Exploring Regular Expression Comprehension

Carl Chapman*
Sandia National Laboratories
Albuquerque, NM, USA
carlallenchapman @ gmail.com

Abstract—The regular expression (regex) is a powerful tool em-
ployed in a large variety of software engineering tasks. However,
prior work has shown that regexes can be very complex and that
it could be difficult for developers to compose and understand
them. This work seeks to identify code smells that impact
comprehension. We conduct an empirical study on 42 pairs of
behaviorally equivalent but syntactically different regexes using
180 participants and evaluate the understandability of various
regex language features. We further analyze regexes in GitHub
to find the community standards or the common usages of various
features. We found that some regex expression representations
are more understandable than others. For example, using a
range (e.g., [0-9]) is often more understandable than a default
character class (e.g., [\d]). We also found that the DFA size
of a regex significantly affects comprehension for the regexes
studied. The larger the DFA of a regex (up to size eight), the more
understandable it was. Finally, we identify smelly and non-smelly
regex representations based on a combination of community
standards and understandability metrics.

Index Terms—Regular expression comprehension, equivalence
class, regex representations

I. INTRODUCTION

Regular expressions (regexes) are used fundamentally in
string searching and substitution tasks, such as word searching,
text editing, file parsing, user input validation, and access con-
trols. More advanced uses can be seen in search engines [1],
database querying [2], and network security [3]-[5].

Recent research has suggested that regular expressions are
hard to understand, hard to compose, and error prone [6].
Given their frequent appearances in software source code
and the difficulty of working with them, some effort has
been put into easing the burden on developers by providing
environments that make regexes easier to understand. Some
tools provide debugging environments which explain string
matching results and highlight the parts of regex patterns
which match a certain string [7], [8]. Other tools present
graphical representations (e.g., finite automata) of the regular
expressions [9], [10]. Still, others can automatically generate
strings according to a given regular expression [11], [12]
or automatically generate regexes according to a given list
of strings [13], [14]. The commonality of such tools and
techniques provides evidence that developers need help with
regex composition and comprehension.

In software engineering, code smells have been found to
hinder understandability of source code [15], [16]. Once

* This work was done while this author was at Iowa State University.

978-1-5386-2684-9/17/$31.00 (© 2017 IEEE

Peipei Wang
Department of Computer Science
North Carolina State University, USA
pwang7 @ncsu.edu

405

Kathryn T. Stolee
Department of Computer Science
North Carolina State University, USA
ktstolee@ncsu.edu

removed through refactoring, the code becomes more under-
standable, easing the burden on the programmer. In regular
expressions, such code smells have not yet been defined, per-
haps in part because it is not clear what makes a regex difficult
to understand or maintain. This is one of the goals of this work,
to explore language features that impact comprehension and
begin to identify code smells in regexes.

In regular expressions as in source code, there are multiple
ways to express the same semantic concept. For example, the
regex, aa matches an “a” followed by zero or more “a”, and
is equivalent to a+ , which matches one or more “a”. That is,
both regexes match the same language but are expressed using
different syntax. What is not clear is which representation,
aa* or a+, is more easily understood.

In this work, we focus on identifying regex comprehension
smells. We identify equivalence classes of regex represen-
tations that provide options for concepts such as double-
bounds in repetitions (e.g., a{l,2}, alaa) or character
classes (e.g., [0-9], [\d]). Based on an empirical study
measuring regex comprehension on 42 pairs of regexes using
180 participants, as well as an empirical study of nearly
14,000 regexes and their features, we identify smelly and non-
smelly regex representations. For example, aa « is more smelly
than a+, based on feature usage frequency in source code
(conformance to community standards) and understandability.
Our contributions are:

« An empirical study to evaluate regex comprehension with

180 participants for studying regex understandability,

« Identification of five types of equivalence classes and
18 corresponding representations for regular expressions,
and

« Identification of smelly and non-smelly regex representa-
tions to optimize 1) understandability and 2) conformance
to community standards, backed by empirical evidence.

Despite the frequent usage of regexes in source code [17],
this is the first work to explore regex comprehension.

II. RESEARCH QUESTIONS

In this work, we use the term regex representation to refer
to the syntactic expression of a regular expression. A feature
is a structural component of a regular expression (e.g., Kleene
star: * or custom character class: [1-5]). An equivalence
class is a group of behaviorally equivalent regular expressions.
To explore regex comprehension, we answer the following
research questions:

ASE 2017, Urbana-Champaign, IL, USA
Technical Research

-

@ A
(02) (3)

| pBs|pBBs|pBBBs |

|pBB?B?s |

(s2) ﬁil
SSS 5{3,3}

LWB GROUP
(using the abstract "A{2)}’
where A is any pattern)

DBB GROUP SNG GROUP
(using the abstract "pB{1,3}s’where B is any pattern), (using the abstract *S{3}’
\ p and s are any (possibly empty) prefix, suffix / where S is any pattern)

(cs)

([0-91a)
(\dJa)

=1 (0]1]2/3]4I5]6]7|8]9]a)

\007\036\062

\a[$]>

CCC GROUP
(using the concrete example of '[0-9a]’ and assuming an ASCII charset)

k

—O=O=0=0
LIT GROUP

(using the concrete example "\a\$>’
and assuming an ASCII charset)

J

Fig. 1. Types of equivalence classes based on language features. DBB = Double-Bounded, SNG = Single Bounded, LWB = Lower Bounded, CCC = Custom
Character Class and LIT = Literal. We use concrete regexes along with their Deterministic Finite Automaton (DFA) in the representations for illustration.
However, the A’s in the LWB group (or B’s in DBB group, S’s in SNG group, and so forth) abstractly represent any pattern that could be operated on by a
repetition modifier (e.g., literal characters, character classes, or groups). The same is true for the literals used in all the representations.

RQ1: Which regex representations are most understandable?
To answer RQI, we conduct a study in which programmers
are presented with a regex and asked comprehension ques-
tions about its matching behavior. By comparing accuracy
between regexes that match the same language but are ex-
pressed using different representations (e.g., tri[a—-£f]3 and
tri(alblcldlelf)3), we can measure understandability
and identify code smells.

We also explore factors that may impact comprehension,

namely regex string length, regex DFA size, and the equiva-
lence class representation. This analysis requires identification
of equivalence classes for regexes. By inspecting a Python
regex dataset of nearly 14,000 regexes [17], we formed an
initial set of five types of equivalence classes to explore.
RQ2: Which regex representations have the strongest commu-
nity support based on frequency? To answer RQ2, we explore
the publicly available regex dataset [17] and use the presence
and absence of language features as a proxy for community
support, where more frequently-used features are assumed to
be more understandable.
RQ3: Which regex representations are most desirable (i.e.,
least smelly) based on both community support and under-
standability? Based on RQ1l and RQ2, we identify smelly
and non-smelly regex features based on a combination of
comprehension metrics and community support.

ITI. EQUIVALENCE CLASSES

To explore understandability, we defined an initial set of
equivalence classes for regexes. Using the publicly available

behavioral clusters of Python regexes [17], we manually identi-
fied several representations that appeared in many of the larger
clusters. While they are not a complete set of equivalence
classes, this is the first work to explore regex understandability,
and these equivalence classes provide an initial testbed for
exploration.

Figure 1 shows five types of equivalence classes in grey
boxes and examples of behaviorally equivalent representations
in white boxes with identifiers in white circles. For example,
LWB is a type of equivalence class with representations L1,
L2, and L3. Regexes AAAx and AA+ map to L2 and L3,
respectively.

Each equivalence class is accompanied by a deterministic
finite automata (DFA) representing the behavior of the exam-
ple regexes. For example, with the SNG group, each of the
regexes accepts strings with a sequence of exactly three S’
characters. The accept state is marked by a double-circle. Next,
we describe each equivalence class group.

A. Custom Character Class Group

The Custom Character Class (CCC) group has regex repre-
sentations that use the custom character class language feature
or can be represented by such a feature. A custom character
class matches a set of alternative characters. For example, the
regex c[ao]t will match strings “cat” and ‘“cot” because,
between the c and t, there is a custom character class, [ao],
that specifies either a or o (but not both) must be selected.
We use the term custom to differentiate these classes from the
default character classes, : \d, \D, \w, \W, \s, \S and .,

406

provided by most regex libraries, though the default classes

can be encapsulated in a custom character class.

C1: Any pattern that contains a (non-negative) custom char-
acter class with a range feature like [a—f] as shorthand
for all of the characters between ‘a’ and ‘f” (inclusive)
belongs to C1.

C2: Any pattern that contains a (non-negative) custom char-
acter class without any shorthand representations, specifi-
cally ranges or defaults (e.g., [012] isin C2,but [0-2]
is not).

C3: Any pattern with a character class expressed using nega-
tion, indicated by a caret (i.e., ~) followed by a custom
character class. For example, the pattern [“ao] matches
every character except a or o.

C4: Any pattern using a default character class such as \d or
\W within a (non-negative) character class.

C5: These can be transformed into custom character classes
by removing the ORs and adding square brackets (e.g.,
(\d|a) in C5 is equivalent to [\da] in C4). All
custom character classes expressed as an OR of length-
one sequences, including defaults or other custom classes,
are in C5'.

Note that a pattern can belong to multiple representations.

For example, [a-f\d] belongs to both C1 and C4.

B. Double-Bounded Group

The Double-Bounded (DBB) group contains all regex pat-
terns that use some repetition defined by a (non-equal) lower
and upper boundary. For example, pB{1, 3} s represents a p
followed by one to three sequential B patterns, then followed
by a single s. This matches “pBs”, “pBBs”, and “pBBBs”.
D1: Any pattern that uses the curly brace repetition with a
lower and upper bound, such as pB{1, 3}s.

Any pattern that uses the questionable (i.e., ?) modifier
implies a lower-bound of zero and an upper-bound of one
(and hence is double-bounded).

Any pattern that has a repetition with a lower and upper
bound and is expressed using ORs (e.g., pB{1, 3} s be-
comes pBs | pBBs | pBBBs by expanding on each option
in the boundaries).

D2:

D3:

Patterns can belong to multiple representations (e.g.,
(alaa)X?Y{2,4} belongs to all three nodes: Y{2,4}
maps to D1, X? maps to D2, and (a|aa) maps to D3).

C. Literal Group

In the Literal (LIT) group, all patterns that are not purely
default character classes must use literal tokens. We use the
ASCII charset in which all characters can be expressed using
hex and octal codes such as \xF1 and \ 0108, respectively.
T1: Patterns that do not use any hex, wrapped, or octal
characters, but use at least one literal character. Special
characters are escaped using the backslashes.

Any pattern using a hex token, such as \x07.
Any pattern with a literal character wrapped in square
brackets. This style is used most often to avoid using a

T2:
T3:

TAn OR cannot be directly negated, it there is no edge between C3 and C5

backslash for a special character in the regex language,

for example, [{] which must otherwise be escaped like

\ .
T4: Any pattern using an octal token, such as \007.

Patterns often fall in multiple of these representations. For

example, abc\ 007 includes literals a, b, and ¢, and also octal
\007, thus belonging to T1 and T4. Not all transformations
are possible in this group. If a hex representation used for a
character is not on the keyboard, a transformation to T1 or T3
is infeasible.

D. Lower-Bounded Group

The Lower-Bounded (LWB) group contains patterns that
specify only a lower boundary on repetitions. This can be
expressed using curly braces with a comma after the lower
bound but no upper bound. For example, A{2, } will match
“AA”, “AAA”, “AAAA”, and any number of A’s greater or
equal to 2. In Figure 1, we chose the lower bound repetition
threshold of 2 for illustration; in practice this could be any
number, including zero.

L1: Any pattern using this curly braces-style lower-bounded
repetition (i.e., {}) belongs to node L1.

L2: Any pattern using the Kleene star (i.e., *), which means
Zero-or-more repetitions.

L3: Any pattern using the additional repetition (i.e., +). For
example, T+ means one or more T’s.

Patterns often fall into multiple nodes in this equivalence
class. For example, with A+Bx, A+ maps it to L3 and B«
maps it to L2.

E. Single-Bounded Group

The Single-Bounded (SNG) equivalence class contains three
representations in which each regex has a fixed number of rep-
etitions of some element. The important factor distinguishing
this group from DBB and LWB is that there is a single finite
number of repetitions, rather than a bounded range on the
number of repetitions (DBB) or a lower bound on the number
of repetitions (LWB).

S1: Any pattern with a single repetition boundary in curly
braces belongs to S1. For example, S{3}, states that S
appears exactly three times in sequence.

S2: Any pattern that is explicitly repeated two or more times
and could use repetition operators.

S3: Any pattern with a double-bound in which the upper
and lower bounds are same belong to S3. For example,
S{3, 3} states S appears a minimum of 3 and maximum
of 3 times.

The pattern fa[lmnop] [1lmnop] [lmnop] is a mem-
ber of S2 as [lmnop] is repeated three times, and
it could be transformed to fa[lmnop] {3} in S1 or
fa[lmnop] {3, 3} in S3.

IV. UNDERSTANDABILITY STUDY (RQ1)

This study presents programmers with regexes and asks
comprehension questions. By comparing the understandability

407

TABLE I
MATCHING METRIC EXAMPLE
String ‘RRx»’ Oracle P1 P2 P3 P4
1 “ARROW” v’ v v Vv
2 “qRs” v’ vioX X 2
3 “ROR” v’ v v ? -
4 “qrs” X v’ X v’ -
5 “08” X X X X -
Score 1.00 0.830 0.80 0.50 1.00
Vv = match, X= not a match, ? = unsure, — = left blank

of semantically equivalent regexes that match the same lan-
guage but have different syntactic representations, we aim to
identify understandability code smells. This study was imple-
mented on Amazon’s Mechanical Turk with 180 participants.
A total of 60 regexes were evaluated, constructing 42 pairs
of regex comparison. Each regex pattern was evaluated by 30
participants.

A. Metrics

We measure the understandability of regexes using two
complementary metrics, matching and composition. These are
referred to as the comprehension metrics. For a deeper look at
the data to gain a better understanding of factors that impact
comprehension, we also compute regex length and DFA size
for each regex.

Matching: Given a pattern and a set of strings, a participant
determines by inspection which strings will be matched by
the pattern. There are four possible responses for each string,
matches, not a match, unsure, or blank. An exarnple2 from our
study is shown in Figure 2.

The percentage of correct responses, disregarding blanks
and unsure responses, is the matching score. For example,
consider regex pattern ‘RRx’, the five strings shown in
Table I, and the responses from four participants in the PI,
P2, P3 and P4 columns. The Oracle indicates the first three
strings match and the last two do not; P/ answers correctly
for the first three strings and the fifth, but incorrectly on the
fourth, so the matching score is 4/5 = 0.80. P2 incorrectly
thinks that the second string is not a match, so the score is
also 4/5 = 0.80. P3 marks ‘unsure’ for the third string and
so the total number of attempted matching questions is 4. P3
is incorrect about the second and fourth string, so they score
2/4 = 0.50. For P4, we only have data for the first and second
strings, since the other three are blank. P4 marks ‘unsure’ for
the second string so only one matching question has been
attempted; the matching score is 1/1 = 1.00.

Blanks were incorporated into the metric because questions
were occasionally left blank in the study. Unsure responses
were provided as an option so not to bias the results through
blind guessing. These situations did not occur very frequently.
Out of 1,800 questions (180 participants * 10 questions each),
only 1.8%(32) were impacted by a blank or unsure response
(never more than four out of 30 responses per pattern).

2Task instructions are also available: https:/github.com/wangpeipei90/
RegexSmells/blob/master/questionnaire.pdf

Subtask 7. Regex Pattern: ' ((q4£) ?ab) '

matches @ not a match unsure

7.A 'qfad’

matches @ not a match unsure

7.B 'fq4f’

matches not a match @ unsure

7.C 'zlmab'

matches not a match @ unsure

7.0 'ab'

© matches not a match unsure

7.E 'xyzqgdfab'
7.F Compose your own string that contains a match: 4q4fab|

Fig. 2. Questions from one pattern in one HIT

Composition: Given a pattern, a participant composes a
string they think it matches (question 7.F in Figure 2). If the
participant is accurate, a composition score is 1, otherwise 0.
For example, given the pattern (g4fab|ab) from our study,
the string, “xyzq4fab” matches and gets a score of 1, but the
string, “acb” does not match and gets a score of 0.

To determine the match between a string and a pattern, the
pattern is compiled using the re.compile module in Python.
An instance of re.RegexObject m is created using the compiled
pattern. m.search() returns an instance of re.MatchObject m?2
with the string given as the input to this function. If m2 is not
None, then that string was a match and scored 1; otherwise it
scored 0.

Regex Length: Given a pattern, the regex length is com-
puted by its literal string length. For example, regexes \ 072
and ab+c are both length four.

DFA Size: Given a pattern,To compute the size of minimal
DFA, we run both brics [18] and Rex [12] on each regex, and
manually check their results to guarantee their correctness.

B. Design

We implemented this study on Amazon’s Mechanical Turk
(MTurk), a crowdsourcing platform where requesters create
human intelligence tasks (HITs) for completion by workers.

Worker Qualification: Qualified workers had to answer
four of the five basic regex questions correctly. These questions
were multiple-choice and asked the worker to analyze the
following patterns: a+, (r|z), \d, g, and [p-s].

Tasks: Guided by the patterns in the corpus, we created 60
regex patterns that were grouped into 26 semantic equivalence
groups. There were 18 groups with two regexes targeting
various edges in the equivalence classes. The other eight
groups had three regexes each. In total there are 42 pairs of
patterns. In this way, we can draw conclusions by comparing
representations since the regexes evaluated were semantically
equivalent.

To form the semantic groups, we took a regex from the
corpus, matched it to a representation in Figure 1, trimmed it
down so it contained little more than just the feature of interest,
and then created other regexes that are semantically equivalent
but belong to other nodes in the equivalence class. For
example, a semantic group with regexes ((gq4f) {0, 1}ab,

408

TABLE 11
3-FACTOR ANOVA WITH AVERAGE MATCHING OR COMPOSITION
ACCURACY AS DEPENDENT VARIABLES, CONSIDERING REPRESENTATION
(REP), DFA SIZE (DFA_SIZE), AND REGEX LENGTH (LEN) AS
INDEPENDENT VARIABLES

Average Matching Average Composition

Df | F value Pr(>F) F value Pr(>F)
dfa_size 1 7.632 0.0153 * | 10.084 0.00674 **
len 1 3.325 0.0896 - | 0.001 0.98161
rep 15 2.062 0.0921 - 1.224 0.35538
dfa_size:len 1 1.002 0.3339 1.384 0.25907
dfa_size:rep 14 0.709 0.7355 0.920 0.56075
len:rep 10 0.924 0.5397 0.599 0.79054
dfa_size:len:rep 3 1.163 0.3589 0.678 0.58002
Residuals 14

c«a=0.10 *a=0.05 **a=0.01 ***a =0.001

((g4f)?ab),and (g4fab|ab) belong to D1, D2, and D3,
respectively. A group with regexes ([0-9]1+)\. ([0-9]+)
and (\d+) \. (\d+) isintended to evaluate the edge between
C1 and C4. We note that if we only used regexes from the
corpus, we would have had regexes with different semantics at
each node, or with additional language features, which would
make the comparisons of the targeted features difficult.

For each of the 26 semantic groups, we created five strings
for the study, where at least one matched and at least one did
not match. These were used to compute the matching metric.
Once all the patterns and matching strings were collected, we
created tasks for the MTurk participants as follows: randomly
select a pattern from 10 of the 26 semantic groups. Randomize
the order of these 10 patterns, as well as the order of the
matching strings for each pattern. After adding a question
asking the participant to compose a string that each pattern
matches, this creates one task on MTurk, such as the example
in Figure 2. This process was completed until each of the 60
regexes appeared in 30 HITs, resulting in a total of 180 total
unique HITs.

Implementation: Workers were paid $3.00 for successfully
completing one and only one HIT. The average completion
time for accepted HITs was 682 seconds (11 mins, 22 secs).
A total of 54 HITs were rejected: 48 had too many blank
responses, four were double-submissions by same workers,
one did not answer composition questions, and one missed
data of 3 questions. Rejected HITs were returned to MTurk to
be completed by others.

Participants: In total, there were 180 participants. A major-
ity were male (83%). Most had at least an Associates degree
(72%), were at least somewhat familiar with regexes (87%),
and had prior programming experience (84%).

C. Analysis

We computed a matching and composition score for each
regex based on the 30 participant responses. The average
analysis or average composition is computed by averaging the
associated 26-30 values for each metric for each of the 60
regexes (fewer than 30 values were used if all the responses in
a matching question were a combination of blanks and unsure).

Of the original 42 pairs, we report scores for 41. Due to
a design flaw, the regexes evaluated, \ ..+ and \.+. were

not semantically equivalent (the former is missing an escape
and should be \.\.«), so this was omitted from the data.
In the end, we analyzed 58 regexes that cover 17 edges from
Figure 1.

To gain a better understanding of why some regexes may
be more understandable than others, we also look at the
impact of the representation from Figure 1, regex length,
and DFA size® on the comprehension metrics. Note that we
retain all 60 regexes for this analysis as we are looking at the
properties of regexes individually. We conduct two three-factor
analysis of variances (ANOVAs) with matching accuracy and
composition accuracy as the dependent variables. We also
conduct the correlation analysis between these three factors
and the composition metrics. We use Spearman’s Rank-Order
Correlation because we have no priori knowledge about the
distributions of the factors. Since the regex representations
are categorical data, these are excluded from the correlation
analysis.

D. Results

The ANOVA in Table II shows that DFA size significantly
affects both the average matching accuracy and the average
composition at @« = 0.05 and o = 0.01, respectively. The
length and representation from Figure 1 each significantly
affect the average matching accuracy at = 0.10. Since
the DFA sizes vary across the pairwise comparisons within
a representation, we present our results for matching and
composition using each of the 41 pairs of regexes separately,
rather than in aggregate over the equivalence class edges
explored.

For the comprehension metrics, Table III presents the re-
sults. Each row represents a Pair of regex evaluated by study
participants. The representations for the regexes per Figure 1
are shown in the Edge column, which is how the table is sorted.
The Regexl and Regex2 columns identify the regexes used in
the study, mapping to the first and second representations in
the Edge column, respectively. Matchl is the average matching
for Regex1 and Match?2 is the average matching for Regex2.
Using the Mann-Whitney test of means, the sigM column
following tests if there is a significant difference between the
accuracies. The Compl column presents the percentage of
the string responses for that were in fact correctly matched
by Regexl. Comp2 presents the same information, except
for Regex2. The following sigC column uses a test of two
proportions to identify if the percentage of the participants
who correctly composed a string for Regex1 is significantly
different than the percentage who correctly composed a string
for Regex2.

To illustrate, consider pair 16 in Table III. One pair of
regexes was ([}{]) and (\{|\}) in C4 and CS, respec-
tively, with average matching scores of 78.79% and 70.33%
and average composition scores of 50.00% and 86.67%,
respectively. The difference between the composition scores

3Note that the study was not specifically designed for regex length and
DFA size

409

TABLE III

PAIRWISE COMPARISONS OF REGEXES. EACH MATCHING OR COMPOSITION VALUE IS COMPUTED BASED ON APPROXIMATELY 30 DATA POINTS FROM 30

STUDY PARTICIPANTS

Pair Edge Regex1 Regex2 Match1(%) Match2(%) SigM| Comp1(%) Comp2(%) SigC

1 Cl-C2 trila—-f]3 trif[abcdef]3 94.00 93.17 83.33 83.33

2 Cl1-C2 nol[w-z]5 nol[wxyz]5 93.33 87.17 86.67 86.67

3 Cl-C3 nolw-z]5 no (w|x|y|z) 5 93.33 93.67 86.67 96.67

4 Cl - C4 ([0-91+)\.([0-91+) A\d+)\. (\a+) 90.17 94.44 83.33 93.33

5 Cl1-C4 xgl([0-91{1,3})% xgl (\d{1,3}) % 82.67 81.33 76.67 66.67

6 Cl-C4 [a-f] ([0-9]+) [a—f] [a-£] (\d+) [a—£] 91.17 83.33 80.00 70.00

7 - C4 & ([A-Za-z0-9_]+); & (\w+) ; 81.90 82.59 56.67 66.67

8 Cl1-C4 1qg[A-Za-z0-9_][A-Za-z0-9_] lg\w\w 86.00 78.11 83.33 70.00

9 Cl1-C4 tuv[A-Za-z0-9_] tuv\w 89.17 86.00 83.33 70.00

10 C1-C5 tri[a-f]3 tri(alb|c|dle|f) 3 94.00 86.11 83.33 80.00

11 C2-cC4 \t\r\f\n] [\s] 82.99 92.41 3.33 0.00

12 C2-C5 trilabcdef]3 tri(alb|c|dle|f) 3 93.17 86.11 83.33 80.00

13 C2-C5 nolwxyz]5 no (w|x|y|z) 5 87.17 93.67 86.67 96.67

14 C3-C4 ["0-9A-Za-z] [\W_1] 64.50 61.00 46.67 53.33

15 C3-C4 [°0-9] [\D] 58.00 73.33 63.33 73.33

16 C4-C5 ([HD ANN\D 78.79 70.33 50.00 86.67 ok

17 C4-C5 ([:;1) (:]3) 81.38 94.00 46.67 46.67

18 D1 -D2 ((g4f){0,1}ab) ((g4f) ?ab) 82.93 79.25 50.00 40.00

19 D1-D2 (dee (do){1,2}) (deedo (do) ?) 84.83 77.17 66.67 60.00

20 D1 -D3 ((gq4£){0,1}ab) (g4fablab) 82.93 84.50 50.00 60.00

21 D1-D3 (dee (do){1,2}) (deedo|deedodo) 84.83 90.00 66.67 63.33

22 D2-D3 ((g4f) ?ab) (g4fablab) 79.25 84.50 40.00 60.00

23 D2 -D3 (deedo (do) ?) (deedo|deedodo) 77.17 90.00 * 60.00 63.33

24 L2-L3 zaax za+ 86.67 90.67 70.00 50.00

25 L2-L3 RR= R+ 86.00 91.56 66.67 66.67

26 S1-S2 %([0-9A-Fa-f1{2}) % ([0-9a-fA-F] [0-9a-fA-F])| 77.78 73.44 50.00 60.00

27 S1 -8S2 s&d([aeioul{2})z d([aeiou] [aeiou])z 91.28 95.34 83.33 83.33

28 S1-S2 fallmnopl{3} fa[lmnop] [1lmnop] [1lmnop] 87.17 88.00 83.33 73.33

29 T1-T2 xyz[_\[\1'\"\\I xyz [\x5b—-\x5f] 77.78 78.67 86.67 56.67 *

30 T1-T2 t[:;]1+p t[\x3a-\x3bl+p 94.33 88.59 80.00 63.33

31 T1-T3 s\ \d+(:["}1+\} (ISTI{\G+(: ["}1+1}]) 81.61 75.18 63.33 73.33

32 TI-T3 t\.\$+\d+\= EL.1[81+\d+[*] 88.67 94.00 56.67 73.33

33 T1-T3 \{\$(\d+\ \d)\} ({1081 (\a+1.1\d) [}] 93.28 89.33 70.00 66.67

34 T1-T4 =xyz| \ 1\"\\J xyz[\0133-\0140] 77.78 71.35 86.67 33.33 ok

35 T1-T4 t[:;1+ £ [\072\0731+p 94.33 90.00 80.00 70.00

36 T1-T4 (\{|\}) (1\0175\01731) 70.33 54.40 86.67 30.00 ok

37 T1-T4 (IHD (1\0175\01731) 78.79 54.40 ok 50.00 30.00

383 T1-T4 (:]:) ([\072\0731) 94.00 65.77 ok 46.67 23.33

39 T1-T4 ([:;1) ([\072\0731) 81.38 65.77 46.67 23.33

40 T2-T4 xyz[\x5b-\x5f] xyz[\0133-\0140] 78.67 71.35 56.67 33.33

41 T2-T4 t[\x3a-\x3bl+p £[\072-\073]+p 88.59 90.00 63.33 70.00
-«a=0.10 *a=0.05 FFa=0.0I *Fq =0.001

is significant at o = 0.01, yet the difference between the
accuracies is not. In fact, the representation C5 was more
understandable in that participants could more effectively
compose a string that it would match, but C4 is more un-
derstandable in that participants could more easily determine
which of a set of strings would be matched by C4. Thus,
neither representation is bolded in the Edge column since
there is a conflict. If both comprehension metrics indicated
a preferred representation, that representation is bolded (e.g.,
C4 in pair 15). Ties are broken by deferring to the other
metric. For example, there’s a tie in composition for pair 17,
but matching indicates a preference for C5. Therefore C5 is
bolded.

For pairs 16, 29, 34, and 36, the difference in composition
is significant at o < 0.05, indicating differences favoring C5
over C4, T1 over T2, and twice favoring T1 over T4. For pairs
23, 37, and 38, the difference in matching is significant with
a < 0.05, indicating differences favoring D3 over D2 and
twice favoring T1 over T4. Interestingly, for pairs 16 and 29,
while the differences in composition are significant, there is a
conflict between the composition metrics. Further investigation
is needed to understand in what circumstances the metrics are
in conflict with one another. Recall that participants were able
to select unsure for whether a string is matched by a pattern.
From a comprehension perspective, this indicates some level
of confusion. For each pattern, we counted the number of

410

responses containing at least one unsure. Overall, the highest
number of unsure responses came from T4 and T2, which have
octal and hex representations of characters. The least number
of unsure responses were in L3 and D3. These results mirror
the understandability analysis, as T4 and T2 are generally
lower in comprehension, and L3 and D3 are generally higher.

While the ANOVA indicates that variance in matching is
due to all three factors, representation, DFA size, and regex
length, it is not entirely clear why. Variance in composition is
impacted by DFA size only. Between DFA size and compo-
sition, there is a strong, positive correlation at o« = 0.01 with
p = 0.354. At first, this result may seem counter-intuitive, but
considering that larger DFAs may represent more constrained
regex languages (i.e., languages that accept fewer strings),
these may be easier to compose a string for. However, as the
explored DFA size range was between two and eight nodes,
these results may not generalize to larger regexes. None of the
other correlations are significant with o < 0.05.

E. Summary

Matching and composition are impacted by DFA size, and
matching is also impacted by regex length and representation,
showing some support that the representation of the regex
impacts comprehension. The larger the DFA, the easier it
was for the community to generate strings that match it.
There also appears to be a clear trend favoring T1 over T4.
Representations D3 and C5 are also preferred. While Cl1
is favored comparisons against C2, C4, and C5, none are
significant.

V. COMMUNITY SUPPORT STUDY (RQ2)

The goal of this evaluation is to understand how frequently
each of the regex representations appears in source code, as a
way to identify community standards code smells [19], [20].

A. Artifacts

We analyzed an existing corpus of regexes collected from
Python code in GitHub projects [17]. This dataset has 13,597
distinct (non-duplicate) regex patterns from 1,544 projects.

This corpus was created by analyzing static invocations to
the Python re library. Consider the Python snippet:
rl = re.compile (' (0|-2[1-9][0-9]%)$’, re.MULTILINE)
The function re.compile compiles the regex (0|-2[1-
9]1[0-9]%)$ into rl, an object of re.RegexObject.
re MULTILINE is a flag that changes the matching behavior
from the default one line to multiple lines. This particular
regex will match strings with any integer at the end of a line
(“~72” indicates the integer may be negative).

B. Metrics

We measure community support by matching regexes in
the corpus to representations in Figure 1 and by counting the
patterns and projects. These are referred to as the community

standards metrics. A regex can belong to multiple represen-
tations and to multiple projects since the corpus tracks its
duplicates.

C. Analysis

To match patterns to representations, we either used the
PCRE parser to parse features of patterns or extracted token
streams of them. The choice depends on the characteristics of
the representation. Our analysis code is available on GitHub?.
The details of this process are described as follows.

Presence of a Feature: For representations that require
a particular feature, we used the PCRE parser to decide
membership. This applies to C3, D1, D2, L1, L2, L3, SI,
and S3.

Features and Pattern: Identifying D3 requires an OR
containing at least two entries with a sequence repeated N
times in one entry and the same sequence repeated N+1 times
in another entry. We first looked for a sequence of N repeating
groups with an OR-bar (i.e., |) next to them on a side. This
produced a list of 113 candidates and we narrowed them down
manually to 10 actual members.

T1 requires that no characters are wrapped in brackets or
are hex or octal characters, which matches over 91% of the
patterns analyzed; T2 requires a literal character with a hex
structure; T3 requires that a single literal character is wrapped
in a custom character class (a member of T3 is always a
member of C2); T4 requires a literal character with a Python-
style octal structure.

Token Stream: C1 requires a non-negative class of charac-
ters whose ASCII codes are consecutive; C2 requires a custom
character class which does not use ranges or defaults; C4
requires the presence of a default character class within a
custom character class; C5 requires an OR of length-one se-
quences (literal characters or any character class); S2 requires
a repeated element which could be a character class, a literal
character, or a smaller regex encapsulated in parentheses.
These representations were treated as sequences of tokens. To
identify them, we chose token streams instead of the PCRE
parser.

D. Results

Table IV presents the results. Node references Figure 1;
Description briefly describes the representation; Example pro-
vides a regex from the corpus; nPatterns counts the patterns
that belong to the representation; % patterns shows the per-
centage of patterns out of 13,597; nProjects counts the projects
that contain a regex belonging to the representation; % projects
shows the percentage of projects out of 1,544. For example,
D1 is more concentrated in a few projects and T3 is more
widespread across projects. This is because comparing to D1,
T3 appears in 39 fewer patterns but 34 more projects.

The pattern frequency is our guide for setting the commu-
nity standards. For example, since C1 is more prevalent than
C2 in both patterns and projects, we could say that C2 is

“https://github.com/wangpeipei90/RegexSmells

411

TABLE IV

HOW FREQUENTLY IS EACH REGEX REPRESENTATION STYLE USED?

Node Description Example nPatterns % patterns nProjects % projects
Cl char class using ranges “[1-9][0-9]%*S 2,479 18.2% 810 52.5%
C2 char class explicitly listing all chars [aeiouy] 1,903 14.0% 715 46.3%
C3 any negated char class ["A-Za-z0-9.]1+ 1,935 14.2% 776 50.3%
C4 char class using defaults [-+\d.] 840 6.2% 414 26.8%
C5 an OR of length-one sub-patterns (@I<|>1=1") 245 1.8% 239 15.5%
D1 curly brace repetition like {M,N} with M<N “x{1,4}$ 346 2.5% 234 15.2%
D2 zero-or-one repetition using question mark “http(s)?:// 1,871 13.8% 646 41.8%
D3 repetition expressed using an OR T(Q10Q)\<(.+)\>S 10 1% 27 1.7%
Tl no HEX, OCT or char-class-wrapped literals get_tag 12,482 91.8% 1,485 96.2%
T2 has HEX literal like \xF5 [\x80-\xff] 479 3.5% 243 15.7%
T3 has char-class-wrapped literals like [$] [STI{I\d+: ([}1+)[}] 307 2.3% 268 17.4%
T4 has OCT literal like \0177 [\041-\176]+:5% 14 1% 37 2.4%
L1 curly brace repetition like {M,} (DN) [0-9]{4,} 91 1% 166 10.8%
L2 zero-or-more repetition using Kleene star \sx (#.%)°?$ 6,017 44.3% 1,097 71.0%
L3 one-or-more repetition using plus [A-Z] [a-z]+ 6,003 44.1% 1,207 78.2%
S1 curly brace repetition like {M} ~[a-f0-9]{40}$ 581 4.3% 340 22.0%
S2 explicit sequential repetition ff:ff:ff:ff:fE:£F 3,378 24.8% 861 55.8%
S3 curly brace repetition like {M,M} U[\dA-F]{5,5} 27 2% 32 2.1%

smelly since it could better conform to community standards
if expressed as Cl.

E. Summary

Based on patterns, the winning representations per equiva-
lence class are C1, D2, T1, L2, and S2. With one exception,
these are the same project-based recommendations; L3 appears
in more projects than L2, so it is unclear which is smelly.

VI. DESIRABLE REPRESENTATIONS (RQ3)

To determine the overall trends in the data, we created
and compared total orderings on the representations in each
equivalence class with respect to the comprehension (RQ1)
and community standards (RQ2) metrics.

A. Analysis

Total orderings were represented in directed graphs with
representations as nodes and edge directions determined by
the metrics: matching and composition of understandability;
patterns and projects of community standards. The graphs for
comprehension are based on Table III and for community sup-
port are based on Table IV. Within each graph, a topological
sort created total orderings.

Building the Graphs: In the community standards graph,
a directed edge C'2C'1 is used when nPatterns(C1) > nPat-
terns(C2) and nProjects(C1) > nProjects(C2). When there is
a conflict between nPatterns and nProjects, as is the case
between L2 and L3, an undirected edge L2L3 is used. For
example, Figure 3 shows the graphs for the CCC group;
Figure 3b is based on community standards.

A similar process is used to build the graphs based on
the comprehension metrics. In Table III, each row maps to
an edge in the understandability graph. If the matching and

‘@

oy @"\
5”7 e\‘!a

(a) (b)

Fig. 3. Trend graphs for the CCC equivalence graph: (a) represent the
comprehension analysis (RQ1) and (b) represent the artifact analysis (RQ2)

composition results both indicate a favorite (i.e., a bolded
representation in the Edge column of Table III), there is
a directed edge. For example, in Pair 3, the matching and
composition metrics for C3 are higher than C1, resulting in a
directed C'1C'3 arrow. If one of the metrics is a tie, the other
is used to break the tie; in Pair 2, the composition scores are
the same but C1 is preferred based on matching, resulting in a
c20 i If there is a conflict between the metrics, an undirected
edge is used, as is the case with Pair 14, resulting in C3C4.
An example is shown in Figure 3a, which has 17 total edges,
14 of which are directed and three are undirected.

As a general rule, for both graphs, the higher the ratio of
incoming edges to total edges, the less smelly the node.

Topological Sorting: Once the two graphs are built for each
equivalence class type, within each graph, we sort the nodes
to identify a (preferably unique) total ordering on the nodes.
This ordering represents preferences from the perspective of
the comprehension or community standards metrics.

For each node n, we compute the ratio of
in_deg(n)/deg(n) where in_deg(n) is the number of
incoming edges to n, and deg(n) is the total edges

412

TABLE V
TOPOLOGICAL SORTING, WITH THE LEFT-MOST POSITION BEING HIGHEST
(NON-SMELLY) AND THE RIGHT-MOST BEING MOST SMELLY

Understandability | Community
CCC CIC5C3C4C2 | C1C3C2C40C5
DBB | D3 D1 D2 D2 D1 D3
LBW | L3 L2 L3 L2 L1
SNG | S2S1 S2 S1 83
LIT T1 T3 T2 T4 T1 T3 T2 T4

touching n. For example, in Figure 3a, in_deg(C5) = 2
and deg(C5) = 5. The higher the ratio (that is, the more
incoming edges indicating preference), the higher the node
appears in the sorted list. For example, with node CI in
Figure 3a, the ratio is 7/10 since Cl is involved in ten total
comparisons and is favored in seven. The ratio for node C2
is 1/5 as C2 is involved in five comparisons, is preferred in
one, is strictly not preferred in three, and has one with no
preference, represented as an undirected edge.

One challenge with this (and any topological sorting ap-
proach, such as Kahn’s algorithm), is that the total ordering is
not necessarily unique and often multiple nodes have similar
properties. Thus, we mark ties in order to identify when a
tiebreaker is needed. Breaking ties on the community standards
graph involves choosing the representation that appears in a
larger number of projects, as it is more widespread across the
community. Breaking ties in the understandability graph uses
the RQI results. Based on Table III, we compute the average
metrics for each representation and select the winner.

B. Results

The total orderings on nodes for each graph are shown in
Table V. For example, given the graphs in Figure 3a and
Figure 3b, the topological sorts are C1 C5 C3 C4 C2 and
Cl C3 C2 C4 C5, respectively.

Considering both topological sorts, there is a clear winner
in each equivalence class except DBB. This is C1 for CCC,
L3 for LBW, S2 for SNG, and T1 for LIT. While L3 is the
winner for the LBW group, we note that L2 appears in slightly
more patterns. DBB is different as the orderings are completely
reversed depending on the analysis. Further study is needed
on this, as well as LBW and SNG since not all nodes were
considered in the understandability analysis.

These results can guide regex design. For example, to match
numbers from one to 999, there are (at least) three options:
A=1[1-911[1-91[0-9]1][1-9]1[0-9]1[0-9],B=1[1-
91[0-912[0-9]2,and C'= [1-9]1[0-91{0,2}. A con-
tains representations {C1, D3, S2}, B contains {Cl, D2},
and C contains {C1, D1}. According to Table V, the sorting
in understandability is A>C>B since D3>D1>D2. However,
what we usually see in source code are B and C but not
A. The reason might be that the representation of A takes
more time to type, or may have a longer runtime performance.
In another example, we prefer $[0-9]*.[0-9] [0-9] to
$[0-91*.[0-91{2} in order to match dollar amounts. This
is because S2 in the former regex is preferred to S1 in the latter
regex, for all metrics.

C. Summary

Having a consistent and clear winner is evidence of a pref-
erence with respect to community standards and understand-
ability, and thus provides guidance for potential refactoring.
This positive result, that the most popular representation in the
corpus is also the most understandable, makes sense as people
may be more likely to understand things that are familiar or
well documented.

VII. DISCUSSION

Based on our studies, we have identified preferred regex
representations that may make regexes easier to understand
than their smelly counterparts. Here, we summarize the results.

A. Implications

Our goal in this work was to identify code smells in regular
expressions. In an evaluation using humans where we measure
comprehension of various regular expressions, we find that it
is easier to understand regexes that do not use hex or octal
characters, that repetition operators, such as ? in D2 can
decrease comprehension, and that using ranges is preferred
to some character classes (e.g., [A-Za—z0-9_ is often more
understandable than \w).

In general, the factors that explain differences in compre-
hension metrics are the DFA size and the representation, where
DFA sizes range from two to eight and the representations are
as defined in Section 1. The implications of these results are
for refactoring tool designers and code maintainers. Opting to
use the preferred regex representations, when possible, may
increase the understandability of regexes in source code. Since
there are differences in regex comprehension based on how
regexes are syntactically composed, it also has implications for
refactoring tool designers to add refactoring for comprehen-
sion, which could enable developers to more easily compose
regexes that are easier to understand.

B. Opportunities For Future Work

Equivalence Class Models: We looked at five types of equiv-
alence classes, each with three to five representations. Future
work could consider models with more types of equivalence
classes, such as:
e Multiline option: (?m)G\n = (?m) G$
e Case insensitive: (?1i) [a-z] = [A-Za-z]
o Backreference: (X) g\l = (?P<name>X) g\g<name>
There also may exist critical comprehension differences
within a representation. For example, between C1 (e.g., [0—
9a]) and C4 (e.g., [\dal), it could be that [0-9] is
preferred to [\d], but [A-Za-2z0-9_] is not be preferred
to [\w]. By creating a more granular model of equivalence
classes and carefully evaluating alternative representations of
the most frequently used specific patterns, additional useful
smells could be identified.
Automated Improvement: Currently the equivalence classes
are identified manually. In future work, we will consider
automatically generating the equivalence classes by building
behavioral clusters and observing how regex representations
differ within those clusters.

413

C. Threats to Validity

Internal: We measure understandability using two metrics:
matching and composition. These measures may not reflect the
actual understanding of regex behavior. To mitigate, we used
multiple metrics that require reading and writing regexes.

We measure community support using two metrics: patterns
and projects. These measures may not reflect the actual desire
of the community to use the representations contained within.
To mitigate, we use multiple metrics.

Participants evaluated regular expressions on MTurk, which
may not be reflective enough of the context in which pro-
grammers would encounter regexes in practice. Further study
is needed to determine the impact of the experimental context.

Some regex representations from the equivalence classes
were not involved in the understandability analysis and that
may have biased the results against those nodes. More com-
plete coverage of the edges in the equivalence classes is
needed.

We treated unsure responses as omissions that did not count

against the matching scores. Thus, if a participant answered
two strings correctly and marked the other three strings as
unsure, then this was 2/2 correct, not 2/5. This may have
inflated the matching scores, however, less than 5% of the
matching scores were impacted by such responses.
External: The regexes used in the evaluation were inspired
by those found in Python code, which is just one language
that has library support for regexes, and may not generalize to
other languages. Furthermore, the DFAs for the regexes ranged
in size from two to eight, so the comprehension metrics may
not generalize to larger regexes.

Our criteria for membership in a representation may overes-
timate the opportunities for refactoring to address the smells.
For example, [a—£f] in CI cannot be refactored to C4 since
there does not exist a default character class for that range of
characters. The transformation between T4 and T1 may not
be possible if the regex matches on non-printable characters,
which require hex or octal representation. A finer-grained
analysis is needed to identify actual refactoring opportunities
from the smells.

Participants in our survey came from MTurk, which may
not be representative of people who read and write regexes
on a regular basis. However, all participants demonstrated
knowledge of regexes through a qualification test. Our survey
are done online without supervision and cheating could also
be a factor impacting the results.

The results of the understandability analysis may be closely
tied to the particular regexes chosen for the experiment. For
many of the representations, we had several comparisons. Still,
replication with more regex patterns is needed.

VIII. RELATED WORK

Regular expression understandability has not previously
been studied directly, though prior work has suggested that
regexes are hard to read and understand [17] and noted
that there are tens of thousands of bug reports related to
regexes [6]. To aid in regex creation and understanding, tools

have been developed to support more robust creation [6], to
allow visual debugging [21], or to help programmers complete
regex strings [22]. Other research has focused on removing
the human from the creation process by learning regular
expressions from text [13], [14].

Code smells in object-oriented languages were introduced
by Fowler [23]. Researchers have studied the impact of code
smells on program comprehension [15], [16], finding that
the more smells in the code, the harder the comprehension.
Code smells have been extended to other language paradigms
including end-user programming languages [19], [24]-[26].
Using community standards to define smells has been used
in refactoring for end-user programmers [19], [26].

Regular expression refactoring has not been studied directly,
though refactoring literature abounds [27]-[29]. Refactoring
for conformance to the community in end-user programs [19],
[20] has been proposed previously, and is the inspiration
behind RQ2 in this work. The closest to regex refactoring
comes from research recent work that uses genetic program-
ming to optimize regexes for runtime performance while
maintaining their behavior in the matching language [30].
Similarly, other research has focused on expediting regular
expressions processing on large bodies of text [31], similar to
refactoring for performance. Our work is complementary to
these efforts, where our focus is on comprehension and theirs
is on performance.

Regarding applications, regular expressions have been used
for test case generation [32]-[35], and as specifications for
string constraint solvers [11], [36]. Flipping this around, recent
approaches have used mutation to generate test strings for
regular expressions themselves [37].

Exploring language feature usage by mining source code has
been studied extensively for Smalltalk [38], JavaScript [39],
Python regular expressions [17], and Java [40]-[43], and more
specifically, Java generics [42] and Java reflection [43].

IX. CONCLUSION

In an effort to find smells that impact regex understand-
ability, we created five types of equivalence classes and used
these models to investigate the most common representations
and most comprehensible representations per class. The high
agreement between the community standards and understand-
ability analyses suggests that one particular representation
can be preferred over others in most cases. Based on these
results, we recommend using hex to represent unprintable
characters in regexes instead of octal and using escape special
characters with slashes instead of wrapping them in brackets.
Further research is needed into more granular models that treat
common specific cases separately.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful com-
ments. This research is supported in part by NSF SHF-
EAGER-1446932 and NSF SHF-1645136.

414

[1]

[2]

[3

—

[4]

[51

[6]

[7

—

[8]
[91

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu, “Fully automatic
wrapper generation for search engines,” in Proceedings of the 14th
international conference on World Wide Web. ~ACM, 2005, pp. 66—
75.

A. S. Yeole and B. B. Meshram, “Analysis of different technique
for detection of sql injection,” in Proceedings of the International
Conference & Workshop on Emerging Trends in Technology, ser.
ICWET °’11. New York, NY, USA: ACM, 2011, pp. 963-966.
[Online]. Available: http://doi.acm.org/10.1145/1980022.1980229

“The Bro Network Security Monitor,” https://www.bro.org/, May 2015.
[Online]. Available: https://www.bro.org/

B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network intru-
sion detection with reconfigurable hardware,” in Field-Programmable
Custom Computing Machines, 2002. Proceedings. 10th Annual IEEE
Symposium on. 1EEE, 2002, pp. 111-120.

D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and
A. Di Pietro, “An improved dfa for fast regular expression matching,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 5, pp.
29-40, 2008.

E. Spishak, W. Dietl, and M. D. Ermnst, “A type system for
regular expressions,” in Proceedings of the I14th Workshop on
Formal Techniques for Java-like Programs, ser. FTfJP ’12. New
York, NY, USA: ACM, 2012, pp. 20-26. [Online]. Available:
http://doi.acm.org/10.1145/2318202.2318207

“Online regex tester, debugger with highlighting for php, pcre, python,
golang and javascript,” https://regex101.com/.

“Regexr: Learn, build, and test regex,” https://regexr.com/.

“Regular expression visualizer using railroad diagrams,” https://regexper.
com/.

“Rex @ rise4fun from microsoft,” http://rise4fun.com/rex/.

A. Kiezun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, and
M. D. Ernst, “Hampi: A solver for word equations over strings,
regular expressions, and context-free grammars,” ACM Trans. Softw.
Eng. Methodol., vol. 21, no. 4, pp. 25:1-25:28, Feb. 2013. [Online].
Available: http://doi.acm.org/10.1145/2377656.2377662

M. Veanes, P. De Halleux, and N. Tillmann, “Rex: Symbolic regular
expression explorer,” in Software Testing, Verification and Validation
(ICST), 2010 Third International Conference on. 1EEE, 2010, pp. 498—
507.

R. Babbar and N. Singh, “Clustering based approach to learning
regular expressions over large alphabet for noisy unstructured text,” in
Proceedings of the Fourth Workshop on Analytics for Noisy Unstructured
Text Data, ser. AND *10. New York, NY, USA: ACM, 2010, pp. 43-50.
[Online]. Available: http://doi.acm.org/10.1145/1871840.1871848

Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V.
Jagadish, “Regular expression learning for information extraction,”
in Proceedings of the Conference on Empirical Methods in Natural
Language Processing, ser. EMNLP ’08. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2008, pp. 21-30. [Online].
Available: http://dl.acm.org/citation.cfm?id=1613715.1613719

M. Abbes, F. Khombh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” in Software Maintenance and Reengineering
(CSMR), 2011 15th European Conference on. IEEE, 2011, pp. 181-
190.

B. Du Bois, S. Demeyer, J. Verelst, T. Mens, and M. Temmerman, “Does
god class decomposition affect comprehensibility?” in JASTED Conf. on
Software Engineering, 2006, pp. 346-355.

C. Chapman and K. T. Stolee, “Exploring regular expression usage and
context in python,” in Proceedings of the 25th International Symposium
on Software Testing and Analysis. ACM, 2016, pp. 282-293.

A. Mgller, “dk.brics.automaton — finite-state automata and regular ex-
pressions for Java,” 2010, http://www.brics.dk/automaton/.
K. T. Stolee and S. Elbaum, “Refactoring pipe-like mashups for end-user
programmers,” in International Conference on Software Engineering,
2011.

K. T. Stolee and S. Elbaum, “Identification, impact, and refactoring of
smells in pipe-like web mashups,” IEEE Trans. Softw. Eng., vol. 39,
no. 12, Dec. 2013.

F. Beck, S. Gulan, B. Biegel, S. Baltes, and D. Weiskopf, “Regviz:
Visual debugging of regular expressions,” in Companion Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

(391

[40]

415

Companion 2014. New York, NY, USA: ACM, 2014, pp. 504-507.
[Online]. Available: http://doi.acm.org/10.1145/2591062.2591111

C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers, “Active code
completion,” in Proceedings of the 34th International Conference on
Software Engineering, ser. ICSE °12. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 859-869. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2337223.2337324

M. Fowler, Refactoring: improving the design of existing code. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

F. Hermans, M. Pinzger, and A. van Deursen, “Detecting code smells
in spreadsheet formulas,” in Proc. of ICSM 12, 2012.

F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and refactoring
code smells in spreadsheet formulas,” Empirical Software Engineering,
pp. 1-27, 2014.

K. T. Stolee and S. Elbaum, “Identification, impact, and refactoring
of smells in pipe-like web mashups,” IEEE Transactions on Software
Engineering, vol. 39, no. 12, pp. 1654-1679, 2013.

T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Trans. Soft. Eng., vol. 30, no. 2, pp. 126-139, Feb. 2004. [Online].
Available: http://dx.doi.org/10.1109/TSE.2004.1265817

W. E. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, 1992.

W. G. Griswold and D. Notkin, “Automated assistance for program
restructuring,” ACM Trans. Softw. Eng. Methodol., vol. 2, no. 3, pp.
228-269, Jul. 1993. [Online]. Available: http://doi.acm.org/10.1145/
152388.152389

B. Cody-Kenny, M. Fenton, A. Ronayne, E. Considine, T. McGuire, and
M. O’Neill, “A search for improved performance in regular expressions,”
arXiv preprint arXiv:1704.04119, 2017.

R. A. Baeza-Yates and G. H. Gonnet, “Fast text searching for
regular expressions or automaton searching on ftries,” J. ACM,
vol. 43, no. 6, pp. 915-936, Nov. 1996. [Online]. Available:
http://doi.acm.org/10.1145/235809.235810

I. Ghosh, N. Shafiei, G. Li, and W.-F. Chiang, “Jst: An automatic
test generation tool for industrial java applications with strings,”
in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE *13. Piscataway, NJ, USA: IEEE Press, 2013,
pp.- 992-1001. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2486788.2486925

S. J. Galler and B. K. Aichernig, “Survey on test data generation tools,”
Int. J. Softw. Tools Technol. Transf., vol. 16, no. 6, pp. 727-751, Nov.
2014. [Online]. Available: http://dx.doi.org/10.1007/s10009-013-0272-3
S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. Mcminn, “An
orchestrated survey of methodologies for automated software test case
generation,” J. Syst. Softw., vol. 86, no. 8, pp. 1978-2001, Aug. 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2013.02.061

N. Tillmann, J. de Halleux, and T. Xie, “Transferring an automated
test generation tool to practice: From pex to fakes and code digger,”
in Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE "14. New York, NY, USA:
ACM, 2014.

M.-T. Trinh, D.-H. Chu, and J. Jaffar, “S3: A symbolic string solver for
vulnerability detection in web applications,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 1232-1243.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660372

P. Arcaini, A. Gargantini, and E. Riccobene, “Mutrex: A mutation-based
generator of fault detecting strings for regular expressions,” in 2017
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), March 2017, pp. 87-96.

O. Callad, R. Robbes, E. Tanter, and D. Rothlisberger, “How
developers use the dynamic features of programming languages:
The case of smalltalk,” in Proceedings of the 8th Working
Conference on Mining Software Repositories, ser. MSR ’11. New
York, NY, USA: ACM, 2011, pp. 23-32. [Online]. Available:
http://doi.acm.org/10.1145/1985441.1985448

G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the
dynamic behavior of javascript programs,” SIGPLAN Not., vol. 45, no. 6,
Jun. 2010.

R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining billions
of ast nodes to study actual and potential usage of java language fea-
tures,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014.

[41] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi, [42] C. Parnin, C. Bird, and E. Murphy-Hill, “Adoption and use of java

D. Poshyvanyk, C. Fu, Q. Xie, and C. Ghezzi, “An empirical investiga- generics,” Empirical Softw. Engg., vol. 18, no. 6, Dec. 2013.

tion into a large-scale java open source code repository,” in Proceedings ~ [43] B. Livshits, J. Whaley, and M. S. Lam, “Reflection analysis for java,” in
of the 2010 ACM-IEEE International Symposium on Empirical Software Proceedings of the Third Asian Conference on Programming Languages
Engineering and Measurement, ser. ESEM °10. New York, NY, USA: and Systems, ser. APLAS’05. Berlin, Heidelberg: Springer-Verlag,
ACM, 2010. 2005.

416

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

