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Partitioned procedures are widely used in the solution of fluid-structure interaction
(FSI) problems, primarily because they facilitate the use of advanced numerical algorithms
and computational codes developed specifically for each sub-system. However, numerical
instability is a major issue, especially when the fluid is incompressible, and the fluid-
structure density ratio is large. In this paper, we present a numerically stable partitioned
procedure featuring a Robin-Neumann interface condition and an embedded boundary
method. First introduced in Badia et al.,' the one-parameter Robin-Neumann interface
condition has been shown to significantly mitigate the numerical added-mass effect when
the model parameter introduced to the Robin boundary condition is carefully selected. In
this work, we apply this approach to an embedded boundary method for FSI problems with
complex geometry, large structural deformation, and/or topological change (e.g., fracture).
Specifically, we first consider a two-dimensional FSI model for which the exact solution can
be derived in closed-form formulation. Using this model, we mathematically analyze the
effect of the aforementioned model parameter on numerical stability, and derive its optimal
value. Next, we present the numerical algorithms to enforce the Robin-Neumann interface
condition for general incompressible FSI problems, in the context of embedded boundary
method. The salient features of the proposed numerical method will also be assessed using
the Turek-Hron benchmark problem.

Nomenclature
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«@ non-dimensional combination parameter

oy combination parameter of Robin transmission condition
K state vector of beam kinematics

At time step size, s

i density ratio

T'p,Tgr,I'p left, right, bottom boundary of fluid domain

A eigenvalue
w frequency of beam, rad/s
wo natural frequency of beam, rad/s

s,y structure domain, fluid domain
numerical stability quantity

ps:py structure density, fluid density, kg/ m3

3 fluid-structure interface

w vibration magnitude of beam, m

n

U

o

unit normal
fluid velocity, m/s
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a vertical acceleration of beam, m/s?
b, h width, height of beam, m
Ch,Cy non-dimensional parameter

E Young’s modulus, kg/(ms?)

f flow-induce force, N

1 second moment of area of beam cross-section, m*
k wave number

L,H length, height of fluid domain, m
P fluid pressure, Pa

t time, s

v vertical velocity of beam, m/s
W,w beam vertical displacement, m
T,y Cartesian coordinates

Subscripts

c critical value

n time step index

opt optimal value

I. Introduction

Nonlinear fluid-structure interaction (FSI) is an important phenomenon underlying many aerospace and
oceanic vehicle designs such as those utilizing flexible, reconfigurable, and morphing structures. In order
to achieve high performance at low cost, this phenomenon needs to be rigorously analyzed, and properly
accounted for early in the design process. Numerical methods for solving coupled fluid-solid problems
fall into two categories: those that employ a monolithic procedure, and those employing a partitioned
one.2”” In the monolithic procedure,®? the fluid and structure governing equations are semi-discretized
and time-integrated simultaneously as one system. This approach can account for the strong coupling
between the two subsystems, but requires a fully-integrated fluid-structure solver. On the other hand, the
partitioned procedure* 7 solves the fluid and structure governing equations separately. Specifically, a CFD
(computational fluid dynamics) solver and a CSD (computational structural dynamics) solver can be used
for the separate evaluations of the two subsystems, while the kinematic and dynamic interface conditions,
also referred to as transmission conditions, are enforced through data exchange between the two solvers.

Within the category of partitioned procedures, explicit coupling schemes (also referred to as “loose”
coupling) solve the fluid and the structure governing equations once per time step, without sub-iteration.
Figure 1 illustrates the solution and data exchange of this type of schemes using asynchronous time grids.
Specifically, at the fluid-structure interface, the velocity of the fluid is prescribed to be the velocity of the
structure computed by the CSD solver, while the traction on the surface of the structure is computed using the
fluid pressure and viscous stress. In other words, the kinematic and dynamic interface conditions are enforced
by applying a Dirichlet boundary condition in the fluid subsystem and a Neumann boundary condition in the
structure subsystem. This type of Dirichlet-Neumann (D-N) explicit coupling scheme has been successfully
used in modeling and simulating many compressible fluid-structure interaction problems.® '3 However, for
FSI problems involving incompressible flows and light structures, a particular numerical instability (often
referred to as the artificial or numerical added-mass effect) is a major issue, which has been formulated and
studied in Causin et al.5 and Férster et al.” It has been discovered that when the densities of the fluid and
structure are comparable (or that the solid is less dense than the fluid) the loose coupling approach results
in an unconditionally unstable scheme. A straightforward method to fix this issue is to perform multiple
(often > 10) subiterations between the fluid and structure solvers in the fashion of fixed-point iteration. This
approach is often referred to as implicit or “strong” coupling. However, the resulting high computation cost
limits the scope of applications.®

To mitigate the numerical added-mass effect without significantly increasing the computational cost,
several ideas have been proposed in the past few years. An explicit coupling scheme, referred to as the kine-
matically coupled scheme, was proposed in Guidoboni et al.!> and then extended to kinematically coupled
B - scheme in Buka¢ et al.'® with improved accuracy. This type of methods enforce the kinematic interface
condition implicitly in a Lie’s time-splitting scheme. The resulting fluid subsystem includes structure inertia,
which is thought to be the main reason for the improved stability of the scheme.'” However, this approach
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Figure 1: Dirichlet-Neumann explicit coupling scheme.'*

has poor software modularity in the sense that the decoupled systems are no longer a pure fluid subsystem
and a pure structure subsystem. A semi-implicit coupling scheme was introduced in Ferndndez et al.'® to
reduce the number of fluid-structure iterations in the implicit coupling scheme without compromising the
numerical stability. The idea is to apply an implicit coupling scheme to the main source of the added-mass
effect: the strong coupling of fluid pressure and the structural velocity - while the fluid convection, diffusion
and domain motion are treated explicitly by applying the simple explicit coupling scheme. However, doing
this still requires solving parts of the fluid subsystem with structure subsystem monolithically.

Badia et al.' proposed a novel approach in which the Dirichlet transmission condition for the fluid solver is
replaced by a Robin transmission condition, that is, a linear combination of the kinematic and dynamic in-
terface conditions. In comparison with the other two methods reviewed above, this Robin-Neumann scheme
exhibits remarkable stability properties under strong added-mass effect so long as the linear combination
parameter is carefully selected. Furthermore, since it only requires modifying the boundary condition of the
fluid subsystem, the Robin-Neumann scheme is beneficial from a software development standpoint.

The Robin-Neumann scheme has been applied in Arbitrary Lagrangian Eulerian (ALE) frameworks?>19-20
and in the context of overlapping grids.?! In this work, we apply this scheme to an embedded boundary
method, which is particularly suitable for FSI problems involving complex geometry, large structural de-
formation, and topological change (e.g., fracture).® 3 In addition, we quantify the effect of the choice of
the linear combination parameter on the accuracy and stability of the scheme. While previous work has
shown that the stability of the Robin-Neumann scheme is sensitive to the linear combination parameter in
the Robin boundary condition, in this work we will characterize the effects of this parameter by means of
analyzing a simplified two-dimensional (2D) FSI model problem which can be solved analytically.

The remainder of this paper is organized as follows. Section II presents a mathematical analysis of the
Robin boundary condition, independent of specific spatial discretization schemes (e.g., finite element, finite
difference, etc.) and time integrators (explicit, implicit), using a 2D model problem involving incompressible,
inviscid flow and an Euler-Bernoulli beam. Section III presents the proposed Embedded Robin Boundary
Method (ERBM) for the interaction of incompressible viscous flows and deformable structures and the
simulation result of . To verify and validate the proposed numerical methods, simulation result of the
well-known Turek-Hron benchmark problem is also presented.

II. A 2-Dimensional Fluid-structure Interaction Model

A. Model Problem

As a model problem, we consider the interaction of a flexible linear beam with an inviscid, incompressible
flow, for which exact solution can be derived in closed form. The objective is twofold. First, we aim to
analyze the stability property of the Robin-Neumann scheme, including the effect of the linear combination
parameter in the Robin boundary condition, independently of specific spatial discretization schemes and
time integrators. Second, we aim to derive in closed form the optimal value of the aforementioned model
parameter, and use this formula to set the parameter value for general incompressible FSI problems.

Let €5 be the structure domain, occupied by a simply-supported Euler-Bernoulli beam. The fluid occupies
a 2D rectangular domain Qy = (0, L) x (0, H) with length L and height H. Q, has a common boundary with
Q; at its top boundary, which is the fluid-structure interface denoted by ¥ = 9y N 08 (see figure 2). We
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assume that the left and right boundaries of Q; are periodic. Moreover, because the structural deformation
is small, we neglect the variation of 1 in time. For simplicity, we only consider transverse displacements of
the beam. With these assumptions, the model problem reads:

Find W = W(z,t), U =U(z,y,t), P = P(x,y,t) such that

oW W )
EIW + psth = f m (O,T) X Qs (la)
pf%—ljJrVP:O in(O,T) XQf (lb)
V-U=0 in(0,T) x Qf (1c)
U n=0 onl'p (1d)
opP oP
%'FL - %'FR7 P|FL = P|FR (16)

where p¢ is fluid density, W denotes transverse displacements of the beam, U fluid velocity and P fluid
pressure; I'r,, I'r, I'g denote the left, right and bottom boundary of Q¢, respectively. I denotes the Young’s
modulus of the beam material and I the second moment of the area of the beams cross-section. py is the
beam density, h and b denote the height and width of the beam, respectively. f is the flow-induced force on
the beam. The beam is pinned on both ends, which gives W|gq, = 0*W/02%|sn. = 0. On the interface 3,
the kinematic and dynamic interface conditions are given by Eq.(1f) and Eq.(1g), respectively.

U-n= aa—‘;[/(m,t) onY (1f)

f=P|sb ony (1g)

where the vector n is the outward unit normal from the fluid domain. Since we only consider vertical
displacement of beam, n = (0, 1).

Since fluid velocity is solenoidal, it can be eliminated from the coupled system Eq.(1) , resulting in the
pressure Poisson equation. The reformulated system is written as Eq.(2).

oW 0*wW .
EIW + pébhﬁ = f m (O,T) X Qs (23,)
O*W
w =0 2b
loc. 502 o0, (2b)
V2P =0 in (0,7) x Qy (2c)
P
Z—y =0 onl'p (2d)
oP oP
87y|FL = 87y|FR’ P|FL = P|FR (26)
oP W
-z __, 2 » 2f
dy PI 5 on (2f)
f=P|gb onY (2g)
A closed-form formulation of the exact solution can be derived and we refer the reader to Banks et al.??

B. Partitioned Solution and Mathematical Analysis

In this section, we solve the 2D model problem using two explicit partitioned procedures based on different
transmission conditions, i.e., Dirichlet-Neumann (D-N) explicit coupling scheme and Robin-Neumann (R-
N) explicit coupling scheme. Note that, in the following paper, “partitioned solution” is used to refer to
numerical solution based on partitioned procedure. Furthermore, mathematical analysis is carried out to
study the differences in stability properties and accuracy between these two partitioned procedures. Most
importantly, we characterize the effect of combination parameter on stability and accuracy in R-N explicit
coupling scheme and propose a method to determine its optimal value.
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Figure 2: Geometry of FSI model problem

1. Dirichlet-Neumann (D-N) explicit coupling scheme

We first consider the D-N explicit coupling scheme in which the coupled system Eq.(2) is separated into a
fluid subsystem with a Dirichlet transmission condition and the structure subsystem with a Neumann trans-
mission condition. At each time step, we consider using an explicit asynchronous manner for the separate
evaluations of fluid and structure subsystems (see figure 1). One novelty in this work is that, at each time
step, instead of solving fluid and structure equations using a specific spatial discretization scheme or time
integrator, we solve them analytically. This allows the partitioned procedure to be assessed independently
of any spatial discretizations or time integrators. Before describing the algorithm, we first define following
notation:
(1) Partitioned solution (functions in time) at time step t € [t,—1,tp]:

Fluid pressure: P, = P,(z,y,t);

Beam displacement: W,, = W, (x, t);
(2) Partitioned solution at time ty;

Fluid pressure on X: p, = P, (x, H,t,,);

Beam displacement: w,, = W,,(z,t,);
ow, W,

ot = of I
B lorati 0w, O*W,
eam acceleration: a,, — = —
o2 o2

Beam velocity: v, =

tn

Algorithm 1: Assuming initial conditions at t,_; to be given as Eq.(3) , the algorithm at time step
t € [tn—1,t,] reads as follows:

ow, ~ Ow,_y W, w1

n n
Wh(x,tn—1) = wn_1, Whn_l =~ Bre ltn_y = oz (3)

Step 1: Transfer structure kinematics at ¢,_; to fluid subsystem as the boundary condition;

P, 82wn—1

" _ _, " b 4
ay Pr 12 on ( )

Step 2: Advance the fluid subsystem to ¢,, by solving fluid equations Eq.(4) and Eq.(5) analytically;

V2P, =0 inQy (5a)
P,
0Py _ 0 onTp (5b)
9y
PTL|FL :Pn‘FR (5C)
oP, oP,
- " d
ay |FL ay |FR (5 )
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Step 3: Compute the flow-induced pressure on interface ¥ and transfer it to structure;

fn = ppb on Y] (6)

Step 4: Advance the structure subsystem to ¢,, by solving structure equations Eq.(6) and Eq.(7) analytically.

oW, 9*w,, .
EI p + psbh 52 = fn inQ, (7a)
0*W,,
o, = 20 = b
Whlaq, 92 lo, =0 (7b)

We now analyze the stability properties by referring to the work of Banks et al.2? First, referring to the
problem setup, the partitioned solution at each time step can be expanded into a Fourier sine series:

Wy (z,t) = Z W, (k,t) sin (kz), (z,y,1) Z (k,y,t)sin (kx) (8)
i=1 i=1
where k = 27i/L and hat functions represent the amplitude of corresponding sine wave. For one Fourier com-
ponent that corresponds to one wavenumber k, the structure governing equation Eq.(7a) can be reformulated
by:
5 PWy i) 4
EIK'W,, 1. (t) + psthf() = P (H,tn)b = b (9)
In the following, we only consider one Fourier component and ignore the subscript k. With the new
pressure on interface ¥ computed in Step 3, solving Eq.(9) corresponds to solving the following second-order
linear ordinary differential equation (ODE):

82Wn(t) Ma 62“}”—1
= 1
8t2 + wOWn( ) psh atQ ( O)
where wg = \/EIk*/(psbh), M, = —py/lktanh (kH)]. Let’s denote the initial state of beam at ¢,_1 by

K, = = (Wp—1,9n—1,0n-1)T. The final state K,, = (0, 0, a,)" can be obtained by solving the ODE
Eq.(10) analytically, which can be expressed as a linear system of beam kinematics Eq.(11).

~ N sin (wo At Mg b[1—cos(woAt o

W, Wy —1 cos (woAt) (ws ) abl EU«E 0At)] W

. N . Mawobsin (woAt .

O | =CbN | Op_1 | = | —wosin (weAt) cos (woAt) %‘Swo) Dp_1 (11)
. A . Maw?2b At S

an Gn—1 —wi cos (wpAt) —wpsin (wpAt) ez 2Rre=t) ;;wao ) -1

Hence, given an initial condition at ¢y, the partitioned solution at certain t,, can be computed explicitly
using Eq.(11).

The stability properties of the above linear system Eq.(11) are determined by spectral radius of matrix
Cpn. The error is bounded if all of the eigenvalues A of the matrix Cpn satisfy [A| < 1. Hence, the stability
criterion of D-N explicit coupling scheme is given by Eq.(12).

cosh (kH)

N Dy = S
p(Con)[ ~ Cpy nhksinh (kH)

<1 (12)

where n = ps/py. Moreover, |p(Cpn)| = Ppn if At goes to zero. It can be seen from Eq.(12) that the
numerical stability of D-N explicit coupling scheme depends on the density ratio n between structure and
fluid, the thickness of beam h, the height of fluid domain H and the wavenumber k. The scheme becomes
unstable if the added-mass effect is significant, e.g., involving a small density ratio and/or a slender domain.
This result is similar to those results in Causin et al.,® Férster” et al., Banks et al.?? but it is independent
of the spatial discretization scheme and time integrator for each subsystem.
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2. Robin-Neumann (R-N) explicit coupling scheme

As we have already seen, numerical instability is encountered in the D-N explicit coupling scheme for problems
with a significant added-mass effect. An alternative is to use the R-N explicit coupling scheme based on
Robin transmission condition, which is a linear combination of the kinematic and dynamic conditions at
fluid-structure interface. First proposed in Badia et al.,! R-N schemes have shown remarkable stability
properties when the added-mass effect is a potential pitfall as long as the linear combination parameter is
carefully selected. The R-N scheme splits the coupled system into a fluid subsystem with Robin transmission
condition and a structure subsystem with Neumann transmission condition. We now consider using the R-N
explicit coupling scheme to solve the coupled system Eq.(2). The new algorithm is the same as Algorithm
1 except that the boundary condition of the fluid subsystem Eq.(4) is replaced by a Robin transmission
condition, i.e., a linear combination of kinematic Eq.(2f) and dynamics conditions Eq.(2g).

oP, 0w,
af ay —I—Pnb:pn,lb—afpfwl onXx (13)

where ay is the linear combination parameter that satisfies oy > 0. By taking ay = oo, R-N explicit
coupling scheme coincides with D-N explicit coupling scheme. It has been shown that stability properties of
R-N schemes depend on the choice of « f.l Thanks to the simple nature of 2D model problem, we now provide
a mathematical analysis on the effect of combination parameter oy on the numerical stability properties and
the accuracy of Robin-Neumann explicit coupling scheme.

First, we apply the same strategy (Eq.(8)-Eq.(12)) to analyze the effect on stability properties. With the
new Robin transmission condition, the second-order linear ODE corresponds to Eq.(10) is given by Eq.(14).

82Wn(t) 217 2 2621I}n_1
T + wOWn(t) = leown,1 + Mzwow (14)
where M7 and M5 are defined as:
1 <bh —
M, = M, P2l _C1PS (15)

asktanh (kH)/b+ 1’ ~ ElkYoyk tanh (kH) /b + 1]

Similar to Eq.(11), a linear system of beam kinematics Eq.(16) can be obtained by solving the ODE Eq.(14)
analytically.

Wy, Wp_1 (1 = My) cos (woAt) + M, % M5 (1 — cos (woAt)) Wp_1
Op | =CRN | Op—1 | = | —wo(l — My)sin (woAt) cos (woAt) Mowg sin (woAt) Op—1
G, Gn—1 —wd (1 — My) cos (woAt)  —wpsin (woAt)  Mowd cos (woAt) Gn—1

(16)

Hence, given an initial condition at ¢y, the partitioned solution at certain ¢, can be computed explicitly
using Eq.(16). The stability criterion of R-N explicit coupling scheme is given by Eq.(17)

1- afpf/(psbh) <
agktanh (kH)/b+1| ~

|p(CrN)| = Pry = (17)

|p(CrN)| = Pry if At goes to zero. Eq.(17) indicates that, in addition to the physical parameters, the
numerical stability of the Robin-Neumann scheme depends on the choice of ay. By introducing three new
non-dimensional parameters o = ayk/b, Cj, = kh, Cyg = kH, we can rewrite Eq.(17).

n—a/Ch
1+ antanh (Cg)

<1 (18)

@RN(% Chv CHa a) = ’

Figure 3 shows the dependence of @iy on density ratio and Cpy for different values of non-dimensional
combination parameter . As can be seen from figure 3(a), for problems where the solid and fluid densities
are similar, e.g., blood flow in arteries where n ~ 1, the R-N explicit coupling scheme is stable if a sufficiently
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Dpy
Pry

0.8 r

0.6

0.4 r

02 r

Density Ratio(n)
(a)

Figure 3: (a) Dependence of ® on density ratio 7. (b) Dependence of ® on non-dimensional parameter Cpy.

small a is used. Similarly, from figure 3(b), « should be small enough for a given slender fluid domain in order
to ensure the numerical stability of the R-N explicit coupling scheme. In other words, as o is reduced, the
R-N explicit coupling scheme remains stable under a wider region of the physical parameter space. However,
the combination parameter cannot be made arbitrarily small due to the lost of accuracy. This is because,
as combination parameter is reduced, the influence of kinematic condition at fluid-structure interface is
suppressed. Consider an extreme case where ay = 0; in this case, the Robin-Neumann scheme becomes
equivalent to the Neumann-Neumann scheme and one of the transmission conditions for coupled system -
the kinematic condition - is missing. Hence, characterizing the effect of combination parameter on accuracy
is needed (to be discussed in section C).

C. Numerical Experiments

In this section, we present some results of the numerical solution of 2D model problem based on R-N explicit
coupling scheme with the aim of verifying the mathematical analysis carried out in Section B. First, we
verify the stability criterion for the Robin-Neumann scheme Eq.(17). Second, the numerical error and the
order of accuracy of the R-N explicit coupling scheme using different values of the combination parameter
ay are shown to demonstrate the effect of ay on accuracy. Referring to the domain of Fig.2, we set H =1
m, b = 0.01540 m, h = 0.0924 m, L = 1 m for all of the numerical tests. The initial condition of beam’s
kinematic at tp = 0 is obtained from exact solution and given as Eq.(19). For other parameters, we take
k=2m, E =70 GPa, I, =1x 107% m*, p; = 1000 kg/m?, p; = 876 kg/m?, w = 0.01 m. The quantity of
interest we show in this section is beam displacement at x = 0.25.

oW, 0*W,

W(x,to) = 0, Who = 2wWw sin (kx), W“O =0 (19)

EIk*
psbh+psb/[k tanh (kH)]"

where w denotes the vibration amplitude, and the frequency of beam vibration is w = \/

1. Verification of stability criterion:

It can be seen from the stability criterion Eq.(17) that, for a given combination of physical parameters, there
is a critical value of ay such that ® = 1, which is denoted by o .

N 2psbh
he™ oy = pehktanh (kH)

(20)
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Given the physical values above, it turns out to be a . ~ 0.0096328. The R-N explicit coupling scheme with
an o ¢ above this critical value is predicted to be unstable. Hence, the critical value o . and a slightly higher
value 1.05a . are tested in order to verify Eq.(17). The results of the partitioned solution with these two
values of oy are shown in figure 4(a) and figure 4(b). The solution is stable if o is set to be the critical value
ay.c as shown in figure 4(a). However, numerical instability is observed in figure 4(b) where oy = 1.05¢ .
It can thus be concluded that oy, is the critical value of combination parameter for numerical stability,
which verifies the stability criterion Eq.(17). It is worth mentioning that compared to R-N scheme with
ay = 1.05a; ¢, the solution blows up even faster if the D-N scheme (which is a particular case of the R-N
scheme where oy = 00) is used.

0.02 T T
= Partitioned solution
0.015 ° Exact solution i

0.01

0.005

-0.005

Displacement(m)
o
Displacement(m)

-0.01 -

-0.015 U d U U
-0.02 ‘ ‘ ‘ _ ‘ ‘ : ‘
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01

Time(s) Time(s)

(a) (b)

Figure 4: Partitioned solution of beam displacement at z = 0.25 using Robin-Neumann explicit coupling
scheme with two different combination parameters: (a) ay = ay. and (b) ay = 1.05ay ..

2. Effect of ay on accuracy:

In this section, we characterize the effect of a¢ on the accuracy of the R-N explicit coupling scheme by
comparing the results of numerical tests using different . The a should be chosen such that the numerical
solution is stable. Hence, two special values of a ¢ that satisfy stability criterion Eq.(17) are considered here.
One is the critical value oy . defined in Eq.(20) and the other one is an added-mass-free o, denoted by af am ,
which is chosen such that @z = 0. Given physical values above, two values turn out to be arf,. ~ 0.0096328
and o gmy ~ 0.0016244. Figure 5(a) compares the time-history of error of beam displacement at x = 0.25
between two test cases. The error is computed using the exact solution of model problem. It can be clearly
seen that the amplitude of error for the R-N scheme with af g ¢ is much higher than that with the critical
value ay .. Figure 5(b) shows that the R-N explicit coupling scheme with ay . is second-order accurate in
time while it is first-order accurate if af 4 is used. These results indicate that the combination parameter
in the Robin transmission condition affects the order of accuracy of a partitioned procedure and an optimal
ay in terms of accuracy can be chosen such that ® = 1.

2psbh
py — pshktanh (kH)

Qfopt = Ofc = (21)

This finding provides us with an idea to determine the optimal a for general FSI problems such that the
Robin-Neumann scheme can achieve it best accuracy while also retaining numerical stability.

III. An Embedded Boundary CFD-CSD Framework with Robin-Neumann
Interface Condition
In this section, we present a novel embedded boundary method that couples a projection-based incom-

pressible flow solver with a finite element beam structure using the Robin-Neumann interface condition
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= R-N scheme with o
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Error of Beam Displacement € (m)
o
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Error of Beam Displacement, |e]
>
W

o
2

0.005

-

1

1
-0.005 v

\

-e- R-N scheme with  «
famf
=3~ R-N scheme with «

= = 1st order slope
=== 2nd order slope
PR R MR

o
o
<

f,0pt

C Sl

v

€ = Wnumerical — Wanalytical s At = 0.00001

-0.015 PR
8 16

2 4
Time (s) Grid Spacing, h

0.602 0.004 0.066 0.068
(a) (b)

Figure 5: (a) Comparison of error magnitude. (b) Comparison of the order of accuracy

discussed in Section II. Let 2y C R? denotes the domain of fluid, governed by incompressible Navier-Stokes
(N-S) equations Eq.(22).

V-U=0 (22a)
1

9 L u.vu=vaU - Lyp (22b)
ot Py

where ¢ denotes time, py the fluid density, U = (u,v) the fluid velocity, P the fluid pressure and v the
kinematic viscosity. Here, the fluid is assumed to be laminar. The structure governing equation defined in
Q, C R? is written in Lagrangian formulation. Depending on the flexible structure of interest, different types
of structure governing equations can be applied, e.g., equation of motion for nonlinear elastic structures?
or equation of motion for linear elastic structures. For the sake of simplicity, we start with a linear elastic
structure governed by Eq.(23).

0%d

psﬁ_v.gs:f (23)

where, d denotes the displacement vector of the structure, p; the structure density, os the Cauchy stress
tensor with oy = —pI+2pue, f the body force per unit volume. At fluid-structure interface > = 9Q; N 082, if
we assume an impermeable interface, the interaction between fluid and structure is driven by two transmission
conditions, i.e., kinematic condition Eq.(24a) and dynamic condition Eq.(24b).

od; .
U; = a—tj onY i=12 (24a)
ofN=0s-1 onXY (24b)

where n denotes the unit normal to ¥ and o is fluid stress tensor.

A. Robin-Neumann partitioned procedure and time-integrator

To solve the coupled system Eq.(22)-Eq.(24), we apply Robin-Neumann implicit coupling scheme in which the
two subsystems, fluid subsystem with Robin transmission condition and structure subsystem with Neumann
transmission condition, are solved in the fashion of fixed-point iteration.

For the temporal discretization of fluid equations Eq.(22), we consider the second-order Hybrid Ap-
proximate Projection Method proposed in Griffith et al.?* This hybrid method features the use of two
classes of projection methods for incompressible N-S equation in order to reduce pressure oscillations in-
duced by Embedded Boundary Method.2? Specifically, at each time-step, the fluid velocity is updated using
Incremental-Pressure Projection Method?® and the updated pressure is determined by the Pressure-Free Pro-
jection Method.?” Furthermore, in projection step, an approximate projection operator is applied to avoid
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the difficulty caused by pressure-velocity decoupling in collocated grid, i.e. the so-called “checkerboard”
issue.?8

The Robin transmission condition for fluid subsystem at fluid-structure interface can be constructed by
the linear combination of kinematic and dynamic condition, and it is time-discretized as Eq.(25).

Un+1,k:+1 —_yn 82d n+1,k
o o =ay <8t> + oty (25)

where oy is the combination parameter, At the time-step size. The superscript n denotes the time step
and k is the index of sub-iteration at this time-step. To enforce Robin transmission condition in fluid time-
integration using hybrid projection method, two correponding interface conditions for intermediate velocity
and projection step should be derived from Eq.(25). Here, we apply an operator splitting scheme introduced
in Fernandez et al.2’ where they decompose Eq.(25) into normal and tangential components. The normal
component is enforced in the solution of intermediate velocity while the latter one is taken into account in
solving pressure-Poisson equation.

B. Non body-fitted spatial discretization

Embedded Boundary Method (EBM) is particularly suitable for FSI problems involving complex geometry,
large structural deformation, and topological change (e.g., fracture). Thus, one main objective of our work
is to apply Robin-Neumann scheme to EBM framework.

In EBM framework, the fluid is solved on a fixed non body-fitted mesh and the boundary surface of the
flexible structure is embedded in the fluid domain (see figure 6(a)). In our ERBM, the incompressible N-S
equations are semi-discretized on a fixed Cartesian grid by a classical Finite Difference Method?* with a
cell-centered, collocated arrangement of fluid variables. On the other hand, the structure governing equation
written in Lagrangian formulation is semi-discretized by the Finite Element Method. To impose the effect
of embedded structure on the fluid, we consider the finite-difference based Ghost-Cell Method??:3° in which
the interface conditions at embedded boundary are enforced through the use of ghost-cells inside embedded
structure (see figure 6(b)). A local reconstruction scheme is applied to determine the value of fluid variables
at the ghost-cells. Take figure 6(b) as an example. The ghost-cell velocity Ug can be extrapolated from
the given velocity interface condition Up and the velocity at an imaginary point I which is computed by
interpolating velocities at neighboring fluid cells U;-Ug. This implicit incorporation of interface conditions
introduces no forcing term in fluid governing equation and it retains a “shape” representation of embedded
boundary.

As shown in figure 6(b), even though an irregular embedded boundary ¥ is consider, the local recon-
struction of ghost-cell for Dirichlet-type interface condition on ¥ is straightforward. However, in projection
step, we need to solve a pressure-Poisson equation subjected to Robin-type interface condition. The local
reconstruction becomes challenging due to the discretization of normal derivative at the irregular boundary.
Here, we employ a second-order accurate Shortley-Weller discretisation with a quadratic boundary treatment
proposed in Jomaa et al.3! to compute the value at ghost-cells for Robin-type interface condition.

C. Numerical experiment: The Turek & Hron benchmark problem

The fluid-structure coupled computational framework is validated using Turek & Hron benchmark problem.32
The benchmark problem involves a two-dimensional laminar incompressible channel flow around a flexible
beam which is mounted on the back of a fixed cylinder. The detailed geometry of this problem is shown in
figure 7. In the fluid domain, no-slip boundary condition is enforced on top and bottom wall. The inflow
boundary condition at the left channel is set to be a parabolic velocity profile:

w(0,y) = 150U —Y)

TR v(0,y) =0 (26)

where H is the height of the fluid domain and U is the average inflow velocity. At the right channel outflow, a
“do nothing” boundary condition is applied. The test case presented here is FSI2 in benchmark paper whose
parameter settings are given in Table.1. As a test, the combination parameter used in Robin transmission
condition Eq.(25) is set to be ay = 10.
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Figure 6: (a) Schematic representation of the structure embedded in fluid domain. (b) An example illustra-
tion of local reconstruction of velocity for ghost-cell (G) using interface condition on embedded structure at
B and velocities at neighboring fluid cells 1,2,3.

parameter Value
No slip o PS[%] 1.0 x 10%
Velocity Inlet Outflow
~ Vg 0.4
ps[2%] 5.0 x 10°
+=0.05m S
Y [29] 1% 10
H=041m B4 Co oo 34 h=0.02m Pr m3
7=035m vl 1x1073
Olz) 1
I B:(0.15.0.2) Re 100
x No slip C:(0.2.0.2)
(0.0) - 305w Table 1: Parameter settings
. for test case FSI2 (densities
Ps,pf, Poisson ratio vy, shear
Figure 7: Geometry of the Turek & Hron FSI Bench- modulus 15, dynamics vis-
mark cosity py and kinematic vis-

cosity vy)

Figure 8 shows the velocity magnitude of fluid and the beam deformation at four time instants in one
period of beam vibration. Figure 9 shows the corresponding pressure field. It can be seen that when the
flow past around the cylinder, it generates vortex shedding which induces vibration on the flexible beam.
The plot for the tip (point A) displacement in y direction is shown in figure 10. The tip displacement varies
between dy € [—0.1817,0.1761].

Remark: It is notable that the predicted tip displacement shown in Figure 10 is not the same as the
benchmark solution. This is because the flexible beam is modeled as a linear elastic beam in our current
computational framework, despite the large deformation. A two-dimensional non-linear elastic beam model
will be implemented in future work.
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Figure 9: Snapshots of velocity magnitude inside one period of beam vibration
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Figure 10: Tip displacement in y-direction

IV. Conclusions

This paper investigates the partitioned solution of fluid-structure interaction problems involving incom-
pressible flow and large fluid-structure density ratio. This type of problems is often challenging for two
reasons. First, partitioned solvers are subjected to numerical instability due to the amplification of error
at fluid-structure interface (i.e. the artificial added-mass effect). Second, the structure may undergo large
deformation, which translates to large deformation of the CFD domain. We present an embedded Robin
boundary method that addresses both issues. Specifically, we replace the traditional Dirichlet-Neumann
interface condition by a one-parameter (i.e. ay) Robin-Neumann interface condition. The two conditions
are mathematically equivalent. However, previous studies have shown that when «; is carefully chosen, the
latter may improve the stability property of partitioned solvers. Moreover, we also employ an embedded
boundary method to discretize the fluid governing equations, which naturally accommodates arbitrary struc-
tural motion and deformation. While both the Robin-Neumann interface condition and embedded boundary
methods have been proposed before, the combination of the two is a novelty of the present work. Further-
more, to rigorously investigate the effects of aiy on partitioned solvers, we consider a two-dimensional model
problem and solve it using an analytical partitioned procedure, which does not involve spatial discretization
nor numerical time-integration. The solution indicates that oy affects both numerical stability and the order
of accuracy. We have also identified a variable ®, as a function of oy, which can be used to derive an optimal
value of a.
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