2
.

We define the final estimators of asymptotic bias and asymptotic
variance as

ABα :=

Bn
i=1

AB(1)i,α


X (1)
τ1Cihn,α

− X (1)
τ1C
(i−1)hn,α


+ AB(2)i,α


X (2)
τ
1C,+
ihn,α

− X (2)
τ
1C,+
(i−1)hn,α


,

(46)

AV α :=

Bn
i=1

AV i,α

τ 1Cihn,α − τ 1C(i−1)hn,α


. (47)

As a corollary of Theorem 1, we obtain the following result, which
states the consistency of (46) and (47).

Corollary 4. There exists a choice of the block size hn
6 such that when

α → 0, we have

α−1ABα P
→ AB1, (48)

α−2AV α P
→

 1

0
AVsds. (49)

In particular, in view of Corollary 2, the bias-corrected estimator
⟨ X (1), X (2)⟩BC1,α := ⟨ X (1), X (2)⟩HY1,α − ABα is such that

⟨ X (1), X (2)⟩BC1,α − ⟨X (1), X (2)⟩1AV 1/2
α

→ N (0, 1). (50)

6 The exact assumptions on hn can be found in the proofs of Theorem 1.
Remark 11 (Exchanging X (1)t and X (2)t ). When estimating the
asymptotic bias and the asymptotic variance, we considered one
specific asset to be X (1)t and the other one to be X (2)t . We could
exchange X (1)t and X (2)t , and find new estimators ÃBα and ÃV α
according to the previous definitions. One could then take ABα+ÃBt,α

2

(respectively AVα+ÃV t,α
2 ) as final estimators of asymptotic bias

(asymptotic variance).

Remark 12 (Optimal Block Size). In practice, the optimal block size
hn is not straightforward to choose. On the one hand, hn should be
as small as possible so that the volatility matrix σt and the grid
gt are almost constant on each block, and thus (40)–(43) are less
biased. On the other hand,we need asmany observations aswe can
on each block, so that the variance of approximations (40)–(43) is
not too big. We are facing here the usual bias–variance tradeoff.

6. Numerical simulations

We consider four different settings in this part. We describe
here the first one. We assume the same setting as the toy model
described in Example 1, in two dimensions. Thus, there exists a
four-dimensional parameter θ := (θ

(1)
u , θ

(1)
d , θ

(2)
u , θ

(2)
d ) such that

for any t ≥ 0 and any s ≥ 0, u(1)t (s) := θ
(1)
u , d(1)t (s) := θ

(1)
d ,

u(2)t (s) := θ
(2)
u and d(2)t (s) := θ

(2)
d . We assume that the two-

dimensional price process (X (1)t , X (2)t ) has a null-drift. Also, we as-

sume that the volatility of the first process is σ (1)t := ˜̃σ
(1)

where
˜̃σ
(1)

:= 0.016 and the volatility of the second process σ (2)t := ˜̃σ
(2)

where ˜̃σ
(2)

:= 0.02, and that the correlation between both assets
is ρ1,2

t := 0.2. We set θ :=

0.0007, 0.0001, 0.0006, 0.0001


. Ac-

cording to this rule, a change of price occurs whenever the price of
the first (respectively second) asset increases by 0.07% (0.06%) or
decreases by 0.01% (0.01%). Finally, we assume that the price pro-
cesses (X (1)t , X (2)t ) and the time processes (X (t,1)t , X (t,2)t ) are equal.

The second setting is similar to the first setting, except that we
assume now a stochastic volatility Heston model. Specifically, we
assume that

dX (k)t := µ(k)dt + σ
(k)
t dB(k)t ,

d(σ (k)t )2 := κ (k)

( ˜̃σ

(k)
)2 − (σ

(k)
t )2


dt + δ(k)σ

(k)
t d ˜̃B

(k)

t ,

where the constant high-frequency covariance between B(k)t and
˜̃B
(k)

t is fixed to ˜̃ρ
(k)

, and ( ˜̃B
(1)

t ,
˜̃B
(2)

t ) are uncorrelatedwith each other.
We choose to work with drift (µ(1), µ(2)) := (0.03, 0.02), and

to add leverage effect ( ˜̃ρ
(1)
, ˜̃ρ

(2)
) are selected to be (−0.8,−0.7).

Finally, (κ (1), κ (2)) := (4.5, 5.5), the volatility of volatility
(δ(1), δ(2)) := (0.4, 0.5), and the volatility starting values
(σ

(1)
0 , σ

(2)
0 ) := ( ˜̃σ

(1)
, ˜̃σ

(2)
).

We consider now the third setting, which goes one step further
than the previous setting. We assume a jump–diffusion model for
both the price and the volatility. Formally, we assume that

dX (k)t := µ(k)dt + σ
(k)
t dB(k)t + dJ (k)t ,

d(σ (k)t )2 := κ (k)

( ˜̃σ

(k)
)2 − (σ

(k)
t )2


dt + δ(k)σ

(k)
t d ˜̃B

(k)

t + dJ̃ (k)t ,

where the jumps (J (1)t , J (2)t , J̃ (1)t , J̃ (2)t ) follow a 4-dimensional Pois-
son process with intensity (λ(1), λ(2), λ̃(1), λ̃(2)) := (12, 11, 10, 9).
The jump sizes are taken to be 1 or −1 with probability 1

2 for price
processes, and 0.0001 or−0.0001with half-probability for volatil-
ity processes.
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Fig. 2. Histogram and Normal QQ-plot of the standardized estimates (50) in setting 1 on a 10-year period of observations.
Table 1
Summary statistics based on simulated endogenous data of 1, 5 and 10 years. The RMSE in the table corresponds to the
square root of the squared distance between the estimated value and the true value 6.4e−05. HY stands for the usual
Hayashi–Yoshida estimator (4), and BCHY represents the bias-corrected estimator (15).

No. years Estim Setting Sample Bias RMSE % Reduced RMSE

1 HY 1 5.41e−07 1.36e−05 –
1 BCHY 1 5.43e−07 1.19e−05 13%
5 HY 1 1.10e−07 1.42e−05 –
5 BCHY 1 1.07e−07 1.26e−05 11%

10 HY 1 5.54e−08 1.39e−05 –
10 BCHY 1 5.53e−08 1.20e−05 14%
1 HY 2 5.47e−07 1.66e−05 –
1 BCHY 2 5.44e−07 1.50e−05 9%
5 HY 2 1.13e−07 1.71e−05 –
5 BCHY 2 1.15e−07 1.58e−05 8%

10 HY 2 5.58e−08 1.70e−05 –
10 BCHY 2 5.60e−08 1.57e−05 8%
1 HY 3 5.61e−07 1.80e−05 –
1 BCHY 3 5.62–07 1.67e−05 7%
5 HY 3 1.14e−07 1.81e−05 –
5 BCHY 3 1.12e−07 1.68e−05 7%

10 HY 3 5.56e−08 1.80e−05 –
10 BCHY 3 5.55e−08 1.68e−05 7%
1 HY 4 4.41e−07 1.10e−05 –
1 BCHY 4 4.44e−07 1.11e−05 − 1%
5 HY 4 8.81e−08 1.10e−05 –
5 BCHY 4 8.80e−08 1.09e−05 1%

10 HY 4 4.39e−08 1.08e−05 –
10 BCHY 4 4.43e−08 1.08e−05 0%
In the fourth setting, we consider another model of arrival
times, namely Example 4. We set the tick size α = 0.0001 and
the friction parameter η = 0.15. Price and volatility processes are
assumed to follow the same model as in the second setting.

We simulate price processes and observation times for 10 years
of 252 business days. We choose hn = n

1
2 for Settings 2–4. We

provide in Table 1 a summary of the comparison results between
HY and the bias-corrected HY. As expected from the theory, the
RMSE is improved when using the bias-corrected estimator in
Example 1. In Example 4, the bias-corrected HY does not seem to
perform better than HY. We conjecture that there is no asymptotic
bias in Example 4, and that this is the reasonwhywedonot observe
any difference between the two estimators in that simple model.
In addition, the sample bias is almost the samewhen using HY and
the bias-corrected estimator for the four different settings,which is
also expected from Remark 4. Furthermore, this sample bias tends
to 0,which comes from the fact that both estimators are consistent.
Finally, the standardized feasible statistic (50) in the first setting is
reported in Table 2 and plotted in Fig. 2.
Table 2
In this table, we report the finite sample quartiles of the feasible standardized
statistic (50) in setting 1. The benchmark quartiles are those for the limit
distribution N (0, 1).

No. years 0.5% 2.5% 5% 95% 97.5% 99.5%

1 −2.48 −1.99 −1.59 1.66 2.13 2.57
5 −2.60 −1.96 −1.64 1.64 2.05 2.62

10 −2.68 −1.98 −1.60 1.65 2.01 2.73

7. Conclusion

We have introduced in this paper the HBT model, and we have
shown that it ismore general than some of the endogenousmodels
of the literature. This model can be extended to a model including
more general noise structure in observations, and even noise in
sampling times. This is investigated in Potiron (2016).

Under this model, we have proved the central limit theorem
of the Hayashi–Yoshida estimator. Our main theorem states
that there is an asymptotic bias. Accordingly, we built a bias-
corrected HY estimator. We also computed the theoretical
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standard deviation, and we provided consistent estimates of it.
Numerical simulations corroborate the theory.

The techniques used for the proof of the main theorem could
be applied to more general models and to other problems such
as the estimation of the integrated variance of noise, integrated
betas, etc. In particular, independence between the efficient price
process and the noise is not needed in themodel. As long as we can
approximate the joint distribution of the noise and the returns by
a Markov chain, ideas of our proof can be used.

Appendix

A.1. Definition of some quantities of approximation

We define in this section some quantities assuming the
volatility matrix σt and the grid function gt are constant. For
that purpose, let W̃t be a four dimensional Wiener process, c :=

(g−, g+, K , d) a four-dimensional vector such that c ∈ C and σ̃ a
constant volatility matrix such that the associated λ̃min, which is
the analog of λmin

t defined in Section 4.1 when we replace σt by
σ̃ , is strictly bigger than 0 and g̃ ∈ G(c) a constant grid function.
In analogy with the definition of the grid function gt in (A3), we
assume that g̃ can bewritten in terms of the down and up functions
of both assets, i.e. g̃ := (g̃(1), g̃(2))where for each k = 1, 2we have
g̃(k) := (d̃(k), ũ(k)). Also,we introduceSg̃ the subspace ofR2 defined
as

Sg̃ := {(y, v) ∈ R × R+ s.t. d̃(2)(v) ≤ y ≤ ũ(2)(v)}.

If we set X̃ = σ̃ W̃ and the corresponding sampling times of both
assets T̃ := (T̃ (1), T̃ (2)), where for k = 1, 2 we have T̃ (k) := {τ̃i}i≥0,
we define the observation times of the first asset as τ̃ (1)0 := 0 and
recursively for i any positive integer

τ̃
(1)
i := inf


t > τ̃

(1)
i−1 : ∆X̃ (3)t ∉ [d̃(1)(t − τ̃

(1)
i−1), ũ

(1)(t − τ̃
(1)
i−1)]


.

These stopping times will be seen as approximations of the
observation times of the first asset when we hold the volatility
matrix σt and the grid gt constant. We will always start our
approximation at a 1-correlated observation time τ 1Ci,n , which
corresponds to an observation time of the first asset. As the
sampling times of the second asset are not synchronized with the
ones from the first asset, we need two more quantities (x, u) ∈ Sg̃
to approximate the observation times of the second asset. They
correspond respectively to the increment of the second asset’s
time process X (t,2)t since the last observation of the second asset
occurred and the time elapsed since the last observation time of
the second asset. We define τ̃ (2)0 := 0,

τ̃
(2)
1 := inf


t > 0 : x +∆X̃ (4)t ∉ [d̃2(t + u), ũ2(t + u)]


,

and for any integer i ≥ 2

τ̃
(2)
i := inf


t > τ̃

(2)
i−1 : ∆X̃ (4)t ∉ [d̃2(t − τ̃

(2)
i−1), ũ2(t − τ̃

(2)
i−1)]


.

Similarly, we define the analogs of (17)–(18), (19), (20), (22),
(23)–(24), (25), (26) and (28) respectively as τ̃−

i−1, τ̃
+

i−1, ∆X̃ (2)
τ̃
−,+
i

,

τ̃
1C,−
i−1 , τ̃ 1C,+i−1 , ∆X̃ (2)

τ̃
1C,−,+
i

and Ñi by putting tildes on the quantities

in the definitions.

A.2. Preliminary lemmas

Without loss of generality, we choose to work under the third
scenario defined in Section 4.1, i.e. the asset price is different from
the time process for both assets. Because we shall prove stable
convergence, and because of the local boundedness of σ (because
by (A1) σ is continuous), and that inft∈(0,1] λmin
t > 0 we can

without loss of generality assume that for all t ∈ [0, 1] there exist
some nonrandom constants σ− and σ+ such that for any eigen-
value λt of σt we have

0 < σ− < λt < σ+, (51)

by using a standard localization argument such that the one used
in Section 2.4.5 of Mykland and Zhang (2012). One can further
suppressµ as in Section 2.2 (pp. 1407–1409) ofMykland andZhang
(2009), and act as if X is a martingale.

We define the subspace M of matrices of dimension 4× 4 such
that ∀M ∈ M, for any eigen-value λM ofM , we have

σ− < λM < σ+ (52)

and (MMT )
3,4

(MMT )
4,4 ∈ [ρ

3,4
− , ρ

3,4
+ ]. By (8) of (A2) and (51), we will assume

in the following that ∀t ∈ [0, 1], σt ∈ M.
We define σ p the process (of dimension 4× 4) on R+ such that
σ

p
t = σt ∀t ∈ [0, 1],
σ

p
t = σ1 ∀t ∈ [1,∞).

Define now Xp the process such that for all t ≥ 0
dXp

t = σ
p
t dWt ,

Xp
0 = X0.

Because Xp and X have the same initial value and follow the same
stochastic differential equation on [0, 1], they are equal for all
t ∈ [0, 1]. For simplicity, we keep from now on the notation X
for Xp.

In the following, C will be defining a constant which does not
depend on i or n, but that can vary from a line to another. Also, we
are going to use the notation τ θi,n as a substitute of τ

θ
i,αn , where θ can

take various names, such that (1), (2) and so on. Let h : N → N a
(not strictly) increasing non-random sequence such that

hn → +∞, (53)
hnαn → 0. (54)

To keep notation as simple as possible, we define τ hi,n := τ 1Cihn,n,
τ
h,−
i,n := τ

1C,−
ihn,n , τ

h,+
i,n := τ

1C,+
ihn,n . We also let An := {i ≥ 1 s.t. τ hi−1,n ≤

t}, where t ∈ [0, 1]. Also, we recall the notation (X (3)t , X (4)t ) :=

(X (t,1)t , X (t,2)t ) Finally, for θ ∈ {(1), (2), 1C, h}, we define sθn =

supτ θi,n<T ∆τ
θ
i,n. We show that these quantities tend to 0 almost

surely in the following lemma.

Lemma 5. We have sθn
a.s.
→ 0.

Proof. We can follow the proof of Lemma 4.5 in Robert and
Rosenbaum (2012) to prove that for k ∈ {1, 2}, s(k)n

a.s.
→ 0. Then, we

can notice that a.s. s1Cn < s(1)n +s(2)n to deduce that s1Cn
a.s.
→ 0. To show

that shn → 0, define the process Z such that Z0 = 0 and ∀i > 0 we
have

Zt :=


∆X (2)

[τ1Ci−1,n,t]
+ Zτ1Ci−1,n

∀t ∈ [τ 1Ci−1,n, τ
1C,+
i−1,n],

∆X (1)
[τ

1C,+
i−1,n,t]

+ Z
τ
1C,+
i−1,n

∀t ∈ [τ
1C,+
i−1,n, τ

1C
i,n ].

Substituting X in Lemma 4.5 of Robert and Rosenbaum’s proof by
our Z , we can follow the same reasoning. The only main change
will be that in their notation Mn ≤ Chnαn, but this tends to 0 by
(54). �

Let f be a random process, s a random number, we define

S (f , s) := sup
0≤u,v≤1,|u−v|≤s

fu − fv
.



Y. Potiron, P.A. Mykland / Journal of Econometrics 197 (2017) 20–41 31
Lemma 6. Let f be a bounded random process such that for all non-
random sequences (qn)n≥0, if qn → 0, then S (f , qn)

P
→ 0. Let also a

random sequence (sn)n≥0 such that sn
P

→ 0. Thenwe have ∀l ≥ 1 that

S (f , sn)
Ll
→ 0.

Proof. As f is bounded, convergence in P implies convergence in
Ll for any l ≥ 1. Hence it is sufficient to show that S (f , sn)

P
→ 0. Let

η > 0 and ϵ > 0, we want to show that ∃N > 0 such that ∀n ≥ N ,
we have

P (S (f , sn) > η) < ϵ.

∃ non-random χ > 0 such that P (S (f , χ) > η) < ϵ
2 . Also, ∃N > 0

such that ∀n ≥ N , P (sn ≥ χ) < ϵ
2 . Thus

P (S (f , sn) > η) = P (S (f , sn) > η, sn > χ)

+ P (S (f , sn) > η, sn ≤ χ)

≤ P (sn > χ)+ P (S (f , χ) > η) < ϵ. �

We aim to define the approximations of observation times on
blocks
Ki,n := [τ hi,n, τ

h
i+1,n]


i≥0 .

We need some definitions first. Let (C (i)t )i≥0 be a sequence of
independent 4-dimensional Brownian motions (i.e. for each i, C (i)t
is a 4-dimensional Brownian motion), independent of everything
we have defined so far. We define ∀i, n ≥ 0,

S i,nt :=

 ∆W
[τhi,n,τ

h
i,n+.]

∀t ∈ [0,∆τ hi+1,n],

∆W
[τhi,n,τ

h
i+1,n]

+ C (i)
t−∆τhi+1,n

∀t ≥ ∆τ hi+1,n,

and
τ̃ ki,j,n


j≥0;k=1,2

= T̃

S i,n, στhi,n , αngτhi,n ,∆X (4)

[τ
h,−
i,n ,τhi,n]

, τ hi,n − τ
h,−
i,n


.

To keep symmetry in notations, we define for all integers i and
n positive integers,


τ
(1)
i,j,n


j≥0

consisting of the observation times

of the process 1 after τ hi,n, subtracting the value of τ hi,n, i.e. τ
(1)
i,j,n =

τ
(1)
i∗+j,n − τ

(1)
i∗,n where i∗ is the (random) index on the original grid

of process 1 corresponding to τ hi,n (τ (1)i∗,n = τ hi,n). For process 2,
we define τ (2)i,0,n = 0 and for integers j ≥ 1, τ (2)i,j,n = τ

(2)
j∗+j−1,n −

τ
(1)
i∗,n, where j∗ is the index on the original grid of process 2
corresponding to the smallest observation time of process 2 bigger
(not necessarily strictly) than τ hi,n. We also define τ−

i,j,n, τ
+

i,j,n, τ
1C
i,j,n,

τ
1C,−
i,j,n , τ 1C,+i,j,n , τ̃−

i,j,n, τ̃
+

i,j,n, τ̃
1C
i,j,n, τ̃

1C,−
i,j,n , τ̃ 1C,+i,j,n following the construction

we used to define (17)–(19), (22)–(24) and (25). We also set
π̃i,j,n


j≥0 = Π


S i,n, στhi,n , αngτhi,n ,∆X (4)

[τ
h,−
i,n ,τhi,n]

, τ hi,n − τ
h,−
i,n


.

Lemma 7. For θ ∈ {(1), (2), 1C}, any real l > 0, any positive integer
i and n, any non-negative integer j, we have 0 < C−

l < C+

l such that

C−

l α
2l
n < E


∆τ̃ θi,j,n

l
≤ C+

l α
2l
n , (55)

where∆τ̃ θi,j,n := τ̃ θi,j,n − τ̃ θi,j−1,n and

C−

l α
2l
n < E


∆τ

(k)
i,n

l
≤ C+

l α
2l
n . (56)

Proof. For θ ∈ {(1), (2)}, because of (51), we can deduce (55)
using well-known result on exit zone of a Brownian motion (see
for instance Borodin and Salminen (2002)). (56) can be deduced
using Dubins–Schwarz theorem for continuous local martingale
(see, e.g. Th. V .1.6 in Revuz and Yor (1999)). If θ = 1C writing
∆τ̃ θi,j,n =


τ̃
θ,+
i,j−1,n − τ̃ θi,j−1,n


+


τ̃
θ,+
i,j,n − τ̃

θ,+
i,j−1,n


andworking those

two terms, we can obtain (55) and (56). �

Now, we define for θ ∈ {(1), (2), 1C, h} the number of
observation times before t as
Nθt,n = sup{i : τ θi,n < t}.
We have the following lemma.

Lemma 8. For θ ∈ {(1), (2), 1C}, we have that the sequence
α2
nN

θ
t,n


n≥1 is tight.

Proof. Here for θ ∈ {(1), (2)} we can follow the proof of
Lemma 4.6 in Robert and Rosenbaum (2012) together with
Lemma 5. Also, by definition we have N1C

t,n ≤ N (1)t,n so we also de-
duce the tightness of


α2
nN

1C
t,n


n≥1. �

Lemma 9. Let

Ui,n


i,n≥1 be an array of positive random variables

and θ ∈ {(1), (2), 1C}. If

∀u > 0,
xuα−2

n y
i=1

Ui,n
P

→ 0 (57)

then
Nθt,n

i=1 Ui,n
P

→ 0. Also, if ∀u > 0,
xuα−2

n h(n)−1y

i=1 Ui,n
P

→ 0, thenNh
t,n

i=1 Ui,n
P

→ 0.

Proof. Let ϵ > 0 and u > 0.

P

Nθt,n
i=1

Ui,n > ϵ

 = P
xuα−2

n y
i=1

Ui,n +

Nθt,n
i=xuα−2

n y+1

Ui,n1{xuα−2
n y<Nθt,n}

−

xuα−2
n y

i=Nθt,n+1

Ui,n1{xuα−2
n y>Nθt,n}

> ϵ



≤ P

xuα−2
n y

i=1

Ui,n +

Nθt,n
i=xuα−2

n y+1

Ui,n1{xuα−2
n y<Nθt,n}

> ϵ


≤ P

xuα−2
n y

i=1

Ui,n >
ϵ

2

+ P

 Nθt,n
i=xuα−2

n y+1

Ui,n1{xuα−2
n y<Nθt,n}

>
ϵ

2


≤ P

xuα−2
n y

i=1

Ui,n >
ϵ

2

+ P

xuα−2

n y < Nθt,n

.

We take the lim supn→∞ and use (57). We obtain

lim sup
n→∞

P

Nθt,n
i=1

Ui,n > ϵ

 ≤ lim sup
n→∞

P

xuα−2

n y < Nθt,n

.

We now tend u → ∞ and conclude using Lemma 8. The second
statement is proved in the same way. �

Lemma 10. For any α > 0, σ ∈ M, g ∈ G, (x, u) ∈ Sg , we have
that

ψAV (σ , g, x, u) = α−4ψAV σ , αg, αx, α2u

,

ψAC1 (σ , g, x, u) = α−3ψAC1 σ , αg, αx, α2u

,

ψAC2 (σ , g, x, u) = α−3ψAC2 σ , αg, αx, α2u

,

ψτ (σ , g, x, u) = α−2ψτ

σ , αg, αx, α2u


.
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Proof. For any Brownian motion (Wt)t≥0, by the scale property

we have that (Wt)t≥0
L
=

α−1Wα2t


t≥0. Thus, if we define τ =

inf{t > 0 s.t.Wt ∉ [d(t), u(t)]} and τα = inf{t > 0 s.t.Wt ∉

[αd(t), αu(t)]}, we have that

τ
L
= inf{t > 0 s.t.Wα2t ∉ [αd(t), αu(t)]} L

=α−2τα.

We deduce that

(τ ,Wτ )
L
=

α−2τα,Wα−2τα

 L
=

α−2τα, αWτα


. (58)

We can prove the lemma based on the way we proved (58), at
the cost of 2-dimension definitions that would be more involved
and straightforward applications of Strong Markov property of
Brownian motions that we will not write, so that we do not lose
ourselves in the technicality of this proof. �

We introduce the number of points in the ith block in the kth
process as the following

N (k)i,n = max{j ≥ 0 s.t. τ hi,n + τ
(k)
i,j,n ≤ τ hi+1,n}.

We also introduce the total number of points in the ith blockNi,n =

N (1)i,n + N (2)i,n . We show now that we can control uniformly the error
of the approximations of the observation times.

Lemma 11. Let l ≥ 1, we have that

sup
i≥0,2≤j≤hn

E
∆τ 1Ci,j,n −∆τ̃ 1Ci,j,n

l = op

α2l
n


(59)

and

sup
i≥0,2≤j≤hn

E
∆τ 1C,−,+i,j,n −∆τ̃

1C,−,+
i,j,n

l = op

α2l
n


. (60)

Proof. We introduce the notation oUp where U stands for
‘‘uniformly in i ≥ 0’’, meaning that the sup of the rests is of the
given order

First step: We define s̃hn = supi∈An τ̃
1C
i,hn,n. We show in this step

that

s̃hn
P

→ 0. (61)

We define the accumulated time of approximated durations, i.e.

τ̃ hi,n =

l=i
l=0

τ̃ 1Cl,hn,n.

Using Lemma 7 together with Lemma 8, ∃M > 0 such that

P

τ̃ h
Nh
n ,n

≤ M


→ 1.

We define Zn
0 = 0 and ∀t ∈ [τ̃ hi−1,n, τ̃

h
i,n],

Zn
t = Zn

τ̃hi−1,n
+ S i−1,n

t−τ̃hi−1,n
.

A slight modification of the proof of Lemma 5 will conclude.
Second step: We show that we can do a localization in the

number of observations in the ith block, i.e. there exists a non-
randomMn such that

P

max


N (1)i,n ,N

(2)
i,n


> Mn


(62)

converges uniformly (in i) towards 0 and Mn increasing at most
linearly with hn, i.e. we haveMn ≤ βhn where β > 0.

To prove (62), we need some definitions. Define for i ≥ 0 the
order of observation timesOi,k,n and the order of the approximated
observation times Õi,k,n in the following way. Let TO

i,n :=

τOi,j,n


j≥0
be the sorted set of all observation times (corresponding to
processes 1 and 2) strictly greater than τ hi,n. Then for j ≥ 1, we will
set Oi,j,n = 1 if the jth observation time in TO

i,n corresponds to an
observation of the first process andOi,j,n = 2 if it corresponds to an
observation of the second process. Similarly, we set T̃O

i,n the sorted

set of all approximated times

τ̃
(k)
i,j,n


j≥0,k=1,2

. Õi,j,n are defined in

the same way. There exists a p > 0 such that for all integers i, j, n:

P

Oi,j+1,n = 1

Oi,j,n = 2


≥ p and P

Oi,j+1,n = 2

Oi,j,n = 1


≥ p. (63)

Indeed, let l be the (random) index such that τ (1)i,l,n = τOi,j,n.

Conditionally on

Oi,j,n = 1


, we know that Oi,j+1,n = 2 if

∆X (4)
[τhi,n+τ

l
i,j,n,.]

crosses g+ or −g+ before∆X (3)
[τhi,n+τ

O
i,j,n,.]

crosses g− or

−g−. Using (8) of (A2) and (51), we can easily bound away from
0 this probability, thus we deduce (63). Now, using (22) together
with (63) and strong Markov property of Brownian motions, we
deduce (62).

Third step: let g = (d, u) such that (g, g) ∈ G, σ ∈ [σ−, σ+
]

and ϵ ≤
g−

2 . We define τ (g, σ , ϵ) = inf{t > 0 : σWt =

u(t) + ϵ or σWt = d(t) − ϵ}, where Wt is a standard Brownian
motion. We show that

E
τ (g, σ , ϵ)− τ (g, σ , 0)

l ≤ γ (l) (ϵ) (64)

where γ (l) (ϵ)
ϵ→0
→ 0.

In order to show (64), let

τ 1 (g, σ , ϵ) = inf{t > 0 : σWt+τ(g,σ ,0)

= min

u(τ (g, σ , 0))+ Kt + ϵ, g+


or σWt+τ(g,σ ,0) = max


d(τ (g, σ , 0))− Kt − ϵ, g−


}.

By (9) and (11) of (A3), we have τ (g, σ , ϵ) − τ (g, σ , 0) ≤

τ 1 (g, σ , ϵ). Conditionally on

τ (g, σ , ϵ)


, using strong Markov

property of Brownian motions, we can show that Eτ(g,σ ,ϵ)τ 1 (g, σ , ϵ)l ϵ→0
→ 0 using Theorem 2 in Pötzelberger and Wang

(2001) for instance.
Fourth step: Let k ∈ {1, 2}. We show here that


j≤Mn

E
τ (k)i,j,n − τ̃

(k)
i,j,n

l = oUp

α2l
n


. (65)

The idea is to show that by recurrence in j, E
τ (k)i,j,n − τ̃

(k)
i,j,n

l can

be arbitrarily small when n grows. It is then a straightforward
analysis exercise to use the localization in second step and choose
a different sequence h if necessary, that will still be non-random
increasing and following (53) and (54), so that the sum in (65) will
be also arbitrarily small. Let us start with j = 1 and k = 1.

E
τ (k)i,1,n − τ̃

(k)
i,1,n

l = E
τ (k)i,1,n − τ̃

(k)
i,1,n

l1Ei,n


+ E

τ (k)i,1,n − τ̃
(k)
i,1,n

l1ECi,n


,
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where Ei,n = E(1)i,n ∩ E(2)i,n with

E(1)i,n =


sup

s∈[τhi,n,τ
h
i,n+τ

(1)
i,1,n∨τ̃

(1)
i,1,n]

∆X (1)
[τhi,n,s]

−∆X̃ (1)
[τhi,n,s]

 < η1,n


,

E(2)i,n =


sup

s∈[τhi,n,τ
h
i,n+τ

(1)
i,1,n∨τ̃

(1)
i,1,n]

g(1)s − g(1)
τhi,n


∞
< η1,n


,

η1,n = qnαn, qn = max

α

d−1/2
n , z1/2n


and zn = sup1≤u,v≤4

E


S

σ u,v, shn ∨ s̃hn

21/2
. By (58) and (64),

E
τ (k)i,1,n − τ̃

(k)
i,1,n

l1Ei,n


≤ Cα2l

n


γ (l) (2qn)+ γ (l) (−2qn)


.

Using Cauchy–Schwarz inequality and Lemma 7,

E
τ (k)i,1,n − τ̃

(k)
i,1,n

l1ECi,n


≤ Cα2l

n P

EC
i,n

1/2
≤ Cα2l

n


P


E(1)i,n

C
+ P


E(2)i,n

C1/2

.

On the one hand,

P


E(1)i,n

C

≤

η1,n

−1 E

 sup
s∈[τhi,n,τ

h
i,n+τ

(1)
i,1,n∨τ̃

(1)
i,1,n]

∆X (1)
[τhi,n,s]

−∆X̃ (1)
[τhi,n,s]




≤ C

η1,n

−1 max
1≤u,v≤4

E

 τhi,n+τ
(1)
i,1,n∨τ̃

(1)
i,1,n

τhi,n


σ u,v
s − σ

u,v
τhi,n

2

ds

1/2
≤ C


η1,n

−1 max
1≤u,v≤4

E


τ
(1)
i,1,n ∨ τ̃

(1)
i,1,n


S

σ u,v, shn ∨ s̃hn

21/2
≤ C


η1,n

−1


E

τ
(1)
i,1,n ∨ τ̃

(1)
i,1,n

1/2
zn

≤ Cz1/2n

where we used Markov inequality in the first inequality, con-
ditional Burkholder–Davis–Gundy inequality in the second in-
equality, Cauchy–Schwarz inequality in the fourth inequality, and
Lemma 7 in the last inequality. On the other hand,

P


E(2)i,n

C
≤

η1,n

−1 E

 sup
s∈[τhi,n,τ

h
i,n+τ

(1)
i,1,n∨τ̃

(1)
i,1,n]

g(1)s − g(1)
τhi,n


∞


≤ C


η1,n

−1 E

τ
(1)
i,1,n ∨ τ̃

(1)
i,1,n

d
≤ Cαd−1/2

n

where we used Markov inequality in the first inequality, (12) of
(A3) in the second inequality, and Lemma 7 in the last inequality.
In summary, we have

E
τ (k)i,j,n − τ̃

(k)
i,j,n

l
≤ Cα2l

n


γ (l) (2qn)+ γ (l) (−2qn)+ z1/2n + αd−1/2

which we can make arbitrarily small, because zn → 0 by first
step together with Lemma 6 and the continuity of σ (A1). The case
with k = 2 is very similar. Finally, for j > 1, the same kind of
computation techniques, using in addition (11) of (A3), will work.

Fifth step: Prove that uniformly (in i)

P

∀j ≤ Mn,Oi,j,n = Õi,j,n


→ 1. (66)
To show (66), let j ≤ Mn. We define the (random) index v such that
τOi,v,n = τ

(k)
i,j,n. Modifying suitably h if needed, there exists (using

fourth step) a sequence (ϵn) such that

P
τ (k)i,j,n − τ̃

(k)
i,j,n

 ≤ α2
nϵn


→ 1, (67)

P
τOi,v+1,n − τOi,v,n

 ≤ α2
nϵn


→ 0. (68)

Using (67) and (68), we can verify (66) by recurrence.
Sixth step: We prove here (59) and (60). Using Lemma 7 and

(66) we obtain

E
∆τ 1Ci,j,n −∆τ̃ 1Ci,j,n

l = E
∆τ 1Ci,j,n −∆τ̃ 1Ci,j,n

l1{∀j≤Mn,Oi,j,n=Õi,j,n}


+ oUp


α2l
n


.

The first term on the right part of the inequality can be bounded by

C


E
τ 1Ci,j,n − τ̃ 1Ci,j,n

l1{∀j≤Mn,Oi,j,n=Õi,j,n}


+ E

τ 1Ci,j−1,n − τ̃ 1Ci,j−1,n

l1{∀j≤Mn,Oi,j,n=Õi,j,n}


.

Both terms can be treated with the same trick. Using the second
step and Lemma 7, the first term is equal to
v≤Mn

E
τ 1Ci,j,n − τ̃ 1Ci,j,n

l1{∀j≤Mn,Oi,j,n=Õi,j,n}
1

{τ1Ci,j,n=τ
(1)
i,v,n}


+ oUp


α2l
n


.

The sum is obviously bounded by
v≤Mn

E
τ 1Ci,j,n − τ̃ 1Ci,j,n

l
and using (65), we prove (59). We can deduce (60) with the same
kind of computations. �

LetMn be the interpolated normalized error, i.e.

Mn
t = α−1

n


i≥1

∆X (1)
[τ1Ci−1,n∧t,τ1Ci,n ∧t]

∆X (2)
[τ

1C,−
i−1,n∧t,τ1C,+i,n ∧t]

−

 t

0
σ (1)s σ (2)s ρ1,2

s ds

.

Mn
t corresponds exactly to the normalized error of the Hayashi–

Yoshida estimator if we observe the price of both assets at time t .
We recall the definition of

Ni,n = ∆X (1)
τ1Ci,n
∆X (2)

τ
1C,−,+
i,n

−

 τ1Ci,n

τ1Ci−1,n

σ (1)s σ (2)s ρ1,2
s ds.

Lemma 12. We have
i∈An

Eτhi−1,n


∆Mn

τhi,n

2


= α−2
n


i∈An

Eτhi−1,n


hn
u=2


N(i−1)hn+u

2
+ 2N(i−1)hn+uN(i−1)hn+u+1


+ op(1).

Proof. We obtain this equality noting that

Ni,n


n≥0 are centered

and 1-correlated, and that the terms left converge to 0 in
probability. �
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We introduce the observation time at the start of a block, where
‘‘s’’ stands for ‘‘start’’

τ si,n = sup{τ hj,n s.t. τ hj,n < τ 1Ci,n }.

Lemma 13. We have

α−2
n


i∈An

Eτhi−1,n


hn
u=2


N(i−1)hn+u

2
+ 2N(i−1)hn+uN(i−1)hn+u+1



= α2
n


i∈An

hn−2
j=0


R2
ψAV


στhi−1,n

, gτhi−1,n
, α−1

n x, α−2
n v


× dπ̃i−1,j,n (x, v)+ op(1).

Proof. First step: approximating with holding volatility constant.
Set

Ñi,n =


στ si−1,n

∆Wτ1Ci,n

(1) 
στ si−1,n

∆W
τ
1C,−,+
i,n

(2)
−

 τ1Ci,n

τ1Ci−1,n

ζ
1,2
τ si−1,n

ds

where A(i) is the ith component of the vector A. We want to show
that:

α−2
n


i∈An

Eτhi−1,n


hn
u=2


N(i−1)hn+u

2
+ 2N(i−1)hn+uN(i−1)hn+u+1



= α−2
n


i∈An

Eτhi−1,n


hn
u=2


Ñ(i−1)hn+u

2
+ 2Ñ(i−1)hn+uÑ(i−1)hn+u+1


+ op (1) .

Noting Fi,n =

Ni,n

2
+2Ni,nNi+1,n and F̃i,n =


Ñi,n

2
+2Ñi,nÑi+1,n,

it is sufficient to show that

α−2
n


i≥1

Eτ si−1,n

Fi,n − F̃i,n

1{τ si−1,n<t}


P

→ 0,

that we can rewrite as α−2
n
N(1)t,n

i≥1 Eτ si−1,n

Fi,n − F̃i,n
1{τ si−1,n<t}


P

→ 0. Using Lemma 9, it is sufficient to show that ∀u > 0:

α−2
n

uα−2
n

i=1

Eτ si−1,n

Fi,n − F̃i,n
1{τ si−1,n<t}


P

→ 0.

Thus, it is sufficient to show the convergence L1 of this quantity,
i.e. that

α−2
n

uα−2
n

i=1

E
Fi,n − F̃i,n

1{τ si−1,n<t}


→ 0.

We have thatFi,n − F̃i,n

 ≤ B(1)i,n + 2B(2)i,n ,

where B(1)i,n =

N2
i,n − Ñ2

i,n

 and B(2)i,n =

Ni−1,nNi,n − Ñi−1,nÑi,n

. We

have that

B(1)i,n ≤ C (1)i,n + C (2)i,n + C (3)i,n ,
where

C (1)i,n =

∆X (1)
τ1Ci,n
∆X (2)

τ
1C,−,+
i,n

2

−


στ si−1,n

∆Wτ1Ci,n

(1) 
στ si−1,n

∆W
τ
1C,−,+
i,n

(2)2,
C (2)i,n =


 τ1Ci,n

τ1Ci−1,n

ζ 1,2
s ds

2

−

 τ1Ci,n

τ1Ci−1,n

ζ
1,2
τ si−1,n

ds

2,
C (3)i,n = 2

∆X (1)
τ1Ci,n
∆X (2)

τ
1C,−,+
i,n

 τ1Ci,n

τ1Ci−1,n

ζ 1,2
s ds

−


στ si−1,n

∆Wτ1Ci,n

(1) 
στ si−1,n

∆W
τ
1C,−,+
i,n

(2)  τ1Ci,n

τ1Ci−1,n

ζ
1,2
τ si−1,n

ds
.

Let us show that α−2
n
uα−2

n
i=1 E


C (1)i,n 1{τ si−1,n<t}


→ 0. We can write

it as C (1)i,n ≤ D(1)i,n + D(2)i,n , where

D(1)i,n =

∆X (1)
τ1Ci,n
∆X (2)

τ
1C,−,+
i,n

2 
στ si−1,n

∆Wτ1Ci,n

(1)
∆X (2)

τ
1C,−,+
i,n

2,
D(2)i,n =

στ si−1,n
∆Wτ1Ci,n

(1)
∆X (2)

τ
1C,−,+
i,n

2

−


στ si−1,n

∆Wτ1Ci,n

(1) 
στ si−1,n

∆W
τ
1C,−,+
i,n

(2)2.
We want to show that α−2

n
uα−2

n
i=1 E


D(1)i,n 1{τ si−1,n<t}


→ 0. We

define:

E(1)i,n = ∆X (1)
τ1Ci,n
∆X (2)

τ
1C,−,+
i,n

,

E(2)i,n =


στ si−1,n

∆Wτ1Ci,n

(1)
∆X (2)

τ
1C,−,+
i,n

.

Using Cauchy–Schwarz inequality, we deduce:

E

D(1)i,n 1{τ si−1,n<t}


= E


E(1)i,n + E(2)i,n

 
E(1)i,n − E(2)i,n


1{τ si−1,n<t}


≤


E


E(1)i,n + E(2)i,n

2
E


E(1)i,n − E(2)i,n

2
1{τ si−1,n<t}

1/2

.

Using Cauchy–Schwarz inequality together with Burkholder–
Davis–Gundy inequality and Lemma 7, we obtain that:

E


E(1)i,n + E(2)i,n

2
= OU α4

n


where U stands for ‘‘uniformly in 1 ≤ i ≤ uα−2

n ’’. Another
application of Cauchy–Schwarz inequality gives us

E


E(1)i,n − E(2)i,n

2
1{τ si−1,n<t}


≤


E


∆X (1)

τ1Ci,n
−


στ si−1,n

∆Wτ1Ci,n

(1)4

1{τ si−1,n<t}



× E


∆X (2)

τ
1C,−,+
i,n

4
1/2

.

Using once again Cauchy–Schwarz inequality together with
Burkholder–Davis–Gundy inequality and Lemma7,we obtain that:

E


∆X (2)

τ
1C,−,+
i,n

4


= OU α4
n


.
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Similarly,we compute using conditional Burkholder–Davis–Gundy
in first inequality, Cauchy–Schwarz in third inequality, Lemmas 5–
7 together with the continuity of σ (A1) in last equality.

E


∆X (1)

τ1Ci,n
−


στ si−1,n

∆Wτ1Ci,n

(1)4

1{τ si−1,n<t}



= E


1{τ si−1,n<t}Eτ1Ci−1,n


∆X (1)

τ1Ci,n
−


στ si−1,n

∆Wτ1Ci,n

(1)4


= E

1{τ si−1,n<t}Eτ1Ci−1,n

 τ1Ci,n

τ1Ci−1,n


σs − στ si−1,n


dWs

(1)4


≤ C sup
1≤j,l≤4

E

1{τ si−1,n<t}Eτ1Ci−1,n

 τ1Ci,n

τ1Ci−1,n


σ j,l
s − σ

j,l
τ si−1,n

2
ds

2


= C sup
1≤j,l≤4

E

1{τ si−1,n<t}

 τ1Ci,n

τ1Ci−1,n


σ j,l
s − σ

j,l
τ si−1,n

2
ds

2


≤ C sup
1≤j,l≤4

E

∆τ 1Ci,n S


σ j,l, shn

22
+ oU


α4
n


≤ C


E

∆τ 1Ci,n

4
E


sup
1≤j,l≤4


S

σ j,l, shn

81/2

+ oU

α4
n


= OU α4

n


.

With the same kind of computations, we show that α−2
n
uα−2

n
i=1

E

D(2)i,n 1{τ si−1,n<t}


→ 0, and we also can show α−2

n
uα−2

n
i=1 E

C (2)i,n 1{τ si−1,n<t}


→ 0, α−2

n
uα−2

n
i=1 E


C (3)i,n 1{τ si−1,n<t}


→ 0 (thus we

have also that α−2
n
uα−2

n
i=1 E


B(1)i,n 1{τ si−1,n<t}


→ 0) and

α−2
n

uα−2
n

i=1

E

B(2)i,n 1{τ si−1,n<t}


→ 0.

Second step: approximating using

τ̃i,j,n


i,j,n≥0 instead of

τi,n

i,n≥0. We set

˜̃N i,j,n =


στhi,n

∆Wτ̃1Ci,j,n

(1) 
στhi,n

∆W
τ̃
1C,−,+
i,j,n

(2)
−

 τ̃1Ci,j,n

τ̃1Ci,j−1,n

ζ
1,2
τhi,n

ds.

We want to show that

α−2
n


i∈An

Eτhi−1,n


hn
u=2


Ñ(i−1)hn+u

2
+ 2Ñ(i−1)hn+uÑ(i−1)hn+u+1



= α−2
n


i∈An

Eτhi−1,n


hn
u=2


˜̃N i−1,u,n

2
+ 2 ˜̃N i−1,u,n

˜̃N i,u+1,n


+ op (1) .

Using the same kind of computations as in the first step together
with Lemma 11, we conclude.

Third step: express the result as a function of ψAV . Using
Lemma 10 in last equality, we deduce for any integer u such that
2 ≤ u ≤ hn that

Eτhi−1,n


˜̃N i−1,u,n

2
+ 2 ˜̃N i−1,u,n

˜̃N i−1,u+1,n


=


R2
ψAV


στhi−1,n

, αngτhi−1,n
, x, v


dπ̃i,u−2,n (x, v)

= α4
n


R2
ψAV


στhi−1,n

, gτhi−1,n
, α−1

n x, α−2
n v


dπ̃i,u−2,n (x, v) . �
Lemma 14. ∀σ ∈ M, g ∈ G, ∃π (σ , g) distribution such that:

α2
n


i∈An

hn−2
j=0


R2
ψAV


στhi−1,n

, gτhi−1,n
, α−1

n x, α−2
n u


dπ̃i−1,j,n (x, u)

= α2
n


i∈An

hnφ
AV

στhi−1,n

, gτhi−1,n


+ op(1).

Proof. We define the transition functions of the Markov chains
Z̃i (σ , g)


i≥0

defined in (33). For (x, u) ∈ Sg , B ∈ B

Sg


(borelians of Sg )

P (σ , g) ((x, u) , B) = P

Z̃1 (σ , g) ∈ B

Z̃0 (σ , g) = (x, u)

.

First step: We prove that ∀σ ∈ M, ∀g ∈ G, the state space Sg

is ν-small, i.e. there exists a non-trivial measure ν on B(R2) such
that ∀(x, u) ∈ Sg ,∀B ∈ B(Sg), P (σ , g) ((x, u), B) ≥ ν (B). Let
B = [xa, xb] × [ua, ub]. We are choosing ν such that ν = 0 outside
[−

g−

4 ,
g−

4 ] × [3, 4]. Thus, without loss of generality, we have that

[xa, xb] × [ua, ub] ⊂ [−
g−

4 ,
g−

4 ] × [3, 4]. We want to show that
∃c > 0 such that uniformly

P (σ , g) ((x, u) , B) ≥ c (xb − xa) (ub − ua) .

There are two useful ways to rewrite (X̃ (3), X̃ (4)). The first one
is:

X̃ (3)t := σ (3)B̃(3)t , (69)

X̃ (4)t := ρ3,4σ (4)B̃(3)t +


1 −


ρ3,421/2 σ (4)B̃3,⊥

t (70)

where B̃(3) and B̃3,⊥ are independent, ρ3,4
∈ [ρ

3,4
− , ρ

3,4
+ ] and

max

−ρ

3,4
− , ρ

3,4
+


< 1 (because σ ∈ M),

δ =


1 − max


ρ
3,4
−

2
,

ρ
3,4
+

21/2

. (71)

The other way to rewrite it is:

X̃ (4)t := σ (4)B̃(4)t , (72)

X̃ (3)t := ρ3,4σ (3)B̃(4)t +


1 −


ρ3,421/2 σ (3)B̃4,⊥

t (73)

where B̃(4) and B̃4,⊥ are independent. For (Bt)t≥0 a standard
Brownian motion, a < x < b, we denote the exiting-zone time
of the Brownian motion

τ a,bx = inf{t > 0 s.t. x + Bt = a or x + Bt = b}

and p1(x, a, b, t) the density of τ a,bx . We also define p2(x, a, b, s, y)
the distribution of Bs + x conditioned on {τ a,bx ≥ s}. Finally, let
p3(x, a, b, t) be the distribution of τ a,bx conditioned on {B

τ
a,b
x

= b}.
All the formulas can be found in Borodin and Salminen (2002).
Consider the spaces C1 = C3 = {(x, a, b, t) ∈ R4 s.t. a ≤ x ≤

b, t > 0}, C2 = {(x, a, b, t, y) ∈ R5 s.t. a ≤ x ≤ b, a < y < b, t >
0}. The functions pi are continuous on Ci and positive. Thus, for all
compact set Ki ⊂ Ci, we have

inf
k∈Ki

pi(k) > 0. (74)

We can bound below

P (σ , g) ((x, u) , B)

≥ P

E0


E1


E2


E3


E4

Z̃0 = (x, u)

,
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where

E0 =


sup

0≤s≤τ̃ (2)1

X̃ (3)s

 < ϵσ− min(σ−, 1)
15σ+

, τ̃
(2)
1 ≤ K


,

E1 =


sup

τ̃
(2)
1 ≤s≤K+1

X̃ (3)s

 < ϵσ−

10σ+
, sup
τ̃
(2)
1 ≤s≤K+1

∆B̃3,⊥

[τ̃
(2)
1 ,s]


<

g−σ−

4 (σ+)2


,

E2 =


sup

K+1≤s≤τ̃ (2)2

X̃ (3)s

 ≤
ϵ

5
, τ̃

(2)
2 ∈ [K + 2, K + 3]


,

E3 =


∀s ∈ [τ̃

(2)
2 , K + 4] X̃ (3)s ∈ [d1(K), u1(K)], X̃

(3)
K+4

∈ [u1(K)− 2ϵ, u1(K)− ϵ]



sup

τ̃
(2)
2 ≤s≤K+4

∆X̃ (4)
[τ̃
(2)
2 ,s]

 < g−

12


,

E4 =


τ̃
(1)
1 ∈ [ua + τ̃

(2)
2 , ub + τ̃

(2)
2 ], inf

K+4≤s≤τ̃ (1)1

∆X̃ (3)
[K+4,s] > −2ϵ




sup
K+4≤s≤τ̃ (1)1

∆X̃ (4)
[τ̃
(2)
2 ,s]

 < g−,∆X̃ (4)
[τ̃
(2)
2 ,τ̃

(1)
1 ]

∈ [xa, xb]

,

where ϵ =
g−σ−

24σ+ . Using extensively Bayes formula, we can rewrite

P

E0


E1


E2


E3


E4


{Z̃1 ∈ B}
Z̃0 = (x, u)


= I × II × III × IV × V ,

where I = P

E0

{Z̃0 = (x, u)}

, II = P


E1

E0{Z̃0 = (x, u)}

,

and also III = P

E2

E1 E0


{Z̃0 = (x, u)}

, IV = P

E3

E2 E1


E0


{Z̃0 = (x, u)}


and V = P

E4

E3 E2


E1
E0


{Z̃0 = (x, u)}

.

We prove that I is uniformly bounded away from 0. Using (52),
(69), (70) and (71), we deduce that E(1)0


E(2)0 ⊂ E0 where

E(1)0 =


sup

0≤s≤K

B̃(3)s

 < ϵσ− min(σ−, 1)

15 (σ+)2


,

E(2)0 =


sup

0≤s≤K

 x

σ (4)

1 −


ρ3,4

21/2 + B̃3,⊥
s


≥

g+

δσ−
+
ϵσ− min(σ−, 1)

15 (σ+)2


.

Conditionally on {Z̃0 = (x, u)}, E(1)0 and E(2)0 are independent. Thus,
we deduce

I ≥ P

E(1)0

{Z̃0 = (x, u)}


P

E(2)0

{Z̃0 = (x, u)}

.

Using Markov property of Brownian motions, we obtain that the
right part of the inequality is equal to
1 −

 K

0
p1


0,−

ϵσ− min(σ−, 1)

15 (σ+)2
,
ϵσ− min(σ−, 1)

15 (σ+)2
, t

dt


×

 K

0
p1

y(1)0 ,−y(2)0 , y

(2)
0 , t


dt,
where y(1)0 =
x

σ (4)

1−(ρ3,4)

2
1/2 , y(2)0 =

g+

δσ− +
ϵσ− min(σ−,1)

15(σ+)
2 , which

is uniformly (in x, σ and g) bounded away from 0 using (52) and
(74).

We prove that II is uniformly bounded away from 0. Condition-
ally on E0


{Z̃0 = (x, u)}, the two quantities of E1 are independent.

Thus, we bound below II (the same way we did for I) by
1 −

 K+1

τ̃
(2)
1

p1


B̃(3)
τ̃
(2)
1
,−

ϵσ−

10σ+σ (3)
,

ϵσ−

10σ+σ (3)
, t

dt



1 −

 K+1

τ̃
(2)
1

p1


0,−

g−σ−

4σ+σ (4)
,

g−σ−

4σ+σ (4)
, t

dt


,

which is uniformly bounded away from 0 using (52) together with
(74).

We prove that III is uniformly bounded away from 0. Using (52),
(69), (70) and (71), we deduce that E(1)2


E(2)2 ⊂ E2 where

E(1)2 =


sup

K+1≤s≤K+3

B̃(3)s

 ≤
ϵ

5σ+


,

E(2)2 =


sup

K+1≤s≤K+2

∆B̃3,⊥

[τ̃
(2)
1 ,s]

 < g−

2σ+
, sup
K+2≤s≤K+3

∆B̃3,⊥

[τ̃
(2)
1 ,s]


≥

g+

δσ−
+

ϵ

5σ+δ


.

Conditionally on E1


E0


{Z̃0 = (x, u)}, E(1)2 and E(2)2 are
independent. Thus, we deduce

III ≥ P

E(1)2

E1 E0


{Z̃0 = (x, u)}


× P

E(2)2

E1 E0


{Z̃0 = (x, u)}

.

Using Markov property of Brownian motions, we obtain that the
right part of the inequality conditioned on {B̃(3)K+1,∆B̃3,⊥

[τ̃
(2)
1 ,K+1]


E1


E0


{Z̃0 = (x, u)}} is equal to
1 −

 2

0
p1

B̃(3)K+1,−

ϵ

5σ+
,
ϵ

5σ+
, t

dt


×


1 −

 1

0
p1


∆B̃3,⊥

[τ̃
(2)
1 ,K+1]

,−
g+

2σ+
,

g+

2σ+
, t

dt


×

 g−

2σ+

−
g−
2σ+

 2

1
p1


y,−


g+

δσ−
+

ϵ

5σ+δ


,

g+

δσ−
+

ϵ

5σ+δ
, t

dtdq(y),

where q is the (conditional) distribution of ∆B̃3,⊥

[τ̃
(2)
1 ,K+1]

+ B1

conditioned on
τ

−
g−

2σ+
,

g−

2σ+

∆B̃3,⊥
[τ̃
(2)
1 ,K+1]

≥ 1

.

Using the definition of E1 together with (52) and (74), we have III
which is uniformly bounded away from 0.

We prove that IV is uniformly bounded away from 0. Using (72)
and (73), we deduce that E(1)3


E(2)3 ⊂ E3 where

E(1)3 =


sup

τ̃
(2)
2 ≤s≤K+4

∆B̃(4)
[τ̃
(2)
2 ,s]

 < ϵσ−

5σ+σ (4)


,

E(2)3 =


∀s ∈ [τ̃

(2)
2 , K + 4]∆B̃4,⊥

[τ̃
(2)
2 ,s]

∈ [y(1)3 , y
(2)
3 ],

∆B̃4,⊥

[τ̃
(2)
2 ,K+4]

∈ [y(3)3 , y
(4)
3 ]


,
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with y(1)3 =
d1(K)+2ϵ/5

σ (4)

1−(ρ3,4)

2
1/2 , y(2)3 =

u1(K)−2ϵ/5

σ (4)

1−(ρ3,4)

2
1/2 , y(3)3 =

u1(K)−8ϵ/5

σ (4)

1−(ρ3,4)

2
1/2 , as well as y(4)3 =

u1(K)−7ϵ/5

σ (4)

1−(ρ3,4)

2
1/2 . Conditionally

on E2


E1


E0


{Z̃0 = (x, u)}, E(1)3 and E(2)3 are independent.
Thus, we deduce

IV ≥ P

E(1)3

E2 E1


E0


{Z̃0 = (x, u)}


P

E(2)3

E2 E1


E0


{Z̃0 = (x, u)}

.

Using Markov property of Brownian motions, we obtain that the

right part of the inequality conditioned on {τ̃
(2)
2

E2 E1


E0


{Z̃0 = (x, u)}} is equal to
1 −

 K+4−τ̃ (2)2

0
p1


0,−

ϵσ−

5σ+σ (4)
,

ϵσ−

5σ+σ (4)
, t

dt



×


1 −

 K+4−τ̃ (2)2

0
p1

0, y(1)3 , y

(2)
3 , t


dt



×

 y(4)3

y(3)3

p2

0, y(1)3 , y

(2)
3 , K + 4 − τ̃

(2)
2 , y


dy,

which is uniformly bounded away from 0 using (52), (71) and (74).
We prove that V > c(xb − xa)(ub − ua). Using (69) and (70), we

deduce that E(1)4


E(2)4 ⊂ E4 where

E(1)4 =


τ̃ ∈ [ua + τ̃

(2)
2 , ub + τ̃

(2)
2 ], X̃ (3)

τ̃
= u1(K)


,

E(2)4 =


sup

K+4≤s≤τ̃

∆B̃3,⊥
[K+4,s]

 < 5g−

6σ (4)

1 −


ρ3,4

21/2 ,
∆B̃3,⊥

[L+4,τ̃ ] ∈ [y(1)4 , y
(2)
4 ]


,

τ̃ = inf{t > K + 4 : X̃ (3)t = u1(K) or∆X̃ (3)
[K+4,t] = −2ϵ},

y(1)4 =

xa −∆X̃ (4)
[τ̃
(2)
2 ,K+4]

− ρ3,4σ (4)

σ (3)

−1

u1(K)− X̃ (3)K+4


σ (4)


1 −


ρ3,4

21/2 ,

and y(2)4 =

xb−∆X̃(4)
[τ̃
(2)
2 ,K+4]

−ρ3,4σ (4)

σ (3)

−1
u1(K)−X̃(3)K+4


σ (4)


1−(ρ3,4)

2
1/2 . We have

V = P

X̃ (3)
τ̃

= u1(K)


× P

E(1)4


E(2)4

E3 E2


E1


E0


{Z̃0 = (x, u)}
{X̃ (3)
τ̃

= u1(K)}

.

The first term on the right part of the equation is uniformly
bounded away from 0 (Borodin and Salminen, 2002). Because τ̃ is
a function of X̃ (3) and B̃3,⊥ is independent with X̃ (3), τ̃ and B̃3,⊥ are
independent. Thus the second term on the right conditioned on

{y(1)4 , y
(2)
4 , X

(3)
K+4, τ̃

(2)
2

E3 E2


E1


E0


{Z̃0 = (x, u)}}
can be expressed as: ub+τ̃
(2)
2 −(K+4)

ua+τ̃
(2)
2 −(K+4)

 y(2)4

y(1)4

p3


X (3)K+4

σ (3)
,
X (3)K+4 − 2ϵ
σ (3)

,
u1(K)
σ (3)

, t



× p2


0,−

5g−

y(3)4

,
5g−

y(3)4

, t, y


dtdy,

where y(3)4 = 6σ (4)

1 −


ρ3,4

21/2. We have that y(1)4 and y(2)4 are

dominated by 3g−

4σ (4)

1−(ρ3,4)

2
1/2 . Using this together with (52), (71)

and (74), we deduce that V ≥ c(xb − xa)(ub − ua).
Second step: We prove that

ψAV


∞

:= sup
σ∈M,g∈G,(x,u)∈Sg

ψAV

(σ , g, x, u)
 < ∞. To show this, we bound the term as

E


∆X̃ (1)

τ̃1C2
∆X̃ (2)

τ̃
1C,−,+
2

− ζ̃ 1,2∆τ̃ 1C2

2


≤ 2E


∆X̃ (1)

τ̃1C2
∆X̃ (2)

τ̃
1C,−,+
2

2

+


ζ̃ 1,2∆τ̃ 1C2

2
.

The second term in the right hand-side of the inequality is
uniformly bounded using (52) and Lemma 7. Using successively
Cauchy–Schwarz and Burkholder–Davis–Gundy inequality, (52)
and Lemma 7, we can also bound uniformly the first term. The
other term of (29) can be bounded in the same way.

Third step: Define q = (σ , g, x, u) and

Q =

(σ , g, x, u) s.t. σ ∈ M, g ∈ G, (x, u) ∈ Sg


.

Prove that ∀q ∈ Q, there exists a measure π̃ (σ , g) such that

sup
q∈Q

n−1
l=0


R2
ψAV (σ , g, y, v) dπ̃l (σ , g, x, u) (y, v)

− n


R2
ψAV (σ , g, y, v) dπ̃ (σ , g) (y, v)


= nop(1).

To show this, we use first step together with Th.16.0.2 (v) (Meyn
and Tweedie, 2009). We obtain that there exists π̃ (σ , g)wherePn (σ , g) ((x, u) , .)− π̃ (σ , g)


TV

≤ 2rn

and r = 1 − ν

R2

. Thus, we deduce:

R2
ψAV (σ , g, y, v) dπ̃l (σ , g, x, u) (y, v)

−


R2
ψAV (σ , g, y, v) dπ̃ (σ , g) (y, v)


≤

ψAV


∞

π̃l (σ , g, x, u)− π̃ (σ , g)

TV

≤ 2
ψAV


∞

r l. (75)

We want to show that ∀ϵ > 0, ∃N > 0 such that ∀n ≥ N:n−1
l=0


R2
ψAV (σ , g, y, v) dπ̃l (σ , g, x, u) (y, v)

− n


R2
ψAV (σ , g, y, v) dπ̃ (σ , g) (y, v)


< ϵn. (76)

The rest is a straightforward analysis exercise. Let ϵ > 0. ∃N1 >
0 such that rN1 < ϵ

2 . Choosing N > 8N1ϵ
−1

∥ψAV
∥

−1
∞

, we first use
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the triangular inequality, and then split the sum of the left part of
(76) into two parts, one up to N1 and the other one up to N.We use
(75) in the second part to obtain (76).

Fourth step: Proving the Lemma. Letw > 0. From Lemma 9, we
just have to show that

α2
n

xwα−2
n h(n)−1y
i=1

hn−2
j=0


R2
ψAV


στhi−1,n

, gτhi−1,n
, α−1

n y, α−2
n v


× dπ̃i−1,j,n (y, v)− hnφ

AV

στhi−1,n

, gτhi−1,n


tends to 0 in probability. Using third step together with standard
results on regular conditional distributions (see for instance
Section 4.3 (pp. 77–80) in Breiman (1992)), we prove the
lemma. �

Lemma 15. We have

α2
n


i∈An

Eτhi−1,n


σ
(1)
τhi−1,n

2 
σ
(2)
τhi−1,n

2

hnφ
AV

στhi−1,n

, gτhi−1,n


× ∆τ hi,n


Eτhi−1


∆τ hi,n

−1


=


i∈An

Eτhi−1,n


φAV


στhi−1,n

, gτhi−1,n


∆τ hi,n


φτ
τhi−1,n

−1


+ op(1).

Proof. First step: Defining

ui,n :=

hn−2
j=0


X
ψτ


σ
τhi−1,n

, g
τhi−1,n

, x, u

dπ̃i−1,j,n (x, u) ,

A0 := α2
n


i∈An

E
τhi−1,n


hnφAV


σ
τhi−1,n

, g
τhi−1,n


∆τ hi,n


E
τhi−1


∆τ hi,n

−1

,

A1 := α2
n


i∈An

E
τhi−1,n


hnφAV


σ
τhi−1,n

, g
τhi−1,n


∆τ hi,n


ui,n
−1


we have that A0 = A1 + op (1). To show this, in light of Lemma 11,
we have thatEτhi−1,n


∆τ hi,n


− ui,n

 ≤ h (n) Cn,

where Cn tends to 0 in probability. From this, we can easily show
that A0 = A1 + op (1).

Second step: We have that

A1 =


i∈An

Eτhi−1,n


φAV


στhi−1,n

, gτhi−1,n


∆τ hi,n


φτ
τhi,n

−1


+ op(1).

To prove it, we can mimic the proof of Lemma 14, together with
Lemma 11. �

A.3. Computation of the limits of ⟨Mn
⟩t , ⟨Mn, X (1)⟩t and ⟨Mn, X (2)⟩t

⟨Mn
⟩t =


i∈An

Eτhi−1,n


∆Mn

τhi,n

2


+ op(1)

= α−2
n


i∈An

Eτhi−1,n


hn
u=2


N(i−1)hn+u

2
+ 2N(i−1)hn+uN(i−1)hn+u+1



+ op(1) = α2
n


i∈An

hn−2
j=0


R2
ψAV


στhi−1,n

, gτhi−1,n
, α−1

n x, α−2
n u


× dπ̃i−1,j,n (x, u)+ op(1),
where we used Lemma 2.2.11 of Jacod and Protter (2012) in first
equality, Lemma 12 in second equality, and Lemma 13 in third
equality.

We deduce (using Lemma 14 in first equality and Lemma 15 in
third equality)

⟨Mn
⟩t = α2

n


i∈An

hnφ
AV
τhi−1,n

+ op(1)

= α2
n


i∈An

Eτhi−1,n


hnφ

AV
τhi−1,n

∆τ hi,n


Eτhi−1


∆τ hi,n

−1


+ op(1)

=


i∈An

Eτhi−1,n


φAV
τhi−1,n

∆τ hi,n


φτ
τhi,n

−1


+ op(1).

Using Lemma 2.2.11 of Jacod and Protter (2012) again, we
deduce

⟨Mn
⟩t =


i∈An

φAV
τhi−1,n

∆τ hi,n


φτ
τhi,n

−1

+ op(1).

Using Lemma 5 together with Prop. I.4.44 (page 51) in Jacod
and Shiryaev (2003), we obtain

⟨Mn
⟩t →

 t

0
φAV
s


φτs
−1 ds. (77)

Using the same approximations and computations, we also
compute

⟨Mn, X (1)⟩t →

 t

0
φAC1
s


φτs
−1 ds, (78)

⟨Mn, X (2)⟩t →

 t

0
φAC2
s


φτs
−1 ds. (79)

A.4. Computation of the asymptotic bias and variance

We follow the idea in 1-dimension in pp. 155–156 of Mykland
and Zhang (2012), and define an auxiliary martingale

M̃n
t = Mn

t −

 t

0
k(1)s dX (1)s −

 t

0
k1,⊥s dX1,⊥

s ,

where X1,⊥
t is defined in (39). Using (78), we deduce

⟨M̃n, X (1)⟩t = ⟨Mn, X (1)⟩t −

 t

0
k(1)s d⟨X (1)⟩s

P
→

 t

0
φAC1
s


φτs
−1 ds −

 t

0
k(1)s


σ (1)s

2
ds.

Hence, we choose

k(1)s =

σ (1)s

−2
φAC1
s


φτs
−1

.

By the same techniques thatwe used to compute (78),we have that
Mn,

 .

0
ρ1,2
s σ (2)s dB(1)s


t
→

 t

0


σ (1)s

−1
σ (2)s ρ1,2

s φAC1
s


φτs
−1 ds.

(80)

Using (79) and (80) we compute

⟨M̃n, X1,⊥
⟩t = ⟨Mn, X1,⊥

⟩t −

 t

0
k1,⊥s d⟨X1,⊥

⟩s

=


Mn, X (2) −

 .

0
ρsσ

(2)
s dB(1)s


t
−

 t

0
k1,⊥s d⟨X1,⊥

⟩s

= ⟨Mn, X (2)⟩ −


Mn,

 .

0
ρsσ

(2)
s dB(1)s


t
−

 t

0
k1,⊥s d⟨X1,⊥

⟩s
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P
→

 t

0


φAC2
s −


σ (1)s

−1
σ (2)s ρ1,2

s φAC1
s

 
φτs
−1 ds

−

 t

0
k1,⊥s


1 −


ρ1,2
s

2 
σ (2)s

2
ds.

Hence, we choose

k1,⊥s =


1 −


ρ1,2
s

2−1

×


σ (2)s

−2
φAC2
s −


σ (1)s σ (2)s

−1
ρ1,2
s φAC1

s

 
φτs
−1

.

By (A4), there exists S > 0 such that the S Brownian motions
{D(1), . . . ,D(S)} generate the filtration (Ft)t≥0. To show that
⟨M̃n,D(s)⟩t tends to 0 in probability, we decompose D(s) = Ds,1

+

Ds,2 where Ds,1 belongs to the space spanned by {X (1), X (2)}, Ds,2

is orthogonal to this space. By what precedes, we have clearly
⟨M̃n,Ds,1

⟩t tends to 0 in probability. Also, Ds,2 is a martingale
that is, conditionally on the observations times of both processes,
independent of M̃n. Thuswe also deduce that ⟨M̃n,Ds,2

⟩t converges
to 0 in probability.

We can now compute

⟨M̃n
⟩t =


Mn

−

 .

0
k(1)s dX (1)s −

 .

0
k1,⊥s dX1,⊥

s


t

= ⟨Mn
⟩t +

 t

0


σ (1)s

2 
k(1)s

2
ds

+

 t

0


σ (2)s

2 
1 −


ρ1,2
s

2 
k1,⊥s

2
ds

− 2
 t

0
k(1)s d⟨X (1),Mn

⟩s − 2
 t

0
k1,⊥s d⟨X1,⊥,Mn

⟩s

P
→ int t0


φAV
s + 2


k(1)s


σ (1)s

−1
σ (2)s ρ1,2

s φAC1
s

−

k1s + k1,⊥s


φAC2
s

 
φτs
−1

+

σ (1)s

2 
k(1)s

2
+

σ (2)s

2 
1 −


ρ1,2
s

2 
k1,⊥s

2
ds.

By letting

AVs =


φAV
s + 2


k(1)s


σ (1)s

−1
σ (2)s ρ1,2

s φAC1
s

−

k(1)s + k1,⊥s


φAC2
s

 
φτs
−1

+

σ (1)s

2 
k(1)s

2
+

σ (2)s

2 
1 −


ρ1,2
s

2 
k1,⊥s

2
,

we deduce using Theorem 2.28 in Mykland and Zhang (2012) that
stably in law as αn → 0,

α−1
n

RCV t,n − RCVt


→

 t

0
k(1)s dX (1)s +

 t

0
k1,⊥s dX1,⊥

s

+

 t

0
(AVs)

1/2 dW̃s.

We have just shown Theorem 1. Now, we express the asymptotic
bias ABt =

 t
0 k(1)s dX (1)s +

 t
0 k1,⊥s dX1,⊥

s differently as

ABt =

 t

0
k(1)s dX (1)s +

 t

0
k1,⊥s


1 −


ρ1,2
s

21/2
σ (2)s dB1,⊥

s

=

 t

0
k(1)s dX (1)s −

 t

0
k1,⊥s ρ1,2

s σ (2)s dB(1)s +

 t

0
k1,⊥s ρ1,2

s σ (2)s dB(1)s

+

 t

0
k1,⊥s


1 −


ρ1,2
s

21/2
σ (2)s dW 1,⊥

s

=

 t

0


k(1)s − k1,⊥s ρ1,2

s σ (2)s


σ (1)s

−1

dX (1)s +

 t

0
k1,⊥s dX (2)s .

We thus deduce the expression of AB(1)s and AB(2)s .
The proof of Corollary 4 follows in the same way as the proof
of Theorem 1. We hold constant the asymptotic variance and the
asymptotic bias on blocks of size hn. Moreover, we can see thatAB(1)i,α , AB(2)i,α andAV i,α are uniformly consistent estimators under the
constant model.

A.5. Discussion on the adaptation of Theorem 1 proofs for more
general models

Wediscuss in this section how to adapt the proofs of Theorem 1
when considering Example 3 up to Example 6. In that case, the HBT
can be defined for each k = 1, 2 as τ0,n := 0 and recursively as

τ
(k)
i,n := inf


t > τ

(k)
i−1,n : ∆X (t,k)

[τ
(k)
i−1,n,t]

∉

αnd

(k)
t,n

t − τ

(k)
i−1,n


, αnu

(k)
t,n

t − τ

(k)
i−1,n


(81)

for any positive integer i. In (81), the grid g(k)t,n := (d(k)t,n, u
(k)
t,n)

depends on n, thus the term g(k)t in the asymptotic variance
obtained in Theorem 1 will have a different interpretation. Indeed,
g(k)t will be seen as a (possiblymultidimensional) continuous time-
varying parameter which generates (81) instead of the scaled grid
function itself. In particular, the approximationswill not be carried
with holding gt,n constant on each block, but rather with holding
gt constant on each block. Also, for any fixed t ∈ [0, 1], g(k)t will
not be a function on R+, but a simple vector. The reader can refer
to Potiron (2016) for the notion of time-varying parameter. Note
that Assumption (A3) is only used in Lemmas 11 and 14. Thus,
Lemmas 11 and 14 are the only parts in the proof which need to
be adapted.

A.5.1. Example 3 (hitting constant boundaries of the jump size)
For each asset k = 1, 2 we define the jump sizes as L(k)i,n . We

assume that L(1)i,n and L(2)i,n are independent of each other. We have
that g(k)t,n (s) := (−L(k)i−1,n, L

(k)
i−1,n) for t ∈ (τ

(k)
i−1,n, τ

(k)
i,n ]. We also have

a non-time varying parameter gt := 1.
As the jump size L(k)i,n is IID and independent of the other

quantities, we can consider the same L(k)i,n when making local
approximations. Note that in Lemma 11, the proof is made
recursively for each observation time of the block. Thus a ‘‘jump’’ of
gt,n is not a problemwhen it happens exactly at observation times,
as long as the same jump is also made in the approximation block.
Since L(k)i,n is assumed to be bounded, it is straightforward to adapt
the proof of Lemma 11.

We discuss now how to adapt the proof of Lemma 14. To do
that, we consider the Markov chain Z̃i :=


∆X̃ (2)

[τ̃
1C,−
i ,τ̃1Ci ]

, τ̃ 1Ci −

τ̃
1C,−
i , L(1)i′ , L

(2)
j′

, where i′ is such that τ̃ (1)i′ = τ̃ 1Ci , j′ is such that

τ̃
(2)
j′ = τ̃

1C,−
i , L(1)i and L(2)i are IID sequences independent of each

other which follows respectively the distribution of L(1)i,1 and L(2)i,1 .
Then, everything follows the sameway as in the proof of Lemma14.

A.5.2. Example 4 (model with uncertainty zones)
This model is very similar to Example 3, except that the

sequence L(k)i,n is obtained as a function of χ (k)τi,n , where χ
(k)
t

corresponds to the continuous time-varying parameter χt of the
kth asset introduced in p. 5 of Robert and Rosenbaum (2012). We
thus consider g(k)t := χ

(k)
t . The proof of Lemma 11 can be extended

using the convenient construction of L(k)i,n provided in p. 11 of Robert
and Rosenbaum (2012). We extend this construction in two-
dimension assuming that (W ′

t )
(1) and (W ′

t )
(2) are independent. As
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Example 4 is slightly more involved than Example 3, the Markov
chain Z̃i needs to include also the type of previous price change
(increment or decrement) for each asset. We thus consider Z̃i :=
∆X̃ (2)

[τ̃
1C,−
i ,τ̃1Ci ]

, τ̃ 1Ci − τ̃
1C,−
i , L(1)i′ , L

(2)
j′ , sign(∆X̃ (1)

τ̃
(1)
i′
), sign(∆X̃ (2)

τ̃
(2)
j′
)

,

and can follow the same line of reasoning as in Lemma 14.

A.5.3. Example 5 (times generated by hitting an irregular grid model)
In this case, the parameter g(k)t := 1 is non time-varying.

Lemma11 can be adapted easily. To show Lemma14, a further con-
dition is needed on q(k)j := p(k)j − p(k)j−1. We assume that there exists
a positive number Q (k) such that for any non-negative number j
and any l ∈ {0, . . . ,Q (k)

− 1} we have q(k)
jQ (k)+l

= q(k)l . We also de-

fine the Markov chain Z̃i :=

∆X̃ (2)

[τ̃
1C,−
i ,τ̃1Ci ]

, τ̃ 1Ci − τ̃
1C,−
i , l(1), l(2)


,

where l(1) is the index such that there exists a non-negative num-
ber m with p(1)

mQ (1)+l(1)
= X̃ (1)

τ̃1Ci
, and l(2) is the index such that there

exists a non-negative number m with p(2)
mQ (2)+l(2)

= X̃ (2)
τ̃
1C,−
i

. Under

this assumption, we can show Lemma 14.

A.5.4. Example 6 (structural autoregressive conditional duration
model)

We assume that the mixing variables d̃(k)τi,n and c̃(k)τi,n are
interpolated by time-varying continuous stochastic parameters
(d̃(k)t , c̃

(k)
t ). We have that g(k)t := (d̃(k)t , c̃

(k)
t ). The central limit

theorem in Example 6 can be obtained as a straightforward
corollary of Theorem 1. If we define for any s ≥ 0 the grid
functions g(k)t (s) := (d̃(k)t , c̃

(k)
t ), the only difference between the

HBT model (5) and the structural ACD model (6) is that we hold
the grid between two observations in the latter model. In view
of this specific assumption which implicates that the quantities
of approximation are closer to the approximated quantities than
under the HBT model, the proof of Lemma 11 simplifies. The proof
of Lemma 14 remains unchanged as it deals only with quantities of
approximation.

A.6. Jump case: proof of Remark 6

Weupdate in this section the proof in the jump casemodel (14).
The idea is to exclude all the blockswherewe observe a jump. Such
blocks will be finitely counted, and we will have at most one jump
(either for Y (1)t or for Y (2)t but not for both prices at the same time)
in each block. This is themain differencewith the one-dimensional
case.

We introduce the notation

A(no)n :=

i ≥ 1 s.t. τ hi−1,n ≤ t and there is no jumps on [τ hi−1,n, τ

h
i,n]

.

The proof of Lemma 5 can be adapted because of the finiteness of
jumps. The proof of Lemma 6 remains unchanged. Lemma 7 and
Lemma 8 remain true in view of the finiteness of jumps. Lemmas 9
and 10 do not need any change. We modify Lemma 11 as follows.
Let l ≥ 1, we have that

sup
i∈A(no)n ,2≤j≤hn

E
∆τ 1Ci,j,n −∆τ̃ 1Ci,j,n

l = op

α2l
n


and

sup
i∈A(no)n ,2≤j≤hn

E
∆τ 1C,−,+i,j,n −∆τ̃

1C,−,+
i,j,n

l = op

α2l
n


.

The proof remains unchanged in view of the independence
assumption between jumps and the other quantities. Lemma 12
stays true with no further change.We introduce the new following
lemma to be inserted between Lemmas 12 and 13 in the proofs.

Lemma 16. We have

α−2
n


i∈An

Eτhi−1,n


hn
u=2


N(i−1)hn+u

2
+ 2N(i−1)hn+uN(i−1)hn+u+1



= α−2
n


i∈A(no)n

Eτhi−1,n


hn
u=2


N(i−1)hn+u

2
+ 2N(i−1)hn+uN(i−1)hn+u+1


+ op(1).

Proof. This is a simple consequence to the fact that we have at
most one jump in∆X (1)

τ1Ci,n
or∆X (2)

τ
1C,−,+
i,n

asymptotically, togetherwith

the finiteness of jumps. �

Starting fromLemma13up to the end of the proof of Theorem1,
in view of Lemma 16, we can use ‘‘i ∈ A(no)n ’’ in lieu of ‘‘i ∈ An’’. We
have thus proved that Theorem 1 is robust to jumps.
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