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Abstract

Recent advances in biomedical research have generated a large volume of drug-related data. To effectively handle this flood
of data, many initiatives have been taken to help researchers make good use of them. As the results of these initiatives,
many drug knowledge bases have been constructed. They range from simple ones with specific focuses to comprehensive
ones that contain information on almost every aspect of a drug. These curated drug knowledge bases have made significant
contributions to the development of efficient and effective health information technologies for better health-care service
delivery. Understanding and comparing existing drug knowledge bases and how they are applied in various biomedical
studies will help us recognize the state of the art and design better knowledge bases in the future. In addition, researchers
can get insights on novel applications of the drug knowledge bases through a review of successful use cases. In this study,
we provide a review of existing popular drug knowledge bases and their applications in drug-related studies. We discuss
challenges in constructing and using drug knowledge bases as well as future research directions toward a better ecosystem

of drug knowledge bases.
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Introduction

In recent years, because of the rapid development of computer
technologies, extensive drug-related data, such as drugs, dis-
eases, genes and proteins, have been generated [1]. The avail-
ability of such data has greatly facilitated drug-related research,
such as network medicine [2], pharmacogenomics [3] and per-
sonalized medicine [4]. The complexity and absence of major
standard regarding nomenclature and experimental condition
have given rise to a need for curation of these data. Drug know-
ledge base, as an organic way of massaging and curating those
different aspects of drug data, has been a popular research topic

in biomedical informatics recently. A variety of drug knowledge
bases have been developed to provide curated drug-related data.

There are two primary goals on developing knowledge bases:
systematic curation of existing knowledge and efficient discov-
ery of new knowledge. These two aspects are intertwined be-
cause (1) new knowledge is typically discovered based on
existing knowledge; (2) after the new knowledge has been vali-
dated, it will be curated and inserted to the existing knowledge
bases again. With these two aspects alternating each other, the
drug knowledge bases will keep on growing and becoming more
and more comprehensive.
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To achieve the two goals, it is important to understand and
compare existing popular drug knowledge bases, as they not
only provided us the curated information but also help us rec-
ognize the pros and cons of the state of the art and identify
novel opportunities. Moreover, it would also be helpful to in-
vestigate how they were applied in different applications,
which can help us gain better insights on the demands from
the users.

Despite the existing drug knowledge bases and various appli-
cations using them, to the best of our knowledge, there is no de-
tailed review comparing the existing drug knowledge bases and
discussing any insights derived from those applications. A review
about high-throughput methods for combinatorial drug discovery
by Sun et al. [5] introduced publicly available drug-related data
sources, but it was specifically focusing on combinatorial drug de-
sign. In this review, we aim to fill in this gap by providing an over-
view of existing, widely used drug knowledge bases with various
foci and how they were applied in biomedical research. In add-
ition, we discuss challenges in constructing and using drug
knowledge bases as well as future research directions toward a
better drug knowledge ecosystem.

Existing drug knowledge bases

In this section, we survey existing popular drug knowledge
bases that are publicly available. There are many biomedical
knowledge bases that contain drug information. In this article,
we will just focus on the ones that are dedicated to approved,
clinical trial and experimental drugs. For example, BindingDB
[6], which is a database of interactions of proteins and ligands,
is not included in the survey because it is not specifically about
drugs, but ligands. ChEMBL [7] is also excluded because it con-
tains information on thousands of compounds, few of which
are approved drugs used for patients. In addition, drug know-
ledge bases that are not publicly available because of various
reasons (e.g. being not open to public or service being sus-
pended) are not included in this survey. Drug terminology data-
bases such as RxNorm [8] and Veterans Health Administration
National Drug File-Reference Terminology (NDF-RT) [9] are
excluded as well.

Table 1 provides an overview of the surveyed drug know-
ledge bases in this article. We complied the list based on our
own domain knowledge and online search. Specifically, we first
come up with an independent list of popular drug knowledge
bases by each of us. Then, we search by Google with search
terms ‘Drug Knowledge Base’ and ‘Drug Database’ and compile
another list. Finally, we take an intersection of these five lists to
obtain the ultimate list. It presents a nonexhaustive list of
popular drug knowledge bases that have been frequently
mentioned in research studies. In the following, we will briefly
review them.

Pharmacogenomics Knowledge Base (PharmGKB) [10-12]
contains gene-drug relations. Released in 2000, it is one of the
first knowledge bases about drugs. The primary source of the in-
formation is literature, and information from other gene and
drug knowledge bases such as dbSNP [42] and DrugBank [20-23]
is also included. Information on diseases, genetic variants,
pathways and drug dosing guidelines is provided. In addition to
drug-gene relations, drug-drug relations and drug-disease rela-
tions are also available. PharmGKB does not have its own ID
system for drugs, but drugs are linked to entries in many other
drug knowledge bases such as Therapeutic Target Database
(TTD) [13-17], DrugBank [25-28], DailyMed [18] and KEGG DRUG
[19-24].

TTD [13-17] includes information of drugs and their thera-
peutic targets. Released in 2002, in addition to drug-target rela-
tions, it provides five types of drug combination effects (in total
118 interactions), such as synergistic, additive, antagonistic,
potentiative and reductive. The database was created by con-
sulting textbooks, journal articles, catalogs of FDA approved
drugs, reports from pharmaceutical companies and US patent
databases. Standardized IDs were assigned to targets and drug
entries, and these IDs are associated with IDs in other drug
databases, such as DrugBank [25-28] and SuperDrug [43]. The
latest version (10 September 2015) contains 31 614 drugs includ-
ing approved, clinical trial and experimental drugs as well as
2589 targets.

DailyMed [18], created in 2005, provides information about
marketed drugs in United Sates. It is maintained by the
National Library of Medicine (NLM) and provides FDA label in-
formation. It contains 96 955 drug listings. Data entries in
DailyMed are connected with RxNorm entries. Indication infor-
mation is available through drug labels.

KEGG DRUG [19-24] is a component of KEGG (Kyoto
Encyclopedia of Genes and Genomes), which is a comprehen-
sive knowledge base of four categories, including systems infor-
mation (e.g. KEGG PATHWAY), genomic information (e.g. KEGG
GENES), chemical information (e.g. KEGG COMPOUND) and
health information (e.g. KEGG DRUG). KEGG DRUG is a database
for approved drugs in Japan, the United States and Europe.
Information on drugs is extracted from drug labels (package in-
serts). Drug-drug interaction information is extracted from drug
labels of all prescription drugs in Japan. Therefore, the database
only includes information on approved drugs. The current ver-
sion (22 December 2016) contains information on over 4000
drugs and 200 000 interactions. One advantage of using KEGG
DRUG is that it is connected to other KEGG components such as
KEGG pathway to provide integrated information. Drugs in the
database are identified with the database’s own ID system
(called D number) and are linked to other knowledge bases,
such as DrugBank [25-28] and DailyMed [18].

DrugBank [25-28], released in 2006, is one of the most com-
prehensive databases for drugs. The main information sources
for DrugBank are textbooks and journal articles. It provides in-
formation on two types of drugs (i.e. small molecule and bio-
tech) categorized into six groups (i.e. approved, vet approved,
nutraceutical, illicit, withdrawn, investigational and experimen-
tal). DrugBank also provides information on targets, indications
and pathways. The latest version, which is version 5.0, contains
8261 drug entries and 4388 nonredundant protein (i.e. drug tar-
get/enzyme/transporter/carrier) sequences that are linked to
these drug entries. In addition, the database contains 275 dir-
ectly studied drug effects [adverse drug reactions (ADRs) and
general effects) extracted from literature and various online re-
sources as well as 5789 effects inferred based on drug metabol-
ism and known enzyme polymorphisms. While the first version
of the database was created manually, the curations of the
subsequent versions were assisted by a set of automated tools.
All data acquired from automated processes were manually
inspected and verified. DrugBank is updated on a daily basis,
while the downloads are released quarterly.

SuperTarget [29, 30] is a database of drug-target relations
that contains information on drugs, targets and side effects.
Released in 2008, it was created by leveraging many other
knowledge bases and the literature indexed by PubMed. Started
from the drug information collected in previous work—
SuperDrug [43], sentences containing potential drug-target rela-
tions from article abstracts in PubMed were extracted. Manual
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curation was performed to guarantee the validity of the infor-
mation. Drug-target relations were also collected from drug
knowledges, such as DrugBank [20-23] and TTD [13-17]. These
relations were manually confirmed by reviewing relevant
literature. Relations that cannot be confirmed by literature
were annotated with sources where these retaliations had been
extracted. ADRs (side effects) were extracted from Canadian
Adverse Reaction Monitoring Program [44]. Drugs in
SuperTarget are identified using IDs from PubChem [45, 46],
which is a database of chemical molecules. SuperTarget does
not provide crosslinks to other drug knowledge bases. The latest
version (2011) contains information on 6219 targets, 195 770
drugs and 332 828 drug-target relations.

Drug Interaction Knowledge Base (DIKB) [31, 32] is an ontol-
ogy about drug-mechanism evidence. The goal of this ontology
is to associate assertions about drugs’ mechanistic properties
with supporting and refuting evidences. Over 30 evidence types
from seven groups (i.e. retrospective studies, clinical trials,
metabolic inhibition identification, metabolic catalysis identifi-
cation, statements, reviews and observational reports) are used
to support or refute assertions. Journal articles, drug labels and
authoritative statements were used to collect evidences. Based
on the provided evidences, individuals can make their own
judgments. The ontology is downloadable at NCBO BioPortal
[47], and the current version (May 2015) contains 360 classes
and 140 properties.

Side Effect Resource (SIDER) [33, 34] is a database for drugs
and their reported ADRs (side effects). The information was ob-
tained from public documents and package inserts. Information
on indications of drugs is also contained in the database. It was
released in 2010, and the latest version (21 October 2015) con-
tains 1430 drugs, 5868 side effects and 139 756 pairs of drug and
side effects. About 40% of the pairs have frequency information.
For each drug-side effect pair, label sources are available for
review.

Drug-Gene Interaction database (DGIdb) [35, 36], released in
2013, provides two types of information: known drug-gene
interactions and druggable genes that have not been targeted
therapeutically. Information was obtained from literature and
over 20 publically available sources such as PharmGKB [10-12],
TTD [13-17], DrugBank [20-23], PubChem [45, 46], Gene Ontology
[48, 49] and many other databases. Along with each drug-gene
interaction, information on the number of sources and PubMed
references that support the interaction is provided. DGIdb in-
cludes 39 categories of druggable genes and 35 interaction types
(inhibitors, activators, cofactors, etc.). The latest version of
DGIdb contains over 40 000 genes, 10 000 drugs and 15 000 drug-
gene interactions.

Drug Ontology (DrOn) [37, 38] is an ontology of drugs.
RxNorm [8] is the primary source of the ontology. DrOn provides
a historically comprehensive list of National Drug Codes (NDC)
[50]. RxNorm was used because its historical versions contain
rich information on historical NDCs by associating its Concept
Unique Identifier (RxCUI) with NDC. Drug ingredients in
RxNorm are mapped to Chemical Entities of Biological Interest
(ChEBI) ontology [51]. DrOn does not contain relational informa-
tion between drugs and other entities such as targets. The latest
version (September 2016) contains 434 663 drugs and 20
properties.

Drug Interaction Ontology (DINTO) [39] is an ontology for
drug-drug interactions. The goal of DINTO is to integrate exist-
ing resources on drug-drug interactions and provide a compre-
hensive ontology of different types of drug-drug interactions.
DINTO systematically integrates resources from the DDI corpora

[52], ChEBI [51], DrugBank [20-23], Ontology of Adverse Events
(OAE) [53] and SIDER [33, 34]. Drug-drug interactions are classi-
fied based on their clinical relevance, type of consequence or ef-
fect and preceding mechanisms. The latest version (August
2015) has 28 178 classes and 90 properties.

Merged-PDDI [40] is a comprehensive database of ~100 000
drug-drug interactions created by integrating 14 publicly avail-
able sources. They obtained information on drug-drug inter-
actions from journal articles, trustful websites, DDI corpora [52]
developed for Natural Language Processing (NLP) challenges
and other drug-related databases, such as DrugBank [20-23],
KEGG [19-24] and DIKB [31, 32]. A simple PDDI data model was
created to combine data entries from various sources.

Drug-Indication Database (DID) [41] is a resource for drug in-
dications. Information was collected from 12 publicly or com-
mercially available sources. DID contains 29 964 drugs, 10 938
targets and 192 008 drug-indication pairs. Information is avail-
able as triples of drug, indication and indication subtype.
Indication subtype hierarchy is available so that users can select
the level of granularity for their specific use cases. DDI nonpro-
prietary subset is available for download.

From the above descriptions, we see that the main informa-
tion source for constructing these knowledge bases is scientific
literature (in total eight knowledge bases in Table 1 have used
information from literature). Extracting useful information from
literature to construct those knowledge bases is a time- and
labor-intensive task. Although lots of intelligent NLP techniques
have been developed and leveraged, manual efforts are still
heavily involved to control the quality of the information ex-
traction process. After the first several knowledge bases have
been constructed, later on newer knowledge bases were also
built on existing knowledge bases in addition to literature.
Figure 1 summarizes the linkages between those existing drug
knowledge bases.

Applications of drug knowledge bases

As we stated in the introduction, drug knowledge bases and the
applications using them are two important aspects. In this sec-
tion, we will review the biomedical application that uses exist-
ing drug knowledge bases. Using the names of the drug
knowledge bases in Table 1 as search terms on PubMed, we
have retrieved a set of studies that mention those names in
titles or abstracts. We then manually reviewed abstracts one by
one to filter out the studies that mention drug knowledge bases
but did not use them. Based on our review of these application
studies, we categorized them into five categories based on their
tasks: biomedical text mining, drug repositioning, ADR analysis,
pharmacogenomics analysis and others, which are presented
in Table 2. Drug knowledge bases were mainly used for method-
ology developments and validations in those tasks. In the
following, we will review those applications and how drug
knowledge bases were used in more detail.

Biomedical text mining

Biomedical text mining is a process of extracting knowledge
from biomedical textual data such as clinical notes and scien-
tific literature. Information extraction and document summar-
ization are the two major tasks here with a few advanced tasks
such as question answering [97]. The information extraction
step mainly involves two tasks: named entity recognition (NER)
and relation extraction. Specifically, for this survey, we focus on
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Figure 1. Cross-references among existing drug knowledge bases. Given a pair of
drug knowledge bases, a directed line segment linking them indicates one of
them provides links to the other.

the techniques recognizing drug names and/or extracting rela-
tions between drugs as well as between drugs and other bio-
medical entities such as diseases, targets and genes from
biomedical literature.

Drug NER

He et al. [54] proposed a machine learning algorithm to identify
drug names from biomedical texts. Drug names in DrugBank
[20-23] were used to extract drug names from PubMed abstracts
by applying a context pattern induction method [98]. The ex-
tracted drug names were used as a dictionary, and a method
called feature coupling generalization [99] was used to fitter the
dictionary. As the final step, conditional random fields [58] were
used with the dictionary to identify drug names. Korkontzelos
et al. [100] tackled drug NER by combining results of multiple
named entity recognizers through a voting system. Drug names
extracted from DrugBank were used as the dictionary to anno-
tate text to construct a training set.

Drug relation extraction

Theobald et al. [56] used relational information on drugs, dis-
eases and genes in PharmGKB [10-12] to explore conditional
dependencies among these entities from PubMed based on their
co-occurrence. Derived conditional probabilities can lead to new
hypotheses, inferences and personalized medicine. Clematide
et al. [57] proposed a method of ranking candidate relations be-
tween diseases, drugs and genes extracted from PubMed ab-
stracts. PubMed abstracts that had been used when constructing
knowledge bases, such as PharmGKB and CTD [101], were se-
lected to test the proposed method. A simple frequency-based
text mining approach was used to develop the ranking method.
Percha et al. [S8] proposed a method that combines supervised
and unsupervised machine learning to extract biomedical rela-
tionships from unstructured text. Drugs and gene lexicons were
obtained from PharmGKB, and their dependency paths were ex-
tracted from PubMed abstracts. Extracted dependency paths
connecting drug-gene pairs were used as features for clustering.
Known relationships from PharmGKB were used in a supervised
manner to extract unknown relationships.

Drug repositioning

Drug repositioning aims to reposition existing drugs for new in-
dications to save drug development cost and increase
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productivity [102]. Drug knowledge bases are a valuable source
to perform drug-disease and drug-target interaction analyses to
achieve the goal. The reviewed studies tried to predict novel
drug-target and drug-disease interactions by leveraging rich in-
formation in the drug knowledge bases.

Drug-target interaction prediction

Li et al. [59] retrieved drugs, targets and their interactions from
DrugBank [20-23] to perform prediction of drug-target inter-
actions using large-scale molecular docking. Known drug-target
interactions from DrugBank were tested against their docking
method to find out a subset of protein targets whose interactions
with drugs are predictable using the method. Predicted inter-
actions between the subset of targets and drugs in DrugBank
were presented. In [60], a method of identifying new drug indica-
tions by combining literature mining and knowledge bases was
proposed. Drug-target interactions were extracted from
DrugBank, while gene-disease and protein—protein relations
were extracted from the literature. Combined information was
used to perform reasoning to identify new drug indications. The
reasoning was based on a set of predefined rules on drug mech-
anism. Cobanoglu et al. [61] proposed a probabilistic matrix fac-
torization method to predict drug-target interactions. Known
drug-target interactions were extracted from DrugBank and used
to learn hidden structures and predict new drug-target inter-
actions. Yamanishi et al. [62] proposed DINIES, a system that pre-
dicts drug-target interactions based on known drug-target
interactions obtained from drug knowledge bases such as
DrugBank and TTD [13-17]. Two prediction approaches (i.e. che-
mogenomic and pharmacogenomics approaches) were proposed.
The former approach used chemical structure and protein se-
quence, while the latter approach used side effect and protein se-
quence. Tao et al. [63] combined ontology-based inference and
network analysis to predict drug targets. Drugs, targets and other
entities relate to colorectal cancer (CRC) were extracted from
DrugBank and PharmGKB [10-12] to construct an ontology. CRC
disease genes were collected and a set of inference rules was
defined to identify CRC potential drug target genes. Inferred
genes were ranked based on their relationships with CRC disease
genes in a protein-protein interaction network [103]. Zhang et al.
[64] combined information obtained from previous genome-wide
association studies, proteomics and metabolomics studies with
drug-target information obtained from TTD to systematically
narrow down the list of druggable proteins. Drugs of the identi-
fied protein targets were compared with existing diabetic drugs
by considering gene expression patterns of cells treated by the
two set of drugs. A subset of drugs was identified as candidate
diabetic drugs. Seal et al. [65] explored the effectiveness of a
network-based approach (i.e. random walk with restart [104]) on
the prediction of drug-target interaction. The approach was
applied to a heterogeneous network comprising drug-drug, drug-
target and target-target networks complied from DrugBank.
Yuan et al. [66] proposed a method that combines two machine
learning approaches: similarity- and feature-based methods to
predict drug-target interaction. Drug-target interactions were ob-
tained from DrugBank. Outputs of six similarity-based methods
were used as features of the learning to rank method to rank tar-
gets (or drugs) given a drug (or a target).

Drug-disease interaction prediction

Yang and Agarwal [67] used known side effects of drugs as fea-
tures to build a prediction model that predicts indications of
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Table 2. Application studies surveyed in this review

Task Subtask Studies KBs used Summary
Biomedical text Drug NER He et al. [54], DrugBank Names extracted from DrugBank were used as a
mining Korkontzelos et al. [55] [20-23] dictionary for drug name extraction or a training
set of machine learning algorithms

Drug relation Theobald et al. [56], PharmGKB Curated relational information on drugs, diseases

extraction Clematide et al. [57], [10-12] and genes in PharmGKB was used to generate
Percha et al. [58] features for machine leaning algorithms and
evaluate automated relation extraction methods
Drug Drug-target Liet al. [59], Tari et al. PharmGKB Known drug-target interactions extracted from
repositioning interaction [60], Cobanoglu et al. [10-12], PharmGKB, DrugBank and TTD were combined
prediction [61], Yamanishi et al. DrugBank with domain knowledge to predict novel inter-
[62], Tao et al. [63], [20-23], actions using methods, such as molecular dock-
Zhang et al. [64], Seal TTD [13-17] ing, ontology-based reasoning, network-based
et al. [65], Yuan et al. approach and machine learning
[66]

Drug-disease Yang & Agarwal [67], PharmGKB New drug-disease interactions were predicted by
interaction Bisgin et al. [68] [10-12], combining drug-disease and drug-side effect rela-
prediction SIDER [33, tions extracted from PharmGKB and SIDER

34]
ADR analysis Drug side effect Wang et al. [69], Bresso DrugBank Known drugs and their side effects obtained from
exploration etal. [70] [20-23], DrugBank and SIDER were used to understand exist-
SIDER [33, ing side effects by exploring their relations with drug
34] targets and genes as well as clustering them

Drug side effect Pauwels et al. [71], Jahid DrugBank Information obtained from DrugBank and SIDER was

prediction and Ruan [72], LaBute [20-23], integrated with other information from UniProt [76],
et al. [73], Eshleman SIDER [33, PDB [77], PubChem [45, 46] and twitter to predict
and Singh [74], Jamal 34] new drug side effects using various drug properties,
etal. [75] such as chemical structures and target information

Drug-drug inter- Vilar et al. [78], He et al. DrugBank Drug-related information from DrugBank, TTD and
action [79], Cheng et al. [80], [20-23], SIDER was used to derive various similarity meas-
prediction Hameed et al. [81] TTD [13- ures (e.g. structural, therapeutic, and genomic

17], SIDER similarity) to predict new drug-drug interactions
[33, 34]
Pharmacogeno- Rance et al. [82], PharmGKB Known information about drugs and genes in
mic analysis Rasmussen and [10-12], PharmGKB, DrugBank and TTD was combined
Dahmcke [83], DrugBank with other knowledge bases such as DGV [85] to
Pakhomov et al. [84] [20-23], predict drug-gene interactions or used as refer-
TTD [13-17] ence standards to evaluate results extracted from
literature
Others Drug Re and Valentini [86], DrugBank Information from DrugBank was combined with in-
classification Lotsch and Ultsch [87] [20-23] formation from other databases (STITCH [88] and
Gene Ontology [48, 49]) to predict therapeutic cate-
gories of drugs
Drug clustering Udrescu et al. [89], DrugBank Drug properties in DrugBank were used to derive simi-
Papanikolaou et al. [90] [20-23] larity measures or build a network to cluster drugs

Drug-target net- Sun et al. [91], Sun et al. PharmGKB Information from PharmGKB and DrugBank was

work analysis [92] [10-12], used to construct drug-target, drug-gene and
DrugBank drug-drug interaction networks to explore net-
[20-23] work features of entities and visualize them

Potential addict- Sun et al. [93] DrugBank Addictive drugs as well as nonaddictive drugs that
ive drug [20-23] share targets with the addictive drugs were ob-
prediction tained from DrugBank to explore useful informa-

tion for the prediction of potential addictive drugs

Beneficial drug Iwata et al. [94] DrugBank [20- Information about drug-target interactions and
combination 23], TTD known beneficial drug combinations obtained
prediction [13-17], from DrugBank, TTD and KEGG DRUG was com-

KEGG DRUG bined with ATC Classification System [95] to pre-
[19-24] dict novel beneficial drug combinations

Compound-tar- Keum et al. [96] DrugBank Information about compounds and targets obtained
get interaction [20-23] from DrugBank was used to calculate chemical
prediction similarities among compounds and genomic

similarities among targets to predict their new
interactions

Note: The first column represents five major drug-related biomedical tasks. The second column lists subtasks of the five major tasks. The third column lists studies
that belong to each subtask. The fourth column presents knowledge bases used in each subtask. The fifth column provides brief summaries of the subtasks.
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drugs. The basic hypothesis is that if two drugs are associated
with the same side effect, then the drugs may share indications.
Disease-side effect associations were constructed by extracting
drug-side effect relations from SIDER [33, 34] and drug-disease
relations from PharmGKB [10-12]. Bisgin et al. [68] applied latent
Dirichlet allocation (LDA) [105] to phenome information to iden-
tify new indications of drugs. Side effects and indications ex-
tracted from SIDER [33, 34] were associated with drugs to
construct a phenome matrix, which was later used to identify
probabilistic associations between drugs and phonotypes using
LDA.

ADR analysis

An ADR is an undesirable effect that caused by a drug beyond
its anticipated therapeutic effects [106]. Identifying potential
ADRs is a complicated process that is time-consuming and ex-
pensive. Computational methods that leverage existing drug
knowledge bases have been proposed to perform ADR analysis.
The reviewed studies performed three types of task: drug side
effect exploration, i.e. exploring known drug side effects to get
insights; drug side effect prediction, i.e. predicting unknown
drug side effects; and drug-drug interaction prediction, i.e. pre-
dicting drug pairs that potentially cause ADRs by interacting
with each other.

Drug side effect exploration

Wang et al. [69] explored the relationships between drug design
and drug side effects through the analysis of human signaling
network. Information on drugs and drug side effects was ob-
tained from DrugBank [20-23] and SIDER [33, 34]. Network dis-
tances between drug targets and disease genes were used to
explore how the network distances are associated with drug
side effects. Bresso et al. [70] explored groups of drug side effects
obtained by clustering individual side effects obtained from
SIDER based on semantic similarity among terms describing the
side effects. Drugs and targets were extracted from DrugBank to
explore their properties that lead to a given group of side
effects.

Drug side effect prediction

Pauwels et al. [71] proposed a method of predicting potential
side effects of drugs based on their shared chemical structures
that are likely to have side effects. The method was evaluated
by predicting known side effects of drugs in SIDER [33, 34]. The
method was then applied to drugs in DrugBank [20-23] to pre-
dict unknown side effects. Jahid and Ruan [72] used an ensem-
ble approach to predict drug side effects based on information
extracted from SIDER. The approach combined multiple ma-
chine learning classifiers based on the assumption that drugs
with similar chemical structures may have similar side effects
where each classifier was developed from drugs with similar
chemical structures. The approach was applied to drugs in
DrugBank to predict unknown side effects of drugs. LaBute et al.
[73] combined molecular docking and a machine learning
method to predict ADRs. Drug targets extracted from DrugBank
were combined with protein information from UniProt [76] and
Protein Data Bank (PDB) [77] to compute docking scores. The re-
sults of molecular docking were combined with the information
of drug side effects extracted from SIDER. Logistic regression
was applied to the combined information to predict ADRs.
Eshleman and Singh [74] used a supervised machine learning
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approach to predict drug side effects using two sources: SIDER
and twitter. MetaMap biomedical annotator [107] was used to
extract drugs and side effects from twitter. Extracted drugs and
side effects were connected if they had appeared in a user’s his-
tory within a fixed window of time. Random forest [108] was
applied to the sources to classify edges between drugs and side
effects as either adverse or nonadverse. Jamal et al. [75] used
machine learning algorithms to predict neurological ADR-based
biological (i.e. targets, transporters and enzymes), chemical
(i.e. substructure fingerprints) and phenotypic (i.e. side effects
and therapeutic indications) properties extracted from
DrugBank, PubChem [45, 46] and SIDER, respectively. A feature
selection algorithm (i.e. Relief [109]) and Support Vector
Machine (SVM) [110] were applied to predict ADRs.

Drug-drug interaction prediction

Vilar et al. [78] predicted drug-drug interactions based on mo-
lecular structural similarity between drugs involved in known
drug-drug interactions and other drugs. The assumption was
that if two drugs interact to produce a specific biological effect,
drugs that are structurally similar to one of the two drugs are
likely to produce the same effect by interacting with the other
drug. Known drug-drug interactions were collected from
DrugBank [20-23], and structural similarities of all drug pairs
from DrugBank were computed to predict new interactions. He
et al. [79] used a machine learning approach that combines dif-
ferent types of features to predict drug-drug interactions from
biomedical literature. Three fields (i.e. indication, pharmacology
and description) of drug entries in DrugBank were used to calcu-
late similarities between drugs, and the information was later
used as one feature of the proposed approach. Cheng et al. [80]
used four drug-drug similarity measures as features of machine
learning algorithms to predict drug-drug interactions. The four
similarity measures are phenotypic similarity, therapeutic simi-
larity, chemical structural similarity and genomic similarity.
DrugBank [20-23], TTD [13-17] and SIDER [33, 34] were used as
partial sources for deriving similarity measures. DrugBank was
also used for evaluation. Hameed et al. [81] proposed a method
to predict drug-drug interactions that can be used when nega-
tive samples for training are insufficient. The proposed method
applied Growing Self Organizing Map (GSOM) [111] to infer nega-
tives from unlabeled data set and used SVM [110] to infer drug-
drug interactions. Drug-drug interactions from DrugBank were
used as positive examples.

Pharmacogenomic analysis

Pharmacogenomics is a core area of precision medicine, which
is a concept that considers individual variability in disease pre-
vention and treatment [112, 113]. Genes are an important com-
ponent of pharmacogenomic analysis and previous studies
used drug knowledge bases to analyze interactions between
drugs and genes/genetic variants. Rance et al. [82] proposed a
mutation-centric approach to identify relations between drugs
and genetic variants in PubMed abstracts. MetaMap biomedical
annotator [107] and RxNorm [8] were used to extract and filter
drug names. Co-occurrence between drug mentions and genetic
variants was used to associate them. The results were evaluated
against known relations between drugs and genetic variants in
PharmGKB [10-12]. In [83], structural variants of drug target-
encoding genes and their relations with drugs were explored.
Drugs and targets extracted from DrugBank [20-23] and TTD
[13-17] were combined with genomic variants extracted from
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1. Identifying drug
information sources

+Biomedical literature
-Other drug KBs
*Drug labels

*Public documents

!

5. Utilizing the knowledge

base

- Aiding methods by providing /
known facts about drugs /

+Evaluating methods by providing a
reference standard

4. Maintaining the
knowledge base

+Revising the knowledge base upon
identifying incorrect information

+Updating the knowledge base by
identifying new information sources

<

N

2. Extracting facts from the
information sources

-Extracting entities (e.g., drugs,
diseases, targets, genes, side
effects) and their properties
*Extracting relations between entities
(e.qg., drug-target interaction)

3. Curating facts into a
knowledge base
*Organizing, integrating, and
annotating extracted facts

+Preserving extracted facts in a
knowledge base

Figure 2. Drug knowledge base life cycle. Construction of a drug knowledge base starts from identifying drug-related information sources. From the information sour-
ces, drug-related entities, their properties and relations between the entities are extracted. The extracted facts are curated in a knowledge base. Curated knowledge
base needs to be revised if incorrect information is identified and updated if new drug information sources are available. Constructed knowledge base is either used to

aid or evaluate informatics methods.

the Database of Genomic Variants (DGV) [85]. Drugs associated
with targets that are subject to genomic structural variation
were identified. Pakhomov et al. [84] applied a machine learning
approach to PubMed abstracts to identify drug-gene inter-
actions. The text of PubMed abstracts was used as features, and
drug-gene relations extracted from PharmGKB were used to
supervise the model to identify whether the mentioned drugs
and genes in an abstract are related.

Others

Several studies that do not fall into the aforementioned catego-
ries tackle various drug-related problems, such as drug classifi-
cation [86, 87], drug clustering [89, 90], drug-target network
analysis [91, 92], potential addictive drug prediction [93], benefi-
cial drug combination prediction [94] and compound-target
interaction prediction [96]. Re and Valentini [86] used annota-
tions obtained from DrugBank [20-23] to predict therapeutic cat-
egories of drugs for drug repositioning. The study treated the
problem as a drug ranking problem, given specific DrugBank
therapeutic categories. Different pharmacological networks ob-
tained from DrugBank and STITCH [88] were integrated to be
used in drug ranking. Létsch and Ultsch [87] investigated the
functional genomics-based approach (as opposed to the
approach of using drug targets) in drug classification. A drug
target-biological process matrix was constructed by combining
a drug-gene matrix and a gene-biological process matrix ob-
tained from DrugBank and Gene Ontology [48, 49]. The matrices
were projected onto a toroid grid using an artificial neural net-
work approach (i.e. self-organizing map [114]), which was later
visualized to identify clusters. Udrescu et al. [89] applied

community detection algorithms to a drug-drug interaction
network to cluster drugs. The drug-drug interaction network
was constructed using information from an earlier version of
DrugBank. A later version of DrugBank and other sources
were used to interpret the clustering results. Papanikolaou et al.
[90] applied text mining approaches to cluster DrugBank re-
cords and discover drug associations. Text fields of DrugBank
such as ‘Description’, ‘Indication’, ‘Pharmacodynamics’ and
‘Mechanism of Action’ were extracted and terms of the fields
were used to apply a set of similarity measures and clustering
algorithms to generate clusters. Sun et al. [91] proposed a Web-
based tool that constructs drug-target interaction networks.
Drugs and related information were extracted from DrugBank
[20-23] and PharmGKB [10-12] and integrated into a central
database. The tool receives user queries and then searches the
database to construct networks that reflect the queries to aid
network-based analyses and visualizations. Sun et al. [92] con-
structed a drug-gene interaction network and a drug-drug inter-
action networks based on information from DrugBank. Network
analyses were performed to examine functional and network
features of targets as well as characteristics of specific groups of
drugs. Sun et al. [93] used a network-based approach to explore
potential drugs for addiction based on known addictive drugs.
Addictive drugs, their targets and nonaddictive drugs that share
at least one target with any addictive drug were extracted from
DrugBank to construct a drug-target interaction network.
The network was explored to identify useful information for
predicting potential addictive drugs. Iwata et al. [94] proposed a
machine learning approach to predict beneficial drug combin-
ations based on information about drug-target interactions and
the Anatomical Therapeutic Chemical (ATC) Classification
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System [95]. Drug information was obtained from KEGG DRUG
[19-24], DrugBank [20-23], TTD [13-17] and other databases.
Known beneficial drug combinations were obtained from KEGG
DRUG, and each drug-drug pair was represented by combining
two drug profiles. Logistic regression was used as the prediction
model. Keum et al. [96] used drug and protein information ob-
tained from DrugBank [20-23] to predict compound-target inter-
actions of natural products. Compounds, target proteins
and their interactions were obtained from DrugBank. Chemical
similarities among compounds and genomic similarities among
target proteins were computed. Computed similarities were
combined with herbal compound data to predict interactions
between compounds of herbs and target proteins using
Bipartite Local Model [115] and SVM [110].

Challenges in drug knowledge base life cycle

So far, we have reviewed the popular drug knowledge bases and
the biomedical applications using them. In this section, we will
define a drug knowledge base life cycle and discuss challenges
associated with it. Figure 2 illustrates five major steps of the
drug knowledge base life cycle. The first step of constructing a
drug knowledge base is identifying drug-related information
sources such as scientific literature. From the identified infor-
mation sources, drug-related entities (e.g. drugs; diseases; tar-
gets; genes; side effects), their properties (e.g. drug categories,
drug brands) and relations between the entities are extracted.
These extracted facts are then curated into a knowledge base.
Curation includes organization, integration, annotation, and
preservation. Curated knowledge base needs to be revised if in-
correct information is identified and updated if new drug infor-
mation sources are available. Constructed knowledge base is
either used to aid or evaluate informatics methods.

There are a few challenges across the life cycle, ranging from
knowledge extraction from information sources to effective util-
ization of drug knowledge bases. In the following, we discuss
those major challenges one by one.

Semiautomation of knowledge extraction
process

Knowledge base construction is a time-consuming process that
involves a significant amount of human efforts. Information
collected from different sources is gone through one or more
manual review processes before being curated into knowledge
bases. While automated methods are being used to assist the
curation, they are of a basic level, e.g. retrieving documents of
certain topics or extracting sentences that contain certain drug
names. Although these automated methods are of great help,
human curators still need to invest much efforts to extract facts.
While the full automation of the entire process is not attainable
with current technologies, there is a need for semiautomated
methods that can assist human curators in a more upgraded
manner. For example, given a drug side effect, a semiautomated
method can retrieve two sets of literature that have contradict-
ory assertions, so that human curators save the time of manu-
ally identifying different assertions across the retrieved
literature and make more informed decisions.

Integration of drug knowledge bases

A large amount of efforts has been devoted to construct drug
knowledge bases. These knowledge bases were constructed

Drug knowledge bases and their applications | 9

with different goals, and they have different foci and coverage.
Many studies we reviewed integrated information collected
from different drug knowledge bases to solve problems. While
these integrations were performed at a limited scale (i.e. not
integrating knowledge bases as a whole), there are a few chal-
lenges when performing integration at a larger scale. The first
challenge is entity matching (or mapping) between two or more
knowledge bases. While a few drug knowledge bases provide
crosslinks to others for entity matching, the information is not
complete, i.e. not all entities have cross-links, and there are still
many drug knowledge bases that do not provide such service.
Another challenge is integrating relations of entities. It is not a
problem if there is only one type of relation between two enti-
ties. However, if more than one types of relation exist between
two entities, we first need to identify all possible relations be-
tween the two entities and review how these relations are rep-
resented in different drug knowledge bases. The integration
becomes more difficult if the relations are represented as free
text without structured format.

Keeping drug knowledge bases up to date

The main source of drug knowledge bases is scientific literature,
and one of the most important tasks of creating drug knowledge
bases is extracting facts from relevant literature. Ever-
increasing biomedical literature presents two challenges to the
maintenance of drug knowledge bases. First, because the vol-
ume of the literature that needs to be reviewed is increasing,
more human involvement is required. Second, revisions are
needed in case later studies present new evidences that refute
assertions made in previous studies. These challenges, together
with other issues, make the maintenance of drug knowledge
bases difficult. Many existing drug knowledge bases either have
not been updated since their first release or being updated
intermittently (e.g. at an interval of 2 years). Keeping drug
knowledge bases up to date with the latest literature is a
demanding task.

Drug knowledge bases as training and test sets

Many studies reviewed in the previous section used machine
learning approaches to solve many drug-related problems. A
common point of these studies is that they use facts extracted
from drug knowledge bases as positive training sets while treat-
ing others that are not curated in the knowledge bases as nega-
tive training sets. For example, in the task of drug-target
interaction prediction, known drug-target interactions ex-
tracted from drug knowledge bases were used as positive train-
ing sets, while randomly generated, unknown drug-target
interactions were treated as negative training sets. This ap-
proach has its own justification; however, it is not always true
because there are so many facts that we have not discovered,
and thus, have not been curated. More informed ways of using
drug knowledge bases as training sets are needed. Many studies
also used drug knowledge bases for evaluation. For example,
SIDER was used to test machine learning models of predicting
drug side effects. Although many studies proposed models that
address the same task, cross-validations were impossible be-
cause they used different parts (also varying in size) of drug
knowledge bases for evaluation. A community-wise effort is
needed to explicitly define several guidelines of using drug
knowledge bases for machine learning tasks, so that cross-
validation is available and many efforts are centralized.
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Future directions

Until now, we have introduced the existing popular drug know-
ledge bases, the biomedical applications using them, as well as
the various challenges on a drug knowledge base life cycle. In
this section, we discuss a few future research directions toward
a better ecosystem of drug knowledge bases.

Drug knowledge base integration

Integration of drug knowledge bases, despite its challenges, has
many potentials. It is reported that existing drug knowledge
bases has little overlap [40]. The little overlap is largely because
of different foci of the drug knowledge bases. For example,
some drug knowledge bases such as PharmGKB [10-12] mainly
focus on drug-gene relations, whereas others have different foci
(e.g. drug side effects of SIDER [33, 34]). Integrating existing drug
knowledge bases enables much more granular analyses by pro-
viding more comprehensive views with richer information. For
example, current precision medicine studies [82-85] mainly
used drug-gene interactions to understand how drugs affect
people with different genes. By taking other relations such as
drug-disease and drug-side effect relations into consideration,
we can perform more detailed analyses such as identifying
what drugs affect people with certain diseases and gene vari-
ants to cause what side effects. Such a detailed analysis is only
possible when we have an integrated hub of drug knowledge
bases. Owing to its importance, an open-source community ef-
fort has been established to develop an integrated knowledge
base of drugs and health outcomes of interest [116].

Drug knowledge base implementation

Existing drug knowledge bases are presented with two types:
drug databases and drug ontologies. The former type usually
provides Web search interfaces for users to perform simple
queries. It also supports downloads of raw data files for re-
searchers to perform various analyses. The latter type, drug
ontologies, uses W3C'’s Semantic Web technologies such as RDF
[117] and OWL [118] to manage knowledge. A difficulty of using
downloaded raw files is that it is not trivial to understand the
structures of the data files. Because data are in the tabular for-
mat, it is not intuitive to understand relational information
among entities. Compare with drug databases, drug ontologies
have more explicit descriptions about entities and their rela-
tions. While the data in drug ontologies can be viewed using
tools such as Protégé [119], for systematic and bulk accesses to
the data, a specialized ontology query language (i.e. SPARQL
[120]) is needed, which is a factor that affects their active utiliza-
tion. As our knowledge on drugs is continuously increasing,
scalability of drug knowledge bases is an important issue. An al-
ternative approach of implementing drug knowledges bases is
graph databases [121]. A graph database uses graph structures
to manage data, which makes it an ideal solution for managing
biomedical entities, their properties and their relations. It has
been reported that graph databases scale better and load data
faster than RDF stores, which are physical implementations of
ontologies [122]. As a member of NoSQL databases [123], which
are designed to address challenges in big data management,
graph databases scale well and are a good data management
system for drug knowledge bases as well as a drug knowledge

graph.

Improving drug knowledge bases with
predicted results

Many studies we reviewed tackle prediction tasks, such as
drug-target interaction prediction [59-66, 103, 104], drug-dis-
ease interaction prediction [67, 68], drug side effect prediction
[74-77, 107, 108] and drug-drug interaction prediction [78-81].
These studies produced many valuable results for future studies
to further explore, validate and then make use of them.
However, there are no central repositories that systematically
curate these predicted results. Therefore, these valuable assets
are not widely visible, and their impacts are usually limited to
the level of individual studies. Drug knowledge bases that cur-
ate predicted results of various studies are good knowledge
sources that complement drug knowledge bases of known facts.
For example, if many studies predict there is an interaction be-
tween a pair of drugs, it is highly possible that the two drugs
interact. Such information can be integrated to perform more
informed and concentrated analyses.

Drug knowledge bases of negative samples

Existing drug knowledge bases curate positive cases. For ex-
ample, if two drugs interact, then they are curated into a drug
knowledge base. On the other hand, if two drugs are known to
not interact with each other, this information is not curated.
While it is not trivial to identify negative samples, which might
be more difficult than identifying positive samples, many appli-
cations are possible with these negative samples. With these
negative samples, we can obtain more accurate machine learn-
ing models because researchers no longer need to artificially
generate negative samples, which might be incorrect. Negative
samples can also be used to aid prediction of positive samples.
For example, if two drugs do not interact with each other, a
third drug that has a similar chemical structure with one of the
two drugs has a high possibility not to interact with the other
one. This information, combined together, can form a large net-
work, which is a valuable resource to apply community detec-
tion methods [124] that can be applied to networks with
positive and negative links. With negative samples providing
additional information to the network, more meaningful results
can be obtainable.

Using social media platforms and medical
forums

Not only researchers and practitioners can be contributors of
drug knowledge bases. Patients and their family members
can also provide useful information that can be properly used
to construct drug knowledge bases. For example, patients
and their family members may talk about drug side effects
they experienced on social media platforms and/or medical
forums. Although FDA maintains FDA Adverse Event Reporting
System (FAERS) [125] for health-care professionals and con-
sumers to report drug adverse events, social media platforms
and medical forums have much broader reach and are easier
for patients and their families to use. Because drug-related
information collected via crowdsourcing may contain noise
(typos, use of incorrect terms, etc.), the curation needs a different
approach from the one used to construct traditional drug know-
ledge bases. Even though the process is not trivial, if successfully
implemented, the health-care consumer-based drug knowledge
bases would be a valuable resource for research.
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Key Points

® Advances in biomedical research have generated a large
volume of drug-related data, and many drug knowledge
bases have been constructed.

* Drug knowledge bases contain valuable information on
entities (i.e. drugs, diseases, targets, genes and side ef-
fects) and their relations (i.e. drug-drug, drug-gene,
drug-disease, drug-target and drug-side effect).

¢ Drug knowledge bases have been applied to tasks, such

as biomedical text mining, drug repositioning, ADR ana-

lysis and pharmacogenomic analysis.

Integrating drug knowledge bases and implementing a

scalable drug knowledge graph enable much more

granular analyses by providing more comprehensive
views with richer information.

® Improving drug knowledge bases using predicted re-
sults and social media platforms and medical forums
would provide additional insights.
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