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ABSTRACT

Objective: The growing availability of rich clinical data such as patients’ electronic health records provide great
opportunities to address a broad range of real-world questions in medicine. At the same time, artificial intelli-
gence and machine learning (ML)-based approaches have shown great premise on extracting insights from
those data and helping with various clinical problems. The goal of this study is to conduct a systematic compar-
ative study of different ML algorithms for several predictive modeling problems in urgent care.

Design: We assess the performance of 4 benchmark prediction tasks (eg mortality and prediction, differential
diagnostics, and disease marker discovery) using medical histories, physiological time-series, and demo-
graphics data from the Medical Information Mart for Intensive Care (MIMIC-III) database.

Measurements: For each given task, performance was estimated using standard measures including the area
under the receiver operating characteristic (AUC) curve, F-1 score, sensitivity, and specificity. Microaveraged
AUC was used for multiclass classification models.

Results and Discussion: Our results suggest that recurrent neural networks show the most promise in mortality
prediction where temporal patterns in physiologic features alone can capture in-hospital mortality risk
(AUC > 0.90). Temporal models did not provide additional benefit compared to deep models in differential diag-
nostics. When comparing the training-testing behaviors of readmission and mortality models, we illustrate that
readmission risk may be independent of patient stability at discharge. We also introduce a multiclass prediction
scheme for length of stay which preserves sensitivity and AUC with outliers of increasing duration despite de-
crease in sample size.
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INTRODUCTION AND BACKGROUND Because of the popularity of artificial intelligence (Al) in recent
years, ML, as a way of realizing Al, has been developing rapidly.
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approaches in predictive modeling in health care. The scenario we
care about specifically is in Emergency Room/Urgent Care, where
fast pace decisions need to be made to determine acuity of each visit
and allocate appropriate amount of resources. A growing commu-
nity in medical informatics focusing on quality improvement has
elucidated the relevance of these factors to medical errors and over-
all quality of care.* Accurate predictive modeling can help recognize
the status of the patients and environment in time and allow the de-
cision makers to work out better plans. Many research on predictive
modeling in emergency room has been conducted in recent years,
such as identification of high-risk patients for in-hospital mortality,’
length of intensive care unit (ICU) stay outliers,’ 30-day all-cause
readmissions, and predicting differential diagnoses for admis-
sions,”® which have been proven to be useful in different aspects in-
cluding decreasing unnecessary lab tests” and increasing the
accuracy of inpatient triage for admission decisions.'*!!

In terms of ML algorithms, many of them have been applied in
those tasks.!?™'* In particular, since 2012, deep learning models
have achieved great success in many applications involving

1617 speech,'® and natural language processing.'” Research-

images,
ers in medical informatics have also been exploring the potentials of
those powerful models.?® Lipton et al showed that recurrent neural
networks (RNN) using only physiologic markers from EHR can
achieve expert-level differential diagnoses over a wide range of dis-
eases.”! Choi et al showed that by using word embedding techniques
for contextual embedding of medical data, diagnostic, and proce-
dural codes alone can predict future diagnoses with sensitivity as
high as 0.79.%* More recently, benchmark performances for decom-
position and length of stay (LOS) predictions have also been investi-
gated.”® The key technical differences in these studies come from 2
major components: (1) patient representation which represents each
patient into a structured data point for modeling, and (2) learning al-
gorithm which infers patterns from the patient representations and
delivers a predictive model. In this article, we will compare several
state-of-art patient representation and ML algorithms across 4 bench-
mark tasks and discuss clinical insights derived from the results.

METHODS

Data set description

The Medical Information Mart for Intensive Care (MIMIC-III) data-
base obtained from Physionet.org was used in our study.** This data
set was made available by Beth Israel Hospital and includes deiden-
tified inpatient data from their critical care unit from 2005 to 2011.
MIMIC-III captures hospital admission data, laboratory measure-
ments, procedure event recordings, pharmacologic prescriptions,
transfer and discharge data, diagnostic data, and microbiological
data from 46 520 unique patients. In total, there were 58 976 unique
admissions and 14 567 unique International Statistical
Classification of Diseases and Related Health Problems (ICD)-9 di-
agnostic codes.>* When considering only nonpediatric patients (age
18) and discounting admissions without multiple transfers or length
of ICU stay <24 h, there were a total of 30 414 unique patients and
37 787 unique admissions. A summary of demographic distribution
of patients can be found in Supplementary Table S1.

Predictive tasks in assessment
Four learning tasks are adopted in our study as the benchmarks of
those ML algorithms.

In-hospital mortality

In-hospital mortality task was modeled as a binary classification
problem. In total, there were 4155 adult patients (13%) who experi-
enced in-hospital mortality, of which 3138 (75.5%) were in the ICU
setting. Traditionally, SAPS and SOFA scores are used to evaluate
mortality risk.>> Depending on the disease, SAPS-II predicts within a
wide range (0.65-0.89) of area under receiver operating characteristic
curve (AUC) scores, depending on the critical conditions being stud-
ied.?® Our study evaluates performance of predictive models using
AUC. Sensitivity, specificity, and f1-scores were included to aid the in-
terpretation of AUC scores due to the presence of class-imbalance.

Length of stays

Prediction of length of ICU stays remain an important task for iden-
tifying high-cost hospital admissions in terms of staffing cost and re-
source management.® Accurate predictions of outliers in ICU stays
(eg 1-2 weeks) may greatly improve inpatient clinical decisions. We
formulated LOS as a multiclass classification problem using bins of
lengths (1, 2), (3, 5), (5, 8), (8, 14), (14, 21), (21, 30), (30+, ) to re-
flect the range of possible LOS values in terms of days. As shown in
Figure 1, this binning scheme smoothly captured the exponential de-
cay of LOS with increasing number of days.

To evaluate the performance on LOS task, AUC, f1-score, sensitiv-
ity, and specificity were calculated for each bin, and a microaveraged
AUC and f1 scores were calculated for the overall performance of the
model across all bins. AUC and f1-scores were chosen to facilitate the
interpretation of LOS performance in comparison with other tasks.

Differential diagnoses

We examined the top 25 most commonly appearing conditions
(ICD-9 codes) in MIMC-III using a multilabel classification frame-
work (see Supplementary Material Section S8.3). Supplementary
Table S2 shows these diagnoses with their associated absolute and
relative prevalence (%) among the MIMIC-III population. To evalu-
ate the performance of predictions, AUC, f1-score, sensitivity, and
specificity scores were calculated for each disease label, and a micro-
averaged AUROC and f1-score were calculated for each admission.

Readmission prediction

We investigate 2 types of readmissions: all-cause 30-day readmis-
sion, where number of positive cases amount to 1884 (5.1%) of to-
tal admissions; and variable length readmissions. For the latter, we
use bins to generate 6 classes (bins) associated with each admission
that correspond to observed time-to-readmission: (1, 30), (30, 90),
(90, 180), (180, 360), (360, 720), (720+, ), measured in days, and
the prediction problem is formulated as a multiclass prediction
problem. Both approaches are evaluated with AUC, F1, sensitivity,
and specificity scores.

Patient features

Diagnosis codes

There are 14 567 unique ICD-9 diagnostic codes in MIMIC-III data,
which would lead to high-dimensional very sparse representations
for patients if we treat each distinct code as 1D.*” Therefore, we use
the ICD-9-CM instead. The ICD-9-CM codes are designed to
capture the group-level disease specificity by only using the first 3
letters of their full length codes. In this way, we reduce the feature
dimension to 942 ICD-9 group codes. Supplementary Figure S1
shows distribution of diagnostic codes and diagnostic categories in
MIMIC-III.
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Figure 1. Distribution of length of stays (LOS) and readmission in MIMIC-IIl. A, The Distribution of patient volume for each ICU length of stay range. This binning
scheme allowed for patient volumes to follow smooth exponential decay with increasing LOS time. Bins 5-8 and 8-14 are of particular interest, as these are fre-
quently used as lower thresholds for defining “LOS outliers” for identifying high-cost admissions. B, The distribution of patient volume for each time-to-readmis-
sion range, measured in days. Due to the fact that few patients in MIMIC-IIl had multiple admissions, the amount of patients that fall under the 720+ days
category greatly outnumbers the rest. MIMIC-IIl, Medical Information Mart for Intensive Care.

Temporal variables

To capture the temporal patterns of complex diseases, we also con-
sider temporal variables of the 6 most frequently sampled vital signs
and top 13 most frequently sampled laboratory values for downstream
prediction tasks. Since sampling frequency differs greatly per inpatient
admission, we took hourly averages of time-series variables up to the
first 48 hours of each admission across all prediction tasks. This ap-
proach resembles hourly sampling methods from previous studies.>**3
Each temporal variable was standardized by taking the difference with
its mean and dividing by its standard deviation. Figure 2 further sum-
marizes the distributions of these variables. Missing data were imputed
with the carry-forward strategy at each time-stamp.

Demographics

In addition, we also consider patients’ demographic variables such
as age, marital status, ethnicity and insurance information for each
patient. Age was quantized into 5 bins (18, 25), (25, 45), (45, 65),
(65, 89), (89+, ).

Feature representations

Based on the aforementioned types of features, performances were
compared across 4 types of feature representation strategies: (i) Physi-
ologic features only which is denoted x19 (19 physiologic time-series
variables) for sequential and x48 (48 h average) for classic models.
(ii) Diagnostic histories only, denoted as w2v for word2vec embed-
dings®® and onebot® for one-hot vector representations. (iii) Com-
bined visit-level and demographic information-level representation as
denoted by w48 for classic models and x19_h2v or x19_demo for se-
quential models. (iv) Embedded sentence-level representation,
denoted as sentences for all kinds of models. Specifics of these repre-
sentations can be found in the Supplementary Material of this article.

Visit-level representation (physiologic features only)

For collapse models [Support Vector Machines (SVM), Logistic Re-
gression (LR), Ensemble Classifiers, and Feed-Forward MLPs), raw
hourly averages for each time-series variable was converted into 5
summary features per variable: minimum value, maximum value,
mean, standard deviation, and number of observations for the
duration of the admission. We denote this representation as X48.

For sequential models, we simply use the standardized hourly aver-
age data per admission to establish this baseline, denoted as X19.

History-level representation (diagnostic history only)

In more recent papers, it has been proposed that sequential data
may be more effectively represented in embedded representations,
where each event is mapped onto a vector space of related
events.”>*® Embedding techniques such as word2vec allow for
sparse representations of medical history to be transformed into
dense word vectors whose mappings also capture contextual infor-
mation based on co-occurrence.

As shown in Figure 3, each admission was treated like a sen-
tence, with medical events occurring as neighboring words. In a slid-
ing window fashion, word2vec takes the middle word of each
sliding window and learns the most likely neighboring words. This
representation strategy was denoted as w2v. As an additional base-
line, sum of one-hot vectors was also used to represent diagnostic
history for collapse models, denoted as onehot.

Combined representation

Mixed time-series and static representations were used for both se-
quential and collapse models. For collapse models, Word2Vec
embeddings of diagnostic history was concatenated with summary
features from time-series data as features for prediction. This was
denoted as W48 (w2v +x48). For sequential models, we utilized 2
separate layers of input: the x19 input was fed into recurrent layer,
and its output was merged with the w2v input layer. The hierarchi-
cal sequential models were labeled as x19_h2v when both diagnostic
and demographic histories were used for the w2v input, and
x19_demo when only demographic word2vec inputs were used. The
latter case applied only to the prediction of differential diagnoses,
where diagnostic history of admissions were used as labels rather
than as features.

Embedded representation

In this representation scheme, both diagnostic history and time-
series variables were treated as word vectors for representation. For
each admission, time-series data (I_) and diagnostic history (d_) in
the sequence they were encountered during the admission.
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Figure 2. Distribution of physiologic time-series variables in MIMC-IIl. A, The kernel density distribution of lab values used in the comparative study. Each variable
follows a Gaussian distribution with magnesium and PH having the lowest variance. B, The histogram view of laboratory variable distributions. BUN, creatinine,
platelets, and serum lactate measurements demonstrate right-skew behavior while PH is left-skewed.

To differentiate the type of event, each feature is labeled with prefix
“]_” for labs or vital signs and “d_" for diagnosis. Time-series varia-
bles were discretized and included in the feature vector depending
on whether or not the observed event was within 1 standard
deviation of its mean value. For example, if an observed lab value
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were able to map abnormal time-series values with frequently co-
occurring diagnostic codes in the same word-vector space.
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Figure 3. word2vec embedding of medical events. A, The general architecture of skip-gram embedding used to map sparse one-hot representation of medical
codes into dense word vector embeddings. Given a series of discrete medical events, center, and neighboring events are generated in a sliding window fashion,

where the neural network learns the relationships nearby words for contextual representation. The weights which map input events onto the hidden layers are
used as a filtering layer for future inputs for prediction tasks. B, An overview of the word2vec pipeline for transforming input features from the EHR into word vec-
tor representations. Sentence-level representation is being shown here, but word2vec can be used exclusively for diagnostic codes in visit-level representations

as well.

Types of predictive models

Collapse models

Collapse models are standard ML models which do not consider
temporal information. In this study, we examined SVM, Random
Forest (RF), Gradient Boost Classifier (GBC), LR, and Feed-forward
Multi-Layer Perceptron (MLP).

Sequential models

Two RNN models were examined in this study: the bidirectional
Long Short-term Memory (LSTM) model*>*! and the Convolu-
tional Neural Network w/ LSTM model (CNN-LSTM).>? Regulari-
zation was implemented with Dropout and L2 regularization at
each LSTM layer. For binary and multilabel classification tasks, sig-
moid activation function was used at the fully connected output
layer, and binary cross-entropy was used as loss function. For the
multiclass case (eg LOS and readmission bins), softmax activation
was used at the output layer with categorical cross-entropy as loss
function. Adam optimizer with initial learning rate of 0.005 was
used in both cases.

Refer to Supplementary Material Section S8.2 for details about
the mechanics of these models as well as the hyperparameter tuning
procedures. Our code is available at https:/github.com/illidanlab/ur-
gent-care-comparative for the features and models presented in this
article. Figure 4 provides an overview of the workflow of our experi-
ment from preprocessing to prediction.

RESULTS

In-hospital mortality prediction

Table 1 summarizes the top performances of models on the mortal-
ity prediction task. Sequential models significantly out-performed
the collapse models in AUC (P-value <.05 for all sequential vs col-
lapse comparisons, see Supplementary Table S6.) and achieved the
highest AUC score of 0.949 (0.003 std). In general, diagnostic codes
alone yielded the poor performance for both classic and sequential
models. Time-series data alone achieved the closest performance to
combined visit- and history-level representations for both sequential
and classical models. In fact, the highest sensitivity score (0.911)
was achieved by vanilla LR with only physiologic data (x48).
Sentence-level representation yielded consistent scores in the 0.70-

0.76 range across most models, but it did not capture the same level
of sensitivity and specificity as did exclusively time-series and mixed
feature representations.

When comparing mortality prediction performance between var-
ious embedding techniques, the most notable performance boost oc-
curred when RNN models achieved significantly greater AUC
(0.907 for LSTM and 0.933 for CNN) and fl-scores (0.526 for
LSTM and 0.587 for CNN) while using visit-level features when
compared to the next best model (feed-forward MLP architecture w/
0.816 AUC, 0.519 f1-score). Similarly, when using mixed visit- and
history-level features, LSTM and CNN preserved around 10% AUC
increase and 15% f1-score increase in comparison to MLP and en-
semble models. The key advantage of sequential models over MLP is
that they capture temporal relationships between time-steps with se-
quentially presented data. While previous studies have cited ability
of inflammatory markers and vital signs for in-hospital mortality

1333 potable performance difference between our col-

prediction,
lapse and sequential models suggests that 48 h temporal trends may

greatly augment the predictive ability of physiologic markers.

LOS prediction

Table 2 summarizes performance for various models across 8 LOS
ranges. In admissions resulting in 1-5 ICU days, MLP w/ x48
achieved the highest AUC and f1-scores. LR w/ w48 achieved the
highest AUC and f1-scores for durations greater than 5 days. In fact,
the highest performance achieved by LR w/48 was in predicting out-
lier cases >30 days with AUC of 0.934 and f1-score of 0.173. In pre-
dicting LOS outliers between 8 and 14 days, LR w/48 achieved AUC
of 0.840 and fl-score of 0.372. Performance patterns were similar
between sequential and LR, where the lowest performance occurred
for predictions between 2 and 5 days (AUC ranging from 0.62 to
0.74) and highest performance occurred for predictions between
8 and 30+ outlier days (AUC ranging from 0.83 to 0.89).

One notable trend was that while the AUC scores consistently in-
creased as the outlier days increased, the f1-scores decreased, as did
the sample size of the bins. For example, LR with mixed physiologic
and diagnostic features produced average AUC scores of 0.748,
0.579, 0.705, 0.84, 0.887, and 0.917 for LOS ranges (1, 2), (2, 3),
(3, 5), (5, 8), (8, 14), (14, 21), and (21, 30). The progression of f1-
scores were: 0.704, 0.372, 0.34, 0.298, 0.372, 0.264, and 0.173. In-
terestingly, the sensitivity values also progressively increased for in-

Downloaded from https://academic.oup.com/jamiaopen/article-abstract/1/1/87/5032901
by Weill Cornell Medical Library user
on 12 July 2018


https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooy011#supplementary-data
https://github.com/illidanlab/urgent-care-comparative
https://github.com/illidanlab/urgent-care-comparative
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooy011#supplementary-data

JAMIA Open, 2018, Vol. 1, No. 1 93

A

Discretize
Variables,
Imputation

Uniform
Feature Matrix
(UFM)

Raw EHR
impatient data

Task-based Fealture
Labelin Selection and
¢ Embedding

Summary Vector

Collapsed Models

|
(x L Il ([ x ][ x]
| I
L L L [ x][x]
L] JE ]

Observed Information

Used for Training

DX
Readmission
Length-of-Stay

Medical Events

|:| Prediction Target
m «  Mortality

T :I'ime
Prediction Window

Unseen Data

Figure 4. Overview of workflow. A, The overview of our experimental pipeline from preprocessing to prediction. Raw EHR data is first processed into Uniform
Feature Matrix (UFM), where key features such as hourly averaged vital signs, ICD-9 group codes and lab values are extracted per patient and aligned. Labels for
each task is then extracted for each relevant patient. Additional preprocessing is performed for different features (eg embedding, described below). Once features
are normalized and aligned, prediction is performed for each task. B Uniform Feature Matrix (UFM) used for prediction. The “prediction window” refers to the
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Table 1. Summary of top performing mortality models w/ representation schemes

Rank Model AUC F1 Sn Sp P-value
Classic models
1 MLP w/ W48 0.855 (0.0058) 0.546 (0.011) 0.877 (0.0071) 0.834 (0.007) .0019
2 RF w/ W48 0.843 (0.0073) 0.523 (0.005) 0.864 (0.019) 0.821 (0.0052) .0018
3 GBC w/ W48 0.773 (0.0098) 0.437 (0.013) 0.759 (0.024) 0.786 (0.017) .014
Sequential models
1 LSTM w/ x19 + h2v 0.949 (0.003) 0.623 (0.012) 0.883 (0.016) 0.887 (0.0073) .0001
2 CNN-LSTM w/ x19+h2v 0.940 (0.0071) 0.633 (0.031) 0.852 (0.04) 0.895 (0.023) .0022
3 CNN-LSTM w/ x19 0.933 (0.006) 0.587(0.025) 0.854 (0.016) 0.868 (0.018) .0025

Note: Each performance metric is evaluated across 5 stratified shuffle splits. The mean performance is reported with the standard deviation in parenthesis. The

P-value is calculated by comparing the AUC of a given model with the baseline performance with LR and physiologic markers. More extensive pairwise statistical

t-tests are shown in Supplementary Table S6.

Abbreviations: AUC: area under receiver operating characteristic curve; F1: f1-score; Sn: sensitivity; Sp: specificity; MLP: Multi-Layer Perceptron; RF: Random
Forest; LSTM: Long Short-term Memory; CNN: Convolutional Neural Network; GBC: Gradient Boost Classifier.

Bold values indicate best performance.

creasing LOS bins: 0.804, 0.695, 0.659, 0.748, 0.878, 0.916, 0.953,
and 0.955. Such pattern suggests that the trade-off occurred for pos-
itive predictive values (PPV), which dramatically decreased for lon-
ger LOS days. This can be attributed to the fact that the absolute
number of outlier patients decreased dramatically with increasing
LOS days. Since PPV is sensitive to the proportion of positive sam-
ples while sensitivity is not, the change in f1-score can be explained
by the distribution of labels rather than a decrease in true-positive
prediction by the models. In fact, the AUC, sensitivity, and specific-
ity increased with LOS bins for most models, suggesting that our
binning technique was especially helpful in discriminating LOS out-
liers with increasing duration of stay.

Differential diagnoses prediction

Table 3 summarizes the performances of models across various key
differential diagnoses in MIMIC-III. Overall, sequential models did
not significantly improve performance when compared to MLP (see
Supplementary Table S7). CNN-LSTM using hierarchal inputs from
visit- and history-level information performed best among sequential
models, but differences were not significant (P-value >.05).

Our models were able to predict renal diseases with the highest
performance (0.887-0.895 AUC between MLP and CNN-LSTM
models) presumably due to the inclusion of blood urea nitrogen lev-
els (BUN) and creatinine as features. BUN-to-creatinine ratio is
commonly used as a clinical metric for evaluating glomerular
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Table 2. Summary of top performing LOS predictors w/ representation schemes

Bins Model AUC F1 P-value

Classic models
1-3d MLP w/ x48 0.791 (0.0043) 0.746 (0.0072) .0034
3-5d MLP w/ w48 0.653 (0.018) 0.444 (0.029) .081
5-8d LR w/ w48 0.705 (0.006) 0.298 (0.007) 121
8-14d LR w/ w48 0.840 (0.0079) 0.372 (0.014) .029
14-21d LR w/ x48 0.887(0.019) 0.264 (0.015) .033
21-30d LR w/ x48 0.917 (0.011) 0.182 (0.01) .0016
30+ LR w/ w48 0.934 (0.011) 0.173 (0.0041) .0028
Micro LR w/ w48 0.747 (0.0025) 0.419 (0.0018) .051

Sequential models
1-3d CNN-LSTM w/ x19 0.758 (0.0055) 0.615 (0.015) .013
3-5d CNN-LSTM w/ x19 0.645 (0.0047) 0.139 (0.031) .092
5-8d CNN-LSTM w/ x19 0.736 (0.0029) 0.103 (0.012) .088
8-14d CNN-LSTM w/ x19 0.838 (0.0055) 0.181 (0.037) .055
14-21d CNN-LSTM w/ x19 0.877 (0.009) 0.112 (0.025) .0046
21-30d LSTM w/ x19+h2v 0.879 (0.025) 0.135 (0.032) 011
30+ LSTM w/ x19+4+h2v 0.889 (0.027) 0.165 (0.07) .005
Micro CNN-LSTM w/ x19 0.846 (0.001) 0.368 (0.010) .00014

Note: Each performance metric is evaluated across 3 stratified shuffle splits. The mean performance is reported with the standard deviation in parenthesis. The

P-value is calculated by comparing the AUC of a given model with the baseline performance with random forest classifier and diagnostic histories. More extensive

pairwise statistical z-tests are shown in Supplementary Table S8.

Abbreviations: LOS: length of stay; AUC: area under receiver operating characteristic curve; F1: f1-score; CNN: Convolutional Neural Network; MLP: Multi-

Layer Perceptron; LR: Logistic Regression; LSTM: Long Short-term Memory.
Bold values indicate best performance.

Table 3. Summary of top performing DDX predictors w/ representation schemes

DDX Model AUC F1 P-value

Classic models
CHF MLP w/ x48 0.784 (0.00238) 0.488 (0.00689) .000273
CAD MLP w/ x48 0.798 (0.00612) 0.52 (0.011) .000498
Afib MLP w/ x48 0.745 (0.00218) 0.401 (0.0121) .00260
Sepsis MLP w/ x48 0.883 (0.00422) 0.312 (0.0101) 9.99E-5
AKF MLP w/ x48 0.886 (0.00387) 0.505 (0.0106) 3.82E-5
CKD MLP w/ x48 0.870 (0.00612) 0.276 (0.0173) .000121
T2DM MLP w/ x48 0.742 (0.00584) 0.199 (0.0175) .00435
Hyperlipidemia MLP w/ sentences 0.751 (0.00519) 0.17 (0.00178) .00269
Pneumonia MLP w/ x48 0.723 (0.00492) 0.001 (0.00112) .00658
Micro MLP w/ x48 0.806 (0.0021) 0.328 (0.003) .000123

Sequential models
CHF LSTM w/ x19 + demo 0.785 (0.00346) 0.455 (0.0211) .000469
CAD CNN w/ x19 + demo 0.793 (0.00486) 0.480 (0.0382) .000629
Afib LSTM w/ x19 + demo 0.768 (0.00534) 0.341 (0.0494) .00161
Sepsis LSTM w/ x19 0.862 (0.00892) 0.254 (0.0268) .000332
AKF CNN w/ x19 0.863 (0.00729) 0.488 (0.0285) .000208
CKD CNN w/ x19 + demo 0.872 (0.00611) 0.172 (0.0154) .000115
T2DM LSTM w/ x19 + demo 0.746 (0.00881) 0.144 (0.0213) .00736
Hyperlipidemia CNN w/ x19 + demo 0.749 (0.0122) 0.175 (0.048) 0115
Pneumonia CNN w/ x19 + demo 0.723 (0.0115) 0.006 (0.00106) .0216
Micro CNN w/ 19 + demo 0.803 (0.00308) 0.306 (0.0105) .000224

Note: Each performance metric is evaluated across 5 stratified shuffle splits. The mean performance is reported with the standard deviation in parenthesis. The

P-value is calculated by comparing the AUC of a given model with the baseline performance using LR using physiologic markers. More extensive pairwise statisti-

cal t-tests are shown in Supplementary Table S7.

Abbreviations: DDX: differential diagnoses; AUC: area under receiver operating characteristic curve; F1: f1-score; Sn: sensitivity; Sp: specificity; CHF: conges-
tive heart failure; CAD: coronary arteriolar disease; Afib: atrial fibrillation; AKF: acute kidney failure; CKD: chronic kidney disease; T2DM: type II diabetes

mellitus; MLP: Multi-Layer Perceptron; CNN: Convolutional Neural Network; LSTM: Long Short-term Memory.

Bold values indicate best performance.

performance and intactness of renal nephrons. Similarly, essential data across time. However, interesting patterns emerge when we
hypertension yielded high AUC scores across most models due to were able to identify disease phenotypes without using the gold stan-
our inclusion of systolic bood pressure and diastolic blood pressure dard clinical markers typically associated with those conditions.
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Table 4. Summary of top performing readmission models w/ representation schemes
Rank Model AUC F1 Sn Sp P-value
Classic models
1 RF w/ w48 0.582 (0.0067) 0.122 (0.0025) 0.601 (0.02) 0.563 (0.0086) .0387
2 LR w/ w2v 0.577 (0.0067) 0.123 (0.0023) 0.574 (0.031) 0.592 (0.0211) .0469
3 RF w/ 48h 0.577 (0.009) 0.121 (0.003) 0.571 (0.021) 0.583 (0.004) .0657
Sequential models
1 LSTM w/ x19 + h2v 0.580 (0.00914) 0.112 (0.0043) 0.548 (0.0192) 0.565 (0.0206) .0606
2 LSTM w/ x19 0.554 (0.00648) 0.108 (0.0028) 0.538 (0.0168) 0.554 (0.0214) 107
3 LSTM w/ w2v 0.552 (0.0154) 0.107 (0.0038) 0.567 (0.0404) 0.524 (0.0272) .199

Note: Each performance metric is evaluated across 5 stratified shuffle splits. The mean performance is reported with the standard deviation in parenthesis. The

P-value is calculated by comparing the AUC of a given model with the random classifier with AUC of 0.50 and variance of 0.0015.

Abbreviations: AUC: area under receiver operating characteristic curve; F1: f1-score; Sn: sensitivity; Sp: specificity; RF: Random Forest; LR: Logistic Regres-

sion; LSTM: Long Short-term Memory.

For example, cardiovascular conditions such as atrial fibrillation
(Afib) and congestive heart failure (CHF) are often confirmed by
ECG (usually via 24 h Holtz monitor) and echocardiography (stress-
induced or otherwise), respectively. Our study shows that RNNs,
using only vital signs, demographic information, and a subset of
metabolic panel lab values, were able to capture their prevalence
with as high as 0.785 AUC and 0.395 sensitivity scores for CHF and
0.768 AUC and 0.328 sensitivity scores for Afib. In comparison, the
gold standard measurement with 24 h Holtz monitor detects Afib
with sensitivity of 0.319 at annual screenings and tops out at 0.71 if
done monthly.>* Because Afibs occur spontaneously in many cases,
they can be easily missed during physical exams unless Holtz moni-
tors or expensive implantable devices are used for longitudinal mon-
itoring. The predictive ability of physiologic-markers alone for CHF
and arrhythmic events suggest the possibility that arrhythmic car-
diac pathologies yield temporal changes in physiologic regulation
that is screenable in the acute setting.

There were several diseases for which sensitivity and f1-scores
were very low across all model predictions. For example, all classic
models with the exception of MLP failed to predict (AUC of 0.50)
depressive disorder (psychiatric), esophageal reflux (GI), hypothy-
roidism (endocrine), tobacco use disorder (behavioral), pneumonia
and food/vomit pneumonitis (infectious), chronic air obstruction (re-
spiratory, may be seasonal or trigger-dependent), and nonspecific
anemia (hematologic). The most surprising condition of the above-
mentioned cases was hypothyroidism, which is known to cause
long-term physiologic changes in metabolism and vital signs. While
it is possible that the physiologic markers did not capture the pro-
gression of these diseases, the cause of underperformance was likely
due to the duration of our observation window (48 h), which may
have failed to capture the longitudinal or trigger-based temporal
patterns of more chronic diseases.

Prediction for all-cause readmission within a 30-day
window

Table 4A summarizes the top performing models for binary and
multiclass classification of readmission events. Ensemble classifiers
(RF and GBC) produced comparable performances to RNN models
in both tasks. In both the multiclass and the binary classification
case, the best performing sequential model was hierarchal LSTM us-
ing mixed visit- and history-level features. However, this architec-
ture was only able to achieve a mean AUC score of 0.580 (0.009
std) and fl-score of 0.112 (0.004 std) on test sets across 5-fold

cross-validation. The best performing collapsed model was RF clas-
sifier using mixed physiologic and history features (RF w/ w48),
which achieved an AUC of 0.582 (0.007 std) and f1-score of 0.122
(0.003 std).

DISCUSSION

Key features and models for each task

Our results show that sequential models are most suitable for in-
hospital mortality prediction, where temporal patterns of simple
physiologic features are adequate in capturing mortality risk. Deep
models in general significantly out-perform nondeep models for the
differential diagnostic task (Supplementary Table S5), but temporal
information from sequential models did not provide additional ben-
efit when compared to MLP. For LOS prediction, collapse models
and deep models provided similar performance across various time-
ranges. More important difference was in feature selection, where
physiologic markers significantly out-performed diagnostic histories
in predicting LOS range for both deep and nondeep models (Supple-
mentary Table S8). Our results for all-cause readmission suggests
the need for additional features for this particular task. Physiologic
and diagnostic histories alone do not capture the defining elements
of this particular clinical problem. A summary table is provided in
Supplementary Table S9 which briefly summarizes the best model
and features for each task.

Readmission as a separate problem from patient
stability

Figure SA and B shows the differences in generalizability of RNN
models for the mortality and readmission tasks. In both cases, bidi-
rectional LSTMs were trained with 5-fold cross-validation to illus-
trate learning behavior and test-set generalization for readmission
and mortality tasks. For both cases, it was clear that the training
AUC was increasing with each training iteration (epoch), while the
loss function was decreasing consistently. However, only in the mor-
tality case did we observe an increase in testing AUC, which should
ideally follow the training AUC behavior. In the readmission case,
the training AUC approached 0.90+ over 30 epochs, but the testing
AUC increased from 0.50 toward 0.57-0.61 range and fluctuated
for the following epochs (>5). Such behavior exemplified most, if
not all, of our model training behaviors for this task. This discrepancy
points to the idea that perhaps our feature representation was inade-
quate in capturing risk factors for readmission. In particular, examin-
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Figure 5. Comparison of training performance for readmission and mortality tasks. A comparison between the training data of readmission and mortality tasks.
A, 5-fold validation training data of vanilla bidirectional LSTM trained on physiologic time-series data only. Training AUC is demarcated tr_auc while testing AUC
is demarcated te_auc. B, 5-fold validation training data of the same model architecture and feature selection on the readmission task. In both cases, the training
AUC scores increased with decreasing loss the training set, but only in the mortality task are the train-test results generalized. This suggests a wide disparity be-
tween in the readmission task samples which the models could not capture. C, A model training data captured in multitask learning of readmission, in-hospital
mortality, 30-day, and 1-year mortality. All AUC scores shown in C are testing data only. With increasing epochs, only mortality models improved. More impor-
tantly the training patterns show that knowledge transfer from mortality tasks did not improve readmission predictions.

ing patterns in diagnostic history, health care coverage (as represented
by insurance policy, marital status, and ethnicity in our case),
and physiological markers may be insufficient in capturing the key
contributing factors of hospital readmission.

We further examined the dependence of readmission on the
“stability” of patients. The all-cause 30-day readmission has classi-
cally been formulated as a problem of accurately depicting patient
stability upon discharge from inpatient facilities. If this were the
case, then there should exist parallel patterns in postdischarge mor-
tality and readmission. Figure 5C demonstrates a supplementary ex-
periment done with multitask learning of in-hospital mortality, 30-
day readmission, 30-day and 1-year mortality. Here, vanilla bidirec-
tional LSTM was used for training across 100 epochs over 5-fold
validation, with the average values across different k-folds visualized
in the summary plot. We see that while there was knowledge trans-
fer across in-hospital mortality, 30-day mortality and 1-year mortal-
ity, the 30-day readmission task did not stand to gain any additional
performance boost from the added knowledge captured by the mor-
tality prediction tasks. In fact, testing AUC patterns of 30-day mor-
tality differed greatly from that of testing AUC for 30-day

readmission. The LSTM model, using only temporal physiologic
data, was able to capture generalizable performance across all mor-
tality tasks but not the readmission task.

CONCLUSION

In this study, we leveraged performance differences between patient
feature representations and predictive model architectures to capture
insight from clinical tasks. One notable limitation of this study is the
exclusion of procedural and medication data from our analysis of clin-
ical outcomes. The fact that inclusion of demographic features such as
insurance policy, marital status, gender and race of the patients did
not benefit our readmission prediction models points to the possibil-
ity that accurate risk models for more complex tasks such as read-
mission may require feature selection to include environmental
factors such as medication progression, procedural follow-up and
access to transportation. For example, previous studies have cited
that system-level factors such as medicine reconciliation, access to
transportation and coordination with primary providers may play
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