
10+ Years of Teaching Software Engineering with
iTrust: the Good, the Bad, and the Ugly

Sarah Heckman
North Carolina State University

sarah_heckman@ncsu.edu

Kathryn T. Stolee
North Carolina State University

ktstolee@ncsu.edu

Christopher Parnin
North Carolina State University

cjparnin@ncsu.edu

Abstract

This paper presents an experience report with a junior-level

software engineering course at North Carolina State Univer-

sity. We provide an overview of the course structure and the

course project, iTrust, that has been developed by students

over 25 semesters. We summarize reflections from faculty,

teaching assistants, and students (through course evalua-

tions). From our lessons learned, we present our course im-

provements as we prepare for the next ten years of software

engineering courses. Our main lessons learned are 1) course

technologies have a lifespan and require periodic updating

to balance student learning and working with a legacy sys-

tem; 2) teaching assistant longevity and support is critical

to course success; and 3) the value of working with a large,

legacy system in a semester long course is supported by

faculty, teaching assistants, and eventually students.

CCS Concepts • Applied computing→ Education;

Keywords software engineering education, iTrust

ACM Reference format:

Sarah Heckman, Kathryn T. Stolee, and Christopher Parnin. 2018.

10+ Years of Teaching Software Engineering with iTrust: the Good,

the Bad, and the Ugly. In Proceedings of 40th International Conference

on Software Engineering: Software Engineering Education and Train-

ing Track, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE-SEET’18),

4 pages.

https://doi.org/10.1145/3183377.3183393

1 Introduction

As computer science educators, we try to transform our stu-

dents from novices to professionals ready to participate in

teams working on existing code bases. The learning theory

of legitimate peripheral participation supports realism in the

classroom by treating students as novice members of the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5660-2/18/05. . . $15.00

https://doi.org/10.1145/3183377.3183393

profession [4]. Unfortunately, as students progress through

most of the computer science curriculum, they rarely en-

counter settings that emulate “real world” projects, despite

best efforts by educators incorporating realistic elements.

Toward this goal of realism, faculty have evolved a junior-

level software engineering course for computer science ma-

jors that places working on a legacy software system, called

iTrust, at the center of the course design. iTrust1 is an elec-

tronic health records (EHR) system that has been developed

over 25 semesters by student teams. At its largest point,

iTrust contained over 50,000 lines of source code and 1,000

test cases which took over 45 minutes to run.

This course experience report draws on the experiences

of six faculty members who have taught the course over the

past decade, several current and former teaching assistants

(TAs), and student evaluations. We briefly describe the under-

graduate software engineering course and the iTrust project

that has sustained the course for 10+ years. We present what

worked (the good), what did not work (the bad), and what

we are doing to revitalize the course for the next decade (in

response to the ugly). Upon reflection, we have learned:

• The technologies chosen have a lifespan. Periodically

rewriting the whole system may be less work for the

teaching staff than doing smaller upgrades annually.

• Hiring TAs who have experience with the semester

project is critical to student and faculty success.

• While students struggle to work with legacy code,

faculty, TAs, and alumni see value in a team project

that more closely models industry.

2 Software Engineering Course Structure

Software Engineering (SE) is a required course for computer

sciencemajors. The course is taught every semester and regu-

larly has over 100 students. Typically taken their junior year,

software engineering is the last core course before their cap-

stone course, in which students work with industry partners

on projects. The SE course learning outcomes cover software

testing; software inspections; software design and evaluation

of design; application of design patterns; writing software

requirements; software development lifecycle; team-work;

project management and risk management; and software

maintenance. Using the knowledge from their earlier course-

work, students are expected to pick up new technologies

without formal instructional support.

1https://github.com/ncsu-csc326/iTrust

1

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering Education and Training

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

Prior to Fall 2017, the SE course is a three credit course

with two 50-minute lectures and a 110-minute open-lab2

offered over a 15-week semester. Lectures cover software

engineering topics that students apply in the lab.

The first half of the course focuses on software engineer-

ing lifecycle phases (testing, design, and requirements) and

the second half covers process and cross-cutting topics. Stu-

dents complete three, multi-part homework assignments and

a six-week long project. Most homework assignments and

the project are completed in teams to allow students to put

their education into practice [1, 3].

Lecture content varies by instructor, but involves active

learning activities like think-pair-share or workshops. The

labs involve activities that support collaboration. All major

assignments in SE are associated with iTrust (Section 3).

2.1 Labs

Students participate in a weekly lab run by the TAs. Lab

time is dedicated to group work, clarifying questions on

assignments and the project, and code/design inspections.

2.2 Homework Assignments

The homework assignments introduce students to each other,

the course technologies, and iTrust in a collaborative environ-

ment. Pairs or groups of three for the homework assignments

are constrained to students within the same lab to allow for

collaboration time during labs.

2.3 Team Project

Students complete a six-week team project during the second

half of the semester in groups of four to five. The TAs take

on the role of team managers for teams in their lab section(s).

Within each team, each student takes on at least one leader-

ship role from the following: Team Leader, Planning Lead,

Development Lead, and Quality Assurance Lead. This pro-

vides exposure for students to the various roles a software

engineer can hold in practice [5]. There is an expectation that

everyone contribute to the team’s development efforts. We

assess this by looking at the project version control history.

Scope of the work: The project starts with the instructor

providing a list of enhancements and maintenance requests

to iTrust; some requests are required, others are optional.

The scope of a typical enhancement is to add a new form or

UI element and connect it with the existing infrastructure.

Students must complete some of the optional pieces to re-

ceive full credit for the assignment, allowing some choice in

what the students implement.

Development Process: Each student teamhas a GitHub repos-
itory to store their source code and wiki.3 Using an Agile

2In open labs, students will not finish the lab work during the lab period.
3This describes the most recent set of software development tools. Various

version control and collaboration support tools have been used in the past

based on availability and support.

methodology for development, the work is organized into it-

erations, each lasting one week. This includes a requirements

and planning iteration (iteration 0) and four development it-

erations (iterations 1 – 4). For the planning iteration students

complete a Software Project Management Plan (SPMP). In the

development iterations, students complete enhancement and

maintenance tasks. Students report their weekly progress to

their lab TA and in a report on the team wiki. Additionally,

the team provides a plan for the next week. Each task is

expected to have an owner and the work to be distributed

fairly to all team members.

The students complete development on one or more devel-

opment branches, and completed code is merged with master.

A completed use case requires that teams present a sequence

diagram for one scenario through the use case, a class dia-

gram showing the design for the use case, passing automated

system test cases, passing unit test cases with greater than

80% coverage on back-end code, passing acceptance tests de-

moed to the TA, and a merge to master with a clean build on

the continuous integration system. For deliverables related

to non-functional requirements or constraints, the students

must demonstrate completion as defined in the requirements.

Each iteration is evaluated to show that students are making

steady progress toward delivery [2].

The end of Iteration 4 is a 15-minute team demo on com-

pleted functionality to the lab. All team members are ex-

pected to present and teams are evaluated using a common

rubric by their peers, the TA(s), and sometimes the instructor.

Transfer At the end of each semester, the current instruc-

tor works with the TAs to identify which project should

become the starting project for the next semester. A member

of the teaching staff removes identifying details about the

student team and any failing tests cases are fixed. Refactor-

ing, technology updates, and performance enhancements

are completed as time allows.

3 iTrust

iTrust is an electronic health records (EHR) system created

as a course project for SE. An EHR system was selected

to 1) support security and privacy requirements; 2) be a

large system that can be developed over many semesters,

and 3) promote inclusiveness and diversity by providing a

project domain that all students can relate to. iTrust was

introduced in Fall 2004 and has been used as the course

project every semester since, except Spring 2005. The basic

functionality includes role based authentication (e.g., health

care provider (HCP), patient, administrator), logging, and

office visits (e.g., scheduling, recording patient information).

The system consists of a MySQL and Java backend with a

JSP frontend. The backend is tested with JUnit. Automated

system level testing started with HttpUnit and has since

moved to Selenium and Cucumber. We moved from an Ant

to Maven build in Spring 2016.

2

10+ years of Teaching Software Engineering with iTrust ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

iTrust was restructured in Summer of 2016 due to a de-

grading architecture and aging technology stack. As part of

the restructuring, a significant portion of functionality was

pulled out of the system and the office visit functionality

was siloed from the remaining system. A basic office visit

was created using an updated technology stack that included

Java Server Faces in the frontend.

Continuous Integration: To support automated grading

and software engineering best practices, continuous integra-

tion was introduced in Spring 2011 and fully incorporated

into the class in Fall 2014. Student teams use GitHub for ver-

sion control and the continuous integration system, Jenkins,

builds and tests their application using the master and devel-

opment branches. Students get feedback about their work

on a common system and TAs use the results for grading.

Enhancements: Each semester, student teams implement

new functionality in iTrust that involves modifications to

the database and frontend. For example, an enhancement

in the Spring 2016 semester was to add a physical therapy

module to iTrust that would allow the HCP to upload im-

ages of patient scans, schedule office visits for patients, and

assign exercises. In Spring 2017, students added an obstet-

ric and gynecology module that permits HCPs to schedule

office visits and hospital visits for check-ups and delivery,

respectively. Optional pieces typically include performance

enhancements and other maintenance tasks.

4 iTrust: The Good, The Bad, and The Ugly

Six faculty members, including the three authors, and dozens

of undergraduate and graduate TAs have taught the SE class

and its labs since the introduction of the iTrust course project.

The main structure of the course has remained relatively

consistent between semesters with some variations and in-

novations over the years; however, with so many people

evolving the iTrust system and the SE course over the past

10 years, many shared challenges have emerged for students,

instructors, and TAs. In this section, we draw on the experi-

ences of each of these groups to distill the lessons learned

and reflect on the goal of using iTrust in support of realism.

Student reflections are from course evaluations for the

question, Comment on strengths and weaknesses of the course.

4.1 The Good

Reflections in this category describe things that are going as

intended, with regards to iTrust and the SE course.

Delayed appreciation for working with legacy systems.

By the end of the semester, many students reach a level of

comfort with iTrust and its technologies.While workingwith

iTrust is frequently complained about in student evaluations,

over the years, instructors have received a steady stream

of thanks from alumni who later realize the value of the

experience. Further, experience with iTrust is frequently

mentioned as a primary reason by local corporations for

recruiting students from the university.

Teamwork is critical for success in software engineer-

ing. The project is sized for completion by a team. While

students may have had team experiences in earlier course-

work, they may not have training to efficiently work on a

team. In the SE course, team training is provided to help

students adjust to working on projects with a larger scope.

Teamwork with non-traditional or working students adds

complications; faculty cannot assume that students have

time to perform collocated work outside of class and lab

times. This adds a focus on communication and effective

use of tools, such as pull requests and wikis, for teams that

cannot meet as frequently.

4.2 The Bad

Reflections in this category can often be resolved with small

tweaks to the course structure or feedback cycles.

Grading is overwhelming for the TAs, sometimes lead-

ing to delayed feedback to students. Grading in the SE

course has gone through significant changes over the last

10+ years. Before 2011, grading was manual and required a

significant time investment. By 2011 iTrust and the test suite

had grown to the point where running the unit and system

tests took 30-45 minutes per project. Given the large class

sizes, providing timely feedback for students was difficult.

In 2011, a TA experimented with using a continuous integra-

tion system to offload the testing time for both the students

and TAs. The use of continuous integration for automating

student feedback and automating grading was fully adopted

in Fall 2014. Additional benefits are that students are exposed

to a tool they would likely see in industry, lending to the

realism of the project. TAs have created other tooling to

support common tasks like generating feedback files. Giving

TAs independence to innovate benefits the course for the

current and following semesters.

Large class sizes and groupwork completed in labmeans

the instructor is not always immediately privy to issues

with group dynamics. As TAs work with the students in

labs, they observe student difficulties more directly than

instructors. Students who lack sufficient prerequisite knowl-

edge have difficulty succeeding in the SE course. TAs also run

into difficulty evaluating individuals during team projects.

Instructors need to develop better rubrics to give TAs the

opportunity to penalize non-performing team members.

4.3 The Ugly

Reflections in this category require deeper changes to the

course for full resolution.

The workload is too high for a three credit hour course.

The most common complaint is that students feel that the

amount of work that they complete in the course is more

3

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

than should be associated with a three credit hour course.

Faculty try to identify appropriately sized assignments for

completion in a team, but there are often unforeseen diffi-

culties (e.g., technology compatibility issues with personal

machines) that may lead to additional time for completion.

Working with legacy technologies is overwhelming. Be-

cause iTrust is a complex application, students are over-

whelmed by the complexity of working on an existing code

base. The learning curve is steep. Additionally, students are

more likely to be subjected to poor design choices due to the

longevity of iTrust and the density of student code therein.

The schedule is aggressive. The first half of the course in-

volves weekly programming assignments. The team project

also involves weekly iterations that require programming.

The teaching staff, TAs and faculty, find that supporting the

SE course workload is overwhelming. This is especially true

if the TAs do not have experience with the course, technolo-

gies (especially Jenkins), or professional experience.

A further issue is the students view disconnects between

homework assignments and the project, and between the

projects and lecture. The intention is for the homework as-

signments to introduce students to the technologies and

teamwork, but this can gets lost in the aggressive deadlines.

5 iTrust2 - The Next 10 Years

After working with the same software for 10+ years, we are

addressing The Ugly in the SE course and iTrust.

The workload is too high. Starting in Fall 2017, the SE

course moved to a four credit hour course with two 75-

minute lectures and one 110-minute lab each week. The

extended time in lecture improved team communication by

providing additional time for group work and scrum meet-

ings during the team project portion of the course.

Working with legacy technologies is overwhelming. A

major change is the creation of iTrust24. The design of iTrust

had significantly degraded and the technologies had aged

to a point where students were fighting the technology and

not practicing good software engineering. To keep the ed-

ucational experience current [5], for Fall 2017 we rewrote

iTrust with an updated technology stack: MySQL, Hibernate,

and Java backend tested with JUnit; a REST API; and an An-

gular frontend tested with Selenium and Cucumber. These

technologies more closely match those seen in the senior cap-

stone course and used by industrial partners who hire many

of our graduates. We continue using GitHub and Jenkins to

support collaboration, rapid feedback, and grading.

The schedule is too aggressive. The assignment structure

changed to provide more time for students to learn technolo-

gies and processes. Students start the course with a two and

4https://github.com/ncsu-csc326/iTrust2

a half week on-boarding activity consisting of team devel-

opment activities in lecture and lab that introduce students

to course technology with maximal instructional support.

Next, students work through a four-week guided project im-

plementing a use case in iTrust2. Finally, students complete

a six-week team project. Team training, code review, and

process are more emphasized. The faculty have developed

new rubrics that support evaluating process in addition to

product and recognition of individual contributions to the

assignments.

6 Conclusion

Instructional staff and students ultimately value the expo-

sure to a large existing system. However, systems like iTrust

require routine maintenance between semesters to minimize

pain points for the teaching staff. The best practice is to

have several faculty or staff involved with a continuing TA

to maintain iTrust. Additionally, legacy systems become a

liability to student learning when the design degrades and

the technologies are outdated. Identifying the appropriate

point to start over to maintain student learning outcomes

is critical. Restarting every five to seven years may be more

appropriate than waiting over 10 years.

As instructors, we feel that the SE course moves students

into the software engineering profession, preparing them for

the senior capstone and following professional experiences.

While during the semester, students may find the course time

consuming and difficult, they ultimately value working in

teams with new technologies using professional tools and

best practices on a large, complex software system.

Acknowledgments

The authors thank Emerson Murphy-Hill, Laurie Williams,

Jason King,MeiyappanNagappan, Kai Presler-Marshall, Andy

Meneely, Lauren Schaefer, Ben Smith, and Michael Win-

ters. iTrust2 would not be possible without the work of Kai

Presler-Marshall and Elizabeth Gilbert. We especially want

to thank our students who learned, survived, and (in most

cases) thrived during the SE course experience. This work is

supported in part by an NCSU DELTA grant to the authors

and NSF SHF-1645136.

References
[1] Jürgen Börstler and Thomas B. Hilburn. 2016. Team Projects in Com-

puting Education. Trans. Comput. Educ. 16, 2, Article 4 (March 2016),

4 pages. https://doi.org/10.1145/2808192

[2] Heidi JC Ellis. 2008. Software Engineering: Effective Teaching and

Learning Approaches and Practices: Effective Teaching and Learning

Approaches and Practices. IGI Global.

[3] Howard Hills. 2001. Team-based learning. Gower Publishing, Ltd.

[4] J. Lave and E. Wenger. 1991. Situated Learning: Legitimate Peripheral

Participation. Cambridge University Press.

[5] Mary Shaw. 2000. Software Engineering Education: A Roadmap. In

Proceedings of the Conference on The Future of Software Engineering

(ICSE ’00). ACM, New York, NY, USA, 371–380. https://doi.org/10.1145/

336512.336592

4

