2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering Education and Training

10+ Years of Teaching Software Engineering with
iTrust: the Good, the Bad, and the Ugly

Sarah Heckman
North Carolina State University
sarah_heckman@ncsu.edu

Abstract

This paper presents an experience report with a junior-level
software engineering course at North Carolina State Univer-
sity. We provide an overview of the course structure and the
course project, iTrust, that has been developed by students
over 25 semesters. We summarize reflections from faculty,
teaching assistants, and students (through course evalua-
tions). From our lessons learned, we present our course im-
provements as we prepare for the next ten years of software
engineering courses. Our main lessons learned are 1) course
technologies have a lifespan and require periodic updating
to balance student learning and working with a legacy sys-
tem; 2) teaching assistant longevity and support is critical
to course success; and 3) the value of working with a large,
legacy system in a semester long course is supported by
faculty, teaching assistants, and eventually students.

CCS Concepts « Applied computing — Education;

Keywords software engineering education, iTrust

ACM Reference format:

Sarah Heckman, Kathryn T. Stolee, and Christopher Parnin. 2018.
10+ Years of Teaching Software Engineering with iTrust: the Good,
the Bad, and the Ugly. In Proceedings of 40th International Conference
on Software Engineering: Software Engineering Education and Train-
ing Track, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE-SEET’18),
4 pages.

https://doi.org/10.1145/3183377.3183393

1 Introduction

As computer science educators, we try to transform our stu-
dents from novices to professionals ready to participate in
teams working on existing code bases. The learning theory
of legitimate peripheral participation supports realism in the
classroom by treating students as novice members of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5660-2/18/05...$15.00
https://doi.org/10.1145/3183377.3183393

Kathryn T. Stolee
North Carolina State University
ktstolee@ncsu.edu

Christopher Parnin
North Carolina State University
cjparnin@ncsu.edu

profession [4]. Unfortunately, as students progress through
most of the computer science curriculum, they rarely en-
counter settings that emulate “real world” projects, despite
best efforts by educators incorporating realistic elements.

Toward this goal of realism, faculty have evolved a junior-
level software engineering course for computer science ma-
jors that places working on a legacy software system, called
iTrust, at the center of the course design. iTrust! is an elec-
tronic health records (EHR) system that has been developed
over 25 semesters by student teams. At its largest point,
iTrust contained over 50,000 lines of source code and 1,000
test cases which took over 45 minutes to run.

This course experience report draws on the experiences
of six faculty members who have taught the course over the
past decade, several current and former teaching assistants
(TAs), and student evaluations. We briefly describe the under-
graduate software engineering course and the iTrust project
that has sustained the course for 10+ years. We present what
worked (the good), what did not work (the bad), and what
we are doing to revitalize the course for the next decade (in
response to the ugly). Upon reflection, we have learned:

o The technologies chosen have a lifespan. Periodically
rewriting the whole system may be less work for the
teaching staff than doing smaller upgrades annually.

e Hiring TAs who have experience with the semester
project is critical to student and faculty success.

e While students struggle to work with legacy code,
faculty, TAs, and alumni see value in a team project
that more closely models industry.

2 Software Engineering Course Structure

Software Engineering (SE) is a required course for computer
science majors. The course is taught every semester and regu-
larly has over 100 students. Typically taken their junior year,
software engineering is the last core course before their cap-
stone course, in which students work with industry partners
on projects. The SE course learning outcomes cover software
testing; software inspections; software design and evaluation
of design; application of design patterns; writing software
requirements; software development lifecycle; team-work;
project management and risk management; and software
maintenance. Using the knowledge from their earlier course-
work, students are expected to pick up new technologies
without formal instructional support.

!https://github.com/ncsu-csc326/iTrust

ICSE-SEET’ 18, May 27-June 3, 2018, Gothenburg, Sweden

Prior to Fall 2017, the SE course is a three credit course
with two 50-minute lectures and a 110-minute open-lab?
offered over a 15-week semester. Lectures cover software
engineering topics that students apply in the lab.

The first half of the course focuses on software engineer-
ing lifecycle phases (testing, design, and requirements) and
the second half covers process and cross-cutting topics. Stu-
dents complete three, multi-part homework assignments and
a six-week long project. Most homework assignments and
the project are completed in teams to allow students to put
their education into practice [1, 3].

Lecture content varies by instructor, but involves active
learning activities like think-pair-share or workshops. The
labs involve activities that support collaboration. All major
assignments in SE are associated with iTrust (Section 3).

2.1 Labs

Students participate in a weekly lab run by the TAs. Lab
time is dedicated to group work, clarifying questions on
assignments and the project, and code/design inspections.

2.2 Homework Assignments

The homework assignments introduce students to each other,
the course technologies, and iTrust in a collaborative environ-
ment. Pairs or groups of three for the homework assignments
are constrained to students within the same lab to allow for
collaboration time during labs.

2.3 Team Project

Students complete a six-week team project during the second
half of the semester in groups of four to five. The TAs take
on the role of team managers for teams in their lab section(s).
Within each team, each student takes on at least one leader-
ship role from the following: Team Leader, Planning Lead,
Development Lead, and Quality Assurance Lead. This pro-
vides exposure for students to the various roles a software
engineer can hold in practice [5]. There is an expectation that
everyone contribute to the team’s development efforts. We
assess this by looking at the project version control history.

Scope of the work: The project starts with the instructor
providing a list of enhancements and maintenance requests
to iTrust; some requests are required, others are optional.
The scope of a typical enhancement is to add a new form or
Ul element and connect it with the existing infrastructure.
Students must complete some of the optional pieces to re-
ceive full credit for the assignment, allowing some choice in
what the students implement.

Development Process: Each student team has a GitHub repos-
itory to store their source code and wiki.> Using an Agile

%In open labs, students will not finish the lab work during the lab period.
3This describes the most recent set of software development tools. Various
version control and collaboration support tools have been used in the past
based on availability and support.

methodology for development, the work is organized into it-
erations, each lasting one week. This includes a requirements
and planning iteration (iteration 0) and four development it-
erations (iterations 1 — 4). For the planning iteration students
complete a Software Project Management Plan (SPMP). In the
development iterations, students complete enhancement and
maintenance tasks. Students report their weekly progress to
their lab TA and in a report on the team wiki. Additionally,
the team provides a plan for the next week. Each task is
expected to have an owner and the work to be distributed
fairly to all team members.

The students complete development on one or more devel-
opment branches, and completed code is merged with master.
A completed use case requires that teams present a sequence
diagram for one scenario through the use case, a class dia-
gram showing the design for the use case, passing automated
system test cases, passing unit test cases with greater than
80% coverage on back-end code, passing acceptance tests de-
moed to the TA, and a merge to master with a clean build on
the continuous integration system. For deliverables related
to non-functional requirements or constraints, the students
must demonstrate completion as defined in the requirements.
Each iteration is evaluated to show that students are making
steady progress toward delivery [2].

The end of Iteration 4 is a 15-minute team demo on com-
pleted functionality to the lab. All team members are ex-
pected to present and teams are evaluated using a common
rubric by their peers, the TA(s), and sometimes the instructor.

Transfer At the end of each semester, the current instruc-
tor works with the TAs to identify which project should
become the starting project for the next semester. A member
of the teaching staff removes identifying details about the
student team and any failing tests cases are fixed. Refactor-
ing, technology updates, and performance enhancements
are completed as time allows.

3 iTrust

iTrust is an electronic health records (EHR) system created
as a course project for SE. An EHR system was selected
to 1) support security and privacy requirements; 2) be a
large system that can be developed over many semesters,
and 3) promote inclusiveness and diversity by providing a
project domain that all students can relate to. iTrust was
introduced in Fall 2004 and has been used as the course
project every semester since, except Spring 2005. The basic
functionality includes role based authentication (e.g., health
care provider (HCP), patient, administrator), logging, and
office visits (e.g., scheduling, recording patient information).
The system consists of a MySQL and Java backend with a
JSP frontend. The backend is tested with JUnit. Automated
system level testing started with HttpUnit and has since
moved to Selenium and Cucumber. We moved from an Ant
to Maven build in Spring 2016.

10+ years of Teaching Software Engineering with iTrust

iTrust was restructured in Summer of 2016 due to a de-
grading architecture and aging technology stack. As part of
the restructuring, a significant portion of functionality was
pulled out of the system and the office visit functionality
was siloed from the remaining system. A basic office visit
was created using an updated technology stack that included
Java Server Faces in the frontend.

Continuous Integration: To support automated grading
and software engineering best practices, continuous integra-
tion was introduced in Spring 2011 and fully incorporated
into the class in Fall 2014. Student teams use GitHub for ver-
sion control and the continuous integration system, Jenkins,
builds and tests their application using the master and devel-
opment branches. Students get feedback about their work
on a common system and TAs use the results for grading.

Enhancements: Each semester, student teams implement
new functionality in iTrust that involves modifications to
the database and frontend. For example, an enhancement
in the Spring 2016 semester was to add a physical therapy
module to iTrust that would allow the HCP to upload im-
ages of patient scans, schedule office visits for patients, and
assign exercises. In Spring 2017, students added an obstet-
ric and gynecology module that permits HCPs to schedule
office visits and hospital visits for check-ups and delivery,
respectively. Optional pieces typically include performance
enhancements and other maintenance tasks.

4 iTrust: The Good, The Bad, and The Ugly

Six faculty members, including the three authors, and dozens
of undergraduate and graduate TAs have taught the SE class
and its labs since the introduction of the iTrust course project.
The main structure of the course has remained relatively
consistent between semesters with some variations and in-
novations over the years; however, with so many people
evolving the iTrust system and the SE course over the past
10 years, many shared challenges have emerged for students,
instructors, and TAs. In this section, we draw on the experi-
ences of each of these groups to distill the lessons learned
and reflect on the goal of using iTrust in support of realism.

Student reflections are from course evaluations for the
question, Comment on strengths and weaknesses of the course.

4.1 The Good

Reflections in this category describe things that are going as
intended, with regards to iTrust and the SE course.

Delayed appreciation for working with legacy systems.
By the end of the semester, many students reach a level of
comfort with iTrust and its technologies. While working with
iTrust is frequently complained about in student evaluations,
over the years, instructors have received a steady stream
of thanks from alumni who later realize the value of the
experience. Further, experience with iTrust is frequently

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

mentioned as a primary reason by local corporations for
recruiting students from the university.

Teamwork is critical for success in software engineer-
ing. The project is sized for completion by a team. While
students may have had team experiences in earlier course-
work, they may not have training to efficiently work on a
team. In the SE course, team training is provided to help
students adjust to working on projects with a larger scope.
Teamwork with non-traditional or working students adds
complications; faculty cannot assume that students have
time to perform collocated work outside of class and lab
times. This adds a focus on communication and effective
use of tools, such as pull requests and wikis, for teams that
cannot meet as frequently.

4.2 The Bad

Reflections in this category can often be resolved with small
tweaks to the course structure or feedback cycles.

Grading is overwhelming for the TAs, sometimes lead-
ing to delayed feedback to students. Grading in the SE
course has gone through significant changes over the last
10+ years. Before 2011, grading was manual and required a
significant time investment. By 2011 iTrust and the test suite
had grown to the point where running the unit and system
tests took 30-45 minutes per project. Given the large class
sizes, providing timely feedback for students was difficult.
In 2011, a TA experimented with using a continuous integra-
tion system to offload the testing time for both the students
and TAs. The use of continuous integration for automating
student feedback and automating grading was fully adopted
in Fall 2014. Additional benefits are that students are exposed
to a tool they would likely see in industry, lending to the
realism of the project. TAs have created other tooling to
support common tasks like generating feedback files. Giving
TAs independence to innovate benefits the course for the
current and following semesters.

Large class sizes and group work completed in lab means
the instructor is not always immediately privy to issues
with group dynamics. As TAs work with the students in
labs, they observe student difficulties more directly than
instructors. Students who lack sufficient prerequisite knowl-
edge have difficulty succeeding in the SE course. TAs also run
into difficulty evaluating individuals during team projects.
Instructors need to develop better rubrics to give TAs the
opportunity to penalize non-performing team members.

4.3 The Ugly

Reflections in this category require deeper changes to the
course for full resolution.

The workload is too high for a three credit hour course.
The most common complaint is that students feel that the
amount of work that they complete in the course is more

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

than should be associated with a three credit hour course.
Faculty try to identify appropriately sized assignments for
completion in a team, but there are often unforeseen diffi-
culties (e.g., technology compatibility issues with personal
machines) that may lead to additional time for completion.

Working with legacy technologies is overwhelming. Be-
cause iTrust is a complex application, students are over-
whelmed by the complexity of working on an existing code
base. The learning curve is steep. Additionally, students are
more likely to be subjected to poor design choices due to the
longevity of iTrust and the density of student code therein.

The schedule is aggressive. The first half of the course in-
volves weekly programming assignments. The team project
also involves weekly iterations that require programming.
The teaching staff, TAs and faculty, find that supporting the
SE course workload is overwhelming. This is especially true
if the TAs do not have experience with the course, technolo-
gies (especially Jenkins), or professional experience.

A further issue is the students view disconnects between
homework assignments and the project, and between the
projects and lecture. The intention is for the homework as-
signments to introduce students to the technologies and
teamwork, but this can gets lost in the aggressive deadlines.

5 1iTrust2 - The Next 10 Years

After working with the same software for 10+ years, we are
addressing The Ugly in the SE course and iTrust.

The workload is too high. Starting in Fall 2017, the SE
course moved to a four credit hour course with two 75-
minute lectures and one 110-minute lab each week. The
extended time in lecture improved team communication by
providing additional time for group work and scrum meet-
ings during the team project portion of the course.

Working with legacy technologies is overwhelming. A
major change is the creation of iTrust2*. The design of iTrust
had significantly degraded and the technologies had aged
to a point where students were fighting the technology and
not practicing good software engineering. To keep the ed-
ucational experience current [5], for Fall 2017 we rewrote
iTrust with an updated technology stack: MySQL, Hibernate,
and Java backend tested with JUnit; a REST API; and an An-
gular frontend tested with Selenium and Cucumber. These
technologies more closely match those seen in the senior cap-
stone course and used by industrial partners who hire many
of our graduates. We continue using GitHub and Jenkins to
support collaboration, rapid feedback, and grading.

The schedule is too aggressive. The assignment structure
changed to provide more time for students to learn technolo-
gies and processes. Students start the course with a two and

4https://github.com/ncsu-csc326/iTrust2

a half week on-boarding activity consisting of team devel-
opment activities in lecture and lab that introduce students
to course technology with maximal instructional support.
Next, students work through a four-week guided project im-
plementing a use case in iTrust2. Finally, students complete
a six-week team project. Team training, code review, and
process are more emphasized. The faculty have developed
new rubrics that support evaluating process in addition to
product and recognition of individual contributions to the
assignments.

6 Conclusion

Instructional staff and students ultimately value the expo-
sure to a large existing system. However, systems like iTrust
require routine maintenance between semesters to minimize
pain points for the teaching staff. The best practice is to
have several faculty or staff involved with a continuing TA
to maintain iTrust. Additionally, legacy systems become a
liability to student learning when the design degrades and
the technologies are outdated. Identifying the appropriate
point to start over to maintain student learning outcomes
is critical. Restarting every five to seven years may be more
appropriate than waiting over 10 years.

As instructors, we feel that the SE course moves students
into the software engineering profession, preparing them for
the senior capstone and following professional experiences.
While during the semester, students may find the course time
consuming and difficult, they ultimately value working in
teams with new technologies using professional tools and
best practices on a large, complex software system.

Acknowledgments

The authors thank Emerson Murphy-Hill, Laurie Williams,

Jason King, Meiyappan Nagappan, Kai Presler-Marshall, Andy
Meneely, Lauren Schaefer, Ben Smith, and Michael Win-
ters. iTrust2 would not be possible without the work of Kai

Presler-Marshall and Elizabeth Gilbert. We especially want

to thank our students who learned, survived, and (in most

cases) thrived during the SE course experience. This work is

supported in part by an NCSU DELTA grant to the authors

and NSF SHF-1645136.

References

[1] Jurgen Bérstler and Thomas B. Hilburn. 2016. Team Projects in Com-
puting Education. Trans. Comput. Educ. 16, 2, Article 4 (March 2016),
4 pages. https://doi.org/10.1145/2808192

[2] Heidi JC Ellis. 2008. Software Engineering: Effective Teaching and
Learning Approaches and Practices: Effective Teaching and Learning
Approaches and Practices. IGI Global.

[3] Howard Hills. 2001. Team-based learning. Gower Publishing, Ltd.

[4] J. Lave and E. Wenger. 1991. Situated Learning: Legitimate Peripheral
Participation. Cambridge University Press.

[5] Mary Shaw. 2000. Software Engineering Education: A Roadmap. In
Proceedings of the Conference on The Future of Software Engineering
(ICSE "00). ACM, New York, NY, USA, 371-380. https://doi.org/10.1145/
336512.336592

