Evaluating How Developers Use General-Purpose Web-Search
for Code Retrieval

Md Masudur Rahman Jed Barson Sydney Paul
University of Virginia University of Virginia Clemson University
masud@virginia.edu jb3bt@virginia.edu sepaul@g.clemson.edu

Joshua Kayani
North Carolina State University
jkayani@ncsu.edu

Christopher Parnin
North Carolina State University
cjparnin@ncsu.edu

ABSTRACT

Search is an integral part of a software development process. De-
velopers often use search engines to look for information during
development, including reusable code snippets, API understanding,
and reference examples. Developers tend to prefer general-purpose
search engines like Google, which are often not optimized for code
related documents and use search strategies and ranking techniques
that are more optimized for generic, non-code related information.

In this paper, we explore whether a general purpose search en-
gine like Google is an optimal choice for code-related searches. In
particular, we investigate whether the performance of searching
with Google varies for code vs. non-code related searches. To ana-
lyze this, we collect search logs from 310 developers that contains
nearly 150,000 search queries from Google and the associated result
clicks. To differentiate between code-related searches and non-code-
related searches, we build a model which identifies the code intent
of queries. Leveraging this model, we build an automatic classifier
that detects a code and non-code related query. We confirm the
effectiveness of the classifier on manually annotated queries where
the classifier achieves a precision of 87%, a recall of 86%, and an
F1-score of 87%. We apply this classifier to automatically annotate
all the queries in the dataset. Analyzing this dataset, we observe
that code related searching often requires more effort (e.g., time, re-
sult clicks, and query modifications) than general non-code search,
which indicates code search performance with a general search
engine is less effective.

ACM Reference format:

Md Masudur Rahman, Jed Barson, Sydney Paul, Joshua Kayani, Federico
Andrés Lois, Sebastian Fernandez Quezada, Christopher Parnin, Kathryn T.
Stolee, and Baishakhi Ray. 2018. Evaluating How Developers Use General-
Purpose Web-Search for Code Retrieval. In Proceedings of MSR ’18: 15th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR 18, May 28-29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5716-6/18/05...$15.00
https://doi.org/10.1145/3196398.3196425

Federico Andrés Lois
Codealike, Argentina
Federico.lois@corvalius.com

Kathryn T. Stolee
North Carolina State University
ktstolee@ncsu.edu

Sebastian Fernandez Quezada
Codealike, Argentina
sebastian.quezada@corvalius.com

Baishakhi Ray
University of Virginia
rayb@virginia.edu

International Conference on Mining Software Repositories , Gothenburg, Swe-
den, May 28-29, 2018 (MSR ’18), 11 pages.
https://doi.org/10.1145/3196398.3196425

1 INTRODUCTION

Search plays an important role in fulfilling users’ information needs.
In particular, search for code has been an integral part of software
development processes in the past [3, 28, 38, 39]. Developers often
use a search engine for various information needs, including find-
ing reusable code snippets, understanding APIs, locating reference
examples, learning unfamiliar concepts, remembering syntactic
details, identifying appropriate third-party libraries, and debug-
ging [16, 28, 39]. In the literature, code search has been studied
extensively and researchers proposed many approaches to improve
code search performance [1, 10, 13, 15, 18-20, 22-24, 26, 27, 32, 37,
41].

In practice, to support the increasing need for code search in soft-
ware development, several commercial search engines have been
developed, such as Google Code Search [11], Black Duck Open Hub
Code Search [33], and others (e.g., [17, 29]). Unfortunately, many
of them (e.g., [11, 33]) are now obsolete. Thus, programmers tend
to turn to a general purpose search engine (e.g., Google [12], Ya-
hoo [40], Bing [4]) to search for code [16, 31, 36], and software [16],
and they rarely use a dedicated code search engines [16]. Among
several general-purpose search engines, Google has been found to be
the most frequently used search engine for software development
related searches [31].

These general purpose search engines (GPSE) are usually op-
timized for textual search [16] and treat code as plain text when
used for searching code. Thus, they tend to ignore the underlying
semantics of the code. In fact, Google’s dedicated code search en-
gine [9] used an additional layer of n-gram based regular expression
matching technique to cater the special needs of code search. Using
GPSE for code search might be a reason that despite the tremendous
increase in online resources (e.g., GitHub, SourceForge, StackOver-
flow, API documentation), suitably locating reusable source code
still remains a major challenge—developers often fail to locate the
intended code using different search approaches including web-
search [16]. Surveys have shown that developers look at an average

https://doi.org/10.1145/3196398.3196425
https://doi.org/10.1145/3196398.3196425

MSR 18, May 28-29, 2018, Gothenburg, Sweden

of 3.5 snippets of code before finding something useful for their

task at hand [36].

Despite their limitations, GPSEs are the most popular choice
for code search and will continue to be like that, in all likelihood,
because they are lightweight, easy to use, and have sophisticated
web interfaces [22]. Thus, it is worthwhile to evaluate how GPSEs
perform while used for code vs. general non-code related search so
that we can better understand GPSE’s shortcomings in code domain
and tune them accordingly. In this paper, we shed some empirical
light to explore this question by studying Google search [12]. In
particular, we investigate how the search behavior of users and
performance of the search engine vary for code related searches
compared to non-code related searches.

To this end, we analyzed 14 months of web search logs from 310
developers using a Google Chrome plugin, which tracks browsing
activities of its users [6]. In total, we analyzed 149,610 Google
search queries. Since these are web search logs of the developers
during their working time, the logs contain both code and non-code
related queries, although they are not annotated as such. First, we
develop an automated technique to classify these queries to code
vs. non-code. We leverage Stack Overflow [34] tags to extract code-
related tokens. A codeness score is calculated for each query based
on how many stack-overflow tokens are present in it. A higher
codeness score indicates the query is more likely to be code related.
A manual evaluation shows that the classifier achieves a precision of
87%, a recall of 86% to successfully classify code vs. non-code queries.
Using this classifier we find 88,577 (59.21%) code related queries
and 61,033 (40.79%) non-code queries in our dataset. We use this
annotated data to analyze the differences between code and non-
code related search for GPSE. We study both query characteristics
(RQ1) and developers’ effort (RQ2 & RQ3) and find that:

(1) A single code query is, in general, larger and uses a smaller
vocabulary than a non-code query (see RQ1).

(2) To retrieve the intended answer, users have to spend more time
on a single code query and have to modify the queries more
often than the non-code queries (see RQ 2).

(3) To complete a code related search task, users require more
queries, more URLs clicked, and overall more time than non-
code related search tasks (see RQ 3).

Several empirical studies have been performed to identify how
developers search for code [28], what type of code issues they search
on Web [39], and how the performance varies when developers
search for code with different search engines [31]. Yet, it remains
less explored how code search is different than searching for general
information, i.e. non-code search. Little is known about how the
GPSE performs on code search compared to others. In this paper, we
seek to answer these questions. In summary, we make the following
contributions:

o Build and evaluate a novel technique to automatically classify a
search query to code vs. non-code (Section 4.2).

e Analyze the query characteristics and how it differs between
code vs. non-code queries in general-purpose web search (RQ 1).

e Analyze users’ effort in retrieving the intended result for code
and non-code related queries (RQ 2 and RQ 3).

We organize the rest of the paper as follows. We start by describ-
ing background information and research questions in Section 2.

Rahman et al.

Then we discuss our code intent model in Section 3. We discuss our
methodology in details including data collection, query extraction
and annotation, and classifier evaluation in Section 4. After that,
we analyze our experimental results in Section 5. We discuss the
implication of our code intent model and findings in Section 6. Then
we discuss related work in Section 7, possible threats to validity in
Section 8, and conclude in Section 9.

2 RESEARCH QUESTIONS

Typically, code related artifacts (e.g., source code, bug reports,
API documentation, etc.) are different from general documents,
such as news, Wikipedia articles, or other non-code information
sources [14]. While the latter is primarily composed of natural lan-
guages, the code related documents can be a mix of programming
and natural languages. However, GPSE treats source code as text
and ignores all the programming language related features. For
example, the source code is less ambiguous than natural language
so that the code can be interpreted by a compiler. However, GPSE
ignores the syntactic and semantic features of the source code and
thus, cannot interpret the underlying behavior. Thus, using GPSE,
locating similar code or retrieving code examples becomes difficult
unless both query and the documents use similar vocabulary [36].
But, since source code contains open vocabulary (i.e. developers can
coin new variable names without changing the semantics of the
programs), searching for code somewhat becomes a guessing game
for GPSE.

In this paper, we empirically evaluate the impact of using GPSE
for code related search. In particular, we investigate how code
search differs from non-code related search with GPSE in two di-
mensions: (i) query characteristics (RQ1), and (ii) users’ effort (RQ2
and RQ3). To this end, we explore the following research questions:

RQ1. How do query characteristics differ for code and non-code
queries?

To explore this RQ, we analyze how linguistically the two queries
are different. In particular, we check whether query length varies
for code and non-code search. We also study the vocabulary sizes
and vocabulary choices between the two.

RQ2. How do search behaviors vary for code and non-code
related queries?

In this RQ, we explore different search behaviors of users, including
how much time they spend on search results, how many websites
they visit, and how often they modify their search queries. We also
analyze how this behavior varies for code and non-code related
searches.

RQ3. How do task sessions vary for code and non-code related
search tasks?

Often, several queries can be related to same web search task. To
explore this RQ, we identify sequences of related queries as task
sessions (Section 4.1). Next, we analyze how many queries, how
much time, and how many website visits users require to complete
a task. We also analyze how these task level interactions differ for
code related search compared to non-code.

Evaluating How Developers Use General-Purpose Web-Search for Code Retrieval

3 CODE INTENT ANALYSIS

We assume that if a query contains more code related tokens (e.g.,
"javascript", "C#", "json", "visual-studio"), it indicates more code
intent. To automatically estimate such intent, we build an analysis
technique that assigns a code intent score to each query. We call
this score as codeness score. In this section, we discuss our analysis

technique in details.

3.1 Code Intent of Tokens

To construct the model, we first collect a list of code related token
set (S). We leverage StackOverflow (SO) [34] (May 2017 data dump)
which is an online Q/A forum where developers often discuss their
programming related issues. A post in SO can be associated with
tag(s), which are given manually. However, not all the tags are
equally strong indicators of code intent. We deal with such scenarios
as follows:

Firstly, we filter out ambiguous tags from our token set. SO tags
often co-occur with other tags and thus there might exist some tags
which always co-occur and never occur alone in any post. These
tags might not be an indication of code token. For example, "unbox"
tag never occurs alone but occurs with "haskell" tag [35] which is
a code token. Such tag (i.e. "unbox") might not be an indicator of
code intent. To remove such unwanted noise, we filter out all the
tags which never occur alone in any post. Additionally, we remove
all the post with multiple tags. Thus the frequency of a tag is the
count of its single occurred posts only. This process reduced the
number of selected tags drastically from 46.3K to 19.8K

Secondly, we assign a codeness score for each tag in our filtered
code token set (S). We assume that the popularity of a tag on SO is
the indicator of its code intent. Higher frequency (i.e. popularity)
indicates strong code intent. However, the raw frequency might
lead to incorrect code intent estimation. For example, in Table 1,
the frequency (i.e. count) difference between "android" and "java"
shows "android" carries much higher code intent than "java" which
is not completely accurate estimation. To mitigate such frequency
difference bias, we use sub-linear scaling. If a tag x occurs n times
then the codeness score, f(x), of that token is given by equation 1,

fx)=

1+ log2(n), ifxeS
(1)

0, ifx¢S

where S is the code token set. Note that, if a token is not in the
code token set (S) its codeness score is 0 and that token is considered
as a non-code token. n is the frequency of token x across all Stack
Overflow posts.

Now, considering previous "android" vs "java" example, we see
the codeness score are 17.55 and 17.13 (in Table 1) which shows both
tag are of similar code strength. In contrast, in Table 1 codeness score
of "lucene" is 10.18, which indicates its code intent is less compared
to "android" or "java". Some code tokens in different count ranges,
and their codeness score can be found in Table 1.

3.2 Code Intent of Queries

We leverage the token level codeness score to compute the codeness
score of the query. The codeness score (cscore) of a query is calculated
by summing up the code score of its tokens as in equation 2

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

Table 1: Sample code tokens’ count (single occurrence) and
their codeness score

Tags count cscore ‘ Tags count cscore
android 96210 17.55 css3 982 10.94
java 71869 17.13 applescript 956 10.9
php 71390 17.12 lucene 579 10.18
javascript 70248 17.1 coffeescript 579 10.18
python 53993 16.72 firefox-addon 268 9.07
jquery 52705 16.69 livecode 268 9.07
c# 48898 16.58 jasmine 86 7.43
mysql 41684 16.35 codeigniter-3 86 7.43
c++ 41283 16.33 miniprofiler 4 3

r 30176 15.88 idocscript 1 1

Table 2: Sample query and their codeness score assigned by
our model

Query Code Score Type
1 javascript mp3 play time 40.71 Code
2 javascript get track length 48.57 Code

from meta data

3 how to perform xml seri- 67.33 Code
alization for parameterless
constructor in c#

4 elasticsearch.net & nest in- 49.36 Code
stalled post nuget source
control stop notification

5 acer e700 review 7.07 Noncode
6 houston luxury suv rental 0.00 Noncode
7 messi curly goal 2.58 Noncode
m
cscore(Q) = § fxi) @)
i=1

where x; is the i*" token of the query Q of length m and f(x;) is
the codeness score of token x; as in equation 1.

If the codeness score of a query is high it is considered to have
a high code intent. In this way, the model assigns a code intent to
each query. Some sample queries with their codeness score is shown
in Table 2.

4 METHODOLOGY

In this section, we start with explaining our data collection and
query extraction approach in detail. Then we present both manual
and automatic query annotation process. After that, we describe
search tasks extraction and classification method.

4.1 Study Subject

Our search log data was collected from developers who installed a
proprietary Google Chrome Web Tracking plugin [6]. The plugin
tracks all the web browsing activities which are processed and
analyzed to understand how developer work and learn. Thus in
our dataset most of the users are developers either acting as team
leaders or performing technical tasks and the activity includes
search query and clicked web page visit information.

The data collection period spanned 14 months starting from
December 2014 to January 2016. There are a total of 149, 610 queries
of 310 users (See Table 3).

MSR 18, May 28-29, 2018, Gothenburg, Sweden

The dataset contains information about activity sessions for each
user, which represent a user’s active development time [8]. Each
user can have many activity sessions. Each activity session contains
events in the web browser, such as search queries and results clicked,
as well as non-browser events, such as IDE interactions. For the
browser events, the logs provide information on the clicked results,
specifically, the URL and page title. All events have a start time and
an end time.

These activity sessions provide a useful boundary of continuous
activity for a user, but finer granularity is needed as the logs con-
tain information about browser interactions as well as non-browser
interactions. Further, we want a notion of related web activities,
since users often initiate consecutive yet unrelated search queries.
After identifying consecutive related queries, we split the activity
sessions into task sessions. This is accomplished by first identifying
edited queries.

Identifying Edited Query: Users often modify their search query
to give more specific information to the search engine. These query
reformulations can expand the query by adding more terms or re-
duce the query by removing terms. If a query contains at least one
common term with its previous query, and the queries come from
the same activity session, we consider both queries as edited queries.

Composing Task Sessions: Task sessions capture continuous,
related web browser interactions. We consider all browser events
after one search query and before the next query as the result
exploration activity for the former query; the web URLs of those
activities are considered clicked URL.

To identify task sessions, first we explore all continuous se-
quences of edited queries and their associated results exploration
activities. Each sequence of edited queries represents a task session.
The remaining queries are all non-edited. Each non-edited query,
along with its results exploration activities, forms its own task ses-
sion.

Computing Search Query Time: Users spend time on the search
page and on the web pages they click. The time between when a
query is issued and when the next query is issued, or the activity
session ends (whichever comes first), is referred to as the query
search time. In the event that a user does not click any results, the
query search time is computed as the time spent on the result page.

4.2 Query Classification

A query which is intended to solve any software development re-
lated issue is considered as a code query. For example, reference code
example (e.g., "write in file java", and "how to get all textbox names
inside table layout panel c#"), debugging (e.g., "asp.net mvc error
page"), API usage, technical knowledge (e.g., "npm update all de-
pendencies", "git bash mingw", and "qualities of good programmer")
and other development related tasks are considered as code related
query. A query which is not intended to solve any software devel-
opment or programming task is considered as a non-code or general

query. For example, "make your own comics", "review Galaxy Note
Edge", and "d5300 amazon" are considered as non-code. To set the

Rahman et al.

threshold and evaluate our classifier, we manually annotate queries
to code and non-code.

Manual Query Annotation. From our dataset, we randomly
sample 380 queries across users. Two researchers separately anno-
tated those queries and resolved the disagreement by discussion. We
measure Cohen’s kappa coefficient (k) [7] to find inter-annotator
agreement, where a k value of 1 indicates a complete agreement and
a value of 0 indicates a complete disagreement. In our annotation
we find a k value of 0.85.

Evaluation Metrics. We use following metrics to evaluate our
classifier:

Precision (P) - is the fraction of correct prediction of total query.
Thus, P = % where r is the number of correct prediction and d is
the total query.

Recall (R) - is the fraction of correct prediction of the total ground
truth. If ¢ be the total ground truth, the recall is R = £.

F; Score (F-1) - is a single combined metric that trades off pre-

cision vs. recall by computing the harmonic mean of the two:
Fy = 2% precisionsrecall
1= precision+recall”

Accuracy Evaluation. Figure 1 shows precision, recall, and FI-score
with respect to code query in different codeness score thresholds. As
the threshold increases, precision also increases. In contrast, recall
decreases with the increase in threshold. However, F1 Score remains
in between precision and recall in different thresholds. For a better
comparison, it is important to maintain a balance between code
and non-code query classification. Thus, we choose the threshold =
10 where the classifier achieve a better trade-off of Precision = 87%,
Recall = 86%, and F1Score = 87%.

Precision Recall —#+=F1Score

o ~

o o
[}

Performance

e e
o

g
n
(=]

1 234567 8 910111213141516171819
Codeness Threshold

Figure 1: Classifier Evaluation

These results indicate that our model assigns codeness score
which is effective in detecting query intent. In addition to separating
code from non-code, the model also identifies the code specificity
of a code query. A larger score indicates a strong code intent. Thus,
we can further separate code related queries into different clusters
based on different ranges of codeness score.

For our analysis, we need to classify all queries to code or non-
code. Empirically, we set codeness score threshold to 10, which gives
us a better trade-off for precision and recall. Details dataset statistics
after the query classification can be found in Table 3.

Evaluating How Developers Use General-Purpose Web-Search for Code Retrieval

Table 3: Dataset Statistics (Codeness Score Threshold = 10)

Query/ User-Query Stats
Query # % User User Min Q1 Q2 Q3 Max
Code 88577 59.21 300 295.26 1 22 136.5 387.25 2593
Noncode 61033 40.79 296 206.19 1 15 85.5 294 1642
All 149610 100 | 310 48261 | 1 2875 207 676 3632

4.3 Extract and Classify Search Task

We analyze how user interaction varies for code and non-code
related search tasks. First, we extract task information from the
search log data. We define a search task as a set of the consecutive
edited queries. We start with a query and consider all the subsequent
queries which were edited from the previous query and stop when
encountering a totally new query. Thus we extract all such tasks
for all users. Applying this process, we extract a total of 108,313
tasks. Secondly, to analyze code and non-code task properties, we
compute the codeness score for each task. We assign a representative
query whose codeness score is maximum among all other queries
in a task. We consider this maximum codeness score as the code
intent for that task. Thus we assign a codeness score for all the tasks.
Similar to query classification, we consider a task with a codeness
score greater than a particular threshold (10 in our experiment) as
code related task and non-code otherwise. Note that, in a task, a
user might start with a lower code intent query and can add code
token(s) gradually to increase the code intent of the whole task.
Sample task session from our dataset can be found in Table 4.

4.4 Codeness Difference Calculation

Search engines (i.e. Google) often suggest query edits with the
search results. This helps users to come up with their desired query
for their informational need. To this end, we analyze what hap-
pens w.r.t. codeness score when users edit a code related query. If a
query gq is reformulated to g, then we calculate their codeness score
difference, ACodeness, as in Equation 3.

ACodeness = Codeness(qr) — Codeness(q) 3)

Here, a positive value of ACodeness indicates an increase, a
negative value indicates a decrease and zero (0) value indicates
no-change in code intent after reformulation. We compute the
ACodeness for all the edited code related queries in three different
settings: edited 1) only by adding term, 2) only by deleting term,
and 3) overall, adding or/and deleting term.

5 RESULTS

In this section we discuss our experiments and results analysis of

ROQs.

RQ1. How do query characteristics differ for code and non-
code queries?

To analyze query characteristics we filter out the duplicates to
mitigate unwanted bias from query duplication. In this search log,
we found 20.36% duplicate queries with duplication for both code
(20%) and non-code (21%) queries.

1) How do code-related queries differ in length from non-
code-related queries?

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

We begin with exploring the query length. Figure 2(a) shows that
code related query length (i.e. number of tokens or words in a query)
is often higher than the non-code, with statistical significance (con-
firmed by Wilcox statistical significance test with medium Cohen’D
effect size). The average length (4.7) of the code related queries is
higher than non-code (2.3). This implies that users tend to use more
words to express a code related issue which is almost twice that
needed to for a general non-code issue.

To dig into this further, we analyze how the query length varies
with the increase of the code intent of the query (i.e. codeness score).
Figure 2(b) shows the comparison in query length in different code-
ness score ranges. We see that often, queries with higher codeness
score are longer in length. Note that by definition codeness score
increases with the increase of code related tokens in a query. How-
ever, adding a non-code token does not an increase in codeness
score. Thus, sharp increase of query length with codeness score
in Figure 2(b) confirms that code related query are indeed more
verbose.

(a) (b)
6- ‘ 10 . . -
o & &
8- -

5 6
3 3-
-

2- 4

1- 2-

code noncode (10-20] (20-30] (30-40] 40+
Query Codeness Score

Figure 2: Query Length (# of words)

2) How do vocabulary varies for code and non-code query?
For this analysis, we remove English stop-words (adopted from [21])
from the queries . We find that vocabulary of code is 28K which is
much smaller than non-code query 45K though, in our annotated
data, the number of code query (i.e. 59.21%) is higher than non-code
(i.e. 40.79%). However, we observe that 43.48% of code vocabulary
are common with non-code which is depicted in Figure 3. In Table 5
we list top frequently occur code, non-code, and common tokens
with their frequency.

32868 12201 15860

Code Vocab
NonCode Vocab

Figure 3: Vocabulary words statistics for code and non-code query

Code related queries are often intended for a particular program-
ming language. To reduce the search space for relevant documents,
it is important to understand what programming language the user
intended to use. To explore this, we analyze how frequently user
explicitly mentions the language by name in the query. We use
a list of 100 popular programming languages [25] and search for
these keywords in code related queries. We find that users mention
language name in the code query 20% of the time and skip 80% of

MSR 18, May 28-29, 2018, Gothenburg, Sweden

Rahman et al.

Table 4: Sample Task Sessions (from Dataset)

Task Edit Seq. Query Added Terms Deleted Terms

1 how to get mp3 playtime in c# from stream

2 javascript mp3 play time javascript, play, time how, to, c#, from, stream, playtime
Code 3 how to get mp3 play time length how, to, get, length javascript

4 javascript function to get mp3 play length javascript, function how , time

5 javascript read mp3 metadata read, metadata function, to, get, play, length
Noncode 1 enterprise luxury suv

2 luxury suv rentals houston rentals, houston enterprise

Table 5: Top query words and frequency for Code, Noncode
and common words between them (w/o English Stopword)

Code Common NonCode
Token Freq Token Total Freq Token Freq
c# 6165 string 1179 2015 262
sql 2604 add 982 de 204
windows 2587 | type 950 | define 153
javascript 1966 error 855 meme 108
server 1936 | create 847 | uk 104
jquery 1713 | change 844 | dell 99
studio 1696 | list 826 | la 94
visual 1639 | set 809 | day 83
file 1443 | object 782 | price 82
string 1160 | array 741 | world 79
mvc 1144 | table 695 south 79
web 1038 2015 687 movie 79
code 979 | date 656 | lyrics 76
add 946 | find 645 | weather 75
type 929 time 633 top 73
asp.net 915 | check 627 | road 73

Table 6: Most Frequently Mentioned PLs. 20.10% of code
queries mention at least one PL name

Top Language Freq. ‘ Top Language Freq.
1 c# 6274 11 python 192
2 sql 2586 12 c 145
3 javascript 1970 13 bash 131
4 net 683 14 go 130
5 php 469 15 ruby 102
6 powershell 388 16 crystal 94
7 assembly 267 17 r 87
8 [255 18 logo 58
9 java 250 19 s 56

10 icon 203 20 f# 53

the time. This indicates that most of the time developers do not
mention language explicitly thus it is up to the search engine to
guess which programming language the developers intended. The
top mentioned programming languages with their query frequency
is shown in Table 6.

Result 1: Code queries are linguistically different than non-
code queries—they are longer and contain less vocabulary.

RQ2. How do search behaviors vary for code and non-code
related queries?

We investigate this question in three dimensions: (i) how much
time users have to spend per query, (ii) how many websites they
visit per query, and (iii) how many times users have to edit a query
to retrieve the intended document. We will discuss them one by
one.

1) How long do users spend searching for code-related is-
sues compared to non-code-related issues?

We compare time duration for code and non-code query in Fig-
ure 4 (a). We see that in code related query users take slightly more
time compared to non-code query search with the median time of
1min 20 sec and 1min 4 sec for code and for non-code queries respec-
tively. Although this difference is statistically significant (Wilcox’s
Test), CohenD’s effect size is negligible.

We further check whether time duration varies with codeness
score. Figure 4 (b) shows that as the codeness score of queries in-
creases users tend to spend slightly more time on searching (with
negligible effect size). Thus, in reality, we do not see any major
difference code and non-code queries w.r.t. the time users spend
interacting with the search engine.

(a) (b)

400- 400/

gaoor 300-
s

S 200-]

2 200
>

© 100- 100-

0- y | 0-

code noncode (10-20] (20-30] (30-40] 40+

Query Codeness Score
Figure 4: Query Browsing Duration

2) How many websites do people traverse when searching
for code related issues compared to non-code related issues?

From Figure 5 (a), we see that there is no significant difference
(confirmed by Wilcox statistical significance test and Cohen’D effect
size) between code and non-code with a median of 4 for both query
types. The average number of clicks per query is 11.4 for code
and 12.8 for non-code. This result indicates no matter what types
of problem users search for, they often visit a similar number of
websites. One possible explanation is - after a certain number of
clicks, users stop exploring results no matter whether the returned
results are satisfactory or not. This hypothesis can be explained
further by the results in Figure 5 (b). We see that there is no visible
trend of the number of website visits in the different range of
codeness score. We can conclude that users visit a similar number of
website in general for all queries. This behavior can be considered
as a common search behavior.

Furthermore, we observe that 22% of non-code queries require
no website visits, which is higher when compared to 17.9% for
code related search. This indicates that for non-code general search,
users get relevant results from the search results page only (i.e.
fact searching, summarized results from Google) or quickly realize

Evaluating How Developers Use General-Purpose Web-Search for Code Retrieval

whether the resulting information is relevant at all. On the other
hand, for code related search users need to click and see the content
(most of the cases) of the website to judge whether the page contains
relevant information or not.

(a)

(b)

18 181

16- 141

14- 12-
B 12- 10-
%10 .
= 8- 6
#* 6-

ol]

5]

0- ! T o

code noncode (10220] (20-30] (30-40] 40+
Query Codeness Score

IS

N

Figure 5: Web Visit Analysis for Query

3) How often do people have to modify their search when
searching for code related issues compared to non-code re-
lated issues?

Depending on the the context, the user might add/insert terms
to the query, delete terms, or both in order to reformulate the query.
Such queries are called edited queries. The user keeps editing a
query repeatedly until they are satisfied with the returned results.
Thus, an ideal search engine would return the exact satisfactory
documents when user issues a query for the first time. The more
a query is edited, the more effort is needed from the user to find
out relevant documents. To this end, we observe how users modify
queries during searching.

We observe that in total 27.6% of queries are edited queries. In
particular, 34.9% of the code queries are edited queries, which is
significantly higher than 17.01% of non-code edited queries. This
result indicates that search engine (i.e. Google) found it twice as
difficult to understand code search compared to non-code search.

w

w

N

Add Term
Delete Term
b

code noncode code noncode
Query Query

Figure 6: Add and Delete Term in Query Statistics for Code vs Non-
code

Type of Query Edit. To explore further, we observe the type of
edits users make during query modification. In Figure 6 we see that
for non-code search users often add or delete one term at a time to
generate their edited query. On the other hand, with code-related
search, most of the time users often achieve an edited query by
adding or deleting two terms.

This phenomenon can be observed in Table 7 which shows top
unigram and bigram tokens added, as well as deleted terms found in
our dataset for code queries. For instance, users often add "visual
studio” to their query to clarify their search intent as something

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

Table 7: Term Statistics for Edited Code Query

Top Added Terms Top Deleted Terms
Unigram Bigram ‘ Unigram Bigram
to visual studio to visual studio
c# c# winforms in when only
in framework entity | for success is
the not working and status code
of windows 8 with returned success
windows how to c# phone css
sql model object on parameters in
a unit test object not working
not parameters in from is when
for using c# is follow up
javascript windows phone the code returned
how when only not a status
server what is css sky in
from to add a object 2007
jquery status code javascript model object

related to "visual studio" platform. Similarly, users often mention
"using c#" term to indicate they want the solution in "c#" language.
A similar conclusion can be drawn for the deleted term as well.

Edit vs Codeness Score. Figure 7 shows how codeness score
changes when uses reformulate code related queries. We see that
the developer achieve an edit by only adding terms, it often in-
creases (i.e. positive median of onlyAdd in Fig. 7) code intent of the
query. Not surprisingly, when developers modify a query by only
deleting terms, codeness score decreases (i.e. negative median of
onlyDelete in Fig. 7). However, we see that the median of overallEdit
is 2 (i.e. positive). This indicates, when the developer reformulates
(i.e. adding or/and deleting terms) a query, it often increases the
code intent of the current query.

= N
(=1

=)

o

o

A Codeness

|
o

-10-

~15- i [
onlyAdd onlyDelete
Edit Type

overallEdit

Figure 7: Query Edit Type vs Codeness

These results indicate that though in terms of time spending per
query and website visit, there is no significant differences, users
have to edit code queries more often than non-code queries. Thus,
overall more effort is needed to query code using GPSE.

Result 2: Users modify code queries more often than non-
code queries to retrieve desired results.

RQ3. How do task sessions vary for code and non-code re-
lated search tasks?

Often users need multiple queries to complete a task. Thus, we
further check how much effort is needed to compare a whole code
vs. non-code task. We use the annotated tasks data and perform the
following experiments.

MSR 18, May 28-29, 2018, Gothenburg, Sweden

Table 8: Number of Queries per Task

#Query % Code % Noncode

1 70.96 90.76
2 16.41 6.49
3 6.22 1.55
4 2.94 0.67
5 1.51 0.24
5+ 1.96 0.29
Total 100% 100%

1) How many queries do users need to complete a search
task?

In Table 8, we see that the number of single query non-code
task is 90.76% which is significantly higher compared to 70.96% for
code task. On the other hand, the percentage of task consist of two
query is 16.41% for code which is significantly higher than 6.49%
for the non-code. As the number of queries per task increases (2, 3,
4, 5, 5+) (Table 8) the percentage of the task is getting higher for
code task compared to a non-code task. Overall, code task requires
significantly (Wilcox significance test with small Cohen’D effect
size) higher number of queries than non-code. On the other hand,
the number of queries to complete a task can be considered as the
amount of effort and interaction required from users. This implies
that the effort required to complete a search task is higher for code
related search compared to non-code search.

In addition, we see that (in Table 8) for code related search almost
2% of the time user made more than 5 edits to the queries which is
around 85% higher compared to non-code search (i.e. 0.29%). This
result indicates that users remain patient with the search engine
when they look for the code. This also indicates a code search task
is more complex which required more edits on queries to properly
convey the information need to the search engine compared to
non-code general search.

2) How much time do users need to complete a search
task?

In this RQ we analyze how much time users spend on the search
task. We sum up all the queries’ activity time in a task to get the
total duration of a search task. From Figure 8 (a), we see that most
of the code tasks required more time compared to non-code search
tasks. The median time to complete a code search task is around 2
min 53 sec and the median time to complete a non-code search task
is 1 min 35 sec. We see that generally, users spend almost twice
the time for code related search compared to non-code. This result
confirms the finding of RQ 3-1 that users are more patient for code
related search than for non-code related search.

3) How many different website visits are required to com-
plete a search task?

Similar to time duration, we also analyze the number of web
visits required for different tasks. In Figure 8 (b), we see that most
of the code search tasks required more web visits than non-code
search tasks. In RQ 2, we find no specific pattern in the number
of web visits between code and non-code related query. However,
here we see that the median of the number of web visits is 8 for
code task, which is higher than the median of the number of web
visits for non-code task (6). The increasing number of queries in
code search tasks (as in RQ 3-1) might contribute to the difference
in number of web visits for the search task.

Rahman et al.

a b

(a) (o)
25-

@ 600- ‘

c = 20-

2 iz

© 400- 3 15-

g g 15

a Z 0

& 200- *

< 5-

0- T 0- I T
code noncode code noncode
Task Task

Figure 8: Task Duration and Webvisit Statistics for Code vs Non-
code

Result 3: Users spend significantly more effort for code re-
lated task than non-code related task in terms of number of
queries, task completion time, and number of website visit.

Discussion

In summary, we find that code and non-code queries have different
query characteristics. Also, user needs to put more effort to retrieve
the intended results for code than non-code with a GPSE.

While our work primarily analyze code vs. non-code queries,
there could be further refinement possible for different kinds of
programming tasks and information needs behind the search. For
example, analyzing developers search queries on web, Xia et al. [39]
identified search tasks into seven different categories. We also see
similar pattern while manually annotating 178 code queries. Some
sample queries with their task categories are shown in Table 9.

Table 9: Sample code queries with their task categories (from
Dataset)

Task Type (short name) ~ Query Example

c# property naming guidelines

jira not loading images, Attempt to
load Oracle client libraries threw
BadImageFormatException This
problem will occur ...

how to call class function in webser-
vice c#

GWTP template maven

php online debugger, lighttable
sqlserver database rename

get protected member unit testing

1 General Search (gen)
2 Debugging (debug)

3 Programming (prog)

Code Reuse (reuse)
Tools (tool)
Database (db)
Testing (test)

[SIICNET NS

Figure 9 further shows how query length, query browsing du-
ration, and website visit can vary for different code tasks. We see
that most of the debug queries’ length are higher compared to oth-
ers and general code queries (i.e. gen) often smaller in length (in
Figure 9 (a)). Sometimes, developers directly copy error message
and search with that in search engine (see debug query example
in Table 9). This type of query are too specific and often intended
for few web documents (e.g., SO post discussion if exist). Thus, for
debug query developers often search for smaller duration (smaller
median in Fig. 9 (b)) and visit smaller number of websites (smaller
median Fig. 9 (c)). In contrast, general code query (i.e. gen) often
required lesser time - Fig. 9 (b) and web visit - Fig. 9 (c). In other
word, among code queries, GPSEs are better at locating general
code issues compared to other types (i.e. debug, testing , etc.). We

Evaluating How Developers Use General-Purpose Web-Search for Code Retrieval

(@)

Length

_5 400-
© 300-
S

‘—_l—, O 200-

= N WA OO N ®O© O

db deBug gén prbg reuse test tool

Query Type

db deBug gén prbg reuse test tool

Query Type

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

(b) ()

=

6-
4- —
0.
0

db deBug gén prbg reuse test tool

Query Type

Figure 9: Properties for different types of code queries

plan to do a detailed analysis for such different type of code queries
in future.

6 STUDY IMPLICATION
6.1 Implication of Code Intent Analysis

Here we discuss some areas where the code intent analysis can be
leveraged.

Search System: It is important for the search engine to under-
stand the search intent of users. Depending on the search intent
returned results and other interaction with the search engine might
vary. Search engines often use many meta information such as cook-
ies, previous search history, URL click to understand users’ search
intent. This metasearch information is expensive to collect and not
always available. For instance, the user might disable browser’s
cookie and history tracking or issue their first query. However, the
model can predict a query intent on the fly and only requires the
query text. So, this code intent model can be used as a comple-
mentary tool which can be plugged into any existing search system.
Further, search engine often suggests related queries to the issued
(initial) query. Code intent model can be used to guide this query
recommendation process. If the user shows initial code intent for a
search, higher code intent queries can be suggested.

Generalization: To score a query or sentence, our model re-
quires only a set of the domain-specific token (S). In this paper, to
achieve code intent we leverage general code related token from
Stack Overflow [34]. This token set (S) can be easily extended or
modified to identify specific code task. For example, "debugging"
related tokens can be leveraged to predict whether the query in-
tended for any code debugging task. Thus our model can be used
to facilitate any further research where a fine granular code classi-
fication (i.e. debug, testing, etc.) is required. Additional knowledge
about tags can be incorporated into the code intent analysis. For
example, programming languages (e.g., java, haskell) or related
technologies (e.g., react.js, mysql) can be assigned with constant
scores. This process helps to mitigate any popularity bias of tags of
the similar kind (e.g., java, haskell).

In addition to predicting query intent, the model can be applied
to score any document (i.e. sequence of tokens). Developers can
leverage codeness score to guide their document writing (e.g., API
documentation) to make it discoverable by the search engine for
code related search.

6.2 Implication of Empirical Findings

Unlike general non-code search, code issues usually require much
more consultation with different documents including text (e.g., API
documentation) and code (e.g., source code, bug reports), as evident
by our findings that developers need to query more to complete a
task (RQ3). Thus, code search imposes unique challenges for search
engines when they treat documents with mixture of code, and text
similarly as general textual document (e.g., news article). Thus, it
is important for a search engine to incorporate effective retrieval
models for code-mixed document and apply them effectively during
code search.

We also report in RQ1 that code queries are more verbose and
contain less vocabulary than non-code queries. Our code-intent
model can be further trained with such characteristics, which can
eventually impact GPSE’s search performance. For example, if code
intention is known by GPSE, it can restrict its search space. GPSE
can also leverage the frequent added and deleted terms in advance
from code queries to anticipate users’ intent and recommend related
queries accordingly.

7 RELATED WORK

There is substantial evidence in the literature to support the premise
that developers use general purpose search engines during software
development (e.g., [16, 22, 31, 36, 39]). Sim et al. [31] conducted a
comparison study on various code search techniques of developers
and observed that the general-purpose engine work better to find
reference examples than do dedicated code search tools. Though
code-specific search engines worked better in searches for subsys-
tems, the general-purpose search engine, Google, worked better
on searches for blocks of code. Furthermore, code-specific search
engines (i.e. Koder and Krugle) perform better when searching for
subsystems of code [31]. In a survey, Stolee et al. [36] found that
85% of developers search the web for source code at least weekly.
This result is echoed in a survey by Hucka et al. [16], which found
that 93% of the developers search on general-purpose web search
engines for "ready-to-use" software and 91% of them search for
source code. Additionally, Hucka et al. found that only 18% of par-
ticipant developers use specialized code search engines for source
code search.

Search logs of general-purpose search engines have been ana-
lyzed to identify different general query characteristics and users

MSR 18, May 28-29, 2018, Gothenburg, Sweden

search behavior (e.g., [30]). Similarly, dedicated code search en-
gines’ logs have also been investigated to determine the use of
code search engines, topics of search queries, and format of queries
(e.g., [2, 5, 28]).

In contrast, we analyze a search log of a general-purpose search
engine (i.e. Google) which consists of both code and non-code
related searches. We analyze query characteristics and users’ search
behavior for both code and non-query and explore the difference
between them. Additionally, we evaluate the performance of the
search engine for code related search compared to non-code general
search.

In a study on Google developers, Sadowski et al. [28] observed
that developers frequently search for code, conducting an average
of five search sessions with a total of 12 queries in each workday.
They also determined that programmers search to support a variety
of information needs, such as looking for API examples, code under-
standing, debugging, or locating code snippets. The extensive use
of code search engines in software development indicates that code
search tools have a significant impact on developers’ performance
in practice [28].

In a large-scale survey, Xia et al. [39] identified the frequency
and difficulty of different software development related web search
tasks. They classify frequent search tasks including exceptions/error
handling, reusable code snippets, programming bugs, and third-
party libraries. On the other hand, search tasks including perfor-
mance, multi-threading, and security bugs, database optimization,
and reusable code snippets are identified as most difficult search
tasks. They also observed that developers are likely to use general-
purpose search engines (i.e. Google) to search for code.

Martie et al. [22] found that iterative support in search engine
can provide better experience on searching for some specific devel-
opment tasks. They categorized developers’ responses to a question
about why they search and observed that developers often search
for code to implement a feature, support a design decision, or meet
problem specification. This work is complementary to previous
studies in its focus on comparing and contrasting code-related and
non-code-related search tasks.

8 THREATS TO VALIDITY

Internal Validity. There might be some tokens (e.g., newly pub-
lished library and API name) that carry code intent but are not
included in our code token set. This can lead to incorrect codeness
score. But developers often use some other tokens to describe such
unknown terms when they search. For example, in query "telerik
raddataboundlistbox winrt", although the second token is not in-
cluded in our tag list, our classifier still identifies it as code related
query by leveraging other tokens ("telerik” and "winrt").

Our tags popularity measure would assign a higher score for
the query "java iterate array” than "haskell iterate array", as the
programming language tag "haskell" is less popular than "java" on
SO. Nevertheless, one could argue that the codeness score of both
queries should be the same. However, in our case, separating code
from non-code queries, such scenario is unlikely to occur between
a code and a non-code query .

We use an automatic classifier to separate code and non-code
queries. However, the classifier might make mistake and that may

Rahman et al.

impact our analysis. To mitigate this threat, we select a codeness
score threshold where the classifier achieves a better trade-off of pre-
cision, recall, and F1-score on manually annotated queries. However,
due to the ambiguous nature of the query, it is nearly impractical
to build a classifier which is absolutely accurate. Even we observe
that the inter-annotator agreement is 0.85 (i.e. Cohen’s Kappa Co-
efficient). This indicates that our automatic classifier effectively
resembles human annotators.

External Validity. User’s prior knowledge about a topic may
impact the search performance of search engines. For example, a
senior programmer might have more knowledge about a certain de-
velopment task and use a search engine to refresh their knowledge.
In contrast, the scenario for a new developer might be different.
In our search log dataset, we do not have access to users’ details
information except anonymous ID. So, we treat all users similarly.

Further, we manually annotate 178 code queries into further
categories (i.e. debug, general, etc.). This number of queries might
not be adequate to come to a definite conclusion about their search
characteristics.

We only study Google search log. Other GPSE may perform
differently. However, since Google is the most popular GPSE, we
think our study can be representative of different code and non-code
query behavior.

Construct Validity. We use a search log which was collected
using a Google Chrome activity tracker plugin. One inherent lim-
itation of such tracker is that it tracks all the browser activity
regardless of whether it’s a search activity or not. For example,
there might be some cases where a user searches for something
and promptly switch tab to visit other websites (e.g., email, social
media, etc.) and again comes back to the search activity. In such
cases, some website might be incorrectly extracted as clicked URL
for a query. However, such occurrences are usually less in number
and can happen for both code and non-code related searches. So
our comparison study (e.g., code vs non-code duration, number of
web visit) would be less impacted by these threats.

9 CONCLUSION

Developers often use general-purpose search engines which are
usually not optimized for code related search. We explore whether
such choice is optimal for code related search by analyzing a search
log consisting of both code and non-code query. Firstly, we build
an automatic classifier that identifies code and non-code query.

We find that query characteristics (i.e. length) vary for code
and non-code. We also observe that code related searching often
requires more effort (i.e. time, web visit, query modification, etc.)
than general non-code search. We further discuss how our study
can be leveraged to improve code search using general-purpose
search engines.

ACKNOWLEDGEMENTS

This work is sponsored by the National Science Foundation (NSF)
grant CCF-16-19123 and CNS-16-18771. The conclusions of the
paper are of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of NSF.

Evaluating How Developers Use General-Purpose Web-Search for Code Retrieval

REFERENCES

(1]

&

[4
[5

=

[12]
[13]

[14

[15]

[16]

==
oot

[19

[20

Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre
Baldi, and Cristina Lopes. 2006. Sourcerer: a search engine for open source
code supporting structure-based search. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications.
ACM, 681-682.

Sushil Krishna Bajracharya and Cristina Videira Lopes. 2012. Analyzing and
mining a code search engine usage log. Empirical Software Engineering 17, 4-5
(2012), 424-466.

Veronika Bauer, Jonas Eckhardt, Benedikt Hauptmann, and Manuel Klimek. 2014.
An exploratory study on reuse at google. In Proceedings of the Ist international
workshop on software engineering research and industrial practices. ACM, 14-23.
Bing. [n. d.]. Bing Search. https://www.bing.com. ([n. d.]).

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI "09). ACM, New York, NY, USA, 1589-1598.
https://doi.org/10.1145/1518701.1518944

Codealike. [n. d.]. Codealike. https://codealike.com. ([n. d.]).

Cohen’s Kappa Coefficient. [n. d.]. Cohen’s Kappa Coefficient - Wikipedia.
https://en.wikipedia.org/wiki/Cohen%27s_kappa. ([n. d.]).

Christopher S Corley, Federico Lois, and Sebastian Quezada. 2015. Web usage
patterns of developers. In Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on. IEEE, 381-390.

Russ Cox. [n. d.]. Regular Expression Matching with a Trigram Index. https:
//swtch.com/~rsc/regexp/regexp4.html. ([n. d.]).

Frederico A Durao, Taciana A Vanderlei, Eduardo S Almeida, and Silvio R de
L Meira. 2008. Applying a semantic layer in a source code search tool. In Pro-
ceedings of the 2008 ACM symposium on Applied computing. ACM, 1151-1157.
Google. [n. d.]. Google Code Search - Deprecation Announcement. http://
googleblog blogspot.com/2011/10/fall-sweep.html. ([n. d.]).

Google. [n. d.]. Google Search. https://www.google.com. ([n. d.]).

Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia,
and Tim Menzies. 2013. Automatic query reformulations for text retrieval in
software engineering. In Software Engineering (ICSE), 2013 35th International
Conference on. IEEE, 842-851.

Vincent] Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks
the best choice for modeling source code?. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 763-773.

Reid Holmes and Gail C Murphy. 2005. Using structural context to recommend
source code examples. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on. IEEE, 117-125.

Michael Hucka and Matthew] Graham. 2016. Software search is not a science,
even among scientists. arXiv preprint arXiv:1605.02265 (2016).

Krugle. [n. d.]. Krugle Search. http://opensearch krugle.org. ([n. d.]).

Otavio Augusto Lazzarini Lemos, Sushil Krishna Bajracharya, and Joel Ossher.
2007. CodeGenie:: a tool for test-driven source code search. In Companion to
the 22nd ACM SIGPLAN conference on Object-oriented programming systems and
applications companion. ACM, 917-918.

Otavio AL Lemos, Adriano C de Paula, Felipe C Zanichelli, and Cristina V Lopes.
2014. Thesaurus-based automatic query expansion for interface-driven code
search. In Proceedings of the 11th Working Conference on Mining Software Reposi-
tories. ACM, 212-221.

Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and
Pierre Baldi. 2009. Sourcerer: mining and searching internet-scale software

[21

[22

[23

[24

~
2

[26

[27

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

repositories. Data Mining and Knowledge Discovery 18, 2 (2009), 300-336.
English Stopword List. [n. d.]. "http://www.lextek.com/manuals/onix/stopwords1.
html". ([n. d.]).

Lee Martie, André van der Hoek, and Thomas Kwak. 2017. Understanding the
Impact of Support for Iteration on Code Search. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New
York, NY, USA, 774-785. https://doi.org/10.1145/3106237.3106293

Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011. Portfolio: finding relevant functions and their usage. In Proceedings of the
33rd International Conference on Software Engineering. ACM, 111-120.

Haoran Niu, Iman Keivanloo, and Ying Zou. 2017. Learning to rank code examples
for code search engines. Empirical Software Engineering 22, 1 (2017), 259-291.
Most Popular Programming Languages of 2017. [n. d.]. Top 100 programming
languages. https://fossbytes.com/100-most-popular-programming-languages/.
([n. d.]).

Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: synthesizing
what I mean: code search and idiomatic snippet synthesis. In Proceedings of the
38th International Conference on Software Engineering. ACM, 357-367.

Steven P Reiss. 2009. Semantics-based code search. In Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer Society, 243~
253.

Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers
search for code: a case study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 191-201.

SearchCode. [n. d.]. SearchCode Search. https://searchcode.com. ([n. d.]).
Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. 1999.
Analysis of a very large web search engine query log. In ACm SIGIR Forum,
Vol. 33. ACM, 6-12.

Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V Lopes.
2011. How well do search engines support code retrieval on the web? ACM
Transactions on Software Engineering and Methodology (TOSEM) 21, 1 (2011), 4.
Renuka Sindhgatta. 2006. Using an information retrieval system to retrieve source
code samples. In Proceedings of the 28th international conference on Software
engineering. ACM, 905-908.

StackOverflow. [n. d.]. StackOverflow. https://code.openhub.net/. ([n. d.]).
StackOverflow. [n. d.]. StackOverflow. https://stackoverflow.com/. ([n. d.]).
StackOverflow. [n. d.]. StackOverflow Post - 46153155 . https://stackoverflow.
com/questions/46153155/apply-function-to-all-pairs-efficiently. ([n. d.]).
Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos. 2014. Solving the Search
for Source Code. ACM Trans. Softw. Eng. Methodol. 23, 3, Article 26 (June 2014),
45 pages.

Suresh Thummalapenta and Tao Xie. 2007. Parseweb: a programmer assistant
for reusing open source code on the web. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering. ACM,
204-213.

Medha Umarji, Susan Sim, and Crista Lopes. 2008. Archetypal internet-scale
source code searching. Open source development, communities and quality (2008),
257-263.

Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. 2017. What do developers search for on the web? Empirical
Software Engineering 22, 6 (01 Dec 2017), 3149-3185. https://doi.org/10.1007/
510664-017-9514-4

Yahoo. [n. d.]. Yahoo Search. https://www.yahoo.com. ([n. d.]).

Yunwen Ye and Gerhard Fischer. 2002. Supporting reuse by delivering task-
relevant and personalized information. In Proceedings of the 24th international
conference on Software engineering. ACM, 513-523.

https://www.bing.com
https://doi.org/10.1145/1518701.1518944
https://codealike.com
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://swtch.com/~rsc/regexp/regexp4.html
https://swtch.com/~rsc/regexp/regexp4.html
http://googleblog.blogspot.com/2011/10/fall-sweep.html
http://googleblog.blogspot.com/2011/10/fall-sweep.html
https://www.google.com
http://opensearch.krugle.org
http://www.lextek.com/manuals/onix/stopwords1.html
http://www.lextek.com/manuals/onix/stopwords1.html
https://doi.org/10.1145/3106237.3106293
https://fossbytes.com/100-most-popular-programming-languages/
https://searchcode.com
https://code.openhub.net/
https://stackoverflow.com/
https://stackoverflow.com/questions/46153155/apply-function-to-all-pairs-efficiently
https://stackoverflow.com/questions/46153155/apply-function-to-all-pairs-efficiently
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1007/s10664-017-9514-4
https://www.yahoo.com

	Abstract
	1 Introduction
	2 Research Questions
	3 Code Intent Analysis
	3.1 Code Intent of Tokens
	3.2 Code Intent of Queries

	4 Methodology
	4.1 Study Subject
	4.2 Query Classification
	4.3 Extract and Classify Search Task
	4.4 Codeness Difference Calculation

	5 Results
	6 Study Implication
	6.1 Implication of Code Intent Analysis
	6.2 Implication of Empirical Findings

	7 Related Work
	8 Threats to Validity
	9 Conclusion
	References

