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Abstract Finite Mixture Regression (FMR) refers to the mixture modeling scheme
which learns multiple regression models from the training data set. Each of them is
in charge of a subset. FMR is an effective scheme for handling sample heterogeneity,
where a single regression model is not enough for capturing the complexities of the
conditional distribution of the observed samples given the features. In this paper, we
propose an FMR model that (1) finds sample clusters and jointly models multiple
incomplete mixed-type targets simultaneously, (2) achieves shared feature selection
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among tasks and cluster components, and (3) detects anomaly tasks or clustered struc-
ture among tasks, and accommodates outlier samples. We provide non-asymptotic
oracle performance bounds for our model under a high-dimensional learning frame-
work. The proposed model is evaluated on both synthetic and real-world data sets.
The results show that our model can achieve state-of-the-art performance.

Keywords Finite Mixture Regression · Mixed-type response · Incomplete targets ·
Anomaly detection · Task clustering

1 Introduction

Regressionmodeling, which refers to buildingmodels to learn conditional relationship
between output targets and input features on some training samples, is a fundamen-
tal problem in statistics and machine learning. Some classical regression modeling
approaches include least square regression, logistic regression and Poisson regres-
sion; see, e.g., Bishop (2006), Kubat (2015), Fahrmeir et al. (2013) and the references
therein.

The aforementioned classic approaches usually train a singlemodel of a single target
over the entire data set. However, real-world problems can bemuchmore complicated.
In particular, the needs of utilizing high-dimensional features, population heterogene-
ity, and multiple interrelated targets are among the most prominent complications.
To handle high-dimensional data, the celebrated regularized estimation approaches
have undergone exciting developments in recent years; see, e.g., Fan and Lv (2010)
and Huang et al. (2012). In the presence of population heterogeneity, the samples may
form several distinct clusters corresponding tomixed relationships between the targets
and the features. A popular modeling strategy in such a scenario is the Finite Mix-
ture Regression (FMR) (McLachlan and Peel 2004), which is capable of adaptively
learning multiple models, each of which is responsible for one subset/cluster of the
data. FMR models have been widely used in market segmentation studies, patients’
disease progression subtyping, motif gene-expression research, etc.; see, e.g., Städler
et al. (2010), Khalili (2011), Khalili and Chen (2007), Doğru and Arslan (2017), and
the references therein. The problem of joint learning for multiple targets is usually
referred to asMulti-Task Learning (MTL) in machine learning or multivariate learn-
ing in statistics; see, e.g., Argyriou et al. (2007a), Argyriou et al. (2007b), Chen et al.
(2011), and Gong et al. (2012b). We stress that the main definition of MTL considers
tasks that do not necessarily share the same set of samples (and features), and that
this paper focuses on a special case of MTL, where the multivariate outcomes are
collected from the same set of samples and share the same set of features, whose rea-
son will be explained later. There have also been multi-task FMR models, e.g., Wedel
and DeSarbo (1995), Wang et al. (2004), Lim et al. (2016) and Bai et al. (2016),
which mainly built on certain multivariate probability distribution such as Gaussian
distribution or multivariate t distribution.

Thus far, a comprehensive study on multi-task mixture-regression modeling with
high-dimensional data is still lacking. To tackle this problem for handling real-world
applications, there remain several challenges and practical concerns.
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– Task HeterogeneityCurrentMTL approaches usually assume that the targets are of
the same type.However, it is common that themultiple targets are of different types,
such as continuous, binary, count, etc., which we refer to as task heterogeneity. For
example, in anesthesia decision making (Tan et al. 2010), the anesthesia drugs will
have impacts on multiple indicators of an anesthesia patient, such as anesthesia
depth, blood pressures, heart rates, etc. The anesthesiologist needs to consider all
those different aspects as well as their intrinsic dependence before making the
decision.

– Task IntegrationAs in the anesthesiology example, the multiple tasks are typically
inter-related to each other, and the potential benefit from aMTL approach needs to
be realized through properly exploring and taking advantage of these relationships.
In existing high-dimensional MTL approaches, the tasks are usually integrated by
assuming certain shared conditional mean structures between the targets and the
features. The problem is more difficult in the presence of both task and population
heterogeneities.

– Task Robustness Similar to the idea in the robust MTL approaches (Passos et al.
2012; Gong et al. 2012a; Chen et al. 2011), it is not always the case that jointly
considering all tasks by assuming certain shared structures among them would be
helpful. Certain tasks, referred to as anomaly tasks, may not follow the assumed
shared structure and thus can ruin the overall model performance. More generally,
tasks may even cluster into groups with different shared structures.

In this paper, we propose a novel method named HEterogeneous-target Robust
MIxTure regression (Hermit), to address the above challenges in a unified framework.
Here we explain that we mainly consider the setting, where the multivariate outcomes
are collected from the same set of samples and share the same set of features because
ourmain objective is to learn potentially shared sample clusters and feature sets among
tasks. Rigorous theoretical analysis and performance guarantees are provided. It is
worthwhile to highlight the key aspects of our approach as follows.

– Our method handles mixed type of targets simultaneously. Each target follows
an exponential dispersion family model (Jorgensen 1987), so that multiple differ-
ent types of targets, e.g., continuous, binary, and counts, can be handled jointly.
The tasks are naturally integrated through sharing the same clustering struc-
ture arising from population heterogeneity. Our theory allows Hermit to cover
sub-exponential distributions, including the commonly-encountered Bernoulli,
Poisson and Gaussian as special cases.

– Our method imposes structural constraints in each mixture component of Hermit,
to deal with the curse of dimensionality and at the same time further take advantage
of the interrelationship of the tasks. In particular, the group �1 penalization is
adopted to perform shared feature selection among tasks within each mixture
component.

– Our method adopts three strategies for robustness. First, we adopt a mean-shift
regularization technique (She and Chen 2017) to detect the outlier samples auto-
matically and adjust for its outlying effects in model estimation. The second
strategy measures discrepancy of different conditional distributions to detect
anomaly tasks. The third strategy measures similarity between each pair of tasks
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to discover a clustered structure among tasks. Moreover, our model can work with
incomplete data and impute entry-wise missing values in the multiple targets.

The aforementioned key elements, e.g., multi-task learning, sample clustering,
shared feature selection, and anomaly detection, are integrated in a unified mixture
model setup, so that they can benefit from and reinforce each other. A generalized
Expectation-Maximization (GEM) (Neal and Hinton 1998) algorithm is developed
to conduct model estimation efficiently. For theoretical analysis, we generalize the
results of Städler et al. (2010) to establish non-asymptotic oracle performance bounds
for Hermit under a high-dimensional learning framework. This is not trivial due to
the non-convexity (due to the population heterogeneity) and the target heterogeneity
of the problem.

The rest of this paper is organized as follows. Section 2 provides a brief review of the
background and the related works to our method. Section 3 presents the details of the
proposedHermit model and the computational algorithm. Section 4 discusses several
extensions of our method. Section 5 shows the theoretical analysis. The empirical
evaluations are presented in Sect. 6, followed by the discussions and conclusions in
Sect. 7.

2 Background and related work

Let Y ∈ Y ⊂ R be the output target and x ∈ X ⊂ R
d the input feature vector. GLMs

(Nelder and Baker 1972) postulate that the conditional probability density function of
Y given x is

f (y | x, θ) = f (y | ϕ, φ) = exp

{
yϕ − b(ϕ)

a(φ)
+ c(y, φ)

}
,

where ϕ = xTβ with β being the regression coefficient vector, φ is a dispersion
parameter, and a(·), b(·), c(·) are known functions whose forms are determined by
the specific distribution. Here we use θ to denote the collection of all the unknown
parameters, i.e., θ = (β, φ). Least square regression, logistic regression and Poisson
regression are all special cases of GLMs. In the presence of population heterogeneity,
a standard finite mixture model of GLM postulates that the conditional probability
density function of Y given x is

f (y | x, θ) =
k∑

r=1

πr f (y | ϕr , φr ),

where ϕr = xTβr with βr being the regression coefficient vector for the r th mix-
ture component, and πr > 0 (r = 1, . . . , k) with

∑k
r=1 πr = 1. So FMR model

assumes that there are k sub-populations, each of which admits a different conditional
relationship between Y and x.

McLachlan and Peel (2004) introduced finite mixture of GLM models. Bartolucci
and Scaccia (2005) considered a special case that β1, . . . ,βk are different only in their
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first entries.Khalili andChen (2007) discussed using sparse penalties such asLasso and
SCAD to perform feature selection for FMRmodels and showed asymptotic properties
of the penalized estimators. Städler et al. (2010) reparameterized the finite mixture of
Gaussian regressionmodel and used �1 penalization to achieve bounded log-likelihood
and consistent feature selection. For multiple targets, Wedel and DeSarbo (1995) pro-
posed finite mixture of GLM models with multivariate targets. These methods only
consider the univariate-outcome case. Weruaga and Vía (2015) proposed multivariate
Gaussianmixture regression and used �1 penalty for sparseness of parameters. Besides
mixture of GLMs, there have been many works on mixture of other continuous distri-
butions such as t and Laplace distributions, mainly motivated by the needs of robust
estimation for handling heavy tailed or skewed continuous distribution; see, e.g.,Wang
et al. (2004), Doğru and Arslan (2017), Alfò et al. (2016), Doğru and Arslan (2016),
Lim et al. (2016), Bai et al. (2016). However, these methods assume that the targets
are of the same type, and only consider interrelationship among tasks with continuous
outcomes. Additionally, they all assumed that their FMR model is shared by all the
tasks.

In MTL, Kumar and Daumé (2012), Passos et al. (2012), Gong et al. (2012a), Chen
et al. (2011), Jacob et al. (2009), Chen et al. (2010) and He and Lawrence (2011)
proposed to tackle the problem that different groups of tasks share different informa-
tion, providing methods to handle anomaly tasks, clustered structure or graph-based
structure among tasks. Yang et al. (2009) proposed a multi-task framework to jointly
learn tasks with output types of Gaussian and multinomial. Zhang et al. (2012) pro-
posed a multi-modal multi-task model to predict clinical variables for regression and
categorical variable for classification jointly. Li et al. (2014) proposed a heterogeneous
multi-task learning framework to learn a pose-joint regressor and a sliding window
body-part detector in a deep network architecture simultaneously. Nevertheless, these
MTL methods cannot handle the heterogeneity of conditional relationship between
features and targets.

By contrast, the proposed FMR frameworkHermit is effective for handling sample
heterogeneity with mixed type of tasks whose interrelationship are harnessed by struc-
tural constraints. Non-asymptotic theoretical guarantees are provided. It also handles
anomaly tasks or clustered structure among tasks, for the case that not all the tasks
share the same FMR structure.

3 HEterogeneous-target Robust MIxTure regression

In this section, we first present the formulation of the main Hermitmodel, followed
by penalized likelihood estimators with sparse constraint and structural constraint,
respectively. We then introduce the associated optimization procedures, and describe
how to perform sample clustering and make imputation of the missing/unobserved
outcomes on incomplete multi-target outcomes based on the main model. Hyper-
parameter tuning is discussed at last. Various extensions of the main methodology,
including strategies to handle anomaly tasks or clustered tasks, will be introduced in
Sect. 4.
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3.1 Model formulation and estimation criterion

Let Y ∈ R
n×m be the output/target data matrix and X ∈ R

n×d the input/feature data
matrix, consisting of n independent samples (yi , xi ), i = 1, . . . , n. As such, there are
m different targets with a common set of d features. We allow Y to contain missing
values at random; define Ωi = { j ∈ {1, . . . ,m}: yi j is observed.} be the collection of
indices of observed outcome in the i th sample yi (Ωi �= ∅), for i = 1, . . . , n.

To model multiple types of targets, such as continuous, binary, count, etc., we allow
yi j to potentially follow different distributions in the exponential-dispersion family,
for each j = 1, . . . ,m. Specifically, we assume that given xi , the joint probability
density function of ỹi = {yi j ; j ∈ Ωi } is

f (ỹi | xi , θ) = f (yi j , j ∈ Ωi | xi , θ) =
k∑

r=1

πr

∏
j∈Ωi

f (yi j | ϕi jr , φ jr ), (1)

where

f (yi j | ϕi jr , φ jr ) = exp

{
yi jϕi jr − b j (ϕi jr )

a j (φ jr )
+ c j (yi j , φ jr )

}
,

ϕi jr is the natural parameter for the i th sample of the j th target in the r th mixture com-
ponent, φ jr is the dispersion parameter of the j th target in the r th mixture component,
and the functions a j , b j , c j ( j = 1, . . . ,m) are determined by the specific distribution
of the j th target. Here, the key assumption is that them tasks all correspond to the same
cluster structure (e.g., the m tasks all have k clusters) determined by the underlying
population heterogeneity; given the shared cluster label (e.g., r ), the tasks within each
mixture component then become independent of each other (depicted by the product
of their probability density functions). As such, by allowing cluster label sharing, the
model provides an effective way to genuinely integrate the learning of the multiple
tasks.

Following the setupofGLMs,we assumea linear structure in the natural parameters,
i.e.,

ϕi jr = xiβ jr , (2)

where β jr is the regression coefficient vector of the j th response in the r th mixture
component. Since xi is possibly of high dimensionality, the β jr s are potentially sparse
vectors. For example, when the β jr s for j = 1, . . . ,m share the same sparsity pattern,
the tasks share the same set of relevant features within each mixture component. For
r = 1, . . . , k, write βr ∈ R

d×m = [β1r ,β2r , . . . ,βmr ] and φr = [φ1r , . . . , φmr ]T .
Also write β ∈ R

(d×m)×k = [β1, . . . ,βk]. Let θ = {β, φ1, . . . , φk, π1, . . . , πk}
collecting all the unknown parameters, with the parameter space given by Θ =
R

(d×m)×k ×R
m×k
>0 ×Π , whereΠ = {π;πr > 0 for r = 1, . . . , k and

∑k
r=1 πr = 1}.

The data log-likelihood of the proposed model is

�(θ | Y,X) =
n∑

i=1

log

⎛
⎝ k∑

r=1

πr

∏
j∈Ωi

exp

{
yi jϕi jr − b j (ϕi jr )

a j (φ jr )
+ c j (yi j , φ jr )

}⎞⎠ .

(3)
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The missing values in Y simply do not contribute to the likelihood, which follows the
same spirit as in matrix completion (Candès and Recht 2009). The proposed model
indeed possesses a genuinemultivariate flavor, as the different outcomes share the same
underlying latent cluster pattern of the heterogeneous population. We then propose to
estimate θ by the following penalized likelihood criterion:

θ̂ = argminθ∈Θ − �(θ | Y,X)/n + R(β; λ), (4)

whereR(β; λ) is some certain penalty term on the regression coefficients with λ being
a tuning parameter.

We thus name our proposed method the HEterogeneous-target Robust MIxTure
regression (Hermit). The R(β; λ) can be flexibly chosen based on specific needs
of feature selection. The first sparse penalties adopted by our model is the �1 norm
(lasso-type) penalty,

R(β; λ, π) = λ

k∑
r=1

π
γ
r ‖βr‖1, (5)

whereλ is the tuning parameter, ‖·‖1 is the entry-wise �1 norm, andπ
γ
r s (r = 1, . . . , k)

are the penalty weights with γ ∈ {0, 1/2, 1} being a pre-specified constant. Here the
penalty also depends on the unknown mixture proportions π ; when the cluster sizes
are expected to be imbalanced, using this weighted penalization with some γ > 0
is preferred (Städler et al. 2010). This entry-wise regularization approach allows the
tasks to have independent set of relevant features. Alternatively, in order to enhance
the integrative learning and potentially boost the performance of clustering, it could
be beneficial to encourage the internal similarity within each sub-population. Then
certain group-wise regularization of the features could be considered,which arewidely
adopted in multi-task learning. In particular, we consider a component-specific group
sparsity pattern to achieve shared feature selection among different tasks, in which the
group �1 norm penalty is used (Gong et al. 2012a; Jalali et al. 2010),

R(β; λ, π) = λ

k∑
r=1

π
γ
r ‖βr‖1,2, (6)

where ‖ · ‖1,2 denotes the sum of the row �2 norms of the enclosed matrix, and the
weights are constructed as in (5). The shared feature set in each sub-population can be
used to characterize the sub-population and render thewholemodelmore interpretable.

3.2 Optimization

We propose a generalized EM (GEM) algorithm (Dempster et al. 1977) to solve the
minimization problem in (4). For each i = 1, . . . , n, define (δi,1, . . . , δi,k) be a set of
latent indicator variables, where δi,r = 1 if the i th sample (yi , xi ) belongs to the r th
component of the mixture model (1) and δi,r = 0 otherwise. So

∑k
r=1 δi,r = 1, ∀i .

These indicators are not observed since the cluster labels of the samples are unknown.
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Let δ denote the collection of all the indicator variables. By treating δ as missing, the
EM algorithm proceeds by iteratively optimizing the conditional expectation of the
complete log-likelihood criterion.

The complete log-likelihood is given by

�c(θ | Y,X, δ) =
k∑

r=1

{ n∑
i=1

∑
j∈Ωi

δi,r

(
yi jϕi jr − b j (ϕi jr )

a j (φ jr )
+ c j (yi j , φ jr )

)

+
n∑

i=1

δi,r log(πr )

}
,

where ϕi jr = xiβ jr , for i = 1, . . . , n, j = 1, . . . ,m, and r = 1, . . . , k. The con-
ditional expectation of the penalized complete negative log-likelihood is then given
by

Qpen(θ | θ ′) = −E[�c(θ | Y,X, δ)|Y,X, θ ′]/n + R(β; λ, π),

where R(β; λ, π) can be any of the penalties in (5) or (6). It is easy to show that
deriving Qpen(θ | θ ′) boils down to the computation of E[δi,r | Y,X, θ ′], which
admits an explicit form.

The EM algorithm proceeds as follows. Let θ(0) be some given initial values. We
repeat the following steps for t = 0, 1, 2, . . ., until convergence of the parameters or
the pre-specified maximum number of iteration Tout is reached.

E-Step Compute ρ̂
(t+1)
i,r = E[δi,r | Y,X, θ(t)]. For ϕ

(t)
i jr = xiβ

(t)
jr ,

ρ̂
(t+1)
i,r

=
π

(t)
r
∏

j∈Ωi
exp

{(
yi jϕ

(t)
i jr − b j

(
ϕ

(t)
i jr

))
/a j

(
φ

(t)
jr

)
+ c j

(
yi j , φ

(t)
jr

)}
∑k

r ′=1 π
(t)
r ′
∏

j∈Ωi
exp

{(
yi j g

(t)
i jr ′ − b j

(
g(t)
i jr ′
))

/a j

(
φ

(t)
jr ′
)

+ c j
(
yi j , φ

(t)
jr ′
)} .

(7)

M-StepMinimize Qpen(θ | θ(t)).
(a) Update π = (π1, . . . , πk) by solving

π(t+1) = argmin
π

−1

n

k∑
r=1

n∑
i=1

ρ̂
(t+1)
i,r log(πr ) + R(β(t); λ, π)

s.t.
k∑

r=1

πr = 1, πr > 0,∀r.

123



Robust finite mixture regression

(b) Update β,Φ.

(β(t+1),Φ(t+1)) = argmin
β,Φ

−1

n

k∑
r=1

n∑
i=1

ρ̂
(t+1)
i,r

∑
j∈Ωi

(
yi jxiβ jr − b j (xiβ jr )

a j (φ jr )
+ c j (yi j , φ jr )

)
+ R(β; λ, π(t+1)).

For the problem in (a), Städler et al. (2010) proposed a procedure to lower the objec-
tive function by a feasible point, and we find that simply setting π

(t+1)
r =∑n

i=1 ρ̂i,r/n
is good enough. For the problem in b), we use an accelerated proximal gradient (APG)
method introduced in Nesterov et al. (2007) with the maximum number of iteration of
Tin . The update steps by proximal operators correspond to the chosen penalty form.
For the entry-wise �1 norm penalty in (5),

β̂
(t+1)
r = sign

(
β̃

(t)
r

)
◦ max{0, |̃β(t)

r | − τλ(π(t+1)
r )γ }, (8)

where ◦ denotes entry-wise product, β̃
(t)
r = β(t)

r + τ
β(t)
r , τ denotes the step size,

and 
β(t)
r denotes the update direction of β(t)

r determined by APG. For the group �1
norm penalty in (6),

β̂
(t+1)
r, j = β̃

(t)
r, j ◦ max

{
0, 1 − τλ

(
π(t+1)
r

)γ

/‖β̃(t)
r, j‖2

}
,

where βr, j denotes the j th column of βr . We adopt the active set algorithm in Städler
et al. (2010) to speed up the computation.

The time complexity of our algorithm using the speed up technique is
O(Tout kmnsTin) with s being the number of non-zero parameters. The algorithm
performs well in practice, and we have not observed any convergence issues in our
extensive numerical studies.

3.3 Clustering of samples and imputation of missing targets

From the model estimation, we can get estimates of both the conditional probabilities
p(δi,r = 1 | yi j ′ , j ′ ∈ Ωi , xi , θ) and the conditional means E[Yi j | xi , θ, δi,r = 1],
where E[Yi j | xi , θ, δi,r = 1] = μ j (ϕi jr ) = b′

j (xiβ jr ). Specifically, the conditional

probabilities can be estimated by p(δi,r = 1 | yi j ′ , j ′ ∈ Ωi , xi , θ̂ ) which corresponds
to (7), taking t = Tout . The conditional expectations can be estimated as E[Yi j |
xi , θ̂ , δi,r = 1] = b′

j (xi β̂ jr ).
For clustering the samples, we adopt the Bayes rule, i.e., for i = 1, . . . , n,

r̂i = argmax
r

p(δi,r = 1 | yi j ′ , j ′ ∈ Ωi , xi , θ̂ ). (9)
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Following the idea of Jacobs et al. (1991), we propose to make imputation for the
missing outcomes by

ŷi j =
k∑

r=1

p(δi,r = 1 | yi j ′ , j ′ ∈ Ωi , xi , θ̂ )E[Y j | xi , θ̂ , δi,r = 1], for j /∈ Ωi . (10)

3.4 Tuning hyper-parameters

Unless otherwise specified, all the hyper-parameters, including regularization coeffi-
cients λs and the number of clusters k, are tuned to maximize the data log-likelihood
in (3) on the held-out validation data set. In other words, we fit models on training
data with different specific hyper-parameter settings, and then the optimal model is
chosen as the one that gives the highest log-likelihood in (3) of the held-out validation
data set. This approach is fairly standard and has been widely used in existing works
(Städler et al. 2010). Moreover, cross validation and various information criteria (Bhat
and Kumar 2010; Aho et al. 2014) can also be applied to determine hyper-parameters.

4 Extensions

We provide several extensions of the proposed Hermit approach described in Sect. 3,
including robust estimation against outlier samples, handling anomaly tasks or clus-
tered structure among tasks, and modeling mixture probabilities for feature-based
prediction.

4.1 Robust estimation

To perform robust estimation for parameters in the presence of outlier samples, we pro-
pose to adopt themean shift penalization approach (She andOwen 2011). Specifically,
we extend the natural parameter model to the following additive form,

ϕi jr = xiβ jr + ζi jr , (11)

where ζi jr is a case-specific mean shift parameter to capture the potential deviation
from the linear model. Apparently, when ζi jr is allowed to vary without any constraint,
it can make the model fit as perfect as possible for every yi jr . The merit of this
approach is realized by assuming certain sparsity structure of the ζi jr s, so that only a
few of them have nonzero values corresponding to anomalies. Write ζ r ∈ R

n×m =
[ζ 1r , ζ 2r , . . . , ζmr ] for r = 1, . . . , k, and ζ ∈ R

(n×m)×k = [ζ 1, . . . , ζ r ]. We can then
conduct joint model estimation and outlier detection by extending (4) to

(θ̂ , ζ̂ ) = argminθ∈Θ,ζ − �(θ | Y,X)/n + R(β; λ1) + R(ζ ; λ2), (12)

where, for example, the penalty on ζ can be chosen as the group �1 penalty,
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R(ζ ; λ2) = λ2

n∑
i=1

√∑
jr

ζ 2
i jr , (13)

so that entries of ζ are nonzero for only a few data samples.
The proposed GEM algorithm can be readily extended to handle the inclusion of

ζ , for which we omit the details.

4.2 Handling anomaly tasks

Besides outlier samples, certain tasks, referred to as anomaly tasks, may not follow
the assumed shared structure and thus can ruin the overall model performance. To
handle anomaly tasks, though it is also intuitive to adopt the approach above, our
numerical study suggests that its performance is sensitive to the tuning parameters.
Here, we adopt the idea of Koller (1996), by utilizing the estimated condi-
tional probabilities to measure how well a task is concordant with the estimated
mixture structure. Consider the hth task. The main idea is to measure the dis-
crepancy between p(δir = 1 | yi j , j ∈ Ωi , xi , θ), the conditional probability
based on data from all observed targets, and p(δir = 1 | yih, xi , θ), the condi-
tional probability based on only the hth task. If hth task is an anomaly task, it is
expected that the two conditional probabilities would differ more from each other
(Koller 1996; Law et al. 2002).

For r = 1, . . . , k, i = 1, . . . , n, let

PΩ,ir = p(δir = 1 | yi j , j ∈ Ωi , xi , θ̂ ) = π̂r
∏

j∈Ωi
f (yi j | ϕ̂i jr , φ̂ jr )∑k

r ′=1 π̂r ′
∏

j∈Ωi
f (yi j | ϕ̂i jr ′ , φ̂ jr ′)

,

Ph,ir = p(δir = 1 | yih, xi , θ̂ ) = π̂r f (yih | ϕ̂ihr , φ̂hr )∑k
r ′=1 π̂r ′ f (yih | ϕ̂ihr ′ , φ̂hr ′)

. (14)

Define PΩ = [PΩ,ir ]n×k and Ph = [Ph,ir ]n×k . Then we define the concordant score
of the hth task as

score(h) = −(DKL(PΩ ‖ Ph) + DKL(Ph ‖ PΩ))/(2n), h = 1, . . . ,m, (15)

where DKL is thewidely usedKullback–Leibler divergence (Cover andThomas2012).
The tasks can thenbe rankedbasedon their concordant scores.As such, the detection

of anomaly tasks boils down to a one-dimensional outlier detection problem. After
anomaly tasks are detected, their FMR models can be built.

4.3 Handling clustered structure among tasks

In practice, tasks may be clustered into groups such that each task group has its own
model structure. Here we assume that each cluster of tasks shares a FMR structure
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defined in (1), and propose to construct a similarity matrix to discover the potential
cluster pattern among tasks.

We consider a two-stage strategy. First, each task learns a FMR model on the
training data independently with the same pre-fixed k. Then we get Ph = [Ph,ir ]n×k

for all h = 1, . . . ,m, where

Ph,ir = p(δh,ir = 1 | yih, xi , θ̂h) = π̂hr f (yih | ϕ̂ihr , φ̂hr )∑k
r ′=1 π̂hr ′ f (yih | ϕ̂ihr ′ , φ̂hr ′)

,

and δh,ir (i = 1, . . . , n, r = 1, . . . , k) and π̂hr (r = 1, . . . , k) are the latent variables
and the estimated prior probabilities of the hth task, respectively.

Second,we adoptNormalizedMutual Information (NMI) (Strehl andGhosh 2002a)
to measure the similarity between each pair of tasks. We choose NMI instead of
Kullback–Leibler divergence because NMI can handle the case that the orders of
clusters of two k-cluster structures are different. Specifically, given two methods to
estimate latent variables, which are denoted by method u and method v, let Pu =
[Pu,ir ]n×k and Pv = [Pv,ir ]n×k denote the estimated probability of latent variables of
method u and method v, respectively, where Pu,ir = p(δu,ir = 1), Pv,ir = p(δv,ir =
1) for i = 1, . . . , n, r = 1, . . . , k. NMI is defined as

NMI (Pu,Pv) = I (Pu,Pv)√
I (Pu,Pu)I (Pv,Pv)

, u = 1, . . . ,m, v = 1, . . . ,m, (16)

where I (Pu,Pv) denotes the mutual information between Pu,Pv such that

I (Pu,Pv) =
k∑

a=1

k∑
b=1

p(δu,a = 1, δv,b = 1) log

(
p(δu,a = 1, δv,b = 1)

p(δu,a = 1)p(δv,b = 1)

)
.

Following Strehl and Ghosh (2002a), we approximate p(δu,a = 1, δv,b = 1),
p(δu,a = 1) and p(δv,b = 1) by

p(δu,a = 1) ≈ 1

n

n∑
i=1

p(δu,ia = 1) = 1

n

n∑
i=1

Pu,ia,

p(δv,b = 1) ≈ 1

n

n∑
i=1

p(δv,ib = 1) = 1

n

n∑
i=1

Pv,ib,

p(δu,a = 1, δv,b = 1) ≈ 1

n

n∑
i=1

p(δu,ia = 1, δv,ib = 1)

≈ 1

n

n∑
i=1

p(δu,ia = 1)p(δv,ib = 1) = 1

n

n∑
i=1

Pu,ia Pv,ib.

As such, given the estimatedmodels θ̂u, θ̂v for the uth and the vth task, respectively,
we treat p(δu,ir = 1 | yiu, xi , θ̂u) and p(δv,ir = 1 | yiv, xi , θ̂v) as p(δu,ir = 1) and
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p(δv,ir = 1), respectively, for i = 1, . . . , n, r = 1, . . . , k. Then NMI between each
pair of tasks are computed by (16). We note that for simplicity we set the pre-fixed k
to be the same, but in general k can be different for different tasks by the definition of
Mutual Information.

Given the similarity between each pair of tasks, any similarity-based clustering
method can be applied to clusterm tasks into groups. Empirically, the performance of
task clustering is not sensitive to the pre-fixed k. As such, we set the pre-fixed k to be
20 in this paper. We then apply the proposed Hermit approach separately for each
task group.

4.4 Modeling mixture probabilities

In real-applications, one may require to use xi only to infer the latent variables δi,r and
then to predict yi , for i = 1, . . . , n, r = 1, . . . , k. Here we further extend our method
following the idea of Mixture-Of-Experts (MOE) (Yuksel et al. 2012) model; the only
modification is that πr in (1) is assumed to be function of xi , for i = 1, . . . , n.

To be specific, let α = [α1, . . . ,αk] ∈ R
d×k collect regression coefficient vectors

for a multinomial linear model. We assume that given xi , the joint probability density
function of ỹi = {yi j ; j ∈ Ωi } in (1) is replaced by

f (ỹi | xi , θ,α) = f (yi j , j ∈ Ωi | xi , θ,α)

=
k∑

r=1

p(δi,r = 1 | xi , αr )
∏
j∈Ωi

f (yi j | ϕi jr , φ jr ),

where

p(δi,r = 1 | xi , αr ) = exp(xiαr )∑k
r ′=1 exp(xiαr ′)

(17)

is referred to as the gating probability. All the other terms are defined the same as
in (1).

Let θ2 = {β, φ1, . . . , φk}, with the parameter space Θ2 = R
(d×m)×k ×R

m×k
>0 . The

data log-likelihood of the MOE model is

�(θ2,α | Y,X) =
n∑

i=1

log

( k∑
r=1

p(δi,r = 1 | xi , αr )
∏
j∈Ωi

exp

{
yi jϕi jr − b j (ϕi jr )

a j (φ jr )
+ c j (yi j , φ jr )

})
.

(18)

The model estimation is conducted by extending (4) to

(θ̂2, α̂) = argminθ2∈Θ2,α
− �(θ2,α | Y,X) + R(β; λ1)/n + R(α; λ2), (19)
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where, for example, the penalty on α can be chosen as the lasso type penalty,

R(α; λ2) = λ2‖α‖1. (20)

The minimization problem in (19) is also solved by GEM, for which the optimiza-
tion procedure is similar to that in Sect. 3.2. The differences occur at the E-step:

ρ̂
(t+1)
i,r = p(δi,r = 1 | xi , α(t)

r )
∏

j∈Ωi
f (yi j | ϕ

(t)
i jr , φ

(t)
jr )∑k

r ′=1 p(δi,r ′ = 1 | xi , α(t)
r ′ )
∏

j∈Ωi
f (yi j | ϕ

(t)
i jr ′ , φ

(t)
jr ′)

, (21)

where f (yi j | ϕ
(t)
i jr , φ

(t)
jr ) = exp{(yi jϕ(t)

i jr − b j (ϕ
(t)
i jr ))/a j (φ

(t)
jr ) + c j (yi j , φ

(t)
jr )}, at the

optimization for α:

α(t+1) = argmin
α

−1

n

k∑
r=1

n∑
i=1

ρ̂
(t+1)
i,r log p(δi,r = 1 | xi , αr ) + R(α(t); λ2), (22)

and at the computation of π : π
(t+1)
r = 1

n

∑n
i=1 p(δi,r = 1 | xi , α

(t+1)
r ) for r =

1, . . . , k.

5 Theoretical analysis

We study the estimation and variable selection performance of Hermit under the
high-dimensional framework with d 
 n. Both m and k, on the other hand, are
considered as fixed. This is because usually, the number of interested targets and the
number of desired clusters are not large in many real problems. Here we only present
the setup and the main results on non-asymptotic oracle inequalities to bound the
excess risk and false selection, leaving detailed derivations in the “Appendix” section.
Our results generalize Städler et al. (2010) to cover mixture regression models with
(1) multivariate, heterogeneous (mixed-type) and incomplete response and (2) shared
feature grouping sparse structure. This is not trivial due to the non-convexity and the
triple heterogeneity of the problem. It turns out that additional condition on the tail
behaviors of the conditional density f (y | x, θ) is required. Fortunately, the required
conditions are still satisfied by a broad range of distributions.

5.1 Notations and conditions on the conditional density

We firstly introduce some notations. Denote the regression parameters that are subject
to regularization by β = vec(β1, . . . ,βk), φ = vec(Φ1, . . . , Φk), where vec(·) is
the vectorization operator. The other parameters in the mixture model are denoted
by η = vec(log(φ), log(π)), where log(·) is entry-wisely applied. Denote the true
parameter by θ0 = (β0, Φ0,1, . . . , Φ0,k, π0,1, π0,k−1) to be estimated under the FMR
model defined in (1) and (2). In the sequel, we always use subscripts “0” to represent
parameters or structures under the true model. To study sparsity recovery, denote the
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set of indices of non-zero entries of the true parameter by S. We use � to indicate that
the inequality holds up to some multiplicative numerical constants. To focus on the
main idea, we consider the case of γ = 0 in the following analysis.

We define average excess risk for fixed design points x1, . . . , xn based onKullback–
Leibler divergence as

ε̄(θ | θ0) = 1

n

n∑
i=1

ε(θ | xi , θ0), ε(θ | xi , θ0)

= −
∫

log

(
f (ỹi | xi , θ)

f (ỹi | xi , θ0)
)

f (ỹi | xi , θ0)dỹi ,

where f (ỹi | xi , θ) is defined in (1).
To impose the conditions on f (ỹi | xi , θ), denote ψi = vec(ϕi , η), where ϕi =

vec({ϕi jr ; j ∈ Ωi , r = 1, . . . , k}), and denote ψ = vec(ψ1, . . . , ψn). As such, we
may write f (ỹi | xi , θ) = f (ỹi | ψi ), �(θ | ỹi , xi ) = log f (ỹi | xi , θ) = �(ψi | ỹi ),
and ε̄(ψ | ψ0) = 1

n

∑n
i=1 ε(ψi | ψ0,i ) = ε̄(θ | θ0).

Without loss of much generality, the model parameters are assumed to be in a
bounded parameter space for a constant K :

Θ̃ ⊂
{
θ; max

i=1,...,n
‖ϕi (xi ,β)‖∞ ≤ K , max

j=1,...,m
| log a j (φ)| ≤ K ,

max
j=1,...,m

log |b′
j (φ)| ≤ K , ‖ logφ‖∞ ≤ K ,

− K ≤ logπ1 ≤ 0, . . . ,−K ≤ logπk−1 ≤ 0,
k−1∑
r=1

πr < 1, πk = 1 −
k−1∑
r=1

πr

}
.

(23)

We present the following conditions on f (ỹi | ψi ).

Condition 1 For some function G1(·) ∈ R, for i = 1, . . . , n,

sup
θ∈Θ̃

∥∥∥∥∂�(ψi | ỹi )
∂ψi

∥∥∥∥∞
≤ G1(ỹi ).

Condition 2 For a constant c1 ≥ 0, and some constants c2, c3, c4, c5 ≥ 0 depending
K , and for M > c4, we assume for i = 1, . . . , n,

E[|G1(ỹi )|1{|G1(ỹi )| > M}] ≤
[
c3

(
M

c2

)c′

+ c5

]
exp

{
−
(
M

c2

)1/c1}
,

E[|G1(ỹi )|21{|G1(ỹi )| > M}] ≤
[
c3

(
M

c2

)c′

+ c5

]2
exp

{
−2

(
M

c2

)1/c1}
,

where ỹi = {yi j ; j ∈ Ωi }, c′ = 2 + 3/c1 and 1{·} denotes the indicator function.
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Condition 3 It holds that,

min
i=1,...,n

Λmin(I (ψ0,i )) > 1/c0 > 0,

where c0 is a constant, Λ2
min(A) is the smallest eigenvalue of a symmetric, positive

semi-definite matrix A and for i = 1, . . . , n, I (ψ0,i ) is the Fisher information matrix
such that

I (ψ0,i ) = −
∫

∂2�(ψ0,i | ỹi )
∂ψ0,i∂ψT

0,i

f (ỹi | ψ0,i )dỹi .

The first condition follows from Städler et al. (2010), which aims to bound ∂�(ψi |
ỹi )/∂ψi with known ỹi , for i = 1, . . . , n. The second condition is about the tail
behaviors of f (ỹi | xi , θ). The third condition depicts the local convexity of � at the
point θ0. Condition 1 and 2 can cover a broad range of distributions for f , including but
not limited to mixture of sub-exponential distributions, such as our proposed Hermit
model with known dispersion parameters, c.f., Lemma 1.

Lemma 1 Condition 1 and 2 hold for the heterogeneous mixture distribution f (ỹi |
xi , θ) defined in (1) with known dispersion parameters.

The following two quantities will be used.

λ0 = √
mkMn log n

√
log(d ∨ n)

n
, Mn = c2(log n)c1, (24)

where c1, c2 are the same constants as in Condition 2. More specifically, we choose
c1 = 1/2, 0, 1 for Gaussian, Bernoulli and Poisson task, respectively.

5.2 Results for Lasso-type estimator

Consider first the penalized estimator defined in (4) with the �1 penalty in (5). Follow-
ing Bickel et al. (2009) and Städler et al. (2010), we impose the following restricted
eigenvalue condition on the design.

Condition 4 (Restricted eigenvalue condition) For all β ∈ R
dmk satisfying ‖βSc‖1 ≤

6‖βS‖1, it holds that for some constant κ ≥ 1,

‖βS‖22 ≤ κ2‖ϕ‖2Qn
= κ2

n

n∑
i=1

∑
j∈Ωi

k∑
r=1

(xiβ jr )
2.

Theorem 1 Consider theHermit model in (1)with θ0 ∈ Θ̃ , and consider the penal-
ized estimator (4) with the �1 penalty in (5). Assume Conditions 1–4 hold. Suppose
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√
mk � n/Mn, and take λ > 2Tλ0 for some constant T > 1. For some constant

c > 0 and large enough n, with probability

1 − c exp

(
− log2 n log(d ∨ n)

c

)
− 1

n
, (25)

we have
ε̄(θ̂ | θ0) + 2(λ − Tλ0)‖β̂Sc‖1 ≤ 4(λ + Tλ0)

2κ2c20s (26)

where s is the number of non-zero parameters of w0.

Theorem 1 suggests that the average excess risk has a convergence rate of the order
O(sλ20) = O((log n)2+2c1 log(d ∨ n)smk/n), by taking λ = 2Tλ0 and using λ0 and
Mn as defined in (24). Also, the degree of false selectionmeasured by ‖β̂Sc‖1 converge
to zero at rate O(sλ0) = O(s

√
(log n)2+2c1 log(d ∨ n)mk/n).

Similar to Städler et al. (2010), under weaker conditions without the restricted
eigenvalue assumption on the design, we still achieve the consistency for the average
excess risk.

Theorem 2 Consider the Hermit model in (1) with θ0 ∈ Θ̃ , and consider the penal-
ized estimator (4) with the �1 penalty in (5). Assume Conditions 1–3 hold. Suppose

‖β0‖1 = o

(√
n/((log n)2+2c1 log(d ∨ n)mk)

)
,

√
mk = o

(√
n/((log n)2+2c1 log(d ∨ n))

)

as n → ∞, and take λ = C
√

(log n)2+2c1 log(d ∨ n)mk/n for some constant C > 0
sufficiently large. For some constant c > 0 and large enough n, with the following

probability 1 − c exp
(
− (log n)2 log(d∨n)

c

)
− 1

n , we have ε̄(θ̂ | θ0) = oP (1).

5.3 Results for group-Lasso type estimator

Consider the following general form of the group �1 penalty,

R(β) = λ

P∑
p=1

‖βGp
‖F , (27)

where G1, . . . ,GP are index collections such that Gp
⋂

Gp′ = ∅ for p �= p′ and⋃P
p=1 Gp = ⋃d

l=1
⋃m

j=1
⋃k

r=1(l, j, r) equals the universal set of indices of β ∈
R

(d×m)×k , i.e., βGp
is the pth group of β. ‖ · ‖F denotes the Frobenius norm and here

for p = 1, . . . , P , ‖βGp
‖F =

√∑
(l, j,r)∈Gp

w2
l jr . This penalty form generalizes the

row-wise group sparsity in (6).
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Denote I = {p : β0,Gp
= 0} and Ic = {p : β0,Gp

�= 0}, where β0,Gp
is the pth

group of β0. Now denote by s the size of I, with some abuse of notation. We impose
the following group-version restricted eigenvalue condition.

Condition 5 For all β ∈ R
(d×m)×k satisfying

∑
p∈Ic

‖βGp
‖F ≤ 6

∑
p∈I

‖βGp
‖F ,

it holds that for some constant κ ≥ 1,

∑
p∈I

‖βGp
‖2F ≤ κ2‖ϕ‖2Qn

.

Theorem 3 Consider the Hermit model in (1) with θ0 ∈ Θ̃ , and consider the penal-
ized estimator (4) with the group �1 penalty in (27).

(a) Assume Conditions 1–3 and 5 hold. Suppose
√
mk � n/Mn, and take λ > 2Tλ0

for some constant T > 1. For some constant c > 0 and large enough n, with the

following probability 1 − c exp
(
− (log n)2 log(d∨n)

c

)
− 1

n , we have

ε̄(θ̂ | θ0) + 2(λ − Tλ0)
∑
p∈Ic

‖β̂Gp
‖F ≤ 4(λ + Tλ0)

2κ2c20s.

(b) Assume Conditions 1–3 hold (without Condition 5), and assume

P∑
p=1

‖β0,Gp
‖F = o

(√
n/((log n)2+2c1 log(d ∨ n)mk)

)
,

√
mk = o

(√
n/((log n)2+2c1 log(d ∨ n))

)

as n → ∞. Let λ = C
√

(log n)2+2c1 log(d ∨ n)mk/n for some C > 0 sufficiently
large. Then for some constant c > 0 and large enough n, with the following

probability 1 − c exp
(
− (log n)2 log(d∨n)

c

)
− 1

n , we have ε̄(θ̂ | θ0) = oP (1).

So the average excess risk has a convergence rate of O(sλ20), and the degree of false

group selection, as measured by
∑

p∈Ic ‖β̂Gp
‖F , converges to zero at rate O(sλ0).

The estimator in (4) using other group �1 penalties such as (6) are special cases, so
the results of Theorem 3 still apply.
Remark Our results can be extended to the mean-shifted natural parameter model as
in (11), with a modified restricted eigenvalue condition. See the “Appendix” section
for some details.
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6 Experiments

In this section, we present empirical studies on both synthetic and real-world data sets.

6.1 Methods for comparison

We evaluate the following versions of the proposed Hermit approach.

(1) Single task learning (Single): It is a special case of the Hermit estimator (4)
with (5), where each task is learned separately.

(2) Separately learning (Sep): It is a special case of theHermit estimator (4) with (5),
where each type (Gaussian, Bernoulli or Poisson) of tasks is learned separately.

(3) Mixed learning with entry-wise sparsity (Mix): It is the proposed Hermit esti-
mator (4) with (5) where all the tasks are jointly learned. To compare with Sep,
we allow different tuning parameters for different types of outcomes.

(4) Mixed learning with group sparsity (Mix GS): It is the proposed Hermit estima-
tor (4) with (6).

(5) Mixed learning Mixture-Of-Experts model with entry-wise sparsity (Mix MOE):
It is the proposed Hermit estimator (19) with (5) and (20).

(6) Mixed learning Mixture-Of-Experts model with group sparsity (Mix MOE GS):
It is the proposed Hermit estimator (19) with (6) and (20).

Besides the above FMR methods, we also evaluate several non-FMR multi-task
methods below for comparison, some of which handle certain kinds of heterogeneities,
such as anomaly tasks, clustered tasks and heterogeneous responses. Since they are
non-FMR, they learn a single regression coefficient matrix β ∈ R

d×m .

– LASSO �1-norm multi-task regression with λ‖β‖1 as penalty. Each type of tasks
are learned independently. It is a special case of Sep when pre-fixed k̂ = 1.

– Sep L2 ridge multi-task regression with λ‖β‖2F as penalty. Each type of tasks are
learned independently.

– Group LASSO �1,2-norm multi-task regression with λ‖β‖1,2 as penalty (Yang
et al. 2009), which handles heterogeneous responses, and is a special case of Mix
GS when pre-fixed k̂ = 1.

– TraceReg trace-norm multi-task regression (Ji and Ye 2009).
– Dirty dirty model multi-task regression with λ1‖S‖1 + λ2‖L‖1,∞(β = L + S)

as penalty (Jalali et al. 2010), handling entry-wise heterogeneity in β comparing
with Group LASSO.

– MSMTFL multi-stage multi-task feature learning (Gong et al. 2012b) whose
penalty is λ1

∑d
l=1 min(‖βl‖1, λ2), where βl denotes the lth row of β. It also

handles entry-wise heterogeneity in β comparing with Group LASSO.
– SparseTrace multi-task regression, learning sparse and low-rank patterns with

λ1‖S‖1+λ2‖L‖∗(β = L+S) as penalty (Chen et al. 2012a), handling entry-wise
heterogeneity in β comparing with TraceReg, where ‖ · ‖∗ denotes the nuclear
norm of the enclosed matrix.

– rMTFL robust multi-task feature learning with λ1‖S‖2,1 +λ2‖L‖1,2(β = L+S)

as penalty (Gong et al. 2012a), handling anomaly tasks comparing with Group
LASSO.
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– RMTL robust multi-task regression with λ1‖S‖2,1 + λ2‖L‖∗(β = L + S) as
penalty (Chen et al. 2011), handling anomaly tasks comparing with TraceReg.

– CMTL clustered multi-task learning (Zhou et al. 2011), handling clustered tasks.
– GO-MTLmulti-task regression, handling overlapping clustered tasks (Kumar and
Daumé 2012).

6.2 Experimental setting

In our experiments, for the E-step of GEM, we follow Städler et al. (2010) to initialize
ρ. For the M-step, we initialize the entries of β from N (0, 10−10). We fix σ = 1 for
Gaussian tasks, and set γ = 1. In the APG algorithm, step size is initialized by the
Barzilai–Borwein rule (Barzilai and Borwein 1988) and updated by the TFOCS-style
backtracking (Becker et al. 2011).

We terminate the APG algorithm with maximum iteration step Tin = 200 or when
the relative �2-norm distance of two consecutive parameters is less than 10−6. We
terminate the GEM with maximum iteration step Tout = 50, or when the relative
change of two consecutive −�(θ | Y,X)/n is less than 10−6 or when the relative
�∞-norm distance of two consecutive parameters is less than 10−3.

In the experiments on both simulated and real-world data sets, we partition the
entire data set into three parts: a training set for model fitting, a validation set for
tuning hyper-parameters and a testing set for testing the generalization performance
of the selected models. The only exception is Sect. 6.4.1, where we do not generate
testing data sets because the models are evaluated by comparing the estimation results
to the ground truth.

In hyper-parameter tuning, the regularization parameters, i.e., λs, are tuned from
[1e−6, 1e3], and the number of clusters are tuned from {1, . . . , 10}. Hyper-parameters
of the baseline methods are tuned according to the descriptions in their respective
references.

All the experiments are replicated 100 times under each model setting.

6.3 Evaluation metrics

The prediction of latent variable is evaluated by Normalized Mutual Information
(NMI) (Strehl and Ghosh 2002b; Fern and Brodley 2003; Strehl and Ghosh 2002a). In
detail, we compute NMI scores by (16), treating estimated conditional probabilities
[PΩ,ir ]n×k defined in (14) and the ground truth latent variables [δi,r ]n×k as [P1,ir ]n×k

and [P2,ir ]n×k , respectively.
For feature selection, firstly, the estimated components are reordered to make the

best match with the true components. Then feature selection is evaluated by Area
Under the ROC Curve (AUC) which is measured by the Wilcoxon–Mann–Whitney
statistic provided byHanley andMcNeil (1982). Concretely, absolute values of vector-
ized estimated regression parameters, i.e., β̂abs = |vec(β̂)|, and binarized vectorized
ground truth regression parameters, i.e., β0,sign = sign(|vec(β0)|), are used as inputs
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to AUC, where β0 denotes the ground truth regression parameter and vec(·) is the
vectorization operator.

In order to show the existence of mixed relationships between features and targets,
imputation performance for incomplete targets is used to compare FMRmethods with
non-FMRMTL methods. Concretely, the goal is to predict one-half randomly chosen
targets. The other half targets are allowed to be used. FMR methods use the other half
targets to compute conditional probabilities p(δi,r = 1 | yi j ′ , j ′ ∈ Ωi , xi , θ̂ )(i =
1, . . . , n, r = 1, . . . , k) and make prediction as stated in Sect. 3.3. Non-FMR MTL
methods perform feature-based prediction.

Feature-based prediction performances are also compared between non-FMRMTL
methods and our MOE methods, where only features are allowed to use to predict
testing targets. For this case, the goal is to predict all the targets.

For target prediction, Gaussian outcomes are evaluated by nMSE (Chen et al. 2011;
Gong et al. 2012a) which is defined as the mean of each task’s mean squared error
(MSE) divided by the variance of its target vector. Bernoulli outcomes are evaluated
by average AUC (aAUC), which is defined as the mean AUC of each task. For Poisson
tasks, we firstly compute the logarithms of outcomes, then use nMSE for evaluation.

Since our objective functions in (4) and (19) are non-convex, estimated parameters
may correspond to local minimums of the objective functions. Therefore, we try dif-
ferent initializations and report the results ranking the best 20% on the validation data
set out of the 100 replications to avoid the results that may be stuck at local minimums,
suggesting that one can always select any result within the best 20%.

6.4 Simulation

6.4.1 Latent variable prediction and feature selection

We consider both low dimensional case and high dimensional case for latent variable
prediction and feature selection. For the low-dimensional case, we set the number of
samples n = 100, feature dimension d = 15, number of non-zero features (sparsity)
s = 3, and the number of tasks (responses) m = 15. The data set includes 3 Gaussian
tasks, 10 Bernoulli tasks, and 2 Poisson tasks. The number of latent components k = 2.
For r = 1, . . . , k, in the r th component, the first row (biases) and the (s(r − 1)+ 2)th
to the (sr + 1)th row (a block of s rows) of the true βr ∈ R

d×m are non-zero (to let
different components have different sets of features). Non-zero parameters in β are
in the range of [−3,−1] ∪ [1, 3] except that those of Poisson tasks are in the range
of [−0.3,−0.1] ∪ [0.1, 0.3]. The biases are all set to 1 except that those of Poisson
tasks are set to 3. For Gaussian tasks, all σ s are set to 1. The entries of X ∈ R

d×n

are drawn from N (0, 1) with the first dimension being 1. π = (0.5, 0.5). Validation
data is independently generated likewise and has n samples. For the high-dimensional
case, we set n = 180, d = 320 and m = 20. The data set includes 8 Gaussian
tasks, 10 Bernoulli tasks, and 2 Poisson tasks. Other settings are the same as in the
low-dimensional case. We set the pre-fixed k̂ to be equal to the true k = 2. For
targets of training data, we have tried different missing rates, which are in the range
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of {0, 0.05, 0.1, 0.15, 0.2}. We compare the performances of θ̂s estimated by Single,
Sep, Mix,Mix GS, respectively, with that of θ0 (denoted by “True”).

The results are shown in Fig. 1. The horizontal axis is the missing rates. Intuitively,
larger missing rates may result in worse performances due to fewer data samples.
Single provides poor results and is not sensitive to missing rate, because (1) data
samples are deficient for single-task learning and (2) the influence of missing rate may
be not significant when the number of samples is at this level. Sep outperforms Single
and is affected significantly by missing rate, because (1) Sep uses the prior knowledge
in data thatmultiple tasks share the sameFMRstructure and (2)Sep constructs separate
FMR models such that tasks for each model are deficient, hence the advantage from
joint learning multiple tasks can be easily affected when some targets are missing.
Our Hermit method Mix outperforms Sep and is robust against growing missing
rate, because (1)Mix uses the prior knowledge in data that all the tasks share the same
FMR structure and (2) Mix takes advantage of all the tasks, therefore, the number
of tasks is then enough even some targets are missing. Our Hermit method Mix GS
outperformsMix, even rivals the truemodel, and is also robust against growingmissing
rate, because (1) comparing with Mix, Mix GS further uses the prior knowledge in

Fig. 1 Latent variable prediction and feature selection performance. a and b are results on low-dimensional
data; c and d are results on high-dimensional data. a, c Latent variable prediction accuracy. b, d Feature
selection accuracy
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data that all the tasks share the same feature space in each cluster, and (2) Mix GS
takes advantage of all the tasks as well.

6.4.2 Performances when the pre-fixed k̂ is different with the true k

We consider testing the performance of target imputation when the pre-fixed k̂ is
different with the true k. Four data sets are generated with the true k = 1, 2, 3, 4,
respectively. We set n = 1000, d = 32, and m = 15. There are 3 Gaussian tasks, 10
Bernoulli tasks, and 2 Poisson tasks. For each k = 1, 2, 3, 4, the sparsity s is set to
�d/(2k)� such that the total numbers of relevant features for different data sets are the
same. The values of the non-zero regression parameters for Gaussian and Bernoulli
tasks in β are in the range of [−6,−2]∪[2, 6]. We setπ1 = π2 = · · · = πk . Validation
and testing data are independently generated likewise and both have n samples. We
randomly set 20% of targets to be missing for all the training, validation and testing
data. Other settings are the same as in Sect. 6.4.1. One intuitive thought is that when
the pre-fixed k̂ equals the true k, the imputation performance will be maximized. So
we set the pre-fixed k̂ ∈ {1, 2, 3, 4, 5, 6, 7, 8}. We test Mix model in this experiment.
Results by Mix GS model are similar.

In Fig. 2, the imputation performances are truly maximized when the pre-fixed
k̂ equals the true k. When pre-fixed k̂ is larger than the true k, the imputation per-
formances are similar. When the true k > 1 and when the pre-fixed k̂ is less than
the true k, the imputation performances grow with the pre-fixed k̂. One may expect
that when the pre-fixed k̂ is larger than the true k, the performances will deteriorate,
since imputation would be based on fewer data samples. We think it is because (1) the

Fig. 2 Imputation performance when the pre-fixed k̂ is different with the true k. a nMSE of Gaussian
targets. b aAUC of Bernoulli targets. c nMSE of log of Poisson targets
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Table 1 Comparison with
non-FMR methods

nMSE aAUC

LASSO 0.6892 0.7384

Mix 0.1181 0.9525

Group LASSO 0.6850 0.7482

Mix GS 0.1212 0.9559

Sep L2 0.6912 0.7355

GO-MTL 0.8055 0.7259

CMTL 0.6916 0.7344

MSMTFL 0.6890 0.7381

TraceReg 0.6913 0.7362

SparseTrace 0.6904 0.7374

RMTL 0.6913 0.7362

Dirty 0.6850 0.7482

rMTFL 0.6850 0.7482Bold values indicate the best
results in each setting

simulated data are simple, and (2) the information sharing among tasks renders the
robustness of our Hermit method against decreasing sample size, which is consistent
with the results in Sect. 6.4.1 when facing increasing missing rate (larger missing rate
also indicates fewer data samples).

6.4.3 Comparison with non-FMR methods

We compare the imputation performance of our Hermit methods Mix and Mix GS
with all the non-FMR methods. We choose the data set used in Sect. 6.4.2 with the
true k = 3. The Poisson targets are removed since many other methods are not able
to handle them. The tuned k̂ = 3.

In Table 1, ourHermit methodsMix andMixGS not only outperform their special
cases, i.e.,LASSO andGroup LASSO, respectively, but also outperform other multi-
task learning methods, including those handling certain kinds of heterogeneities.

6.4.4 Detection of anomaly tasks

We set n = 2000. The number of tasks (responses) m = 30. The information about
the true ks and numbers of different types of tasks is in Table 2. Other settings are the
same as in Sect. 6.4.2. In Table 2, it can be seen that the true k of the majority of tasks
(the first 20 tasks) is 4. The first 20 tasks are referred to as concordant tasks, while the
other 10 tasks are referred to as anomaly tasks.

We compute the concordant scores using (15) for the tasks. In Fig. 3, the concordant
scores separate concordant tasks and anomaly tasks quite well. Scores of Poisson
tasks are similar to scores of Bernoulli tasks, because they all provide less accurate
information than Gaussian tasks do.
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Table 2 True ks and numbers
of different types of tasks

Group True k #Gaussian #Bernoulli #Poisson

1 4 5 10 5

2 1 1 1 1

3 6 1 0 0

4 2 1 1 0

5 3 0 1 1

6 5 1 1 0

Fig. 3 Concordant scores of tasks, which are associated with Table 2. a Estimated by Mix; b estimated
by Mix GS. The first 20 tasks are concordant tasks, the last 10 tasks are anomaly tasks. The first 5 tasks
are Gaussian tasks, the subsequent 10 tasks are Bernoulli tasks and then the subsequent 5 tasks are Poisson
tasks

6.4.5 Handling clustered relationship among tasks

We construct 4 groups of tasks. The total number of tasks (responses) m = 60. The
information about the true ks and numbers of different types of tasks is in Table 3.
Other settings are the same as in Sect. 6.4.4.We first apply Single for each task, setting
k̂ = 20. Then we apply the strategy in Sect. 4.3 to construct a similarity matrix by
NMI defined in (16). Kernel PCA (Schölkopf et al. 1998; Van Der Maaten et al. 2009)
is then applied using the similarity matrix as the kernel matrix. The similarity matrix
and the result of Kernel PCA are shown in Fig. 4.

In Fig. 4a, Group 2,3 and 4 can be recognized as three groups. In Group 1, each task
shows no similarity with other tasks, because with the true k = 1, the data samples
can be randomly partitioned into k̂ = 20 sub-populations, which results in low NMI
scores. In Fig. 4b, basically, 4 groups of tasks are clustered into 4 different regions.

Table 3 True ks and numbers
of different types of tasks. Tasks
are clustered into 4 groups

Group True k #Gaussian #Bernoulli #Poisson

1 1 3 10 2

2 2 3 10 2

3 3 3 10 2

4 4 3 10 2
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Fig. 4 a Similarity matrix among tasks described in Table 3; b relationship among tasks shown by Kernel
PCA

6.4.6 Handling outlier samples

Wechoose the data set used in Sect. 6.4.2with the true k = 2, then randomly shuffle the
data pairs (yi , xi ), for i = 1, . . . , n, and contaminate the true targets by the following
procedure. For outlier ratio poutlier = 0, 1, 2, 5, 8, 10%, (1) for Gaussian targets, set
all the targets of poutlier of data samples to be 100; (2) for Bernoulli targets, set all
the targets of poutlier of data samples to be 1. Such contamination is only performed
on training and validation data, leaving testing data clean.

Then we evaluate two groups of methods. For the group of non-robust methods,
we choose our Hermit methodsMix and Mix GS. For the group of robust methods,
we firstly run the robust version of the non-robust methods by adding ζ in the natural
parameter models as (11) and adding (13) as the additional penalty, then we clean
the data by removing poutlier of data samples associated with the largest value of√∑

jr ζ 2
i jr (i ∈ {1, . . . , n}). Finally, we run their non-robust version of methods on

the “cleaned” data, respectively.We followGong et al. (2012a) to adopt such two-stage
strategy.

The imputation performances are reported in Table 4, from where it can be seen
that, (1) when poutlier = 0%, robust methods are over-parameterized and may under-
perform non-robust methods; (2) when poutlier > 0%, robust methods significantly
outperform non-robust methods.

6.4.7 Feature-based prediction by MOE

We set the true k = 3. The true α ∈ R
d×k , whose first four rows are non-zero. The

non-zero entries of α are drawn fromN (0, 1). Number of data samples n = 1000. For
all i = 1, . . . , n, r = 1, . . . , k, the i th data sample coming from the r th sub-population
obeys a multinomial distribution with the probability defined in (17). Other settings
are the same as in Sect. 6.4.3.
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Table 4 Comparison between methods handling outlier samples on synthetic data

0% 1% 2% 5% 8% 10%

nMSE for Gaussian

Mix

Non-robust 0.0625 0.6754 0.6894 1.0122 1.3250 1.4953

Robust 0.0620 0.0627 0.0626 0.0737 0.0632 0.0635

Mix GS

Non-robust 0.0658 0.6434 0.6741 0.7505 1.0736 1.2939

Robust 0.0599 0.0611 0.0673 0.0694 0.0602 0.0607

aAUC

Mix

Non-robust 0.9571 0.7954 0.7961 0.7982 0.7986 0.7981

Robust 0.9570 0.9571 0.9574 0.9519 0.9568 0.9567

Mix GS

Non-robust 0.9509 0.7979 0.7984 0.7982 0.7979 0.7952

Robust 0.9581 0.9577 0.9519 0.9482 0.9578 0.9574

nMSE for Poisson

Mix

Non-robust 0.2089 0.7368 0.6905 0.6528 0.6642 0.6736

Robust 0.2086 0.2105 0.2099 0.2345 0.2222 0.2230

Mix GS

Non-robust 0.2136 0.7416 0.7795 0.6587 0.6688 0.8665

Robust 0.2087 0.2109 0.2169 0.2202 0.2212 0.2236

Bold values indicate the best results in each setting

We compare our Hermit methods Mix MOE and Mix MOE GS. The prediction
performances are shown in Table 5, which are consistent with the results in Sect. 6.4.3.

We further show in Table 6 the concordance between p(δi,r = 1 | xi , α̂r ) and
p(δi,r = 1 | xi , α0,r ), where α0 denotes the true α, for all i = 1, . . . , n, r = 1, . . . , k,
for both training and testing data. In (22), α is optimized by partially minimizing the
discrepancy between p(δi,r = 1 | xi , α̂r ) and ρ̂

(t+1)
i,r for t = 0, . . . , T − 1. As such

we also show the concordance between p(δi,r = 1 | xi , α̂r ) and ρ̂
(T )
i,r = p(δi,r = 1 |

yi j ′ , j ′ ∈ Ωi , xi , θ̂2). The concordances are measured by NMI defined in (16). We use
NMI instead of KL-divergence, because NMI is normalized to the range of [0, 1].

Both p(δi,r = 1 | xi , α0,r ) and p(δi,r = 1 | yi j ′ , j ′ ∈ Ωi , xi , θ̂2) are approximated
accurately on the training data. The approximation accuracies are lower on the testing
data because the deficiency of data samples comparing with the dimension.

6.4.8 Scalability

We discuss the scalability of our method for increasing number of features and tasks.
The running time is evaluated. We choose the data set used in Sect. 6.4.2 with the
true k = 4. The sparsity s is fixed to be 4. We set the number of features d ∈
{32, 64, 128, 256, 512} and the number of tasksm ∈ {15, 30, 60, 120, 240}. The ratios
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Table 5 Prediction
performances based on only
features

nMSE aAUC

LASSO 0.6390 0.7834

Mix MOE 0.0656 0.9466

Group LASSO 0.6348 0.7878

Mix MOE GS 0.0579 0.9502

Sep L2 0.6481 0.7794

GO-MTL 0.6946 0.7778

CMTL 0.6496 0.7796

MSMTFL 0.6397 0.7831

TraceReg 0.6509 0.7790

SparseTrace 0.6473 0.7805

RMTL 0.6511 0.7797

Dirty 0.6348 0.7878

rMTFL 0.6483 0.7787Bold values indicate the best
results in each setting

Table 6 Approximation performances based on only features

Training Testing

C(α̂ ‖ α0) C(α̂ ‖ θ̂2) C(α̂ ‖ α0) C(α̂ ‖ θ̂2)

Mix MOE 0.9863 0.9918 0.8440 0.8457

Mix MOE GS 0.9962 0.9933 0.8455 0.8516

C(α̂ ‖ α0) denotes the concordance between p(δi,r = 1 | xi , α̂r ) and p(δi,r = 1 | xi , α0,r ), where α0

denotes the true α. C(α̂ ‖ θ̂2) denotes the concordance between p(δi,r = 1 | xi , α̂r ) and p(δi,r = 1 |
yi j ′ , j ′ ∈ Ωi , xi , θ̂2). The concordances are measured by NMI defined in (16)
Bold values indicate the best results in each setting

between the numbers of Gaussian, Bernoulli and Poisson tasks are the same as in
Sect. 6.4.2. We randomly generate 100 data sets for each pair of (d,m). We report the
results of the method Mix GS only, as the results of Mix are similar. In each case, k̂
is tuned and is equal to the true k = 4. The estimated parameters in different cases
may have different numbers of relevant features. As such, in order to provide a fair
comparison, we report the running time per feature, i.e., running time divided by the
number of non-zero features of the estimated parameters in each case.

In Fig. 5, both dimension d and the number of tasksm have no significant influence
on running time per feature, especially when d andm is large, which is consistent with
our time-complexity analysis in Sect. 3.2.

6.5 Application

On the real-world data sets, we first demonstrate the existence of the heterogeneity of
conditional relationship, then report the superiority of our Hermit method over other
methods considered in Sect. 6.1. We further interpret the advantage of our method
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Fig. 5 Running time per feature when dimension and the number of tasks grow. a Reports the running
time per feature for training the model; b reports the running time per feature for testing. a Training time.
b Testing time

by presenting the selected features. Effectiveness of anomaly-task detection and task
clustering strategy is also validated.

6.5.1 Data description

Both real-world data sets introduced in the following are longitudinal surveys for elder
patients, which includes a set of questions. Some of the question answers are treated
as input features and some of the questions related to indices of geriatric assessments
are treated as targets.
LSOA II Data This data is from the Second Longitudinal Study of Aging (LSOA
II).1 LSOA II is a collaborative study by the National Center for Health Statistics
(NCHS) and the National Institute of Aging conducted from 1994–2000. A national
representative sample of 9447 subjects 70 years of age and over were selected and
interviewed. Three separated interviews were conducted during the periods of 1994–
1996, 1997–1998, and 1999–2000, respectively. The interviews are referred to as
WAVE 1, WAVE 2, and WAVE 3 interviews, respectively. We use data WAVE 2 and
WAVE 3, which includes a total of 4299 sample subjects and 44 targets, and 188
features are extracted from WAVE 2 interview.

Among the targets, specifically, three self-rated health measures, including overall
health status, memory status and depression status, can be regarded as continuous
outcomes; there are 41 binary outcomes, which fall into several categories: funda-
mental daily activity, extended daily activity, social involvement, medical condition,
on cognitive ability, and sensation condition. The features include records of demo-
graphics, family structure, daily personal care, medical history, social activity, health
opinion, behavior, nutrition, health insurance and income and assets, the majority of
which are binary measurements. Both targets and features have missing values due to
non-response and questionnaire filtering. The average missing value rates in targets
and features are 13.7 and 20.2%, respectively. For the missing values in features, we
adopt the following procedure for pre-processing. For continuous features, themissing
values are imputed with sample mean. For binary features, a better approach is to treat
missing as a third category as it may also carry important information; as such, two

1 https://www.cdc.gov/nchs/lsoa/lsoa2.htm.
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dummy variables are created from each binary feature with missing values (the third
one is not necessary.) This results in totally d = 293 features. We randomly select
30% of the samples for training, 30% for validation and the rest for testing.
easySHARE Data This data is a simplified data set from the Survey of Heath, Aging,
and Retirement in Europe (SHARE).2 SHARE includes multidisciplinary and cross-
national panel databases on health, socio-economic status, and social and family
networks of more than 85,000 individuals from 20 European countries aged 50 or
over. Four waves of interviews were conducted during 2004–2011, and are referred
to as WAVE 1 to WAVE 4 interviews. We use WAVE 1 and WAVE 2, which includes
20,449 sample persons and 15 targets (among which 11 are binary, and 4 are contin-
uous), and totally 75 features are constructed from WAVE 1 interview.

The targets are from four interview modules: social support, mental health, func-
tional limitation indices and cognitive function indices. The features cover awide range
of assessments, including demographics, household composition, social support and
network, physical health, mental health, behavior risk, healthcare, occupation and
income. Detailed description features are not listed in this paper. Both targets and fea-
tures havemissing values due to non-response and questionnaire filtering. The average
missing value rates in targets and features are 6.9 and 5.1%, respectively. The same
pre-processing procedure as that for LSOA II Data has been adopted and results in
totally d = 118 features. We randomly select 10% of the samples for training, 10%
for validation and the rest for testing.

6.5.2 Comparison with FMR method

In this experiment, we compare our proposed Hermit methods Mix and Mix GS
which handle mixed type of outcomes with Sep which learns different types of tasks
separately. Single is abandoned because it learns each task independently and is not
able to use targets of other tasks to help increasing imputation performance.

Results are reported in Fig. 6, where (1) for both the real data sets, basically, the
best pre-fixed k̂ > 1, except for Bernoulli tasks of easySHARE data, suggesting that
the heterogeneity of conditional relationship exists in LSOA II data and the Gaus-
sian tasks of easySHARE data; (2) FMR models benefit Gaussian targets more than
Bernoulli targets; (3) Mix and Mix GS outperform Sep in Gaussian tasks. However,
their performances are comparable with Sep in Bernoulli tasks, which may be because
that the number of Bernoulli tasks are much more than that of Gaussian tasks such
that the benefit from Gaussian tasks is limited.

6.5.3 Comparison with non-FMR methods

In this experiment we test imputation performance, comparing our Hermit methods
Mix and Mix GS with all the non-FMR methods.

Results are reported inTable 7,where (1) ourHermit methodsMix andMixGS not
only outperform their special cases,LASSO andGroupLASSO, respectively, but also
outperform other methods, including those handling certain kinds of heterogeneities,

2 http://www.share-project.org/data-access-documentation.html.
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Fig. 6 Comparison with Sep on real data sets. a and b are results on LSOA II data, c and d are results on
easySHARE data. a, c nMSE of Gaussian targets. b, d aAUC of Bernoulli targets

except for aAUCon easySHARE, the reason ofwhich has been discussed in Sect. 6.5.2;
(2) Mix GS increases nMSE by 9.76 and 14.37% on LSOA II data and easySHARE
data, respectively, comparing with its non-FMR version Group LASSO. The similar
improvements by Mix are witnessed as well.

6.5.4 Feature selection

We consider demonstrating the advantage of our Hermit method on feature selection.
We compare our Hermit methodMixGSwith its non-FMR versionGroup LASSO.
Both methods select shared features across tasks. We collect the unique features that
only selected for each sub-population.

For LSOA II data set, the tuned k̂ = 2.Mix GS selects 47/294 features (summing
up selected features of both sub-populations), while Group LASSO selects 48/294
features. Descriptions of unique features of both sub-populations are listed in Table 8.
Sub-population 1 seems considering worse condition of patients.

For easySHARE data set, the tuned k̂ = 5.Mix GS selects 58/118 features, while
Group LASSO selects 57/118 features. Descriptions of unique features of two sub-
populations are listed in Table 9. Sub-population 1 seems considering more about
personality and experience, while sub-population 2 seems considering more about
politics and education.
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Table 7 Comparison with
non-FMR methods on real data
sets

LSOA II easySHARE

nMSE aAUC nMSE aAUC

LASSO 0.7051 0.7474 0.7869 0.7386

Mix 0.6408 0.7525 0.6601 0.7419

Group LASSO 0.6975 0.7413 0.7897 0.7413

Mix GS 0.6294 0.7481 0.6548 0.7402

Sep L2 0.7176 0.7392 0.7796 0.7464

GO-MTL 0.8516 0.6972 0.8231 0.7288

CMTL 0.8186 0.7089 0.7958 0.7364

MSMTFL 0.7028 0.7473 0.7803 0.7411

TraceReg 0.7150 0.7408 0.7809 0.7496

SparseTrace 0.6972 0.7475 0.7791 0.7475

RMTL 0.7145 0.7418 0.7808 0.7496

Dirty 0.7032 0.7480 0.7781 0.7486

rMTFL 0.6953 0.7418 0.7781 0.7486Bold values indicate the best
results in each setting

Table 8 Descriptions of unique features of each sub-population of LSOA II data

Sub-population 1 (π1 = 70.09%) Sub-population 2 (π2 = 29.91%)

Able or prevented to leave house Times seen doctor in past 3 months

Have problems with balance Easier or harder to walk 1/4 mile

Total number of living children Widowed

Easier/harder than before: in/out of bed Follow regular physical routine

#(ADL activities) SP is unable to perform Present social activities

Easier or harder to walk 10 steps Ever had a stress test

Do you take aspirin Do you take vitamins

Often troubled with pain Necessary to use steps or stairs

Visit homebound friend for others Had flu shot

Ever had a hysterectomy Ever had cataract surgery

Physical activity more/less/same

Features are sorted in descending order by the ‖βl
r‖2 where βl

r is the lth row of βr (l = 1, . . . , d). The
bold denote the features that are not selected by Group LASSO
#(·) number of the enclosed events, ADL Activity of Daily Livings. SP Standardized Patients

For both real data sets, our Hermit method Mix GS recalls more useful features
than Group LASSO does.

6.5.5 Detection of anomaly tasks

We firstly use (15) to compute concordant scores of tasks, which are reported in Fig. 7.
Clear separations are witnessed on both data sets. We select one-third of tasks with
highest scores as concordant tasks and another third with lowest scores as anomaly
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Table 9 Descriptions of unique features of two sub-populations of easySHARE data

Sub-population 1 (π1 = 21.31%) Sub-population 2 (π2 = 26.36%)

Fatigue Taken part in a political organization

Guilt Attended an educational or training course

Enjoyment Taken part in religious organization

Suicidality None of social activities

Tearfullness Cared for a sick or disabled adult

Interest Done voluntary or charity work

Current job situation:sick Education: lower secondary

Education: first tertiary

Education: post secondary

Education: upper secondary

Education: primary

Education: second tertiary

Features are sorted in descending order by the ‖βl
r‖2 where βl

r is the lth row of βr (l = 1, . . . , d). The
bold denote the features that are not selected by Group LASSO

Fig. 7 Concordant scores of tasks, which were estimated by Mix GS. The tasks are reordered according
to the scores. a LSOA II data set. b easySHARE data set

tasks. The descriptions of the concordant and anomaly tasks are listed in Tables 10
and 11, respectively.

The concordant tasks detected by our methods seem truly correlated with each
other intuitively. And the information of detected anomaly tasks is diverse and seems
different with that of concordant tasks.

For each data set, we apply our Hermit method Mix (and Mix GS) to build two
models for non-anomaly tasks (the first two-third tasks) and anomaly tasks, respec-
tively. For LSOA II data set, the tuned k̂ = 4 and 1 for non-anomaly tasks and anomaly
tasks, respectively. For easySHARE data set, the tuned k̂ = 6 and 2 for non-anomaly
tasks and anomaly tasks, respectively.

Averaged imputation performances are shown in Table 12. By providing separate
models to handle anomaly tasks, the performances improve significantly, where Mix
GS outperforms Mix, maybe because the non-anomaly tasks share some relevant
features.
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Table 10 Descriptions of tasks of LSOA II data

Concordant tasks (top 7) Anomaly tasks (top 8)

Have difficulty dressing Go to movies, sports, events, etc.

Have difficulty doing light housewrk Now have asthma

Have difficulty using toilet Now have arthritis

Have difficulty managing medication Now have hypertension

Have difficulty bathing or showering Injured from fall(s)

Have difficulty managing money Memory of year

Have difficulty preparing meals Have deafness

Get together with relatives

Table 11 Descriptions of tasks of easySHARE data

Concordant tasks (top 5) Anomaly tasks (top 5)

Activities of daily living index Numeracy score

Instrumental activities of daily living indices Gone to sport social or other kind of club

Mobility index Recall of words first trial

Appetite Give help to others outside the household

Orientation to date Provided help to family friends or neighbors

Table 12 Comparison for imputation performances

LSOA II easySHARE

nMSE aAUC nMSE aAUC

Mix—All tasks 0.6408 0.7525 0.6601 0.7419

Mix—Handle anomalies 0.5979 0.7602 0.6569 0.7370

Mix GS—All tasks 0.6294 0.7481 0.6548 0.7402

Mix GS—Handle anomalies 0.5923 0.7649 0.6462 0.7447

“All tasks” denotes building one FMR model for all the tasks. “Handle anomalies” denotes building two
models for non-anomaly tasks and anomaly tasks, respectively
Bold values indicate the best results in each setting

6.5.6 Handling clustered relationship among tasks

We adopt the same strategy as that in Sect. 6.4.5 to construct a similarity matrix and
perform dimension reduction for each of the real-world data sets.

For LSOA II data set, the similarity matrix and results of 2D reduction are shown
in Fig. 8. In Fig. 8b, tasks are partitioned into groups. We apply k-means algorithm to
separate the tasks into 4 groups. Tasks in Group 1 are mainly about current status. The
descriptions of tasks of Group 2 are “how often felt sad or depressed in the past 12
months” and “self rated memory”. Tasks in Group 3 and 4 are about having difficulty
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Fig. 8 Clustered Relationship among tasks on LSOA II. a Similarity matrix among tasks. First three tasks
are Gaussian tasks. Other tasks are Bernoulli tasks. b Relationship among tasks shown by Kernel PCA

Fig. 9 Clustered relationship among tasks on easySHARE. a Similarity matrix among tasks. First four
tasks are Gaussian tasks. Other tasks are Bernoulli tasks. bRelationship among tasks shown by Kernel PCA

performing some certain actions. Group 3 is similar to Group 4, which can be reflected
by Fig. 8b.

For easySHARE data set, the similarity matrix and results of 2D reduction are
shown in Fig. 9. In Fig. 9b, tasks are partitioned into groups as well. We also apply
k-means algorithm to separate the tasks into 4 groups. The descriptions of tasks for
each group are shown in Table 13, where descriptions of 4 types of interview modules
are basically separated into 4 groups, respectively. The only “misclassified” task with
the description of “Orientation to date” seems to be more related to other tasks in
Group 2 than the tasks in Group 4.

For each data set, we further apply our Hermit methods Mix and Mix GS for
each group of tasks. For LSOA II data set, tuned k̂ = 3, 3, 5 and 2 for Group 1,2,3
and 4, respectively. For easySHARE data set, tuned k̂ = 5, 2, 1 and 1 for Group 1, 2,
3 and 4, respectively. Imputation performances are shown in Table 14. Performances
increase by building separate models for each group, suggesting that separate models
for clustered tasks are more accurate.
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Table 13 Clustered tasks of easySHARE

Group Targets Interview module

1 Activities of daily living index Functional limitation indices

Instrumental activities of daily living index Functional limitation indices

Mobility index Functional limitation indices

2 Depression Mental health

Pessimism Mental health

Sleep Mental health

Irritability Mental health

Appetite Mental health

Concentration Mental health

Orientation to date Cognitive function indices

3 Provided help to family friends or neighbors Social support and network

Gone to sport social or other kind of club Social support and network

Give help to others outside the household Social support and network

4 Recall of words score Cognitive function indices

Numeracy score Cognitive function indices

15 tasks are clustered into 4 groups

Table 14 Comparison for imputation performances

LSOA II easySHARE

nMSE aAUC nMSE aAUC

Mix—All tasks 0.6408 0.7525 0.6601 0.7419

Mix—Clustered tasks 0.6370 0.7592 0.6552 0.7439

Mix GS—All tasks 0.6294 0.7481 0.6548 0.7402

Mix GS—Clustered tasks 0.6202 0.7559 0.6533 0.7474

“All tasks” denotes building one FMR model for all the tasks. “Clustered tasks” denotes building different
FMR models for different groups of tasks
Bold values indicate the best results in each setting

6.5.7 Feature-based prediction by MOE

We compare the methods using only features to predict targets on both real-world data
sets. Our proposed MOE type of Hermit methods, Mix MOE and Mix MOE GS,
are compared with the non-FMR methods. We also integrate our strategies to handle
anomaly tasks and clustered structure among tasks in both our proposed MOE type
of Hermit methodsMixMOE andMixMOEGS. Concretely, we use the anomaly-
task detection results in Sect. 6.5.5 and the task clustering results in Sect. 6.5.6.

The prediction results are reported in Table 15. Our proposed Hermit methodMix
MOE and Mix MOE GS outperform baseline methods on LSOA II and on Gaussian
tasks of easySHARE, which is consistent with the results in Table 7. In addition, by
integrating our task clustering strategy, our proposedHermit methodsMixMOETC
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Table 15 Comparison for
prediction performance with
non-FMR methods on real data
sets

LSOA II easySHARE

nMSE aAUC nMSE aAUC

LASSO 0.7051 0.7474 0.7869 0.7386

Group LASSO 0.6975 0.7413 0.7897 0.7413

MSMTFL 0.7028 0.7473 0.7803 0.7411

Sep L2 0.7176 0.7392 0.7796 0.7464

GO-MTL 0.8516 0.6972 0.8231 0.7288

CMTL 0.8186 0.7089 0.7958 0.7364

TraceReg 0.7150 0.7408 0.7809 0.7496

SparseTrace 0.6972 0.7475 0.7791 0.7475

RMTL 0.7145 0.7418 0.7808 0.7496

Dirty 0.7032 0.7480 0.7781 0.7486

rMTFL 0.6953 0.7418 0.7781 0.7486

Mix MOE 0.6935 0.7504 0.7991 0.7395

Mix MOE GS 0.7054 0.7438 0.7774 0.7387

Mix MOE Robust 0.6906 0.7436 0.7642 0.7351

Mix MOE GS Robust 0.6981 0.7430 0.7668 0.7344

Mix MOE TC 0.6859 0.7333 0.7584 0.7389

Mix MOE GS TC 0.6925 0.7379 0.7657 0.7367

“Robust” denotes adopting the
strategy to handle anomaly tasks.
“TC” denotes task clustering
strategy
Bold values indicate the best
results in each setting

Table 16 The concordance between p(δi,r = 1 | xi , α̂r ) and p(δi,r = 1 | yi j ′ , j ′ ∈ Ωi , xi , θ̂2)

LSOA II easySHARE

Training Testing Training Testing

Mix MOE 0.2745 0.1301 0.1314 0.1068

Mix MOE GS 0.1060 0.0673 0.2527 0.2054

The concordances are measured by NMI defined in (16)

andMixMOEGSTC outperform othermethods onGaussian targets, while providing
comparable results on Bernoulli tasks. Mix MOE TC and Mix MOE GS TC even
outperform our proposed Hermit methods Mix MOE Robust and Mix MOE GS
Robust on Gaussian targets, suggesting that it is more accurate to build a specific
model for each cluster of tasks.

ComparingTable 15with Table 7, ourMOEmethods do not rival our FMRmethods.
We investigate the reason by showing the concordance between p(δi,r = 1 | xi , α̂r )
and p(δi,r = 1 | yi j ′ , j ′ ∈ Ωi , xi , θ̂2) = ρ̂

(T )
i,r (ρ̂(T )

i,r is defined in equation 21) in
Table 16. In Table 16, the concordances of conditional probabilities measured by NMI
are generally low, especially comparing with the results in Table 6, suggesting that on
both real-world data sets, it is difficult to learn the mixture probabilities.
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7 Discussions and conclusions

In this paper, we propose a novel model Hermit to explore heterogeneities of con-
ditional relationship, output type and shared information among tasks. Based on
multivariate-target FMR and MOE models, our model jointly learns tasks with mixed
type of output, allows incomplete data in the output, imposes inner component-wise
group �1 constraint and handles anomaly tasks and clustered structure among tasks.
These key elements are integrated in a unified generalized mixture model setup so that
they can benefit from and reinforce each other to discover the triple heterogeneities
in data. Rigorous theoretical analyses under the high dimensional framework are pro-
vided.

We mainly consider the special setting of MTL, where the multivariate outcomes
share the same set of instances and the same set of features because our main objective
is to learn potentially shared sample clusters and feature sets among tasks. However,
as stressed in the introduction, the main definition of MTL considers tasks that do not
necessarily share the same set of samples/instances and the same set of features, such
as distributed learning systems (different tasks have entirely different data instances,
see Jin et al. 2006 and Boyd et al. 2011) and multi-source learning systems (different
tasks have entirely different feature spaces, see Zhang and Yeung 2011 and Jin et al.
2015). For such cases, one can define the specific expected shared information among
tasks and then extend our methodology. For example, although tasks do not share
the same instances, they could share the same mixture model structure. Then for the
distributed learning systems, our model in Sect. 3 can still be applied. Additionally, the
tasks could still share the pattern/sparsity in feature selection even though the feature
sets are different, e.g., Liu et al. (2009) and Gong et al. (2012b). Then one can build
FMRmodels for the tasks in which the regression coefficient vectors of the tasks share
the same sparsity pattern achieved by group �1 penalization. The case of multi-source
learning systems can also be handled similarly by embedding features into a shared
feature space, e.g., Zhang and Yeung (2011) and Jin et al. (2015).

There are many interesting future directions. It is worthwhile to explore the the-
oretical and empirical performance of non-convex penalties. Meanwhile, different
components should share some features, and overlapping cluster pattern of conditional
relationship should also be considered in real applications, both of which require fur-
ther investigation. It is also interesting to explore other low-dimensional structures in
the natural parameters, e.g., low-rank structure and its sparse composition (Chen et al.
2012b). Our strategies on handling anomaly tasks and clustered structure among tasks
require two stages. It is worthwhile to explore one-stage models to handle such task
heterogeneities during a whole learning process. More complicated structure among
tasks, such as graph-based structure, should also be explored. Our theoretical results
cover our method introduced in Sect. 3 and robust estimation introduced in Sect. 4.1.
Nonetheless, theoretical guarantees for other extensions in Sect. 4 are still challenging
due to joint learning complicated relationship among tasks and population heterogene-
ity, which will be focused on in our future research.
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Appendix A: Definitions

Definition 1 Z = (Z1, . . . , Zm′)T ∈ R
m′

has a sub-exponential distribution with
parameters (σ, v, t) if for M > t , it holds

P(‖Z‖∞ > M) ≤

⎧⎪⎪⎨
⎪⎪⎩
exp

(
−M2

σ 2

)
, t ≤ M ≤ σ 2

v

exp

(
−M

v

)
, M > σ 2

v
.

Appendix B: The empirical process

In order to prove the first part of Theorem 1 that the bound in (26) has the probability
in (25), we firstly follow Städler et al. (2010) to define the empirical process for fixed
data points x1, . . . , xn . For ỹi = (yi j , j ∈ Ωi )

T ∈ R
|Ωi | and X = (X1, . . . , Xd), let

Vn(θ) = 1

n

n∑
i=1

(�θ (xi , ỹi ) − E[�θ (xi , ỹi ) | X = xi ]) .

By fixing some T ≥ 1 and λ0 ≥ 0, we define an event T below, upon which the
bound in (26) can be proved. So the probability of the event T is the probability in
(25).

T =
{
sup
θ∈Θ̃

|Vn(θ) − Vn(θ0)|
(‖β − β0‖1 + ‖η − η0‖2) ∨ λ0

≤ Tλ0

}
. (21)

It can be seen that, (21) defines a set of the parameter θ , and the bound in (26) will be
proved with θ̂ in the set.

For group-lasso type estimator, define an event similar to that in (21) in the follow-
ing.

Tgroup =
⎧⎨
⎩sup

θ∈Θ̃

|Vn(θ) − Vn(θ0)|(∑
p ‖βGp

− β0,Gp
‖2 + ‖η − η0‖2

)
∨ λ0

≤ Tλ0

⎫⎬
⎭ . (22)

Appendix C: Lemmas

In order to show that the probability of event T is large, we firstly invoke the following
lemma.
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Lemma 2 Under Condition 2, for model (1) with θ0 ∈ Θ̃ , Mn and λ0 defined in (24),
some constants c6, c7 depending on K , and for n ≥ c7, we have

PX

(
1

n

n∑
i=1

F(ỹi ) > c6λ
2
0/(mk)

)
≤ 1

n
,

wherePX denote the conditional probability given (XT
1 , . . . , XT

n )T = (xT1 , . . . , xTn )T =
X, and F(ỹi ) = G1(ỹi )1{G1(ỹi ) > Mn} + E[G1(ỹi )1{G1(ỹi ) > Mn} | X = xi ],∀i .
A proof is given in “Appendix F” section.

Then we can follow the Corollary 1 in Städler et al. (2010) to show that the proba-
bility of event T is large below.

Lemma 3 Use Lemma 2. For model (1) with θ0 ∈ Θ̃ , some constants c7, c8, c9, c10
depending on K , for T is defined in (21), and for all T ≥ c10 we have

PX(T ) ≥ 1 − c9 exp

(
−T 2(log n)2 log(d ∨ n)

c8

)
− 1

n
,∀n ≥ c7.

A proof is given in “Appendix G” section.

Appendix D: Corollaries for models considering outlier samples

When considering outlier samples and modifying the natural parameter model as in
(11), we can show in this section the similar results.

First, as β and ζ are treated in the similar way, we denote them together by ξ ∈
R

((d+n)×m)×k , and ξ = vec(ξ) ∈ R
(d+n)mk such that for all r = 1, . . . , k,

ϕr = Xβr + ζ r ⇒ ϕr = Aξ r ,

A = [X, In] ∈ R
n×(d+n), ξ r = [βT

r , ζT
r ]T ∈ R

(d+n)×m,

where In ∈ R
n×n is a identity matrix.

Thus it can be seen that the modification only results in new design matrix and
regression coefficient matrix, therefore, we can apply Theorems 1–3 to have similar
results for the modified models.

For lasso-type penalties, denote the set of indices of non-zero entries of β0 by Sβ ,
and the set of indices of non-zero entries of ζ0 by Sζ , where ζ = vec(ζ 1, . . . , ζ k).
Denote by s = |Sβ | + |Sζ |. Then for entry-wise �1 penalties in (5) (for β) with γ = 0
and R(ζ ) = λ‖ζ‖1 (for ζ ), we need the following modified restricted eigenvalue
condition.

Condition 6 For all β ∈ R
dmk and all ζ ∈ R

nmk satisfying ‖βScβ
‖1 + ‖ζScζ ‖1 ≤

6(‖βSβ ‖1 + ‖ζSζ ‖1), it holds for some constant κ ≥ 1 that,

‖βSβ ‖22 + ‖ζSζ ‖22 ≤ κ2‖ϕ‖2Qn
= κ2

n

n∑
i=1

∑
j∈Ωi

k∑
r=1

(xiβ jr + ζi jr )
2.
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Corollary 1 Consider theHermit model in (1) with θ0 ∈ Θ̃ , and consider the penal-
ized estimator (12) with the �1 penalties in (5) and R(ζ ) = λ‖ζ‖1.
(a) Assume Conditions 1–3 and 6 hold. Suppose

√
mk � n/Mn, and take λ > 2Tλ0

for some constant T > 1. For some constant c > 0 and large enough n, with

probability 1 − c exp
(
− (log n)2 log(d∨n)

c

)
− 1

n , we have

ε̄(θ̂ | θ0) + 2(λ − Tλ0)
(
‖β̂Scβ

‖1 + ‖ζ̂Scζ ‖1
)

≤ 4(λ + Tλ0)
2κ2c20s,

(b) Assume Conditions 1–3 hold (without Condition 6), assume

‖β0‖1 + ‖ζ0‖1 = o

(√
n/((log n)2+2c1 log(d ∨ n)mk)

)
,

√
mk = o

(√
n/((log n)2+2c1 log(d ∨ n))

)

as n → ∞. If λ = C
√

(log n)2+2c1 log(d ∨ n)mk/n for some C > 0 sufficiently
large, and for some constant c > 0 and large enough n, with the following prob-

ability 1 − c exp
(
− (log n)2 log(d∨n)

c

)
− 1

n , we have ε̄(θ̂ | θ0) = oP (1).

For group-lasso type penalties, denote

Iβ = {p : β0,Gβ,p
= 0}, Ic

β = {p : β0,Gβ,p
�= 0},

Iζ = {q : ζ 0,Gζ,q
= 0}, Ic

ζ = {q : ζ 0,Gζ,q
�= 0},

where β0,Gβ,p
and ζ 0,Gζ,q

denote the pth group of β0 and the qth group of ζ 0, respec-
tively. Now denote s = |Iβ | + |Iζ | with some abuse of notation.

Then for group �1 penalties in (27) (for β) and R(ζ ) = ∑Q
q ‖ζGζ,q

‖F (for ζ ), we
need the following modified restricted eigenvalue condition.

Condition 7 For all β ∈ R
d×mk and all ζ ∈ R

n×mk satisfying

∑
p∈Ic

β

‖βGβ,p
‖F +

∑
q∈Ic

ζ

‖ζGζ,q
‖F ≤ 6

⎛
⎝∑

p∈Iβ

‖βGβ,p
‖F +

∑
q∈Iζ

‖ζGζ,q
‖F
⎞
⎠ ,

it holds that for some constant κ ≥ 1,

∑
p∈Iβ

‖βGβ,p
‖2F +

∑
q∈Iζ

‖ζGζ,q
‖2F ≤ κ2‖ϕ‖2Qn

= κ2

n

n∑
i=1

∑
j∈Ωi

k∑
r=1

(xiβ jr + ζi jr )
2.

Corollary 2 Consider the Hermit model in (1) with θ0 ∈ Θ̃ , and consider estimator
(12) with the group �1 penalties in (27) and R(ζ ) =∑Q

q ‖ζGζ,q
‖F .
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(a) Assume Conditions 1–3 and 7 hold. Suppose
√
mk � n/Mn, and take λ > 2Tλ0

for some constant T > 1. For some constant c > 0 and large enough n, with

probability 1 − c exp
(
− (log n)2 log(d∨n)

c

)
− 1

n , we have

ε̄(θ̂ | θ0) + 2(λ − Tλ0)

(∑
p∈Ic

β

‖β̂Gβ,p
‖F +

∑
q∈Ic

ζ

‖ζ̂Gζ,q
‖F
)

≤ 4(λ + Tλ0)
2κ2c20s,

(b) Assume Conditions 1–3 hold (without Condition 7), assume

P∑
p=1

‖β0,Gβ,p
‖F +

Q∑
q=1

‖ζ 0,Gζ,q
‖F = o

(√
n/((log n)2+2c1 log(d ∨ n)mk)

)
,

√
mk = o

(√
n/((log n)2+2c1 log(d ∨ n))

)

as n → ∞. If λ = C
√

(log n)2+2c1 log(d ∨ n)mk/n for some C > 0 sufficiently
large, and for some constant c > 0 and large enough n, with the following prob-

ability 1 − c exp
(
− (log n)2 log(d∨n)

c

)
− 1

n , we have ε̄(θ̂ | θ0) = oP (1).

Appendix E: Proof of Lemma 1

Proof For non-negative continuous variable X , we have

E[X1{X > M}] =
∫ ∞

M
t fX (t)dt =

∫ ∞

M

∫ t

0
fX (t)dxdt

=
∫ M

0

∫ ∞

M
fX (t)dtdx +

∫ ∞

M

∫ ∞

x
fX (t)dtdx

= MP(X > M) +
∫ ∞

M
P(X > x)dx .

Similarly, we have E[X21{X > M}] = M2
P(X > M) + ∫∞

M 2xP(X > x)dx .
For X sub-exponential with parameters (σ, v, t) such that for M > t

P(X > M) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

(
−M2

σ 2

)
, t ≤ M ≤ σ 2

v

exp

(
−M

v

)
, M ≥ σ 2

v
,

we have the following.
If M ≤ σ 2

v
, we have

E[X1{X > M}] = MP(X > M) +
∫ ∞

M
P(X > x)dx
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≤ M exp

(
−M2

σ 2

)
+
∫ σ2

v

M
exp

(
− x2

σ 2

)
dx +

∫ ∞
σ2
v

exp

(
− x

v

)
dx

≤ M exp

(
−M2

σ 2

)
+
(

σ 2

v
− M

)
exp

(
−M2

σ 2

)
+ v exp

(
−M

v

)

= M exp

(
−M2

σ 2

)
+ v exp

(
−M

v

)
≤ (M + v) exp

(
−M2

σ 2

)
,

and similarly, E[X21{X > M}] ≤
(
M2 + 2v2 + 2σ 2

)
exp

(
−M2

σ 2

)
.

If M > σ 2

v
, we have E[X1{X > M}] ≤ (M + v) exp

(
−M

v

)
and E[X21{X >

M}] ≤ (M2 + 2v2 + 2vM) exp

(
−M

v

)
.

Then for some constants c1, c2, c3, c4, c5 > 0, for non-negative continuous variable
X which is sub-exponential with parameters (σ, v, t), forM > c4 > t and c′ = 2+ 3

c1
,

we have

E[X1{X > M}] ≤
[
c3

(
M

c2

)c′

+ c5

]
exp

{
−
(
M

c2

)1/c1}
,

E[X21{X > M}] ≤
[
c3

(
M

c2

)c′

+ c5

]2
exp

{
−2

(
M

c2

)1/c1}
.

If t ≤ M ≤ σ 2

v
, c1 = 1/2, c2 = √

2σ, c3 = 16σ 8. And if M ≥ σ 2

v
, c1 = 1, c2 =

2v, c3 = 32v5. And c5 = √
2(v + σ).

For non-negative discrete variables, the result is the same.
The result of Lemma 1 follows from the result above, ỹi has a finite mixture distri-

bution for i = 1, . . . , n and the following.
When dispersion parameter φ is known, for a constant cK depending on K , we have

G1(ỹi ) = eK max
j∈Ωi

|yi j | + cK , i = 1, . . . , n.

��

Appendix F: Proof of Lemma 2

Proof Under Condition 2, Mn = c2(log n)c1 , and λ0 defined in (24), for a constant c6
depending on K , for i = 1, . . . , n, we have

E[|G1(ỹi )|1{|G1(ỹi )| > Mn}] ≤ c6λ
2
0/(mk),

E[|G1(ỹi )|21{|G1(ỹi )| > Mn}] ≤ c26λ
4
0/(mk)2.
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The we can get

PX

(
1

n

n∑
i=1

G1(ỹi )1{G1(ỹi ) > Mn} + E[G1(ỹi )1{G1(ỹi ) > Mn}] > 3c6λ
2
0/(mk)

)

≤ PX

(
1

n

n∑
i=1

G1(ỹi )1{G1(ỹi ) > Mn} − E[G1(ỹi )1{G1(ỹi ) > Mn}] > c6λ
2
0/(mk)

)

≤ E[|G1(ỹi )|21{|G1(ỹi )| > Mn}]
n

m2k2

c26λ
4
0

≤ 1

n
.

��

Appendix G: Proof of Lemma 3

Proof We follow Städler et al. (2010) to give a Entropy Lemma and then prove
Lemma 3.

We use the following norm ‖ · ‖Pn introduced in the Proof of Lemma 2 in Städler
et al. (2010) and use H(·,H, ‖ · ‖Pn ) as the entropy of covering number [see Van de
Geer (2000)] which is equipped the metric induced by the norm for a collectionH of
functions on X × Y ,

‖h(·, ·)‖Pn =
√√√√1

n

n∑
i=1

h2(xi , ỹi ).

Define Θ̃(ε) = {θ ∈ Θ̃ : ‖β − β0‖1 + ‖η − η0‖2 ≤ ε}.
Lemma 4 (Entropy Lemma) For a constant c12 > 0, for all u > 0 and Mn > 0, we
have

H

(
u,

{
(�θ − �θ�)1{G1 ≤ Mn} : θ ∈ Θ̃(ε)

}
, ‖ · ‖Pn

)

≤ c12
mkε2M2

n

u2
log

(√
mkεMn

u

)
.

Proof (For Entropy Lemma) The difference between this proof and that of Entropy
Lemma in the proof of Lemma 2 of Städler et al. (2010) is in the notations and the
effect of multivariate responses.

For multivariate responses we have for i = 1, . . . , n,

|�θ (xi , ỹi ) − �θ ′(xi , ỹi )|2 ≤ G2
1(ỹi )‖ψi − ψ ′

i‖21 ≤ dψG
2
1(ỹi )‖ψi − ψ ′

i‖22

= dψG
2
1(ỹi )

[ k∑
r=1

∑
j∈Ωi

|xi (βr j − β ′
r j )|2 + ‖η − η′‖22

]
,
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where dψ = (2m + 1)k is the maximum of dimension of ψi for i = 1, . . . , n.
Under the definition of the norm ‖ · ‖Pn we have

‖(�θ − �θ ′)1{G1 ≤ Mn}‖2Pn

≤ dψM2
n

⎡
⎣1

n

n∑
i=1

k∑
r=1

∑
j∈Ωi

|xi (βr j − β ′
r j )|2 + ‖η − η′‖22

⎤
⎦ .

Then by the result of Städler et al. (2010) we have

H(u, {η ∈ R
dη : ‖η − η0‖2 ≤ ε}, ‖ · ‖2) ≤ dη log

(
5ε

u

)
,

where dη = (m + 1)k is the dimension of η.
And we follow Städler et al. (2010) to apply Lemma 2.6.11 of Van Der Vaart and

Wellner (1996) to give a bound as

H

(
2u,

{ k∑
r=1

∑
j∈Ωi

xi (βr j − β0,r j ) : ‖β − β0‖1 ≤ ε

}
, ‖ · ‖Pn

)

≤
(

ε2

u2
+ 1

)
log(1 + kmd).

Thus we can get

H

(
3
√
dψMnu,

{
(�θ − �θ0)1{G1 ≤ Mn} : θ ∈ Θ̃(ε)

}
, ‖ · ‖Pn

)

≤
(

ε2

u2
+ 1 + dη

)(
log(1 + kmd) + log

(
5ε

u

))
.

��

Now we turn to prove Lemma 3.
We follow Städler et al. (2010) to use the truncated version of the empirical process

below.

V trunc
n (θ)

= 1

n

n∑
i=1

(
�θ (xi , ỹi )1{G1(ỹi ) ≤ Mn} − E[�θ (xi , ỹi )1{G1(ỹi ) ≤ Mn} | X = xi ].

)

We follow Städler et al. (2010) to apply the Lemma 3.2 in Van de Geer (2000) and a
conditional version of Lemma 3.3 in Van de Geer (2000) to the class
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{
(�θ − �θ0)1{G1 ≤ Mn} : θ ∈ Θ̃(ε)

}
,∀ε > 0.

For some constants {ct }t>12 depending on K and Λmax in Condition 2 of Städler et al.
(2010), using the notation of Lemma 3.2 in Van de Geer (2000), we follow Städler
et al. (2010) to choose δ = c13T ελ0 and R = c14(

√
mkε ∧ 1)Mn .

Thus we by choosing Mn = c2(log n)c1 we can satisfy the condition of Lemma 3.2
of Van de Geer (2000) to have

∫ R

ε/c15
H1/2

(
u,

{
(�θ − �θ�)1{G1 ≤ Mn} : θ ∈ Θ̃(ε)

}
, ‖ · ‖Pn

)
du ∨ R

=
∫ c14

√
mk(ε∧1)Mn

ε/c15
c12

(√
mkεMn

u

)
log1/2

(√
mkεMn

u

)
du ∨ (c14(ε ∧ 1)Mn)

≤ 2

3
c12

√
mkεMn

[
log3/2(c15

√
mkMn) − log3/2

( √
mkεMn

c14
√
mk(ε ∧ 1)Mn

)]

∨ (c14
√
mk(ε ∧ 1)Mn)

≤ 2

3
c12

√
mkεMn log

3/2(c15
√
mkMn)

≤ c16
√
mkεMn log

3/2(n)

(
by choosing Mn = c2(log n)c1, and

√
mk ≤ c17

n

Mn

)

≤ c18
√
nT ελ0 ≤ √

n(δ − ε).

Now for the rest we can apply Lemma 3.2 of Van de Geer (2000) to give the same
result with Lemma 2 of Städler et al. (2010).

So we have

sup
θ∈Θ̃

|V trunc
n (θ) − V trunc

n (θ0)|
(‖β − β0‖1 + ‖η − η0‖2) ∨ λ0

≤ 2c23Tλ0

with probability at least 1 − c9 exp

[
− T 2(log n)2 log(d∨n)

c28

]
.

At last, for the case when G1(ỹi ) > Mn , for i = 1, . . . , n, we have

|(�θ (xi , ỹi ) − �θ0(xi , ỹi ))1{G1(ỹi ) > Mn}| ≤ dψKG1(ỹi )1{G1(ỹi ) > Mn},

and

|(V trunc
n (θ) − V trunc

n (θ0)) − (Vn(θ) − Vn(θ0))|
(‖β − β0‖1 + ‖η − η0‖2) ∨ λ0

≤ dψK

nλ0

n∑
i=1

(
G1(ỹi )1{G1(ỹi ) > Mn} + E[G1(ỹi )1{G1(ỹi ) > Mn} | X = xi ]

)
.
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Then the probability of the following inequality under our model is given in Lemma 2.

dψK

nλ0

n∑
i=1

(
G1(ỹi )1{G1(ỹi ) > Mn} + E[G1(ỹi )1{G1(ỹi ) > Mn} | X = xi ]

)

≤ c23Tλ0,

where dψ = 2(m + 1)k. ��

Appendix H: Proof of Theorem 1

Proof This proof mostly follows that of Theorem 3 of Städler et al. (2010). The only
difference is in the notations. As such, we omit the details. ��

Appendix I: Proof of Theorem 2

Proof This proof also mostly follows that of Theorem 5 of Städler et al. (2010). The
difference is in the notations and the choice of Mn .

If the event T happens, with Mn = c2(log n)c1 for some constants 0 ≤ c1, c2 < ∞,
where c2 depends on K ,

λ0 = √
mkMn log n

√
log(d ∨ n)/n = c2

√
mk log2+2c1 log(d ∨ n)/n,

we have

ε̄(ψ̂ | ψ0) + λ‖β̂‖1 ≤ Tλ0[(‖β̂ − β0‖1 + ‖η − η0‖2) ∨ λ0]
+ λ‖β0‖1 + ε̄(ψ0 | ψ0).

Under the definition of θ ∈ Θ̃ in (23)we have ‖η−η0‖2 ≤ 2K . And as ε̄(ψ0 | ψ0) = 0
we have for n sufficiently large.

ε̄(ψ̂ | ψ0) + λ‖β̂‖1 ≤ Tλ0(‖β̂‖1 + ‖β0‖1 + 2K ) + λ‖β0‖1
→ ε̄(ψ̂ | ψ0) + (λ − Tλ0)‖β̂‖1 ≤ Tλ02K + (λ + Tλ0)‖β0‖1

As C > 0 sufficiently large we have λ ≥ 2Tλ0.
And using the condition on ‖β0‖1 and

√
mk, we have both Tλ02K = o(1) and

(λ + Tλ0)‖β0‖1 = o(1), so we have ε̄(ψ̂ | ψ0) → 0 (n → ∞).
At last, as the event T has large probability, we have ε̄(θ̂λ | θ0) = oP (1) (n → ∞).

��

Appendix J: Proof of Theorem 3

Proof First we discuss the bound for the probability of Tgroup in (22).
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The difference between Tgroup and T in (21) is only related to the following entropy
of the Entropy Lemma in the proof of Lemma 3.

H

(
2u,

{ k∑
r=1

∑
j∈Ωi

xi (βr j − β0,r j ) :
∑
p

‖βGp
− β0,Gp

‖F ≤ ε

}
, ‖ · ‖Pn

)
,

for i = 1 . . . , n,

where
∑

p ‖βGp
−β0,Gp

‖F ≤ ε still maintains a convex hull for β in the metric space
equipped with the metric induced by the norm ‖ ·‖Pn defined in the proof of Lemma 3.
Thus it still satisfies the Condition of Lemma 2.6.11 of Van Der Vaart and Wellner
(1996) which can still be applied to give

H

(
2u,

{ k∑
r=1

∑
j∈Ωi

xi (βr j − β0,r j ) :
∑
p

‖βGp
− β0,Gp

‖F ≤ ε

}
, ‖ · ‖Pn

)

≤
(

ε2

u2
+ 1

)
log(1 + kmd), for i = 1 . . . , n.

So the probability of event Tgroup remains the same form with that in Lemma 3.
Then we discuss the bound for the average excess risk and feature selection.
If the event Tgroup happens, we have

ε̄(ψ̂ | ψ0) + λ
∑
p

‖β̂Gp
‖F ≤ Tλ0

[(∑
Gp

‖β̂Gp
− β0,Gp

‖F + ‖η − η0‖2
)

∨ λ0

]

+ λ
∑
p

‖β0,Gp
‖F + ε̄(ψ0 | ψ0).

Using Condition 3 we have ε̄(ψ0 | ψ0) = 0 and ε̄(ψ̂ | ψ0) ≥ ‖ψ̂ − ψ0‖2Qn
/c20.

Case 1 When the following is true:

∑
p

‖β̂Gp
− β0,Gp

‖F + ‖η̂ − η0‖2 ≤ λ0,

we have

ε̄(ψ̂ | ψ0) ≤ Tλ20 + λ
∑
p

‖β̂Gp
− β0,Gp

‖F + ε̄(ψ0 | ψ0) ≤ (λ + Tλ0)λ0.

Case 2 When the following is true:

∑
p

‖β̂Gp
− β0,Gp

‖F + ‖η̂ − η0‖2 ≥ λ0,

Tλ0‖η̂ − η0‖2 ≥ (λ + Tλ0)
∑
p∈I

‖β̂Gp
− β0,Gp

‖F .
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As
∑

p∈Ic ‖β0,Gp
‖F = 0, we have

ε̄(ψ̂ | ψ0) + (λ − Tλ0)
∑
p∈Ic

‖β̂Gp
‖F ≤ 2Tλ0‖η̂ − η0‖2

≤ 2T 2λ20c
2
0 + ‖η̂ − η0‖22/(2c20) ≤ 2T 2λ20c

2
0 + ε̄(ψ̂ | ψ0)/2.

Then we get

ε̄(ψ̂ | ψ0) + 2(λ − Tλ0)
∑
p∈Ic

‖β̂Gp
‖F ≤ 4T 2λ20c

2
0.

Case 3 When the following is true:

∑
p

‖β̂Gp
− β0,Gp

‖F + ‖η̂ − η0‖2 ≥ λ0,

Tλ0‖η̂ − η0‖2 ≤ (λ + Tλ0)
∑
p∈I

‖β̂Gp
− β0,Gp

‖F ,

we have

ε̄(ψ̂ | ψ0) + (λ − Tλ0)
∑
p∈Ic

‖β̂Gp
‖F ≤ 2(λ + Tλ0)

∑
p∈I

‖β̂Gp
− β0,Gp

‖F .

Thus we have

∑
p∈Ic

‖β̂Gp
‖F ≤ 6

∑
p∈I

‖β̂Gp
− β0,Gp

‖F ,

so we can use the Condition 5 for β̂ − β0 to have

ε̄(ψ̂ | ψ0) + (λ − Tλ0)
∑
p∈Ic

‖β̂Gp
‖F ≤ 2(λ + Tλ0)

√
s
∑
p∈I

‖β̂Gp
− β̂0,Gp

‖F

≤ 2(λ + Tλ0)
√
sκ‖ϕ̂ − (ϕ0)‖Qn ≤ 2(λ + Tλ0)

2sκ2c20 + ‖ϕ̂ − (ϕ0)‖2Qn
/(2c20)

≤ 2(λ + Tλ0)
2sκ2c20 + ε̄(ψ̂ | ψ0)/2.

So we have

ε̄(ψ̂ | ψ0) + 2(λ − Tλ0)
∑
p∈Ic

‖β̂Gp
‖F ≤ 4(λ + Tλ0)

2sκ2c20.

And without restricted eigenvalue Condition 5, we can prove similarly as in
“Appendix I” section, assuming event Tgroup happens and using the condition on∑

p ‖β0,Gp
‖F and

√
mk. ��
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