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Abstract

For every odd integer n > 3, we prove that there exist infinitely many number fields
of degree n and associated Galois group S, whose class number is odd. To do so,
we study the class groups of families of number fields of degree n whose rings of
integers arise as the coordinate rings of the subschemes of P! cut out by integral
binary n-ic forms. By obtaining upper bounds on the mean number of 2-torsion ele-
ments in the class groups of fields in these families, we prove that a positive propor-
tion (tending to 1 as n tends to oo) of such fields have trivial 2-torsion subgroups in
their class groups and narrow class groups. Conditional on a tail estimate, we also
prove the corresponding lower bounds and obtain the exact values of these averages,
which are consistent with the heuristics of Cohen and Lenstra, Cohen and Martinet,
Malle, and Dummit and Voight. Additionally, for any order Oy of degree n aris-
ing from an integral binary n-ic form f, we compare the sizes of Cly(O ), the 2-
torsion subgroup of ideal classes in O ¢, and of (0O y), the 2-torsion subgroup of
ideals in O y. For the family of orders arising from integral binary n-ic forms and
contained in fields with fixed signature (rq,r;), we prove that the mean value of the
difference | Clo(O s)| —2'7"1772145(O f)| is equal to 1, generalizing a result of Bhar-
gava and the third-named author for cubic fields. Conditional on certain tail esti-
mates, we also prove that the mean value of | Clo(O r)| —2'71772|d5(O )| remains
1 for certain families obtained by imposing local splitting and maximality condi-

tions.
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1. Introduction

The Cohen-Lenstra heuristics (see [16]) give precise predictions for the distribution
of ideal class groups in families of quadratic fields. Very few cases of these con-
jectures have been proved; among them are the celebrated results of Davenport and
Heilbronn [19] on the average number of 3-torsion elements in the class groups of
quadratic fields, and the results of Fouvry and Kliiners [21] on the 4-ranks of the class
groups of quadratic fields. These heuristics were generalized by Cohen and Martinet
[17] to describe the distribution of ideal class groups in families of number fields of
fixed degree over a fixed base field. In 2010, Malle [28] proposed a modification of
the Cohen—Martinet heuristics to account for observed variations in the asymptotic
behavior of the p-part of the class groups of families over a base field containing the
pth roots of unity. For example, for p = 2 and odd n, the modified heuristics yield
the following predictions on the mean number of 2-torsion ideal classes in degree n
S, -number fields over Q with signature (ry, ), that is, number fields with r; real
embeddings and r;, pairs of conjugate complex embeddings, and whose normal clo-
sure over Q has Galois group Sj,.

CONIJECTURE 1 (Cohen-Lenstra—Martinet—Malle)

Fix an odd integer n > 3 and a pair of nonnegative integers (ry,ry) such that ry +
2ry = n. Consider the set of isomorphism classes of degree n S, -number fields with
signature (r1,12). The average number of 2-torsion elements in the ideal class groups
of such fields is

12712 ()

when these fields are ordered by discriminant.

The only proven cases of the above conjecture are when n = 3, due to Bhargava
[2, Theorem 5]. In this article, we provide evidence toward all cases of Conjecture |
by computing the average size of the 2-torsion subgroups of ideal class groups of
certain infinite families of number fields of fixed odd degree n; even though we do
not average over the family of all number fields of a given signature ordered by dis-
criminant, the mean values coincide with (1), conditional on a certain tail estimate.
Unconditionally, we prove that an infinite number of odd degree n S,-fields with
signature (r1,72) have odd class number. We also compute the average size of the
2-torsion subgroup of the narrow class groups of the same infinite families, which
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allows us to give analogues of the Cohen—Lenstra—Martinet—-Malle heuristics predict-
ing the asymptotic behavior of the narrow class groups in families of number fields of
fixed odd degree and signature.

In order to state our results more precisely, we first describe the families of num-
ber fields we study, which arise from families of integral binary n-ic forms. Given
an integer n > 3, to a nonzero integral binary n-ic form f € Sym, (Z?), we may
naturally associate the coordinate ring R of the subscheme of P} cut out by f
(see Nakagawa [29] and Wood [38]). Define the family iy to be the multiset of
rings

Ry ={Rys | f €Sym,(Z*)}.

There is a height ordering on Ry arising from the height ordering H on Sym,, (Z?),
where H( f) is defined as the maximum absolute value of the coefficients of f. Note
that although two rings in YRy may be isomorphic, their heights need not be equal.
For example, if y € SL,(Z), and we define the action yf(x, y) := f((x, y)y) on the
space of integral binary n-ic forms, then it is always true that Ry = R, ¢, but it is
not in general true that H(f) = H(yf). Nevertheless, there is a well-defined isomor-
phism class of rings R[] associated to an SL,(Z)-orbit [f] € SL»(Z)\ Sym,,(Z?)
since R[ s is isomorphic to R if and only if g = yf for any y € SL,(Z). Such orbits
[f] may be ordered by their Julia invariant, which is an invariant defined in [27] for
the action of SL,(Z) on Sym,,(Z?) (see Section 3.3 for details). Thus, we also define
the family SR to be the multiset of rings

Ry = {Ris) | [f] € SL2(Z)\ Sym, (Z?)},

ordered by Julia invariant J, where J(R[s]) := J([f]). Asymptotics on the size of
Ry were obtained by Bhargava and Yang [13].

In this article, we compute averages taken over certain families contained in Ry
or Ry. Let Ry C Ry and R} C Ry be the respective subfamilies consisting
of all Gorenstein' integral domains whose fraction field has signature (r1,7,), that
is, has r; real embeddings and r, pairs of conjugate complex embeddings. Also, let
Ry e C R (resp., R 72 C R™) be the subfamily containing all maximal
orders. It is worthwhile to note that a given order (@ in a number field with signature
(r1,72) may occur in R3"> or My’ > an infinite number of times (up to isomor-

phism) but only occurs with finite multiplicity in 2”2 or R!"2 by a result of
Birch and Merriman [14, Theorem 2].

'From [38, Proposition 2.1, Corollary 2.3] it follows that the ring R ; is Gorenstein if and only if f is primitive,
that is, the coefficients of f* do not share any common prime factors.
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For any subfamilies 5 € R} and ©; € R'}"", we denote the average num-
ber of 2-torsion elements of ideal class groups over X g ordered by height and over
3 y ordered by Julia invariant as follows:

Z RfEEH |C12(Rf)|

. [H(f)|<X
Av Y,Clh)= lim )
gH( 2) X—o00 Z R‘/-GEH 1
[H(f)<X
(2
> Risex; | Cla(Ry)|
, IHI<X
Avg ;(27,Clp) = lim ,
e ) X—00 Do Risieny |
[J()I<X

where Cl>(R r) denotes the 2-torsion subgroup of the ideal class group of R y. Addi-
tionally, we can replace Cl, (R ) with the 2-torsion subgroup Cl;r (R y) of the narrow
class group of Ry in the right-hand sides of the equalities in (2); we denote these
means by Avg g (X g, ClY) and Avg; (2, ClY), respectively. The notation Avg, (,
x) < ¢ will be used to indicate that the limsups of fractions as in (2) are bounded by c.
We then have the following theorem.

THEOREM 2

Fix an odd integer n > 3 and a corresponding signature (ry,12). Then we have
(a) Avgy (RE"2 Cly) < 1421771772 gnd Avg ; (R} 72 [ Clp) < 1 + 21771772

H,max’ J,max’
and
(b)  Avgy (B2, Cl) <1427"2 and Avg; (R}72 .Cl3) < 1+2772,

If the tail estimates in (33) hold, then both (a) and (b) are equalities. Additionally,
the same upper bounds (and conditional equalities) hold when further imposing any
finite set of local conditions on the fields in iﬁ;}”;lzax and %rjlnrljx

When n = 3, the Julia invariant of a ring R  associated to a binary cubic form f
coincides with its discriminant, and the family R is essentially the same as the family
of all cubic rings ordered by discriminant. The mean size of the 2-torsion subgroup
of class groups of totally real (resp., complex) cubic fields ordered by discriminant
was determined to be 5/4 (resp., 3/2) in [2], confirming Conjecture | for n = 3.
Additionally, the average number of 2-torsion elements in the narrow class groups of
totally real cubic fields ordered by discriminant is 2, which was proved by Bhargava
and the third-named author [11]. On the other hand, even though the family Ry
also contains all cubic rings, each such ring occurs infinitely often. Nevertheless, we
determine that the average number of 2-torsion elements in class groups and narrow
class groups of cubic fields ordered by height coincides with the analogous results in
[2] and [11] when ordering by discriminant.
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THEOREM 3

We have

@  Avgy (R Ch) =5/4,
®)  Avgg (R Cl) =3/2
©  AvggRy.-Cli) =2

In conjunction with [11, Theorem 1], Theorem 3 gives evidence that the Cohen—
Lenstra—Martinet—Malle heuristics may hold for any natural ordering of fields, as they
hold when ordering by either discriminant or height. Additionally, Theorem 2(b) gives
evidence toward the prediction that the average number of 2-torsion elements in the
narrow class groups of all isomorphism classes of odd degree number fields with fixed
signature (r1,72) is equal to

1+27", 3)

which additionally coincides with heuristics formulated by Dummit and Voight [20].

Theorems 2 and 3 immediately imply that most fields within these families have
no nontrivial 2-torsion elements in their class groups. By applying results of [14],
we may quantify the number of such fields, even while allowing arbitrary splitting
conditions at a finite set of primes.

THEOREM 4

Fix an odd integer n > 3 and a corresponding signature (r1,r2). Let S be a finite set

of primes and for each prime p € S, fix a degree n étale extension M, of Q.

(a) There are an infinite number of degree n Sy-fields K with signature (ry,r;)
such that K ® Qp = M, for each p € S, and K has odd class number. More
precisely,

#{K : |Disc(K)| < X and 24|CI(K)|} > X 5",

where the implied constants depend on n and S.

(b) If ro > 1, then there are an infinite number of degree n Sy, -fields L with signa-
ture (ry,rp) such that L @ Q, = M, for each p € S, and L has odd narrow
class number. More precisely,

#{L :|Disc(L)| < X and 24|CI*(L)|} > X3,
where the implied constants depend on n and S.

Such results on the infinitude of fields with odd class number originate with Gauss
[22], who proved using genus theory that the set of quadratic fields with class number
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indivisible by 2 are exactly the quadratic fields with prime discriminant. The first gen-
eralization of Gauss’s result to the indivisibility of class numbers of quadratic fields
by odd primes p arises as applications of the aforementioned results of Davenport and
Heilbronn [19], which imply that at least half of imaginary quadratic fields and at least
5/6 of real quadratic fields have class number indivisible by 3 when such fields are
ordered by discriminant. Nakagawa and Horie [30] refined the proof of [19] to show
that even after imposing certain congruence conditions at a finite set of primes, the
number of such quadratic fields with class number indivisible by 3 remains infinite;
this strengthening implies results such as the existence of infinitely many hyperel-
liptic curves over Q of a given genus with no integral points. Finally, the results of
Bhargava and the third-named author [12] imply that one can find an infinite number
of quadratic fields with class number indivisible by 3 and satisfying any (nonempty)
local specifications at a finite set of primes.

In the imaginary quadratic case, Hartung [23] gave another proof of the infinitude
of fields with class number indivisible by 3 using Kronecker—Weber relations. In con-
junction with trace formula methods, Horie in [24] and [25] extended these results to
determine that for all sufficiently large primes p, there exist infinitely many imaginary
quadratic fields with class number indivisible by p and satisfying prescribed splitting
and ramification conditions at a finite set of (odd) primes. Using the indivisibility
of coefficients of modular forms of half-integer weight, Bruinier [15] and Ono and
Skinner [31] strengthened the result to include most primes p > 5 and a wider class
of local specifications that could be imposed at a finite number of primes. Jochnowitz
[26] also used such methods to generalize the results of [23], [24], and [25] to the real
quadratic case. The most general result was obtained by Wiles [37] and Beckwith [1]
using trace formula methods in conjunction with the geometry of Shimura curves and
the theory of mock modular forms of half-integer weight, respectively. Applications
of such results include unconditional versions of modularity lifting theorems in the
residually reducible case (see [33]) as well as the nonvanishing of certain L-values
associated to elliptic curves with rational torsion points (see [35]).

Beyond the case of quadratic fields, the only known result of this nature is [11,
Corollary 3], which implies that the majority of cubic fields (of any signature) have
odd class number. Theorem 4 is the first of its kind to treat infinite (even multiple)
degrees and signatures. Additionally, it immediately implies the following result con-
cerning the narrow class number, which differs from the class number at most by a
factor of a power of 2.

COROLLARY 5
Let n > 3 be an odd integer. If r > 1, then there are an infinite number of degree n
Sy-fields with signature (ry, ) for which the narrow class number equals the class
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number. In particular, there are an infinite number of such fields that have units of
every signature.”

Our methods are not limited to studying class groups of (maximal orders in)
number fields; we also study the ideal class groups of general orders in %;}’rz and
D‘irjl "2 Specifically, for each odd n > 3, we compute on average how many 2-torsion
ideal classes in the class groups of such orders arise from nontrivial elements of order
2 in the ideal groups of such orders. More precisely, if @ is an order in a number
field, let the ideal group 4 () be the group of invertible fractional ideals of (O (which
the class group C1() is a quotient of). Denote the 2-torsion subgroups of C1(() and
4(0) by Cl>(O9) and 4,(O) for any prime p. Although J,(0) is trivial for maximal
orders @, this is not always true for nonmaximal orders @.

In [11], the mean value of the difference | Cl,(0)| — 21_,ﬁwz(@)l is deter-
mined to be 1, when averaging over maximal orders @ in cubic fields of a fixed
signature (r1,72), over all orders in such cubic fields, or even over certain acceptable
families of orders defined by local conditions (in all cases ordered by discriminant).
An analogous result is also known for 3-torsion ideal classes of acceptable families
of quadratic orders and fields (see [12]). In this article, we obtain a similar statement

r1,r2 ri,ra2.
for‘ﬁj and DQH :

THEOREM 6
Fix an odd integer n > 3 and signature (r1,12).
(a) The average size of

1

CL(0)| = 5=

|42(0)|
over O € RYy"? ordered by height or over O € R'}""? ordered by Julia invari-
antis 1.

(b) The average size of

1
+
)]~ 1200
over O € R} ordered by height or over O € R'}""? ordered by Julia invari-
ant is 1.

In fact, we prove a much stronger statement indicating that the above averages
remain equal to 1 when taken over any very large family in R} or R'}""? (see Def-
inition 6.1). For any acceptable family in R}y’ or R’}""? (as defined in Section 3.1),

2Recall that for any number field K with r; distinct real embeddings, there is a signature homomorphism
O% — {£1}" that takes a unit to its signature, that is, to the sign of its image under each real embedding.
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the analogous averages are shown to have an upper bound equal to 1; furthermore,
conditional on the tail estimates in (33), averages over acceptable families in ER;}“
and ERrJ‘ "2 also have lower bound equal to 1 (see Theorem 6.2). Some notable accept-
able families include M3y > and 2R’} ;72 as well as subfamilies of Ry’ and R 12
that are defined by local conditions at any finite set of primes.

Our strategy for proving Theorems 2, 3, and 6 uses Wood’s parameterization
(see [39]) of 2-torsion ideal classes of rings in ;"2 and R'}"? by certain integral
orbits of the representation Z? ® Sym?(Z"); we then determine asymptotic counts
of the relevant orbits using geometry-of-numbers techniques developed by [2], [3],
and [9]. However, our geometry-of-numbers arguments are complicated by the fact
that we simultaneously consider an infinite set of representations, one for each odd
n > 3, which have increasingly intricate invariant rings. Similar infinite sets have been
handled previously in [4], [6], and [7]. An essential ingredient for our result is a sieve
that counts binary n-ic forms that correspond to maximal rings (equivalently, degree
n fields). For the family of binary n-ic forms ordered by height, this sieve is carried
out in [10], and we carry out an analogous sieve for binary n-ic forms ordered by Julia
invariant.

When ordering by height, we study the orbits of SL,(Z) acting on the space
7% ® Sym,(Z") of pairs (A, B) of integral n-ary quadratic forms. Each such pair
gives rise to an invariant binary n-ic form

fa,B)(x,y) :=det(Ax — By)
ri,

when A and B are viewed as symmetric n x n matrices. If Ry € Ry, "2 for some
signature (1, r2), then certain projective SL,, (Z)-orbits of pairs (A, B) with invariant
binary n-ic f(4,p) = f are equipped with a composition law coming from the group
structure on the 2-torsion subgroup of the class group of R r. (The notion of projectiv-
ity is defined in Section 2.3.) This implies that the number of such orbits is determined
by the number of 2-torsion ideal class elements of R . Thus, to compute the averages
when ordering by height in Theorem 6, we compare the number of rings (with mul-
tiplicity) in 9%2-"2 of bounded height to the number of relevant SL,, (Z)-orbits whose

binary n-ic invariant is bounded by the same height. To obtain Theorems 2 and 3, we

ry,r2

restrict to maximal orders, namely, those rings Ry € Ry’ = ;

however, a conjectural
tail estimate is required to obtain a lower bound.

When ordering by Julia invariant, we count the number of SL,(Z) x SL,(Z)-
orbits of Z? ® Sym,(Z") relative to the number of SL;(Z)-orbits of Sym,,(Z?).
As described above, the rings R associated to a binary n-ic form f are invariant
under the action of SL,(Z) on f; that is, for any yf € [f] = SL,(Z) - f, we have
R, s = Ry. It follows from [39] that if O] € R}"""? for some signature (rq,72),
then projective SL;,(Z) x SL, (Z)-orbits of pairs of n-ary quadratic forms (4, B) with

[f(4,)] = [f] are in bijection with 2-torsion elements of the class group of O ). We
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then use the same geometry-of-numbers methods utilized when ordering by height to
conclude Theorems 2 and 6 when ordering by Julia invariant. Note that when n = 3,
the Julia invariant coincides with the discriminant of a binary cubic form, and so our
argument can be viewed as a generalization of that given in [11].

Briefly, the article is organized as follows. In Section 2, we recall and expand on
the details of the construction of rings R ¢ of rank n from binary n-ic forms f given
in [29] and [38]. We also describe the correspondence given in [39] between SL,-
orbits of pairs of n-ary quadratic forms and order 2 ideal classes of such rings R ¢.
Section 3 discusses asymptotic counts of acceptable families in 97" and R'}""2.
Section 4 focuses on using geometry-of-numbers methods to count the projective
integral orbits of pairs of n-ary quadratic forms whose binary n-ic invariant f is
contained in R} or R’}*"2. In Section 5, we describe several sieves that allow us to
restrict our count from Section 4 to orbits that correspond to invertible ideal classes in
orders (or maximal orders). Finally, in Section 6, the analytic methods in Sections 4
and 5 are combined with the algebraic interpretation of the orbits given in Section 2
to conclude the main results.

2. Parameterizations of 2-torsion ideal classes and composition laws

Let n > 3 be a fixed odd integer. In this section, we begin by recalling from [29] and
[38] how rings of rank n naturally arise from integral binary n-ic forms. We then
recall the parameterization given in [39] of 2-torsion ideal classes in such rings by
orbits of pairs of n-ary quadratic forms. In Section 2.3, we describe a composition
law for certain orbits of pairs of n-ary quadratic forms arising from the group law
on ideal classes in rings. In Section 2.4, we discuss reducible elements in the space
of such integral pairs and the properties of the corresponding 2-torsion ideal classes
via the parameterization; these are elements that will be excluded in the volume com-
putations in later sections. Finally, in Section 2.5, we use a rigidified version of the
parameterization theorem in [39] over principal ideal domains to explicitly describe
the stabilizers and orbits of these representations for a few specific base rings.

2.1. Rings associated to binary n-ic forms

We first describe the construction of a rank n ring over Z and ideals from an integral
binary n-ic form. Let f(x,y) = fox" + fix""ly 4+ --- + f,»", where f; € Z. We
begin with the case where fo # 0, and let By, = Z[%]. Define the ring Ry as a
subring of By, [0]//(0, 1), generated as a Z-module as

Ry = (1, fo8, fo6> + f16,..., fo8" ' + f18" 72 + -+ fu_2f). (4)

For k > 0, define & = fo0% + -+ + fi—10, and let &y = 1. It is shown in both [29]
and [38] that Ry = ({o,...,{n—1) is closed under multiplication and thus is a ring.
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We define the following Z-submodule of Bz, [0]/f(0,1):

If=(1709§2a~--5§n—1>- (5)

As shown in [29] and [38], the module [ s is closed under multiplication by elements
of R ¢ and thus is an ideal of R ¢. It is easy to check that for 0 <k <n — 1, we have

1K =(1,0.0....0% Cesr.... ) (6)

as a Z-submodule of B, [0]/f (8, 1). For n odd, the ideal / }_3 is a square of the ideal
n—3
If2 , which has the following explicit basis as a Z-module:

n_3 n=3
If2 :(1,0,92,...,9 2 ,{%_H,---aé‘n—l)‘

Additionally, there is a natural action of y € GL,(Z) on the set of binary n-ic forms
S sending y - f(x,y) = f((x,y)y); under this action, the ring R s and the ideal / ¢
(and its powers) are invariant (up to isomorphism). If f is irreducible, then R 7 is an
order of Q[#]/ (0, 1), and the discriminants of R s and f coincide (see [29, Proposi-
tion 1.1]). In addition, the form f is primitive (i.e., the greatest common divisor of its
coefficients is 1) if and only if R ¢ is Gorenstein, which is equivalent to the property
that I s is an invertible fractional ideal (see [38, Proposition 2.1, Corollary 2.3]).

In fact, by recording the basis (6), the ideals / ]]ﬁ may be considered as based ideals
of Ry, that is, ideals of R along with an ordered basis as a rank n Z-module. The
norm N(I') of abased ideal I of R is the determinant of the Z-linear transformation
taking the chosen basis of I to the basis of R ¢ given by (4).

We also introduce dual elements to 8% for all 0 <k <n — 1. Let {éo, él, .
én_l} be the By, -module basis of Homgp (By,[0]/f(6.1), By,) dual to {1,6,62,

...,0"1} Additionally, define E,,_l = 9’%‘ , and note that 5n—1(§k) = g n—1 forall
0 <k <n—1.In[39,Proposition2.1], Wood computes that forany r € B 7 [0]/f (0, 1)
and0<k<n-2,

Ok (1) = L1 Gt k7)) + fro1—kno1(r), @

which will be useful for computations in the following section.

Remark 2.1

If fo =0 but f £ 0, there exists a GL,(Z)-transformation that takes f to another
binary n-ic form f’ with a nonzero leading coefficient. To obtain the ring R s and the
ideal class /¢ (which are, up to isomorphism, GL,(Z)-invariant), one may use the
above constructions for f’ (see [38, Section 2]).
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The above construction holds if one replaces Z with any integral domain 7 (see
[38]); this gives an explicit way of associating a ring R ¢, which is rank n as a T'-
module, and a distinguished (based) ideal /s of Rs to a binary n-ic form over T.
We refer to R s as the ring associated to f and Iy as the distinguished ideal of R ¢
or f. Geometrically, for nonzero forms f, the ring R ¢ is the ring of functions on
the subscheme X s of ]P’lT cut out by the binary n-ic form f, and the ideal / Jli is the
pullback of @ (k) from }P’IT to X y (see [38, Theorem 2.4]).

We are interested in counting the 2-torsion ideal classes of the rings R s asso-
ciated to irreducible forms f when n is odd. A key ingredient is a parameterization
of such ideal classes in terms of pairs of n X n symmetric matrices, which we recall
next.

2.2. Parameterization of order 2 ideal classes in Ry

For any base ring T, let U(T) = Sym,,(T?) denote the space of binary n-ic forms
with coefficients in T. Let V(T) = T? ® Sym,(T") denote the space of pairs (4, B)
of symmetric n x n matrices with coefficients a;; of A and b;; of B in T (for 1 <
i,j <n),where a;; =aj; and b;; = b;;. The group SL,(T’) acts naturally on V(T),
where y € SL,(T) acts on (A, B) by

y(A, B) = (yAy',yBy"). (8)

The map 7 : V(T) — U(T) sending (A, B) +> det(Ax — By) is clearly SL,(T)-
equivariant. We call f(4 p) := 7 (A, B) the binary n-ic invariant or resolvent form of
the pair (A, B) (or of the SL, (T)-equivalence class of (A4, B)). Recall that a binary
n-ic form f is nondegenerate if and only if its discriminant A( f) is nonzero, and
we will call the pair (A, B) nondegenerate if and only if f(4 p) is nongenerate. In
[39, Theorem 1.3], Wood describes the SL,, (Z)-orbits of V(Z) in terms of fractional
ideals of the rings R s from Section 2.1.

THEOREM 2.2 ([39, Theorem 1.3])

Let [ € U(Z) be a nondegenerate primitive binary n-ic form with integral coeffi-
cients. Then there is a bijection between SLy(Z)-orbits of (A, B) € V(Z) with
Ja,By = [ and equivalence classes of pairs (I,8), where I is a fractional ideal
of Ry and § € (R ®z Q) with 12 C 51}_3 as ideals and N(I)? = N(8) N(I;i_3).
Two pairs (1,8) and (1',8") are equivalent if there exists k € (R y ®z Q)™ such that
I' =«l and §' = K?8.

For forms f with fy # 0 (see Remark 2.1), we now explicitly describe the bijec-
tive map of Theorem 2.2, as some of these computations will be needed in Section 2.4.
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Fix a primitive nondegenerate binary cubic form f(x,y) = fox" + fix" 1y +---+
fay™ € U(Z) with fo # 0, and let R s denote the ring described in (4).

We begin by constructing an element of V(Z) from a pair (7, §) where I denotes
a fractional ideal of Ry and § denotes an invertible element of R ¢y ®7z Q such that
1’ C 81}_3 and N(1)? = N(§) N(IJ’Z_3). Under these assumptions, we can define a
map

. -3
¢.I®Rfl—>lj’3 ,
oo’ ©)
5

a®@ao —

For the Z-module (1,6, ...,0"3), there is a quotient map Ij’l_3 — I;’,_3/(1,9, e
6"=3), and when ¢ is composed with this quotient map, it gives a symmetric bilin-
ear map that corresponds to an SL, (Z)-orbit of V(Z). Equivalently, let oq,..., 0y
in Ry ®z Q denote elements that generate / over Z and for which the change-of-
basis matrix from (o, (1,...,Cn—1) to {(o1,...,a,) has positive determinant. From
the assumption that /2 C 81}_3, we have that for all i, j € {1,...,n},

(0417}

0 1 -3 -
=) e 0k e V0 f byt taytu. (10)

where Clij,bij,cgc) € Z for 0 <k <n —3. Then (A, B) = ((a;j), (b;j)) yields the
desired pair of integral symmetric n X n matrices.

To describe the reverse map, let (4, B) € V(Z) satisfy w(A, B) = f, and denote
the coefficients of A as a;; and of B as b;;. Note that det A = fj, so requiring fo # 0
is equivalent to requiring A to be invertible. We want to construct a fractional ideal
I of Ry along with an element § € (R ; ®z Q) such that /% C 81}_3 and N(I)? =
NN/ ?‘3). Theorem 5.7 of [39] implies that it is equivalent to giving a Z-basis
(a1,...,an) for I and a map of Ry-modules ¢ : I ®g, I — Ij’}_3 such that the
composition

1®Zl—>1®Rf1—>1J'£—3—>1;—3/(1,9,...,9"—3) (11)
is equal to (A, B) when written in terms of {(«1,...,«y). Indeed, independent of the
choice of i and j in {1,...,n}, we have the equality § = %g{x,»)' (This is due to

the fact that any map I Qg , I — [ ;’,_3 factors through an injective map /2 — ;_3,
which must be multiplication by an invertible element of R y ®z Q.) Thus, we would
like to describe I in terms of the Z-basis (¢, ..., o,) and construct the map ¢.

If the composition of maps in (11) corresponds to (A, B) relative to a Z-basis
(a1,...,0p), thenthemap I ®z1 — I ®r, [ — I;’,_3 can be described on elements
of the Z-basis (o; ® o) of I ® I as
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(0(051 ®051) = Zc(k)ek + szé‘n—z + aijzn—l
k=0

(O) + Z(C(k) + bij fu—k—2 + aij fu—i—1)0*

+ (bij fo + aij f1)0" % +aij fob0" ", (12)
where c( )
( )

are integers for k € {0,...,n —3} and 1 <i, j <n. Thus, the coefficients

must satisfy

o _ O (p(eti ® @) — fruoi—a bij — fok—1-aij if1<k<n-3,
‘i Qk((p(ozl ®aj)) if k =0.

Using equation (7), we then have that ci(jl-c) for k > 0 must satisfy

e = fuckrbuo1 (9 ® @))) + Eni (Gammr - 0o ® )))

- fn—k—z 'bij - fn—k—l s djj

= Com1 (Gnko1 - 9@ ®})) — foi—a - bij

=Lt (00" 7 4+ A0 ke 20) -0l ® )
— Ja—k—2 - bij.

The middle equality follows from the fact that f n—1(@(0; ® o)) = a;; by equa-
tion (12). By [39, Proposition 3.3], if we write an element o of I as a row vector
(ay,az,...,ay) relative to the Z-basis («y,...,a,) corresponding to (A, B), then
6 € B, [0]//(6,1) must act on I by right multiplication by BA™!; that is,

0-a=(ay,az,...,an)- BA™L.

(k)

ij then

Thus, if we create n — 2 matrices C®) such that its i/ th entry is equal to c;
we have for k > 0:

CO = (fo- (BATY" 4 fi o (BATY 24t fy g5 BATY)A

- fn—k—ZB
=(fo-(BATY'"™ 24 fi-(BATY'"™ 3 ..t foys3-BATY)B. (1)

Additionally,

CO=(fo-BA™)" "+ fi- (BAT)' >+ 4 fuz  BA™ + fo1)A
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Furthermore, since the action of 6 gives the action of R r on I, this completely deter-
mines the map ¢ and I as an R ¢-module. By [39, Propositions 5.1 and 5.4], this
implies that / can be realized as a fractional ideal, and thus there is a well-defined
element of (R s ®7 Q)™ satisfying

. o
oo ®aj)’

independent of the choice of i and j. Additionally, for each 1 < j <n, we have that
the «;’s satisfy the following ratios:

0 —3) yn—
O] 10 0y Oy = ci,])' ++C§”’j )en 3 +bl,jé‘n—2 +a1,j§n_3
0 —3) yn—
:Cé,} +"'+Cg,lj Yo +b2,j8n—2+azjp3:-

: C,(,O_)l,j + -+ C,(;z__l,sj)'en_?' + bn—l,jé‘n—z +anp—1,; Cn—3

: C}S(,); +oet Cr(lr,lj_S)en_3 + bn,j é‘n—z + an,;j é‘n—3~

The ratios must be independent of the choice of j, so this in conjunction with §
determines (a1, &z, ..., o). The action of SL,(Z) on V(Z) corresponds to the action
gn € SL,(Z) on the chosen basis for / which sends

(a1,00,...,0,) > (1,02, ...,0,) - g4 (14)

Thus, the ideal [ is invariant under the action of SL, (Z).

2.3. Composition of elements of V(Z) with the same binary n-ic invariant

Let @ be an S,-order, that is, an order in a degree n S,-number field K over Q.
Consider the set of pairs (1, §), where I is a fractional ideal of @, § € K*, I? C (§),
and N(I)? = N(§). Recall that we called two such pairs (1, 8) and (I',8') equivalent
if there exists k € K* such that I’ = «I and 8 = k28. We have a natural law of
composition on equivalence classes of such pairs given by

(1,8)0(I',8)=(I1',88). (15)

We say that a pair (1, §) is projective if I is projective as an (9-module, that is, if 7 is
invertible as a fractional ideal of (; the pair (1, §) is projective if and only if 2 = (§).
The set of equivalence classes of projective pairs (1, §) for @ forms a group under the
composition law (15), which we denote by H(O).

There exists a natural group homomorphism from H(O) to Cl,(O), given by
sending the pair (/,8) to the ideal class of /. This map is clearly well defined and
surjective. The kernel consists of equivalence classes of pairs (/,§) where [ is a
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principal ideal; each such equivalence class has a representative of the form (O, §)
where § is a norm 1 unit. Therefore, we obtain the exact sequence

X

On=1
| — ot — H(O) — CL(O) — 1, (16)

which implies that H(©) is an extension of the 2-torsion subgroup of the class group
of . Using Dirichlet’s unit theorem and the fact that —1 € @ has norm —1, we
immediately obtain the following lemma.

LEMMA 2.3
Let O be an order in an S,-number field of degree n and signature (r1,rz). Then

[H(O)| =2"17"271 CL,(0)].

We next compare certain elements of H(O) to the 2-torsion subgroup Cl; (0) of
the narrow class group CI7 () of . Recall that C1* () is the quotient of the ideal
group 4(O) of @ by the group P (O) of totally positive principal fractional ideals
of O, that is, ideals of the form @ where a is an element of Frac(()* such that o (a)
is positive for every embedding o : Frac(9) — R. We say that such an element a is
totally positive and denote this condition by a > 0.

LEMMA 2.4

Let O be an order in a degree n S,-number field with signature (ry,r3). If HT (9)
denotes the subgroup of H(O) consisting of projective pairs (1,8) such that § > 0,
then

[H*(0)] =2"2|Clf (0)]. (17)

Proof

Let 0%, denote the totally positive units of ¢, and define sgn: O™ — {£1}"! as the
signature homomorphism, which takes a unit to the sign of its image under each real
embedding o : FracO — R. Let r be the nonnegative integer satisfying
|Image(sgn)| = 2", and let

‘€2>>0((9) = {[I] : there exists § > 0 such that /% = (8)}

be the set of equivalence class of ideals whose square is totally positive, where two
ideals are equivalent if they differ by a principal ideal (in the usual sense). We then
have the following commutative diagram of exact sequences:
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1 1

N ~~

L — 05,/(0%) — 0%/(0%)? = {=1} {£1}71/sgn(O%) — 1
H*(0) Cl5(0)
x‘ /
€7°(0)

<N

where the map o sends a pair (/,8) with § > 0 to the equivalence class [/], and
the map B sends a coset I + P1(O9) to the equivalence class [/]. We have that
|0%/(0*)?] = 271772 and  [{£1}"/sgn(0*)| = 277", so |0%,/(0*)?] =
271=r+r2 The equality (17) follows immediately. O

We now relate projective orbits of V(Z) to the size of the 2-torsion subgroup
of the ideal class group of the corresponding rings. We say that a pair (4, B) €
V(Z) N w~Y(f) is projective if the corresponding pair (I, 8) under the bijection of
Theorem 2.2 is projective. We then have the following result.

PROPOSITION 2.5

Let O be an Sy-order corresponding to an integral, nondegenerate, irreducible, and
primitive binary n-ic form f. Then H(O) is in natural bijection with the set of projec-
tive SL,, (Z)-orbits on V(Z) N &~ (f). The number of such projective orbits is equal
to

o7 +rx—1 |C12((9)

’

where (r1,12) is the signature of the fraction field of O.

Proof
From Theorem 2.2, projective orbits in V(Z) N w~!(f) are in bijection with pairs
(1,8), where [ is a fractional ideal of O, § € K*, and I? = 81}’1_3. The set of such

_n—3

pairs is clearly in bijection with H(©) by simply sending (/,8) to (I - I, 2 ,68). The
second assertion of the proposition now follows immediately from Lemma 2.3. [
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2.4. Reducible elements in V(Z)

We say that an element (4, B) € V(Q) is reducible if the quadrics in P"~1(Q) cor-
responding to A and B have a common rational isotropic subspace of dimension
(n—1)/2 in P"~1(Q). The condition of reducibility has the following arithmetic sig-
nificance.

THEOREM 2.6

Let (A, B) be a projective element of V(Z) whose binary n-ic invariant is primitive,
irreducible, and nondegenerate, and let (I, §) denote the corresponding pair as given
by Theorem 2.2. Then (A, B) is reducible if and only if § is a square in (R f ®z7 Q)*.

Proof
Suppose first that § = r? is the square of an invertible element in (R s ® Q)*. By
replacing I with r~!7 and § with r 28, we may assume that § = 1. Let oy, ... ,nz1

be a Z-basis for I N (Z & 70 & --- & 29%4), and extend it to a basis aq,..., o,
of 1. It follows from (10) that, with these coordinates, we have a;; = b;; = 0 for
1 <i,j <(n—1)/2, which is sufficient for (4, B) to be reducible.

Now assume that (A, B) is reducible; we would like to prove that § is a square.
Let x1, X2, ..., X, denote a set of coordinates for P* 1. By replacing (A, B) with an
SL, (Q)-translate if necessary, we may assume that the common isotropic subspace is
the one generated by x1,. .., X —1)/2. This implies that a;; = b,-,- =0forl <i,j<
(n —1)/2. From (12) and (13), we see that the quantity o;cr; /8 is given by the ijth
coordinate of the matrix

n—3

Di=CO+ (3 (C® + fykzB + frimr4)-0F)
k=1
+ (foB + f1A)-0" >+ foA- 0"
n—1 n—k—1
=2 (X fookmjma(BATY )40
k=0 j=0
jtk<n-—1
= > fujk—1(BATH A-6F (18)

J-k=0

where f = fox" + fix""'y 4+ --- 4+ f,y" is the binary n-ic invariant of (4, B).
(Note that A is invertible because f is assumed to be irreducible, so fo = det A # 0.)

We now prove that the 11-coefficient dy; of D is a square using the fact that
ajj =b;j =0for 1 <i,j < (n—1)/2. This implies that § = «?/d;; is a square as
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well. First, from (18), note that the coefficients of 67! and 8”2 of d;; are 0, since
a1 = b1 = 0. We start with the following lemma.

LEMMA 2.7
The coefficient of 0"3 in dy; is a square.

Proof
From (18) and the fact that a1; = by; = 0, the coefficient of §773 in dy; is equal to
the 11-coefficient of the matrix fo(BA™')?A4 = fyBA™!B. Let M denote the cofac-
tor matrix of A, that is, the ij-coefficient m;; of M is equal to (=1)**/ times the
determinant of the matrix obtained by removing the i th row and the j th column of A.
Then the coefficient of 8773 in dy; is equal to the 11-coefficient of BMB.

We now describe the coefficients of M. Let AP denote the top-right (n — 1)/2,
(n + 1)/2 submatrix of A. Note that, since 4 is symmetric, the bottom-left (n +
1)/2,(n—1)/2 submatrix of A is simply the transpose of A'P. Fori € [(n +1)/2,n],
let A; denote the (n — 1)/2,(n — 1)/2 matrix obtained by removing the (i — (n —
1)/2)th column of A™P. Then removing the (i — (n — 1)/2)th row of the transpose of
A"P yields Af. Since the top-right (n —1)/2, (n — 1) /2 block of A is 0, it follows that
fori, j > (n—1)/2, we have m;; = (=1)*7 Det(4;) Det(A ;). Therefore, we have

n
11-coefficient of BMB = Z biim;jbjy
ij=1
n
= Z (1) by;byj det A; det A
i,j=(n+1)/2
n
=( 3 (—l)kblkdetAk)z,

k=n+1)/2
as necessary. U

Next, we show that the constant coefficient of dq; (considered as a polynomial in
0) is a square.

LEMMA 2.8
The constant coefficient d11(0) of d11(0) is a square.

Proof
Because the binary n-ic invariant of (A4, B) is f, we have det(Ax — By) = det({/ x —
BA71y)det(A) = f(x,y). Since BA™! satisfies its characteristic polynomial, we
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obtain
n
> famj(BATH =0.
Jj=0

By (18), we compute d;1(0) to be the 11-coefficient of the matrix
n—1 ) n—1 .
(X fmim1 BATY ) A= (X fuen(BATH 1) 4B 4
j=0 =0

= (i fn—j(BA_l)j)AB_lA — fLAB7'4

J=0

=—f,AB7A.

Note that B is invertible because det B = f,, # 0 since f is irreducible. The lemma
now follows from the proof of Lemma 2.7 and symmetry (and the fact that n
is odd). O

We next show that d; (m) is a square for every integer m, by applying Lemma 2.8
on the pair (A, B —mA). Let g denote the binary n-ic invariant of the pair (4, B —
mA), and let g; denote the coefficient of x* % y* in g(x, y). We have

g(x,y) =det(Ax — (B —mA)y) = det(A(x + my) — By) = f(x +my,y).

As a consequence, we compute the g to be

By applying Lemma 2.8 to (A, B —mA), we see that the 11-coefficient of the follow-
ing matrix is a square:

n—1
(3" gn—ymr(BAT =m1)7) 4
=0
n—1
= (X e Ba™ —miy )4
k=0

n—1 k .
= > (Z _],)f,.mk—f (BA™ ' —mI)" ¥ | 4
—J

k=0 \j=0
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i,j=0

2_: (BA 1)1 nljl)A’

where the last equality is a consequence of the following lemma.

LEMMA 2.9
For nonnegative integers n, i, and j satisfyingi + j <n — 1, we have

n—i—1 .
Z (_1)k+i n—j n—k—1 =(—l)n+l.
by k—j i
Proof
By taking the ith derivative of both sides of the identity

(47 =1 Sy n—i
X _Z n—k

k=j

and setting x = —1, we obtain the lemma.

T 15\i nt lnl1 k+i ] n—k—1
Y. fi(BATY M Z(l) (k J)( l.

19)

O

Comparing the formulas (19) and (18) with 6 = m shows that d11 (m) is a square
for any integer m. It is a classical result that a polynomial that takes only square values

on integers must itself be a square. We include a proof for completeness.

LEMMA 2.10
Suppose that f(x) € Z[x] takes square values at every integer. Then f(x)
for some integer polynomial g(x).

= g(x)?
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Proof

Suppose for the sake of contradiction that f(x) is a nonconstant square-free poly-
nomial. Then the resultant R(f, f’) of f and its derivative is a nonzero constant.
Choose a prime p such that p{ R(f, f’) and such that p | f(n) for some integer n;
such a prime p exists since there exist infinitely many primes dividing some value
of f applied to integers. We have that p | f(n + p) also. By the assumption that f
takes square values, we also have that p? divides both f(n) and f(n + p). How-
ever, because f(n+ p)= f(n) + pf’'(n) (mod p?), we find that p | f'(n) and thus
p | R(f. f'), yielding a contradiction. O

Thus it follows that the 11-coefficient of D is a square, concluding the proof of
Theorem 2.6. U

Remark 2.11
Theorem 2.6 also follows from a different interpretation of orbits of V(Q) in terms of
Jacobians of hyperelliptic curves, found in Wang’s dissertation (see [36]).

For an order O, let d,(0) denote the 2-torsion subgroup of the ideal group of
O, that is, the group of invertible fractional ideals I/ of @ such that 12 = 9. Note
that the group d,(0) is trivial when @ is maximal. We have the following result
parameterizing elements of J,(() for all primitive orders @ arising from integral
binary n-ic forms.

PROPOSITION 2.12

Let Oy be an order corresponding to the integral, primitive, irreducible, and non-
degenerate binary n-ic form f. Then d,(O ) is in natural bijection with the set of
projective reducible SL, (Z)-orbits on V(Z) N &~ L(f).

Proof

Theorem 2.6 shows that a projective SL, (Z)-orbit on V(Z) corresponding to the pair

(1,8) is reducible exactly when § is a square, say § = «2. The map from projective

reducible SL, (Z)-orbits on V(Z) N 7~ 1(f) to d»(R) that sends such an orbit to
-3

k7 I;T is clearly a bijection. O

2.5. Parameterizations over other rings

Let T be a principal ideal domain. We now describe an analogue of Theorem 2.2
over T', and we study a rigidified version of the parameterization to better understand
the orbits and stabilizers of the group action. The following theorem describes how
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SL,, (T')-orbits of V(T') are related to rank » rings and ideal classes; it is a restatement
of [39, Theorem 6.3], using the fact that our base ring 7 is a principal ideal domain.

THEOREM 2.13 ([39, Theorem 6.3])

Let f € U(T) be a nondegenerate primitive binary n-ic form. Then there is a bijection
between SLy(T)-orbits of (A, B) € V(T') with fa,B) = [ and equivalence classes
of pairs (1,8), where I C Ky :=T|[x]/(f(x,1)) isanideal of R y and § € K; satis-
fying I? C 81}_3 as ideals and N(I1)* = N(§) N(IJ’E_3). Two pairs (1,8) and (I',8)
are equivalent if there exists k € K;ﬁ such that 1' = kI and §' = k?36.

Note that in [39, Section 6] the theorems are stated for SLni (T)-orbits instead of
SL, (T)-orbits, where SL:E (T) denotes the elements of determinant £1 in GL, (7).
However, since n is odd here, we have SLflE (T) = {£1} x SL,(T), and since —1
acts trivially on pairs (4, B) by (8), the SL, (T )-orbits are precisely the same as the
SLE(T)-orbits.

In order to understand the stabilizer of the action of SL,(7) on an element
(A, B) € V(T), we now discuss precisely with what the elements (instead of SL,,(T')-
orbits) of V(T') are in correspondence, in terms of the pair (/,§) along with a basis
for 1.

PROPOSITION 2.14 ([39, Theorems 6.1, 6.3])

Let f € U(T) be a nondegenerate primitive binary n-ic form. Let Ky := T|[x]/
(f(x,1)). Then the nonzero elements (A, B) € V(T) with f4,py = f are in bijec-
tion with equivalence classes of triples (I, 8,8) where I C K ¢ is a based ideal of
R s, with an ordered basis given by an isomorphism B : 1 — T" of T-modules,
and § € K}i, satisfying 1* C 81/'}_3 as ideals and N(I)* = N(8) N(I}i_3). Two such
triples (I, B,8) and (I’, B',8') are equivalent if and only if there exists k € K;ﬁ such
that I' = kI, B o (xk) = B', and §' = «?8.

As stated, Proposition 2.14 is a “symmetric” version of the first part of [39, The-
orem 6.1]. For any (A4, B) € V(T) corresponding to (/, 8, ) in Proposition 2.14, the
action of SL,(7T) on (A, B) as in (8) induces an action of SL,(7") on the basis B
through the correspondence, namely, as given in (14). This action of SL,(T") takes
I to itself and does not affect &, so SL,(T) acts on the triples (I, B,38). Quotient-
ing both sides of the correspondence in Proposition 2.14 by SL,, (T) yields precisely
Theorem 2.13.

For the computations in later sections, we are interested in the stabilizer of
(A,B) € V(T) in SL,(T). Any g € SL,(T) that fixes (A, B) must correspond to
an automorphism of the corresponding triple (/, B,8); as g preserves the map B, it
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is, up to scaling, an automorphism of / as a Z[T']-module. Because the discriminant
of the corresponding form f is nonzero, such a module homomorphism is given by
multiplication by a nonzero scalar. Since g also fixes §, in fact g corresponds to multi-
plication by an element x € K J’ﬁ with k2 = 1. (In fact, such « lie in R} .) Furthermore,
since multiplication on 8 by «k exactly corresponds to multiplication by the matrix g,
we must have N(k) = det(g) = 1. It is also easy to check that any such « yields an
element g € SL,, (T) that stabilizes (A, B). We thus have the following description of
the stabilizers.

COROLLARY 2.15

Fix a principal ideal domain T. Let (A, B) € V(T) be a nondegenerate element with
primitive binary n-ic invariant f, corresponding to the ring R s and the pair (1,6)
under Theorem 2.13. Then the stabilizer group in SL,,(T) of (A, B) corresponds to
the norm 1 elements R;[2]NEI of the 2-torsion in R}.

In the cases where T is a field or Z,, we may also describe the SL,,(7")-orbits
of V(T) corresponding to a given binary n-ic invariant in a simple way. We restrict
to projective orbits, that is, those corresponding to (/,§) where [ is projective as an
R s-module. (In the case where T is a field, this will be no restriction.)

COROLLARY 2.16

Let T be a field or Zp. Let [ be a separable nondegenerate binary n-ic form with
coefficients in T. Then the projective SL, (T)-orbits of V(T') with invariant binary
n-ic form f are in bijection with elements of (R;‘,/(R;)Z)NEL

Proof

Let T =k be a field, and let f be a separable nondegenerate binary n-ic form over
k. Then R # is a commutative k-algebra of dimension n, and in particular, a direct
product of field extensions of k£ and thus a principal ideal ring. It is easy to check
that /y = Ry. In this case, Theorem 2.13 implies that SL; (k)-orbits on V (k) with
binary n-ic invariant f correspond to equivalence classes of pairs (/,§), where [ is
a fractional ideal of R s and § € R’ such that /% = 817> = 6R . The only ideals in
R 7 are products of either the unit ideal or the zero ideal in each of the factors; since
8 must be invertible, we have / = R r and so N(§) = 1. Thus, the equivalence classes
of the pairs (/, §) are parameterized by norm 1 elements § of R; / (R})Z.

Now let T = Z,. The ring R r is a direct product of finite extensions of Z, and
is thus a principal ideal ring. For projective pairs (/,§) as in Theorem 2.13, the norm
condition implies that 12 = §1 ;’,_3. As aresult, the ideal / is again determined by the
element § of R;. Furthermore, since n — 3 is even, we obtain that
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N(/) 2
)

is a square, so the set of equivalence classes of pairs (/,§) are parameterized by
(R%/(R%)?)n=1. O

Example 2.17

For k =R, for a given f as above, we have that R ¢ is isomorphic to R"! x C2 for
some nonnegative integers r1 and r, with r; + 2r, = n. Then the number of SL, (R)-
orbits with invariant binary n-ic form f is 2”171, and the order of the stabilizer in
SL, (R) is 271+7r2~1,

3. Counting binary n-ic forms in acceptable families

Our goal in this section is to determine asymptotics for the number of irreducible
elements in acceptable families of binary n-ic forms having bounded height, as well
as to determine asymptotics for the number of irreducible SL,(Z)-orbits on SL;(Z)-
invariant acceptable families having bounded Julia invariant. We first define an accept-
able family of binary n-ic forms, as well as how to compute the size of such families
when ordered by height. We then define the Julia invariant and recall a result of [13]
on the asymptotics of orbits of binary n-ic forms ordered by Julia invariant.

3.1. Acceptable families of binary n-ic forms

Recall that U(T) = Sym,,(T'?) denotes the space of binary n-ic forms over a ring
T, and an element y € SL,(T) acts on f € U(T) via yf(x,y) = f((x,y)y). Let
A(f) denote the discriminant of a form f € U(T). Let U(R)2) denote the set of
binary n-ic forms with coefficients in R that have nonzero discriminant and r, pairs
of complex conjugate roots for some fixed r, € {0,...,(n — 1)/2}.

Definition 3.1

For each finite prime p, let £, C U(Zp) \ {A = 0} be a nonempty open set whose
boundary has measure 0, and let o, = U(R)"2) for some such r,. We say that a
collection ¥ = (X ), U X is acceptable if, for all large enough primes p, the set
¥, contains all elements f € V(Z,) with p>{ A(f). We refer to each ¥, where v
is any finite or infinite place of Q as a local specification of ¥ at v. To a collection X,
we associate a family U(X) of integral binary n-ic forms given by

U(Z)={f €eUZ): f €2, for all places v},

and we say that U(X) is acceptable if X is acceptable.



ODD DEGREE NUMBER FIELDS WITH ODD CLASS NUMBER 1019

Note that if ¥, is SL,(Z,)-invariant for every prime p (the set X, is automat-
ically SL,(R)-invariant), then U(X) is SL,(Z)-invariant. In this case, we say that
such a collection X is SL,-invariant. Additionally, for any U(X), note that there is
a multisubset Xy = {R ¢ | f € U(X)} inside Ry . Similarly, for any SL,-invariant
U(X), there is also a multisubset X7 = {R[s] | [f] € SL2(Z)\U(X)}. We say that
a family X g or X is acceptable if it is defined by an acceptable family U(X) of
integral binary n-ic forms.

3.2. Binary n-ic forms ordered by height
In this section, we order real and integral binary n-ic forms by the following height
function:

H(fox" + -+ fay") ;= max|fi]. (20)

For any subset S of U(R) or U(Z), we denote the set of elements in S having height
less than X by Sy <x. For a subset S of U(Z), we denote the subset of irreducible
elements in S by S, Asymptotics for the number of integral irreducible binary n-
ic forms having square-free discriminant and bounded height is determined in [10].
The key ingredient in that result is a tail estimate on the number of integral binary
n-ic forms having bounded height whose discriminants are divisible by p? for large
primes p. Namely, let W, C U(Z) denote the set of integral binary n-ic forms with
p? | A(f). Then the following tail estimate is proved in [10].

PROPOSITION 3.2
We have

n+1

#( U W,,)H<X - O()i/ﬁ) +o(x"t,.

p>M

The next theorem follows from Proposition 3.2 just as [8, Theorem 2.21] follows
from [8, Theorem 2.13].

THEOREM 3.3
Let 3 be an acceptable collection of local specifications. Then we have

HU(D) x = Vol(Zoo,<x) [ [ VOI(Z ) + o(X" ). 1)
)4

Note that since Vol(X oo, m<x) grows like a nonzero constant times X ntl the
error term in the right-hand side of (21) is indeed smaller than the main term.
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3.3. SL,(Z)-orbits on binary n-ic forms ordered by Julia invariant
Every binary n-ic form with real coefficients whose leading coefficient a is nonzero
can be written as

S(x.y)=aox —ary)---(x —any),

with o; € C. For t = (t1,...,t,) € R", consider the positive definite binary quadratic
form

Qi(x,y) =Y 17 (x —aiy)(x =& y).

i=1

Work of Julia [27] and Stoll and Cremona [34] shows that if ¢ is chosen to minimize
the quantity

aZ| Disc Q,|"/?

2 2
17 t2

(f) = (22)
then ¢ is an SL;(IR)-invariant of f, that is, 9(f) = ¥ (y - f) for any y € SL,(R).
We call ¢ the Julia invariant of the binary n-ic form f(x,y). The Julia invariant
is not a polynomial invariant, but it is homogeneous of degree 2, in the sense that
Y(Af) = A29(f) for A € RX. Indeed, the roots of f and Af are the same; when we
replace f with A f, the ag in the right-hand side of (22) is replaced with A%ao while
the remaining quantities stay the same. In this section, we will order SL,(Z)-orbits
[f] of U(Z) by the degree 1 invariant

J() = VI(f). (23)

Note that we may define the Julia invariant for forms f with leading coefficient O by
using an SL, (R)-equivalent form with nonzero leading coefficient.

Asymptotics for the number of irreducible SL,(Z)-orbits on integral binary n-ic
forms were recently computed by Bhargava and Yang [13]. The following theorem is
a rewording of [13, Theorem 9].

THEOREM 3.4

Let n be a positive integer, and let r, € {0,1,...,|n/2]}. Let ¥ be a collection of
local specifications such that the family U(X) is defined by finitely many congruence
conditions, and oo = U(R)V2). Then there exists a constant Cn,ry» depending only
on n and ry, such that

#(SLa(Z)\U(D)T_y) =y [ [VOUS )X + O(X"F177). (24
D
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To prove Theorem 3.4, the authors construct a fundamental domain F for the
action of SL,(Z) on U(R)U2). This fundamental domain has the property that
Fjx = XFj~;. Estimating the number of irreducible integral binary n-ic forms
in Fyx is difficult because Fyy is not compact and has a cusp going to infinity.
Using an averaging technique, they prove that the cuspidal region of F;x contains
negligibly many irreducible integral binary n-ic forms, while the noncuspidal region
has negligibly many reducible binary n-ic forms. This allows them to prove that the
left-hand side of (24) is well approximated by the volume of F;.y, yielding the
result. In fact, the constant ¢, x in Theorem 3.4 is simply Vol(Fy<;). We now prove
the following theorem.

THEOREM 3.5
Let 3 be an acceptable SL,-invariant collection of local specifications. Then we have

#(SL2(D\U(D)Tx)

= VoI(SL2(Z)\Zoo,s<x) [ [VOI(Z ) + o (X" ).
14

Proof

For every € > 0 there exists an acceptable collection (X)), such that oo = X7,
¥p C ¥, for each prime p, [], Vol(X,) > [], VoI(E),) — €, and the set U(Z') is
defined by finitely many congruence conditions. From Theorem 3.4, we obtain

#(SL2(Z)\U(D) - x) < #(SL2(Z)\U(Z)}_x)

= Vol (SL2(Z)\ Z 0,7 <x) [ [ VOI(Z),) + o(X"*1)
p

< Vol(SLz(Z)\zoo,kX)(]_[ Vol(Z,) + e) +o(xXm Y,
V4

Letting € tend to zero, we obtain the required upper bound on #(SL, (Z)\‘l,l(i])if< x)-
To obtain the lower bound, we proceed as follows. For € > 0, we take sets F 1(21 to
be a semialgebraic bounded subset of Fy; such that Vol(FJ(i)l) > (1—€)Vol(Fy<1).

We denote XFJ(€<)1 by FJ(Z)X Just as [8, Theorem 2.21] follows from [8, Theo-
rem 2.13], we obtain from Proposition 3.2 the estimate

#(F{2y N UD)™) = Vol (F{2 ) [T Vol(S,) + o(X"*1). (25)

< <
p

From the proof of [13, Theorem 9], we have the following estimate on the number of
integral elements in the “cuspidal region”:



1022 HO, SHANKAR, and VARMA
#((Fr<x\F2) N UD)™) <X+ 4 O(x"+1-m), 26)

Combining (25) and (26) yields the required lower bound on #(SL»(Z)\U(Z)'T_
and completes the proof of Theorem 3.5. O

4. Counting orbits of pairs of n x n symmetric matrices
The main goal of this section is to determine asymptotics for the number of irreducible
SL,, (Z)-orbits of pairs of n x n symmetric matrices having bounded height and the
number of irreducible SL;(Z) x SL, (Z)-orbits of pairs of n x n symmetric matrices
having bounded Julia invariant. We first construct fundamental domains for the action
of SL,(Z) and SL,(Z) x SL,(Z) on pairs of real n x n symmetric matrices. We
then show that the cusps of these fundamental domains have a negligible number
of irreducible integral points. Additionally, we show that the number of reducible
integral points in the main body of these fundamental domains is also negligible.
A theorem of Davenport [ 18, Main Theorem] allows us to conclude that the number of
irreducible integral points of bounded height in the fundamental domain for the action
of SL,(Z) or the number of irreducible integer points of bounded Julia invariant in
the fundamental domain for the action of SL, x SL,, (Z) is asymptotically equal to the
volumes of their respective main bodies.

Fix an odd integer n > 3, and let m = (n — 1)/2. Recall that V(T) = T? ®
Sym, (T™) is the space of pairs of n X n symmetric matrices (4, B) over a ring 7.
The group G(T') := SL,(T) x SL,(T) acts on V(T) via the action

(v2.¥n) - (A, B) = (Y AVy. vn By vy forall (y2,yn) € G(T). (27
It is easy to verify that we have

7 ((y2.¥n) - (A, B)) = y5 (7(A, B)) forall (y2,ya) € G(T), (28)

(40 = =)

The space V' (R) inherits a height function H and Julia invariant J via 7:

where

H(A, B) := H(n(4, B)),

J(A, B):=J (n(4, B)),
where H and J are defined on U(R) as in Section 3. From (28), it follows that H is
SL, (R)-invariant and J is G(R)-invariant on V(R).

We say that an element (A, B) € V(Z) with (A, B) = f is absolutely irre-
ducible if
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(D) f corresponds an order in an S, -field, and
2) (A, B) is not reducible in the sense of Theorem 2.6.
We denote the set of absolutely irreducible elements in V(Z) by V(Z)™.

4.1. Construction of fundamental domains

For 0 < r, <m = (n—1)/2, recall that U(R)2) denotes the set of binary n-ic forms
in U(R) that have nonzero discriminant and r, distinct pairs of complex conjugate
roots in P! (C). Let V(R)"2) denote the set of elements in V(R) whose image under
7 lies in U(R)2)_ In this section, we construct fundamental domains for the actions
of SL,(Z) and G(Z) on V(R)2) for 0 < r, < m.

Fundamental sets for the action of SL,(R) and G(R) on V(R)("2)

Fix an integer r, with 0 <r, <m, and let r; =n — 2r,. For [ € U(]R)(’Z), the R-
algebra Ry corresponding to f is isomorphic to Rt x C"2. Corollary 2.16 states
that the SL,, (IR)-orbits of 7~ ( f) are in bijection with elements § € (R%/ R;z) N=1,
which in turn is in natural bijection with the subset 7 (ry) C {£1}"! x {1}"2 of ele-
ments having an even number of —1 factors (independent of the choice of
f € UR)"). For an element § € T(r2), let V(R)"28 denote the set of v €
V(R)2) such that v corresponds to the pair (R (v).6) under the bijection of Theo-
rem 2.13. It follows that for f € U(R)"2) and § € T (r,), the set 71 ( f) N V(R)2)?
consists of a single SL,, (R)-orbit. Therefore, to construct a fundamental domain for
the action of SL, (R) on V(R)"2)3 it is enough to pick one element v € V(R)(2)-8
for each f € U(R)"2). However, we require our fundamental set to be semialgebraic
in order to apply our geometry-of-numbers techniques.

Below, we give such a section s5 : U(R)"2) — V(R) for general §, which will be
necessary for constructing the fundamental sets, but first we describe, for the case of
8 =1(1,1,...,1), the very pretty explicit section e : U(T) — V(T) of m for any ring
T.When T = R, itis easy to check that e( f) € V(R)2 for f € UR)"2). Forn =
3, the section e takes a binary cubic form f(x,y) = fox> + fix2y + faxy? + f3y3
to the pair

0 0 1 01 0
0 —fo O |. {1 fi O
1 0 —f2) \0 0 f5

For n = 5, the map e sends a binary quintic form f(x,y) = fox° + fix*y +
fax?y? 4+ f3x?y? + faxy* + fsy° to
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00 0 0 1 00 0 1 0
000 1 ofloo 1 o o
00 fb 0 of.Jo1 =4 0o o
01 0 £ 0 10 0 —f5 0
100 o £)\oo o o —f

For general 7, a binary n-ic form f(x,y) = fox" + fix" 1y + fox"2y%2 +... +
Jay" is mapped under e to ((a;;), (b;;)), where:

. ak,n_k=1f0r1§k<%or%<k<n,

. bxn—1—k = 1for 1 <k <n,

* aupigasg = (DT frfor0<k <25t

* bupgang = (D o for0<k < 251,
. aij = 0 otherwise,

. (bij = 0) otherwise.

We now handle the case of general §. For a fixed § € 7(r;) and an element
f = fox"+-+ f,y" € UR)"2 with fy # 0, consider the pair (R r,0). Given the
basis (1,6, ...,0"!) for R s, the corresponding pair (A, B) may be written explicitly
using (9) and (10). From the definitions of # and §, it follows that ¢ (6* ® 67) may be
written as polynomials of degree less than # in 8, whose coefficients are polynomials
in the f; and 1/fp. Since ¢,—» and &,_; are polynomials in 6 both with leading
coefficient fy, the coefficients of A and B are polynomials in the f; and 1/fy. We
define the function s5 : U(R)72 — V(R) by sending such a binary n-ic form f to
this pair (4, B).

We now have the following lemma.

LEMMA 4.1

Let S C U(R) be a compact semialgebraic set that does not contain zero. Then there
exists a finite subset T C SO, (R) and semialgebraic subsets Sy C S foreacht € T
such that the leading coefficients of T - f are bounded away from zero independent of
f € S; and such that the union of the S;’s is S.

Proof
The set § = S x {(x,y) : x2 4+ y2 =1} C U(R) x R? is semialgebraic. The function
S — Rx given by

[ max [f(x,y)]
x24y2=1

is continuous and nonzero. Hence its image is bounded away from zero by some
€ > 0. Therefore, the set

Si={(f(x.2): f €S, (xy) e R 2?42 =1,

fxp)|>e/2}
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is semialgebraic and its projection to S is all of S. Given an element A = (x, y) € R?
with x2 + y2 =1, let S denote the set of elements f in S such that (f,A) € Sy.
Since the projections of semialgebraic sets are semialgebraic, it follows that S is
semialgebraic. Since S is compact, and the S are open inside S, there exists a finite
subset 77 of {(x,y) € R?: x? 4+ y2 = 1} such that the union of S; over all A in this
finite set is S. Given A = (x,y), choose T € SO»(R) to be the matrix (5! sinf),
where cost = x and sint = y. The leading coefficient of 7 - f is (¢ - f)(1,0) =
f(x,y) > €/2. The lemma follows by taking 7 to be the finite set of matrices t in
SO, (R) corresponding to the finite set 7’ of pairs A = (x, y) in R2, and setting S; to
be S, for T corresponding to A. O

We can clearly choose the sets S; to be disjoint in the above lemma. The set
S = U(R)y = satisfies the conditions of the above lemma. For a fixed r,, we may
write U (]R)(rZ) as a finite disjoint union of the sets S; (r2) = S; NU(R)"). We now
take our fundamental set for the action of SL,(R) on V(R)"2)% to be the finite union

REPE URO (@) s 7).

We define a fundamental set !R(Jrz)’g for the action of G(R) on V(R)(2 in
exactly the same way by considering the set S = L,, where L, is constructed in
[13, Section 3] to be a semialgebraic bounded fundamental set for the action of
SL,(R) on the set of elements in U(R) having Julia invariant 1. Let !RgZ)’S (X)
(resp., Rgrz)’g (X)) denote the set of elements in Rgz)’g (resp., !R(JQ)"S) having height
(resp., Julia invariant) bounded by X. The sets (t*) lss(t - Sr(m)) are bounded for
S=UMR)g=1 and S = L, because every f € t-S; has bounded coefficients and
has leading coefficient bounded away from zero. Since both height and Julia invari-
ant on V(R) have degree n, the coefficients of elements (A4, B) in 322)’8 (X) and
R(Jrz)’s (X) are bounded by O(X!/"), where the implied constant is independent of
(A, B).

Fundamental domains for SL,(Z)\ SL,,(R) and G(Z)\G(R)

Let SL,(R) = N,T,K, be the Iwasawa decomposition of SL,(R), where N, C
SL, (R) denotes the set of unipotent lower triangular matrices, 7, C SL, (R) denotes
the set of diagonal matrices, and K, = SO, (R) C SL,(R) is the maximal compact
subgroup. Let Sy be a Siegel domain in SL, (R) defined as

Sy :=N.T.K,.

where N, C N, is the set of elements in N, whose coefficients are bounded by 1 in
absolute value and 7, C T, is given by
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T, :={diag(t; "t "oty it/ ta > ¢ itymy /1 > ¢}

for some constant ¢ > 0 that is sufficiently small to ensure the existence of a fun-
damental domain ¥ for the action of SL,(Z) on SL,(R) that is contained in G .
Next, we pick Ny C N to be the set of elements whose coefficients are bounded by 1
in absolute value, and we pick T2’ C T5 to be the set

T, :={diag(t ", 1) :t > 1/4}.
Let
Sy = (N3, N)(T5, T, (K2, Kyp)

be a Siegel domain. Then G, contains a fundamental domain ¥ for the action of
G(Z) on G(R).

Fundamental domains for the action of SL,,(Z) on V(R)2)

The size of the stabilizer in SL,(R) of v € V(R)"2:%) can be computed from Corol-
lary 2.15. This size depends only on r, and we denote it by o (r;). It is well known
that the size of the stabilizer in SL,(R) of a generic element f € U(R)"2) is 3 if
n =3 and r, =0, and 1 otherwise. It follows that the size of the stabilizer in G(R) of
a generic element in V(R)"2)% is o/ (r,), where ¢/ (r,) = 30(r) if n = 3 and r, = 0,
and ¢’ (r,) = o (rp) otherwise. By arguments identical to those in [8, Section 2.1], we
see that g - Rgz)’s is a 0 (rp)-fold cover of a fundamental domain for the action of
SL,(Z) on V(R)"2)% and that % - R(Jm)’s is a 0’(rp)-fold cover of a fundamental
domain for the action of G(Z) on V(R)(2-3 where F - RZZ)’S and ¥7 - C‘R(Jm’g
are regarded as multisets. More precisely, the SL,, (Z)-orbit of any v € V(R)2)-3 is
represented # Stabg;, (r) (v)/# Stabgy, () (v) times in Fg - ﬁgf)’s , with the analogous
statement also holding for the multiset ¥ - R(Jm)’s.

For an SL,, (Z)-invariant set S C V(Z)2 := V(R)2):8 N V(Z), let Ny (S; X)
denote the number of absolutely irreducible SL, (Z)-orbits on S that have height
bounded by X. For a G(Z)-invariant set S’ C V(Z)"2)% let N;(S’; X) denote the
number of absolutely irreducible G(Z)-orbits on S’ whose Julia invariant is bounded
by X. Let v € V(Z) be absolutely irreducible with resolvent form f. Then f corre-
sponds to an order @ in an S, -number field and @*[2] y=1 is trivial. Furthermore, f
has trivial stabilizer in SL,(Z) since Aut(() is trivial. Therefore, v has trivial stabi-
lizer in SL,(Z) and G(Z). For any set L C V(Z), let L'™ denote the set of absolutely
irreducible elements in L. Let RZZ)’S (X) (resp., eR(JrZ)’S (X)) denote the set of ele-
ments in R(};Z) (resp., R(Jr2)) having height (resp., Julia invariant) bounded by X.
Then we have the following.
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PROPOSITION 4.2
Let notation be as above. We have

Nu(S:X)= L#{mgywm n s,
o(r2) 29)

Ny (S":X) = #{F R (x) n s,

1
o’(r2)
4.2. Averaging and cutting off the cusp
Let Go (resp., G;,) be a bounded open nonempty Kj,-invariant (resp., K, x K,-
invariant) set in SL, (R) (resp., G(R)). We abuse notation and refer to Haar measures
in both groups SL, (R) and G(R) by dh. From Proposition 4.2 and by an argument
identical to the proof of [8, Theorem 2.5], we obtain

1

Ng(S:X)=——— #{hGy- RV (X) N ST dh,
#(8:X) = CENOIGo) e, F1C0 Ri (XD ST)
{ (30)
Ny X)= ———- #{hGy - RY2P(X) N §) dh,

0’ (r2) Vol(Gg) Jhew,

where the volumes of Gy and G, are computed with respect to di. We use (30) to
define Ny (S; X) (resp., Ny(S’; X)) even when S (resp., S7) is not SL,, (Z)-invariant
(resp., G(Z)-invariant). Let ¥;, C g and ¥; C ¥, denote the sets of elements
y € ¥y and y € ¥ such that |a;;(v)| < 1 for every element v € y - Goeﬂgz)"g (X)
andvey- G(’)R(Jm)"g (X), respectively. We will refer to the integrals of the integrands
in (30) over ¥, and ¥ as the “cuspidal” part of the integral, and to the integrals over
Fu \ Fyy and Fjy \ F; as the “main body” of the integral.

Absolutely irreducible points in the cusp
We will prove that the number of absolutely irreducible integral points in the cusp is
negligible.

PROPOSITION 4.3
We have

/ #{hGo - RYP" (X) N V(@)™} dh = O(X"+177),
heF,

1

/ #1Gl - RV (X) N V(@)™ dh = O(X" 1),
he¥

First, we list sufficient conditions to guarantee that an element (A4, B) € V(Z) is
not absolutely irreducible.
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LEMMA 4.4

Let (A, B) € V(Z) be such that all the variables in one of the following sets vanish:
(a) {aij.bij :1<i<k,1<j<n—k}forsomel <k <n-—1;

()  Aajj.bij:1=<i,j <(n—-1)/2}.

Then (A, B) is not absolutely irreducible.

Proof

If (A, B) satisfies condition (a), then it is easy to see that the binary n-ic invariant
of (A, B) has a repeated factor over Q. Thus, the discriminant of the form vanishes.
If (A, B) satisfies condition (b), then clearly the quadratic forms A and B have a
common isotropic subspace of dimension (n — 1)/2. In either case, the pair (4, B) is
not absolutely irreducible. O

Recall that the condition for 7 = (¢7'!,...,1,!) to be an element of T, is that
ti/tiy1 > c for 1 <i <n—1.To simplify this condition, we use a change of variables.
Lets; =t;/ti+1 for 1 <i <n—1.Thens = (s1,...,8,—1) is contained in 7" if and
only if s; > ¢ for each i. The action of the torus 75 x T, of G(R) on V(R) multiplies
each coefficient by a monomial in 7, sy, ..., s,—1. We denote the set of coefficients of
V(R) by Var; we have

Var:={a;;,bjj : 1 <i < j <n}.

To each variable c¢;; in Var, we associate two weights: first, the monomial wg (¢;;) in
the s; by which the action of 7}, scales c;;, and second, the monomial wy (c;;) in ¢ and
the s; by which the action of T, x T}, scales ¢;;. We multiplicatively extend the func-
tion wg and wy to products of integral powers of elements in Var. We define a partial
ordering on Var by setting a1 Sg oy (resp., a1 Sy ap) whenever wy (a2)/wa (o)
(resp., wy(a2)/wy(ap)) is a product of nonnegative powers of s; for each i (resp.,
of t and s; for each i). The variable a;; has minimal weight under both these partial
orderings. For a subset Var’ C Var, let V(Z)(Var’) denote the set of v € V(Z) such
that «(v) = 0 for « € Var’. Then we have the following immediate consequence of
Lemma 4.4.

LEMMA 4.5
Let Var' C Var be a set that is closed under one of the partial orderings <p and <j.
If V(Z)(Var ')'™ is nonempty, then Var' must be contained in the set

Varg :={a;; € Var:i 4+ j <n}
U{bjjeVar:i+ j<n—1}\{bmm},

wherem = (n —1)/2.
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Proof of Proposition 4.3

By the arguments of [9, Section 3], it suffices to display the following data in order

to prove the part of Proposition 4.3 regarding the height (resp., the Julia invariant): a

function v : Varg \a1; — Var\ Varg such that

(1D a <pg V¥(x) Va € Varg \a1; (resp. @ <; (o) Vo € Varg \ay1), and

2 wH[Tgeva, @ " V(@) - ha (esp. wy([Tpeva, @' ¥(@) - hy) is a product
of negative powers of the s; (resp., negative powers of ¢ and the s;),

where 1 (a;1) is defined to be 1, and where Ay and h; are factors arising from the

Haar measures of SL, (R) and G(R) and are given by

n—1 n—1
hy = l_[ s,:"k(”_k) and hy:=t"2 l_[ s,:"k(”_k).
k=1 k=1

First note that such a function ¥ satisfying the required conditions regarding
the Julia invariant automatically satisfies the required conditions regarding the height
(since @ <y B implies o <g B). We define i as follows:

ain fori =1,
V(aij) i= | di(m-i+1) fori > 1and j #m,
A(m+1)(m+1) fori>Tland j =m,
(3D
bitnm—j for j <m,
V(bij) == bmm for j =m,

b(n—j—l)(j-H) fOI‘j >m.

The function v clearly satisfies the first of the two required conditions. From an
elementary computation, we see that

m n—1
U)J( 1_[ a_IW(a)) chy =171 l_[ s,:Zk 1_[ S;Z(k_m)+l.
@ €Varg k=1 k=m+1
This concludes the proof of Proposition 4.3. O

Reducible points in the main body

We say that an element v € V(Z) is bad if v is not absolutely irreducible. Denote the
set of bad elements in V(Z) by V(Z)®*. We have the following theorem proving that
the number of bad elements in the main body is negligible.

PROPOSITION 4.6
We have
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/ #{hGo - R (X) N V(@)™ dh = o(X" ),

heFp\F},

/ #{hG) - RUP (X) N V(Z)™) dh = o (X" ).
heF \F)

Proof

For an integer k with 2 < k < n, let V(Z)#* denote the set of elements v € V(Z) such
that, for each prime p, the reduction modulo p of the resolvent of v does not factor
into a product of an irreducible degree k factor and n — k linear factors. We claim
that if the resolvent f of an element v € V(Z) does not correspond to an order in an
S, -field, then v belongs to V(Z) #k for some k. Indeed, if v lies in the complement of
V(Z)#", then the reduction modulo p of f is irreducible for some prime p, implying
that f is irreducible and hence R 7 is an order. Furthermore, the Galois group of the
Galois closure of the fraction field of R ¢ contains a k-cycle for each k, implying that
this Galois group is S,. Hence we may write

V(Z)bad — (U V(Z)?ék) U V(Z)red,

where V(Z)™® denotes the set of elements that are reducible in the sense of Theo-
rem 2.6.

For each prime p, let V(IF p)=k denote the set of elements whose cubic resolvents
factor into a product of a degree k irreducible factor and n — k distinct linear factors.
Let V(F,)™ denote the set of elements in v € V(F,) such that every lift o € V(Z) is
not reducible in the sense of Theorem 2.6. Let V(I p)“"stab denote the set of elements
which have trivial stabilizer in G(F ). Then, from [9, Section 3], it suffices to prove
the following estimates:

#V(F,)K > #V(F,),  and  #V(F,) "> #V(F,). (32)

Let U(F p)=k denote the set of binary n-ic forms that factor into a degree k irreducible
polynomial and n — k distinct linear factors. For every element f € U(F p)=k, the
algebra Ry is isomorphic to a product of a degree k extension of I, and n — k
copies of IF,. Therefore, the stabilizer in SL,(IF,) of every element v € V(F 1,)=k
is independent of v and p. Every lift in U(F 1,)=k has at least one lift to V(F I,)=k
(corresponding to § = 1). It follows that

#V(F )= > #UF )% - #SL,(F ) > #V(F ),

as desired.

The proof of the inequality (32) is similar. It follows from the observation that
every element in V(IF,)™" that corresponds to a nonidentity element in IF;H /
(F%51) %= under the bijection of Corollary 2.16, belongs to V/(F,)™. O
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Absolutely irreducible points in the main body

Let L C V(Z) be a lattice or a translate of a lattice in V(R), and let L)% denote
L NV(Z)2)¥ We have already proved that the number of irreducible integral points
in the cusp is negligible and that the number of reducible integral points in the main
body is negligible. Therefore, from (30), Proposition 4.3, and Proposition 4.6, we have

1

Ny (L0 Xy = —
u( )= () Vol(Go)

x [ #hGo - R (X) N LY dh + o(X),
héf'H\f}/_,

1
Ny(L0D¥ Xy = —
s ) o' (r2) Vol(G})
x / #{hG)- RYP(X) N LY dh + o(X).
heF\F

To estimate the number of lattice points in £Gy - RZZ)"S (X) and hGy - R(JQ)’S (X),
we have the following result of Davenport [18, Main Theorem].

PROPOSITION 4.7
Let R be a bounded, semialgebraic multiset in R" having maximum multiplicity m,
defined by at most k polynomial inequalities each having degree at most £. Then the
number of integral lattice points (counted with multiplicity) contained in the region
R is

Vol(R) + O(max{Vol(R). 1}),

where Vol(R) denotes the greatest d -dimensional volume of any projection of R onto
a coordinate subspace obtained by equating n — d coordinates to zero, where d takes
all values from 1 to n — 1. The implied constant in the second summand depends only
onn,m,k, and L.

The coefficient a1; has minimal weight among all the coefficients. Furthermore,
for h € ¥ \ F4;, the volume of the projection of hGy - e72(’2)(X) onto the aji-
coordinate is bounded away from zero by the definition of ¥7,. Therefore, for & €
Fu \ F, all proper projections of 2Gy - R2)(X) are bounded by a constant times
its projection onto the a;; = 0 hyperplane. Proposition 4.7 thus implies that

Ny (L(rz),s . X)

1

S S #hGo- R (X)N Lydh + o(X" )
0(r2) Vol(Go) Jhe(s\5})) thGo- R }
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! (r2),8 1
T o (rmYVol(Ga) Vol; (hGg - RV (X)) dh + o(X"T
o (r2) Vol(Go) Jhes\7) L(hGo- R (X)) ( )

1 = (r2).8 1
= Vol(Fy) Vol (Go - RV (x X"+
5(r2) Vol(Go) ol(Fr) Vol (Go - R (X)) + o( )

— L Nol (7 - RGP (X)) + o (X",
o(r2)

where the volume Voly of sets in V(IR) is computed with respect to the Euclidean
measure on V(R) normalized so that L has covolume 1, and where the third equality
follows since Vol(¥”) tends to zero as X tends to infinity, and Volg (hGg - RV (X))
is independent of /4, and the final equality follows from the Jacobian change of vari-
ables in Theorem 6.3.

An identical argument yields the analogous estimate for Ny (L72-% X). Let L p
denote the closure of L in V(Zp). Then for measurable sets B in V' (R), we have

Vol (B) = Vol(B) - Vol(L ),

where Vol(B) is computed with respect to the Euclidean measure in V(R) normalized
so that V(Z) has covolume 1, and the volumes of L C V(Z,) are computed with
respect to the Haar measure on V(Z,) normalized so that V' (Z,) has volume 1. We
thus have the following theorem.

THEOREM 4.8
Let notation be as above. Then we have

Ny (L4 x) = Vol (F - REP (X)) [T Vol(Lp) + o(X™+1),

p

1
o(r2)
1

o'(r2)

Ny (L0273 x) = Vol (%7 - RY?P (X)) [ Vol(Lp) + o(X"*1).

p

Remark 4.9

Using the Selberg sieve identically as in [32, Section 3], we may improve the error
term in Proposition 4.6, and thus in Theorem 4.8, to O(X"+1~37). However, this
additional saving will not be necessary for the results in this article.

5. Sieving to projective elements and acceptable sets

In this section, we first determine asymptotics for SL, (Z)-orbits and G(Z)-orbits
on certain families having bounded height. Second, we determine asymptotics for
SL,, (Z)-orbits and G(Z)-orbits on acceptable sets conditional on a tail estimate. This
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tail estimate is unknown for n > 5, but is known when n = 3 (see [2, Proposition 23]).
We begin by describing the very large and acceptable families we study.

For each prime p, let A, C V(Z,) \ {A = 0} be a nonempty open set whose
boundary has measure 0. Let Ao denote V(R)72):% for some integer r, with 0 <
rp < (n—1)/2 and some § € {£1}"72"2 x {1}"2. To a collection A = (A, ), of these
local specifications, we associate the set

V(A) = {v eV(Z):v e A, forall v}.

We say that the collection A = (A,), is very large (resp., acceptable) if, for all large
enough primes p, the set A , contains all elements v € V(Z,) such that v is projective
and the invariant form f of v is primitive; that is, the coefficients of f are relatively
prime (resp., p? { A(v)). We say that V(A) is very large or acceptable if A is also
very large or acceptable.

5.1. Sieving to projective elements

We define V(Z,)P™ to be the set of elements (A, B) € V(Z,) whose binary n-ic
invariants are not divisible by p and correspond to a pair (/,8) such that 1% = (§).
Then

V(Z)(rz),proj — V(Z)(rz) N (n V(ZP)PFOJ)'
b4

For a prime p, let W, now denote the set of elements in V(Z) that do not belong to
V(Z,)P™. We would like to estimate the number of elements in W), for large p. We
have the following theorem.

THEOREM 5.1
We have

NH( U Wp,X) — O(Xn-i-l/Ml—E) +0(Xn+1),
p=M

N (LU WpoX) = 00X™1 /M) + o(x™+Y),
r=M

where the implied constant is independent of X and M.

Proof

If (A, B) € W), gives rise to the binary n-ic form f, then the ring R ¢ is nonmaximal
at p, which implies that p? | A(4, B) = A(f). Let (A, B) € W), regarded as an
element of V(Z ), correspond to a pair (1,8) with 1% # ()1 }_3. Then the reduction
of (4, B) modulo p corresponds to the pair (/ @ F, 8), where § is the reduction of
§ modulo p. From Nakayama’s lemma, it follows that /2 @ F,, # €34 ;5_3 QF,.
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Let (A1, B1) € V(Z) be any element congruent to (A, B) modulo p. Denote the
binary n-ic form associated to (A1, By) by fi. If (A1, B1) corresponds to the pair
(I1,61), then it follows (again from Nakayama’s lemma) that / 12 # (61)1 ;;3 Thus
(Al R B]) S Wp.

Also, the set of elements in W), whose binary n-ic invariants are divisible by p is
the preimage under V(Z,) — V(IF,) of the set of elements in V(I ,) having binary -
ic invariant 0. It follows that W), is defined via congruence conditions modulo p; that
is, the set W), is the preimage of some subset of V(I ) under the reduction modulo p
map.

To prove the theorem, we start with the fundamental domain ¥ chosen in Sec-
tion 4.1. For every 0 < € < 1, we pick a set #© C Fx which is open and bounded
and whose measure is (1 — €) times the measure of ¥z . Let R be the union of the
R 28 gver all possible r, and §, and let Ry denote the set of elements in &R having
height bounded by X. Then, since the set #© - Rx is homogeneously expanding
with X and since the reduction of the set W, modulo p has codimension greater than
2in V(IFp,), we obtain

#F7 @ mxn (U W)}

p=M

=O0(X"t/MlogM)+ O(X™)
from an immediate application of [5, Theorem 3.3]. We further obtain
#H(F\F D). Ry NV(Z)™} = O(eX" )

from the methods of the previous section. The first assertion of the theorem fol-
lows. The second assertion follows in an identical fashion by starting with ¥ instead
of Fy. O

We now have the following theorem.

THEOREM 5.2

Let 15 be an integer such that 0 < r, < (n — 1)/2, and let § € {£1}"72"2 x {1}
be fixed. Let A be a very large collection of local specifications such that Ay =
V(R)"2)3 Then we have

1

Ny (V(A).X) = e Vol (Fiz - R (X)) [T Vol(A ) + o(X™+1),
D
Ny(V(A), X) = O/(lrz) Vol (F5 - RG22 (X)) [ Vol(Ap) + o(X" 1),

p
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where the volumes of sets in V(Z,) are computed with respect to the Euclidean mea-
sure normalized so that V(Zp) has measure 1.

The first estimate asserted by Theorem 5.2 follows from Theorem 5.1 just as [8,
Theorem 2.21] follows from [8, Theorem 2.13]. The second estimate follows from a
proof identical to that of Theorem 3.5 (which itself uses the methods of the proof of
[8, Theorem 2.21]).

5.2. Sieving to acceptable sets (conditional on a tail estimate)

Let A be an acceptable collection of local specifications with Ao, = V(R)72)-8 Then
we have the following theorem whose proof is identical to the proof of the upper
bound in [8, Theorem 2.21].

THEOREM 5.3
We have

Ng (V(A), X) <

1

— )Vol(3‘7H REPPX)) [T Vol(A ) + (X",
2

D

1 r

s )VO1(37, -REP (X)) [T Vol(A ) + o(X™HY),
2

p

where the volumes of sets in V(R) are computed with respect to Euclidean measure
normalized so that V(Z) has covolume 1, and the volumes of sets in V(Z,) are com-
puted with respect to the Euclidean measure normalized so that V(Z,) has volume 1.

For a prime p, let W, denote the set of elements in V(Z) such that p? | A. The
following estimates are unknown but likely to be true:

NH( U WP,X) — O(Xn-l-l/Ml—e) +0(Xn+1),
p=M 33)

N,( U w,,,x) = O(X" T M=) + o(X"T).
p=M

We now have the following theorem.
THEOREM 5.4

Assume that one of the equations in (33) holds. Let A be an acceptable collection of
local specifications with Ase = V(R)"2)8. Then we have

Ng(V(A). X) = % Vol (Fr - R (X)) [T Vol(A p) + o (X" D),
)4
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N7 (V(A), X) = ﬁVol(ff - RYDP (X)) [T Vol(A ) + o(X™ 1),
)4

where the volumes of sets in V(R) are computed with respect to Euclidean measure
normalized so that V(Z) has covolume 1, and the volumes of sets in V(Z,) are com-
puted with respect to the Euclidean measure normalized so that V(Z,) has volume 1.

Proof

We first assume that the first equation in (33) holds. Then the first assertion of the the-
orem follows just as [8, Theorem 2.21] follows from [8, Theorem 2.13]. The second
estimate follows from a proof identical to that of Theorem 3.5.

We now assume that the second equation in (33) holds. Then the second asser-
tion of the theorem follows just as [8, Theorem 2.21] follows from [8, Theorem 2.13].
To prove the first assertion, we use methods from the proof of [5, Lemma 3.7]. The
set ¥y - Rgzm (X) \ {A = 0} can be covered with countably many fundamental
domains for the action of G(Z) on V(R)2)-3_ Therefore, for any € > 0, there exist s
fundamental domains for the action of G(Z) on V(R)"2)-% whose union covers all but
measure € X" 1 of the finite measure multiset ¥ - RgZ)’S (X), where s is indepen-
dent of X. (To ensure that s is independent of X, we merely choose s fundamental
domains when X = 1, and then scale these fundamental domains for large X.) Once
again arguments in the proof of [8, Theorem 2.21] imply the bound

Ng(V(A), X) - 1
Xxntl ~o(r2)

(Vol(F1 - REPP (1) —€) T Vol(Ap)
p<M

+ O(s/ M%) + 0(s).

Letting M tend to oo, and then € to 0, and then s to oo yields the required lower
bound. The upper bound follows from Theorem 5.3. This concludes the proof of The-
orem 5.4. O

6. Proof of the main theorems

We are now ready to prove Theorems 2—6. To do so, we establish Theorem 6.2, which
determines an upper bound for the average sizes of the 2-torsion subgroup in the class
groups of acceptable families of orders of fixed signature ordered by height or by
Julia invariant. For certain very large families, we obtain that the average sizes are in
fact equal to 1; for all other acceptable families, the lower bound being equal to 1 is
dependent on the tail estimates described in (33). The proof of Theorem 6.2 involves
the computation of local volumes in order to determine the number of absolutely
irreducible lattice points in ¥ of bounded height and % of bounded Julia invariant.
The results of Section 2 then allow us to conclude the theorem, and it immediately
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implies Theorems 2, 3, and 6. We obtain Theorem 4 from combining Theorems 2 and
3 with the results of [14].

We adopt the notation of the introduction. Recall that for an infinite collection
Y of local specifications, U(X) is the associated set of integral binary n-ic forms,
and acceptable sets U(X) give rise to acceptable families Xz € PRy (and acceptable
families Xy C Ry if U(X) is also SL;(Z)-invariant). We now describe the collec-
tions for which we obtain equalities on the average sizes in Theorem 6.

Definition 6.1
We say that ¥ = (X)), and U(X) are very large if, for all sufficiently large primes
p, the set X, is precisely U(Z,) \ pU(Z,). We say that a family X g € Ry is very
large if it is defined by a very large family U(X), thatis, Ry ={Ry | f € U(D)}.
A family X; € Ry is very large if it is defined by a very large SL,(Z)-invariant
family U(X).

THEOREM 6.2

Fix an integer n and a signature (ry,rp) with ri + 2r, = n. Let Ry C D‘i;_}’rz be a
family of rings that arises from an acceptable set of integral binary n-ic forms, and
let Ry C %rjl "2 be a family of rings that arises from an acceptable SL,(Z)-invariant
set of binary n-ic forms. Then we have the following.

(a) The average sizes of

1
|CL(0)| - sz(@”

over O € %Ry ordered by height and over O € SR, ordered by Julia invariant
are bounded above by 1.
(b) The average sizes of

CH©)] = 55514200)]

over O € SRy ordered by height and over O € R, ordered by Julia invariant
are bounded above by 1.
If we assume that R and R, arise from very large sets of binary n-ic forms, then the
average sizes in (a) and (b) are equal to 1, independent of the choice of very large set.
Furthermore, conditional on the tail estimates in (33), the average sizes in (a) and (b)
are indeed equal to 1 for all R or R, arising from any acceptable set of binary n-ic
forms.

We will prove Theorem 6.2 in the following sections.
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6.1. Computing the product of local volumes

We first prove a statement about the “compatibility of measures.” Let dv and d f
denote Euclidean measures on V' and U, respectively, normalized so that V(Z) and
U(Z) have covolume 1. Let w be an algebraic differential form that generates the rank
1 module of top degree left-invariant differential forms on SL, over Z. We have the
following theorem, whose proof is identical to that of [8, Propositions 3.11 and 3.12].

THEOREM 6.3
Let T be R, C, or Z, for some prime p. Let s : U(T) — V(T') be a continuous section
for m, that is, a continuous function such that the invariant binary n-ic of wy 1= s(f')

is f. Then there exists a rational nonzero constant § such that for any measurable
Sfunction ¢ on V(T'), we have

/ $(v)dv = || f (g w(g)df.
veSL, (T)-s(U(T)) U(T) JSL,(T)

1
/ p(v)dv =¥ er(T)( 2 [ Stabsr, 7 (v)]

AN eV In

< pE )

where we regard SL,,(T) - s(R) as a multiset, and Ig(L:)((Tf)) denotes a set of represen-

tatives for the action of SL,(T) on elements in V(T) having invariant f.

Forr, €e{l,...,(n—1)/2} and for f € V(Z,), we define local masses

[(R%/(R})*)n=1l
IRFRIv=1]

mp(f):=

|(R"272 x €)% /((R" 2> x C2)")?) y=1]
|(RP272 5 C72) 2]y

Moo (r2) 1=

We denote the numerator and the denominator of the right-hand side in the equation
defining Mmoo (r2) by 7(r2) and o (r2), respectively. For a prime p, let X, C U(Z,) \
pU(Zp) be a nonempty open set whose boundary has measure 0. Let A , denote the
set of projective elements in V' (Z,) whose invariant binary form belongs to X ,. We
have the following corollary to Theorem 6.3.

COROLLARY 6.4
Let notation be as above. We have

Vol(Fg - RY22 (X)) = |9 Vol(Far) Vol (UR) Y2, ),
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al(7; - R4 (x)) = 7 ((22)) 11 VOl(F) Vol (SLa(Z)\UR) G2 ).
Vol(A ) = 41VoI(SLu(Z,) [ ()0
fex,

where the volumes of ¥ and SL,(Zp,) are computed with respect to w, and o’ (r2)
denotes the size of the stabilizer in G(R) of a generic element of V(R)V2).

Proof

The first equality follows immediately from Theorem 6.3. Next, note that we have
Fy = 5, x Fy, where ¥, is a fundamental domain for the action of SL,(Z) on
SLy(R). Let the multiset / C U(R) denote the invariants of the multiset
¥ - :R(JrZ)’S (X). Then I generically represents each element of SL,(Z)\U (R)(Jri)x
exactly o’(rp) /0 (r2) = s(rp) times, since s(r») is the size of the stabilizer in SL, (R)
of an element in U(R)"2). (We have already seen that s(r,) = 3 when n = 3 and
r, =0, and s(r2) = 1 otherwise.) The second equality now follows immediately from
Theorem 6.3.

To obtain the final equality, note that Theorem 6.3 implies

1
dv = || Vol(SL, (Z / TStabe o oy 3V
[ a=naste) [ Y e

det—1(f)
SLn (Zp)

where the sum runs over representatives in projective SL, (Z,)-orbits of det™1(f).
The result now follows from Corollary 2.15. O

Denote n — 2r, by r; so that r; + 2r, = n. By Corollaries 2.15 and 2.16 and
Example 2.17, we have

T(rp) =271, o(rp) =2+t and  meo(ry) =272, (34)

In [11, Lemma 22], the values of m ,(f') are computed for cubic rings. We now com-
pute these values for degree n rings using a similar argument.

LEMMA 6.5
Let R be a nondegenerate ring of degree n over Zp. Then

|(R*/(R*)*)n=1]
|R*[2] =1

(35)

islifp#2and 2"V if p=2.
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Proof
The unit group of R* is the direct product of a finite Abelian subgroup and Z”, and
the norm 1 part Ry, _, is also a direct product of a finite Abelian group and ZZ‘I. For
G a finite Abelian group or G = Z7, when p # 2, we have

1G/G?|

G

so the value of (35) is 1 for p # 2. When p = 2, because 2 is not a unit in Z,,
the Z>-module 274! has index 2”71 in Z3~! instead, implying that (35) evaluates
to 271, O

It follows that for a fixed prime p, the value of m,(f) is independent of f €
U(Zp)P"™. We denote this value by m,. We conclude with the following
theorem.

THEOREM 6.6
We have
1

P r2),8
r Vol (F - REP (X)) [ ] Vol(A )

p

=22 Vol(UR)§2x) [ Vol(Z,)  and
p

Vol (%7 - RY?P (X)) [ Vol(A )

a’(r2) »

=2"2 Vol (SLo(Z)\U(R) 72y ) [ VoI ().
14

Proof
From Corollary 6.4 and Lemma 6.5, we obtain

Vol (F - RGP () [ T vol(A )

o(ra2) »

= iy VoI Vol (U )L

x [ T1815 Vol (SLa(Z p))m p VoI(Z ) (36)
p

and
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—— Vol (% - RY?P (X)) [ Vol(A )
p

/()

= m |1 Vol(F1) Vol (SL2(Z)\U(R) 2y )

< [ 115 Vol(SLw(Z))m p VOI(S ). (37)
y4

We simplify the right-hand side of these expressions by noting that

FI[ 11, =1. (38)
p
Vol(Fr) [ [ Vol(SLa(Zp)) = 1, (39)
p
a(rz) l_[ml’ =27, (40)

where (38) follows from the product formula, (39) comes from the Tamagawa number
of SL, (Q) being 1, and (40) follows from (34) and Lemma 6.5. Combining these with
(36) and (37) yields the theorem. U

6.2. Proof of Theorem 6.2

Let /R C Ry be an acceptable family of rings having fixed signature (r,r3). Then
the rings in R are in bijection with an acceptable set U(X) C U(Z) of binary n-
ic forms with Yoo = U(R)2). Let A® be a collection of local specifications for
V, where A, consists of projective elements in V' (Z,) whose invariants belong to
Ypand Ay = V(R)"2)% Then A = (A,), is acceptable. Furthermore, if R is very
large, then so is A.

From Propositions 2.5 and 2.12 and Lemma 2.4, we know that

Y 2t (0)| - |420)| =) Na (V(AD). X),
Oer )
HO)<X
> 22(Clf(0)| - [42(0)| = N (V(AC>)), X)),
OeR
H(0)<X
where the first sum is over all possible §, and 8¢ denotes the element (1,1,...,1) €
R™ x C"2. As aresult, we have



1042 HO, SHANKAR, and VARMA
Y oen 27T CL(0)] - |42(0)]

lim HO)<X
X—o0 Z Oen 1
HO)<X
< lim ZS NH (’V(A(&))’ X) — 2r|+r2—1

T X—o0 #U(X)g<x ’

Y oen 27|CL(O)| —[42(0)]
i _H©O<X

X —o00 Z

-1 Nu (V(AC>0) X)
1
T X—>o0 #U(Z)g<x

(41)

OeRr 1
HO)<X

— 2
=2"2,

where we use Theorems 5.3 and 3.3 to evaluate the numerators and the denominators
of the middle terms in the above equation, and where we use Theorem 6.6 to evaluate
the product of local volumes that arise.

Similarly, let R C Pi; be an acceptable family of rings having fixed signature
(r1,72). Then the rings in R are in bijection with SL,(Z)-orbits on an acceptable set
U(E) C U(Z) of binary n-ic forms with o, = U(R)2). We define A® as above,
and we obtain

> oen 21T CL(0)| - [42(0)
lim J(O)<X

X—o0 Z Oecn 1
J(O)<X

§
< lim 28 NJ(V(A( ))’ X) — 2r1+r2—1
X—o00 #SLy (Z)\U(X) j<x

Y oen 27| ClLy(0)]—[42(0)]
. J(O)<X
lim
X —o00 Z OenR
J(O)<X

NJ("V(A(5>>°)),X) .
< 1im = 27
T X—>oo #SLz(Z)\U(E)J<X

and

42)

1

where we use Theorems 5.3 and 3.5 to evaluate the numerators and the denominators
of the middle terms in the above equation, and where we use Theorem 6.6 to evaluate
the product of local volumes that arise.

If the families %R are very large, then from Theorem 5.2, the inequalities in (4 1)
and (42) can be replaced with equalities. Likewise, if we assume that one of the esti-
mates in (33) holds, then from Theorem 5.4, the inequalities in (41) and (42) can be
replaced with equalities. This concludes the proof of Theorem 6.2. O
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6.3. Proof of Theorem 4

Since Theorem 6.2 implies Theorems 2, 3, and 6, it remains to prove Theorem 4. We
first prove a corollary of Theorem 2 and Theorem 3 on the proportion of maximal
orders in i)firj";;,ﬁx which have odd (narrow) class number.

COROLLARY 6.7

Fix an odd integer n > 3 and signature (r1,12). If R C %rjl’lﬁx corresponds to an

acceptable set of binary n-ic forms, then we have the following.

(@) A positive proportion (at least 1 — 21771772 of maximal orders in R have odd
class number.

(b) If 5 is also assumed to be nonzero, then a positive proportion (at least 1 —
2772) of R have odd narrow class number. Thus, at least a proportion of 1 —
272 of R have narrow class number equal to the class number.

Proof

Fix a signature (r1,r2), and suppose for the sake of a contradiction that a lower pro-
portion than 1 — 21771772 of rings of integers of number fields with signature (r,73)
that correspond to integral binary n-ic forms have odd class number. This implies
that a larger proportion than 2!="17"2 of such maximal orders would have nontriv-
ial 2-torsion subgroup in their class group and thus have | Cl, | > 2. Then the limsup
of the mean number of 2-torsion elements in class groups of such maximal orders
would be strictly larger than 1 + 2,,_%,2, contradicting Theorem 2(a), Theorem 3(a),
Theorem 3(b), or [11, Corollary 3].

Now suppose for the sake of a contradiction that a lower proportion than 1 — 2772
of maximal orders in number fields of signature (r1,77) in R have odd narrow class
number. We would then be able to conclude that a larger proportion than 2772 of such
maximal orders would have at least two distinct 2-torsion elements in its narrow class
group. Then the limsup of the mean number of 2-torsion elements in the narrow class
groups of such maximal orders would be strictly larger than 1 4+ 27"2, contradicting
Theorem 2(b). When n = 3, note that the narrow class group of a complex cubic field
is always equal to its class group. O

THEOREM 6.8
Fix a signature (ry,r3). If R C erJl n:jx is an acceptable family of rings, then

(@) #{Re€%R:|Disc(R)| < X and 2}|CI(R)|} > X 33 ;
() ifr2= 1, then #{R €% :|Disc(R)| < X and 2| CI* (R)[} 3> X 2.

Proof
In [10], it is proved that there exists a nonempty open bounded set B C U(R), whose
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closure does not contain any element having discriminant 0, such that for any X > 0,
every element f € X - B N U(Z) is strongly reduced; that is, the basis given in (4) is
the unique Minkowski-reduced basis of the ring R s corresponding to f'. It is further
shown that if two distinct elements f; and f, of U(Z) are strongly reduced, then the
rings R, and Rz, corresponding to f1 and f, are not isomorphic.

Let X denote the collection of local specifications defining R, and let YA denote
the family of maximal S,-orders R, where R = Ry arises from an integral binary
n-ic form f € U(X) N R¢ - B. We endow this family of binary n-ic forms with the
natural height

Hp(f):=min{X : f € X - B},

thereby defining a height function on the family Yip of maximal S, -orders. The aver-
age sizes of Cl, and Cl;r over the rings in $Rp, ordered by Hp, are bounded by
1+ 21771772 and 1 + 2772, respectively; the proof for the analogous statement when
rings are ordered by height H adapts to this situation without change. Therefore, by
the same argument as in the proof of Corollary 6.7, we see that a positive proportion
of rings in YR p have odd class number.

Let ¢ > 0 be a constant such that every element in ¢ B has discriminant bounded
by 1 in absolute value. Then every element in ¢ X 1/(2n=2) B has discriminant bounded
by X. Since we have

#{US) N X V@) X35,
the theorem follows. O

Note that the conditions required in Theorem 4 are indeed acceptable, so Theo-
rem 4 follows directly from Theorem 6.8.
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