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Abstract The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance from hurricanes
and nor'easters. Using annual tree ring data, we adopt a dendroclimatic and statistical modeling approach
to understand the response and resilience of a coastal pine forest to extreme storm events, over the past
few decades. Results indicate that radial growth of trees in the study area is influenced by age, regional
climate trends, and individual tree effects but dominated periodically by growth disturbance due to storms.
We evaluated seven local extreme storm events to understand the effect of nor'easters and hurricanes

on radial growth. A general decline in radial growth was observed in the year of the extreme storm and

3 years following it, after which the radial growth started recovering. The decline in radial growth showed

a statistically significant correlation with the magnitude of the extreme storm (storm surge height and
wind speed). This study contributes to understanding declining tree growth response and resilience

of coastal forests to past disturbances. Given the potential increase in hurricanes and storm surge

severity in the region, this can help predict vegetation response patterns to similar disturbances

in the future.

Plain Language Summary Every few years the hurricane season makes the news highlight for
its devastating impacts and 2017 has been such a year. Although hurricanes and nor'‘easters occur every
year in the Atlantic Ocean, it is only the extreme events making landfall that leave a major mark on the
society, as well as natural ecosystems. It is therefore important to understand the impacts of such extreme
events using historical proxy records. Here we use annual tree ring growth as a proxy to understand how
past extreme storm events affected the Mid-Atlantic coastal forests in Virginia. Our results show a general
decline in radial growth for up to 4 years after the extreme storm event, after which the radial growth starts
recovering. A statistically significant correlation is observed between the magnitude of growth decline and
the storm characteristics (wind speed and storm surge height). Given the potential increase in hurricanes
and storm surge severity in the region, such studies can help predict vegetation response patterns to similar
disturbances in the future.

1. Introduction

Coastal and estuarine landscapes host some of the most valuable and vulnerable ecosystems globally (Barbier
etal., 2011; Lotze et al., 2006; Parker & Crichton, 2011). The Mid-Atlantic coastal region of the United States,
which covers Delaware and parts of New Jersey, Maryland, Virginia, and North Carolina, boasts complex
ecosystems composed of wetland forests, saltwater marshes, freshwater marshes, bays, and estuaries (Najjar
et al, 2000). Forests account for about 70% of the land cover in this region (Jones et al., 1997). Climate
projections indicate that sea level, temperature, storminess, and streamflow will increase in this region in
response to global warming (Najjar et al., 2000; Rogers & McCarty, 2000). Furthermore, recent studies show
that Atlantic hurricane activity is projected to increase due to a rise in sea surface temperature (Goldenberg
etal, 2001; Saunders & Lea, 2008; Wang et al., 2017). However, this relationship is equivocal due to large vari-
ations between different modeling methods (Knutson et al., 2010). A median 25-fold and 40-fold increase in
the annual number of local 100 year floods is expected along the contiguous U.S. coastline by 2050, under
probabilistic relative sea level projections for Representative Concentration Pathway 4.5 and 8.5, respectively
(Buchanan et al., 2017). Damage from storm surges and wind associated with these storms can influence the
structure, development, species composition, and diversity of forests (Lugo, 2008).
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Forests in this region can also be dramatically affected by other environmental drivers such as variation in
temperature and precipitation, extreme drought, or flooding events (Mickler et al., 2012). Sea level rise can
lead to a progressive landward shoreline displacement along the coast and cause the forest-marsh boundary
to migrate inland (Kirwan et al., 2016; Robichaud & Bégin, 1997). These stressors have been reported to cause
reduced forest growth, failure in regeneration, or dieback events (Kirwan et al., 2016; Mickler et al., 2012).
Coastal forests of South Carolina suffered increased mortality in response to saltwater infiltration from storm
surges and extreme wind damage that accompanied the 1989 Hurricane Hugo (Hook et al., 1991). On the west
coast of Florida, regeneration failure is observed in coastal forests due to sea level rise (Williams et al., 1999).
Therefore, understanding the response and resilience of coastal forests to past environmental changes can
help predict their response patterns and manage these forests appropriately in the future.

Dendrochronological and statistical techniques have been an effective tool to reconstruct the response of
forests to changing environmental conditions over time, including changes in sea level (Kirwan et al., 2007;
Robichaud & Bégin, 1997), temperature, and precipitation (e.g., Byun et al,, 2013; Harley et al., 2011; Panayotov
etal,, 2010; Schofield et al., 2016; Tipton et al., 2016). Annual tree ring widths are influenced by several factors
including the age and species of the tree, competition from neighboring trees, soil conditions, climate, local
or stand-wide disturbance pulses and annual variability among individual trees (Cook et al., 1990; Fritts, 1976;
Speer, 2010). In coastal environments, tree rings have also been observed to respond to tropical storms and
hurricanes (Conner & Inabinette, 2003; Johnson & Young, 1992; Miller et al., 2006; Rodgers lll et al., 2006).
The effects of these disturbance episodes on tree growth can be studied by analyzing their resilience, that is,
the capacity of the trees to recover after disturbance and regain their pre-disturbance structure and function
(Folke et al., 2004; Scheffer et al., 2001).

We postulate that low-lying trees in the Mid-Atlantic coastal forest in Virginia are episodically damaged
through the direct influence of flooding and strong winds during extreme storm events. By adopting a
dendroclimatic and statistical modeling approach, this paper aims to (a) identify periods of declining tree
ring growth following extreme storm events and (b) understand the response and resilience of vegeta-
tion to extreme storm events in the Mid-Atlantic coastal region, on the Eastern Shore of Virginia National
Wildlife Refuge.

2. Materials and Methods

2.1. Study Area

2.1.1. Geographic Setting

The study site is a stand of Pinus taeda (L.) (loblolly pine), located on the Eastern Shore of Virginia National
Wildlife Refuge, Virginia, USA. It is a secondary growth stand that is predominantly populated by Pinus taeda
with a tree density of approximately 318 trees per hectare. Some other species found in the study area include
llex vomitoria (yaupon holly), Iva frutescens (marsh elder), Baccharis halimifolia (groundsel tree), Myrica cerifera
(bayberry), and Smilax spp. (greenbrier). Topographic changes due to compaction, erosion, and autogenic
succession can lead to changes in the elevation of trees relative to each other and to mean sea level. The soil
at the study site is, however, very sandy, and therefore, compaction is expected to be negligible. Wave and
tidal energy are minimal at this location, so erosion within the forest boundary is unlikely. However, the sea
level itself rose on the order of 50 cm between 1904 and 2015 (extrapolated from the Sewells Point tide gauge,
Virginia; National Oceanic and Atmospheric Administration (NOAA), 2016). While historical topographic data
are not available at a high enough resolution to determine the extent of elevation changes, historical maps
and aerial imagery do not show significant changes of the forest boundary, so we assume that the relative
distance of the trees to the forest-marsh boundary did not change over the course of the study period.

The refuge lies on the southern tip of the Delmarva Peninsula, Virginia, USA, and is bordered by the Atlantic
Ocean on the East and the Chesapeake Bay on the West (Figure 1a). This site is adjacent to the Virginia Coast
Reserve (VCR), which is designated by the National Science Foundation as a Long-Term Ecological Research
site. The Delmarva Peninsula formed when rising sea levels during the late Pleistocene and Holocene filled
the lower Susquehanna river valley, creating the Chesapeake Bay and isolating the area from the mainland
(Colman et al., 1990; Hobbs, 2004; Rice, 2004). Sea level fluctuations, climate, tidal energy, and sand supply
control the present-day morphology of the barrier islands and marsh-lagoonal systems along the eastern
side of the Delmarva Peninsula (Demarest & Leatherman, 1985). The average rate of sea level rise at VCR is
approximately 4 mm/yr (National Oceanic and Atmospheric Administration (NOAA), 2010), which is about
twice the global rate.
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Figure 1. Geographic setting and geomorphology of the study area illustrating (a) satellite imagery displaying areas
affected by storm surges during hurricanes (Jelesnianski et al., 1992). Categories 1 through 5 refer to the Saffir-Simpson
scale of hurricane wind intensity. The inset shows the study site where Pinus taeda trees were sampled. (b) Schematic
displaying elevation change along the sampling transect. The distance between trees is not to scale, for illustrative
purposes only.

2.1.2. Climate and Storm Activity

The mean temperature at the study site during April, July, October, and January are approximately 14°C,
25°C, 17°C, and 5°C, respectively, with mean total precipitation of 91 mm per month (1,095 mm/yr), dis-
tributed evenly throughout a year. The climate data set used in this study is 4 km resolution monthly
Parameter-elevation Regressions on Independent Slopes Model (PRISM) AN81m time series data set (PRISM
Climate Group, 2015). This data set is modeled using climatologically aided interpolation in which the
long-term average data sets serve as the predictor grids. It uses all of the station networks and data sources
used by the PRISM Climate Group to provide the best possible climate data estimates at a given time. From
PRISM data, we used mean monthly temperature and total monthly precipitation for a single centrally located
point at 37.1280°N, 75.9611°W for the period ranging 1903 to 2015.

A storm surge can be defined as an abnormal rise of water generated by a storm, higher than the predicted
astronomical tides (National Oceanic and Atmospheric Administration (NOAA), 2016). The study site is subject
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Figure 2. Monthly highest water levels relative to the monthly mean higher high water (MHHW) recorded at the
Chesapeake Bay Bridge Tunnel water level station near the study site (National Oceanic and Atmospheric Administration
(NOAA), 2016). Demarcated extreme spikes in water levels (red circles) correspond to storm surges associated with
hurricanes and nor'easters. Yellow stars indicate high water levels from unnamed meteorological events.

to two such major storm types—hurricanes and nor'easters (Parker & Crichton, 2011) (Figures 1a and 2). The
peak hurricane season in Virginia spans across the summer months of August and September, but notable
events have also been reported into the fall season. The hurricane events are generally of short duration, char-
acterized by high wind speeds and large storm surges (Parker & Crichton, 2011). Unlike hurricanes, nor'easters
generally occur during the fall, winter, and early spring, are comparatively slower, have a longer duration,
and can produce equally large storm surges (Dolan & Davis, 1992). In this study, water level data of monthly
and hourly resolution were retrieved from the nearest tidal station — 8638863 Chesapeake Bay Bridge Tunnel,
Virginia (National Oceanic and Atmospheric Administration (NOAA), 2016). The water level measurements
made at the Chesapeake Bay Bridge Tunnel tidal station have also been used as a proxy for those at the
present site in another previous study by Paquier et al. (2017). Wherever necessary, additional water level
data were also retrieved from the 8638610 Sewells Point tidal station, Virginia (National Oceanic and Atmo-
spheric Administration (NOAA), 2016), which has a longer record but is further away. Based on a combination
of storm surge magnitude and duration recorded at the Chesapeake Bay Bridge Tunnel tidal station, events
with extremely high water levels (>1 m above mean higher high water (MHHW)) (see Ezer & Atkinson, 2014)
or long flooding duration (>30 h above 1 m NAVD88) obtained from tidal records were identified as extreme
storm events. Since the continuous water level records are only available from 1975, extreme storm events
prior to 1975 were identified based on the description from historical reports that display maximum impact
on Virginia. Only seven storms were identified that met these criteria between 1904 and 2015, namely, 1933
Chesapeake-Potomac Hurricane, 1962 Ash Wednesday Nor'easter, 1998 Nor'easter, 2003 Hurricane Isabel,
2009 Nor'lda, 2011 Hurricane Irene, and 2012 Hurricane Sandy. Strong tidal surges from unnamed meteoro-
logical events marked in Figure 2, which did not meet our study criteria, may also have left some disturbance
imprint in the tree ring record. We do not explore these events in detail.

2.2. Sampling and Chronology Preparation

We sampled 43 Pinus taeda trees along a transect representing an increasing distance from the forest-marsh
boundary and elevation above sea level. On average, two cores per tree were collected at breast height (1.4 m)
with a 5 mm increment borer using standard procedures outlined in Stokes and Smiley (1968). To understand
the response of trees to extreme storm events as a function of increasing distance from the forest-marsh
boundary, the sampled trees that correlated well as described ahead were divided into two groups: trees
closer to the marsh (<40 m from the forest-marsh boundary, n = 16) and those further inland (>40 m from
the forest-marsh boundary, n = 9), hereby referred to as low and high tree groups, respectively (Figure 1b).

The ring width series were cross-dated visually using skeleton plots and marker rings. Ring widths were
then measured using WinDENDRO software (Regent Instruments, 2012). The computer program COFECHA
(Holmes, 1983) was used to statistically confirm cross dating. Cores with a correlation coefficient less than
0.235, which represents a 95% level of confidence when testing 50 year segments, were discarded. Thus, only
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25 trees (46 cores) were used in this study. These trees were evenly distributed within the low and high tree
groups. The average mean sensitivity, a measure of year-to-year variability in ring width, and series intercor-
relation, a measure of the strength of the common signal between all trees, obtained from COFECHA were
0.342 and 0.394, respectively. The series intercorrelation was within the 0.35-0.6 range, while the mean sen-
sitivity value was slightly higher than the 0.15-0.3 range reported for similar Pinus taeda chronologies (Cook
et al., 1998), indicating that the trees are highly sensitive to yearly changes in growth-limiting factors. For all
the core samples that did not hit the pith, the pith year was estimated following the method developed by
Duncan (1989), which assumes concentric ring growth such that the ring boundaries can be considered arcs
of circumferences with the pith in the center. The oldest tree was 113 years old with the sample mean age
being 89 years in 2015. The raw ring width data and details on the sampling location, elevation, and tree age
are provided in supporting information Data Set S1 and Table S1, respectively.

Using the Dendrochronology Program Library in R (dpIR) package (Bunn, 2008), we compiled chronologies for
the whole site (stand-level) and the site stratified by distance from the forest-marsh boundary (group-level) as
well as retained average detrended ring width indices (RWI) for each tree for analysis. Cores were detrended
with a cubic smoothing spline, having a wavelength equal to 2/3 the length of individual ring width series
and a frequency response of 50% to minimize any age-related trend (Cook & Peters, 1981). The RWI of multiple
cores of each tree were then averaged to obtain a single time series for each tree. The RWI of individual trees
were then averaged together using a Tukey’s biweight robust mean (Cook et al., 1990) to build the mean
chronology for 25 trees (stand-level) (supporting information Figure S1). Group-level mean chronologies for
low and high tree groups were created using the above procedure, and the RWI of individual trees were also
retained for analysis. The stand-level mean chronology in this study spans the period from 1904 to 2015.

2.3. Identification and Impact Analysis of Extreme Storm Events

The impact of extreme storm events on radial growth of the trees was studied using two methods: (1) event
year analysis: to identify low-growth episodes (if any) following the extreme storm events and (2) superposed
epoch analysis (SEA): to isolate growth response signals to key events (in this case, extreme storms), which may
be difficult to detect in the presence of noise from other competing influences operating at similar time scales.
A summary of the extreme storm events analyzed using these methods is provided in supporting information
Table S3.

2.3.1. Event Year Analysis

The year-to-year variation in tree ring widths contains information about the relationship of the tree with
its environment. Event years are defined as years with a remarkable increase or decrease in radial growth
(Schweingruber et al., 1990). Event years were calculated using radial growth data to determine if there
were low-growth episodes following the extreme storm events. The analysis was performed using the rela-
tive growth change method (Schweingruber et al., 1990) using the pointRes package in R (van der Maaten-
Theunissen et al., 2015). In this method, the ratio of radial growth in the current year and the average growth
in four preceding years was calculated. The percentage relative growth changes were then used to identify
event years for the trees. A positive event year was defined as the year with at least 60% increase in growth,
whereas a negative event year was defined as the year with at least 40% decrease in growth as compared to
the average growth in the preceding 4 years, following Schweingruber et al. (1990).

2.3.2. Superposed Epoch Analysis

SEA was performed using the dplIR package (Bunn, 2008) to isolate growth response signals to key events (in
this case, extreme storm events), which may be difficult to detect in the presence of noise from other com-
peting influences operating at similar time scales. SEA was conducted on RWI of individual trees, and group
and stand-level mean chronologies. Individual RWI were normalized by subtracting the mean and dividing
it by the standard deviation for the entire time record to minimize the chance that a single anomaly may
disproportionately influence the composite analysis and ensure internal consistency. The scaled mean RWI
were then averaged at 13 temporal lags centered on the key dates thereby creating a composite of the tree
ring response in the year of disturbance (lag year 0), and in each of the 6 years preceding and following the
disturbance. Our study involves five key dates representing a combination of highest storm surge magni-
tude and duration: 1933 Chesapeake-Potomac Hurricane, 1962 Ash Wednesday Nor'easter, 1998 Nor'easter,
2003 Hurricane Isabel, and 2009 Nor’lda. Ten thousand bootstrap samples were used to compute 95% confi-
dence intervals for the scaled RWI for each year in the superposed epoch. The 2011 Hurricane Irene and 2012
Hurricane Sandy could not be included as a key date in the SEA as ring width data for 6 years post-storm

FERNANDES ET AL.



@AG U Journal of Geophysical Research: Biogeosciences 10.1002/2017JG004125

were not available. Furthermore, no fire scars or any reported evidence of non-storm key events (e.g., insect
outbreaks) that occurred in the same year as the extreme storm event was found. The mean RWI during the dis-
turbance period showed no significant correlation (p-value <0.05) with Palmer Drought Severity Index either,
at our study site. This precludes the likelihood of any non-storm key events complicating the growth response
signal to extreme storms detected by SEA, thereby increasing the accuracy of the results.

2.4. Nonlinear Growth Response Model

Having identified periods of declining tree ring growth following extreme storm events (see section 3.1), a
generalized additive mixed model (GAMM) was built to characterize the growth response of trees to other
factors like climate, age, individual tree variability, and distance from the forest-marsh boundary (tree group),
along with disturbance due to extreme storm events. The advantage of GAMM is its ability to model poten-
tially nonlinear relationships between response and predictor variables and to incorporate both fixed and
random effects to account for repeated measures (e.g., individual trees) (Wood, 2006; Zuur, 2012; Zuur et al.,
2009). The model was constructed using the mgcv package in R (Wood, 2007) using the following equation:

In(RW) = | + s(temp) + s(precip) + tree group + s(age, by = tree group) + storm disturbance + treelD,,,
(M

where (I) is the parametric estimate of the intercept and (s) represents the inclusion of a cubic regression
spline that detects and allows the nonlinear response of raw ring width series of individual tree cores (RW)
to each predictor variable. The climate was characterized using mean seasonal temperature (temp) and total
annual precipitation (precip) using data retrieved from PRISM (PRISM Climate Group, 2015). For each year,
the monthly temperature was averaged across the following seasons: spring (April to June), summer (July to
September), fall (October to December), and winter (January to March) (see Kirwan et al., 2007). Precipitation
was summed across the whole year. A fixed categorical variable (tree group) was included in the model to
determine the contribution of tree groups (low and high tree groups) to variance in ring width. The (age)
predictor represents the age of the trees estimated by the method developed by Duncan (1989). As the mean
age of low (81 years) and high (103 years) tree groups in 2015 differed by 22 years, a (by = tree group) argument
was included in the age predictor to model potentially different trends over time in low and high tree groups.
The categorical predictor (storm disturbance) was included as a logical class variable to represent an observed
disturbance in tree ring growth following extreme storm events (see section 3.1). As continuous water level
records at the nearest tidal station were available post-1975 (about 36.6% of the temporal span of our tree
ring record), using storm disturbance as a categorical predictor over storm surge height as discrete values
was preferred to account for disturbance in growth due to extreme storm events prior to 1975 as well. The
climate variables (temp and precip), tree age (age), tree group and storm occurrence (storm disturbance) were
included in the model as fixed effects. The variation among individual trees was incorporated as a random
effect (treelD,.) so that the model produces a random coefficient for each tree core, which is modeled as
a Gaussian random effect. Smoothing parameters of the spline, knots, and rigidity were decided using the
generalized cross-validation method such that two knots were equally spaced per 3°C change in seasonal
temperature, 400 mm change in precipitation, and 15 years increase in age. We did not account for the effects
of error in the interpolation and any nonclimatic variations due to station factors introduced in the PRISM
AN81m time series data set, and additional work on evaluating the sources of uncertainty could increase
the accuracy of the climate-tree growth relationship modeled by the GAMM. Although artifacts have been
observed in PRISM climate data (Beier et al., 2012), they do not appear to vary systematically with geographical
factors like elevation or distance to coast, in the U.S. Northeast (Bishop & Beier, 2013). To ensure that the
grouping of trees does not reduce the variability explained by the model, an alternate GAMM was tested
using tree distance from the forest-marsh boundary as a numeric variable instead of a categorical tree group
variable. Results are, however, not appreciably altered (refer to supporting information Table S4).

2.5. Forest Resilience to Discrete Disturbance Events

From the results of the SEA and event year analysis (section 3.1), a 4 year low-growth (disturbance) period
was identified beginning at the year of the extreme storm events and 3 years following it. The characteris-
tics of each extreme storm event differ in terms of proximity to the site, wind speeds, storm surge height,
and duration of flooding and may thereby affect tree growth differently. To characterize this effect, we com-
puted Kendall’s tau (z), a rank-based correlation coefficient, between mean RWI across the seven disturbance
events, and storm-specific factors like storm surge height and wind speed. Storm surge height was obtained
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from the monthly highest water level recorded at the 8638610 Sewells Point tidal station, Virginia (National
Oceanic and Atmospheric Administration (NOAA), 2016), which has continuous water level data from 1927
onward. Considering that the highest water level recorded at the Sewells point and Chesapeake Bay Bridge
Tunnel tidal stations is highly correlated during their common temporal span (Pearson’s correlation coefficient
= 0.987, p-value <0.05), they would rank similarly for Kendall’s correlation. Highest sustained wind speeds
were obtained from the hourly observations recorded at the Norfolk NAS local climatological data station in
Virginia (supporting information Table S2) (National Oceanic and Atmospheric Administration (NOAA), 2017).

Furthermore, to characterize the difference in growth between tree groups across different extreme storm
events, a two-way, two-tailed analysis of variance (ANOVA) was performed on RWI as a function of tree group,
storm effect, and their interaction. The tree group factor was categorized into two classes: low tree group and
high tree group. The storm effect factor was categorized into seven classes: disturbance period associated
with the 1933, 1962, 1998, 2003, 2009, and 2011 extreme storms and no storm (the remaining years during the
1904-2015 period when no extreme storm events affected the study site). In order to meet the assumptions
of normality and homogeneity of variances, the RWI of individual trees were log-transformed. The two-way
ANOVA was followed by Tukey’s honest significant difference (HSD) post hoc test to localize the significant
differences among tree groups and extreme storms and view the pairwise comparisons at p-value <0.05.

Having concentrated solely on ring width growth in the method mentioned above, we analyzed the resilience
of the stand during disturbance periods associated with four extreme storm events: 1933 Chesapeake-
Potomac Hurricane, 1962 Ash Wednesday Nor'easter, 1998 Nor'easter, and 2003 Hurricane Isabel. Resilience is
the capacity of forests to reorganize while undergoing changes so as to retain their original function, structure,
identity, and feedbacks (Folke et al., 2004). We computed three metrics: resistance, recovery, and resilience,
according to the definitions described in Lloret et al. (2011) to characterize how the trees respond to and
recover from disturbance due to the extreme storms. These metrics were compared between trees belong-
ing to the low and high tree groups to determine if the resilience of the trees varied as a function of distance
from the forest-marsh boundary. The mean RWI values for each tree were computed for the low-growth
(disturbance) period (Dr) and the 4 years before (PreDr) and after (PostDr) the disturbance period. Resistance
can be defined as the inverse of radial growth reduction during the disturbance and was estimated as the ratio
between Dr and PreDr. Recovery corresponds to the ability of the trees to recover relative to the damage expe-
rienced by them during the disturbance and was estimated as the ratio between PostDr and Dr. Resilience
corresponds to the capacity of the trees to reach their pre-disturbance growth levels and was estimated
as the ratio between PostDr and PreDr. The selected low-growth periods (Dr) were 1933-1936, 1962-1965,
1998-2001, 2003-2006. Hereafter, we refer to each of these according to the first year: 1933, 1962, 1998,
and 2003, respectively. Since the tree ring record used in this study is only until 2015, the PostDr period cor-
responding to the 2009 Nor'lda, 2011 Hurricane Irene, and 2012 Hurricane Sandy could not be defined and
were therefore not used in this analysis. One sample t-test were then performed to determine if the resis-
tance, recovery, and resilience of low and high tree groups were significantly different from the base value 1
indicating a significant change in growth patterns at a 95% confidence level.

3. Results

3.1. Identification and Impact Analysis of Extreme Storm Events

A relationship between the decline in radial growth and extreme storm events was observed at an individual
tree level. Almost all trees show a negative event year (>40% decline in growth compared to average growth
in preceding 4 years) following the extreme storm events of 1933, 1962, 1998, 2003, 2009, 2011, and 2012 in
Virginia (Figure 3a). A relatively higher number of low group trees exhibit a decline in growth as compared to
high group trees, following the 1933, 1962, and 1998 storms (Figures 3b and 4).

Anincrease in the number of trees showing a negative event year was observed for up to 3 years following the
extreme storm events. Following the 1933 storm event, about 60% of the low tree group and 50% of the high
tree group showed a negative event year by 1936 (Figure 4). After the 1962 storm event, about 70% of the low
tree group and only 10% of the high tree group showed a negative event year by 1965 (Figure 4). After the
1998 storm event, about 55% of the low tree group showed a negative event year by 2001 (Figure 4). For the
2003, 2009, 2011, and 2012 extreme storm events, the percentage of trees showing negative event years in
3 years post-storm is variable. Growth suppressions were also observed between 1955-1957 and 1978-1980
(Figure 4).
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Figure 3. Relative growth change and event years for individual trees with the extreme storm event years marked in red.
(a) Dot plot showing negative event years for individual trees at the study site. (b) Panels I-V show gradual relative
growth change post-1933, 1962, 1998, 2003, and 2009 extreme storm events, for time windows, marked |-V in Figure 3a.
The relative growth change was calculated as the ratio of radial growth in the current year and the average growth in
four preceding years, of individual trees. The majority of the trees show a negative event year (>40% decline in growth),

3 years post-storm.
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Low Tree Group SEA revealed a common growth response signal of declining RWI to the
8 2] five extreme storm events analyzed (Figure 5). The decline in RWI starts in
T e the year of the storm, and a relatively large decrease in RWI is observed
w 8 — 3-4years after the storm. At a stand-level (i.e., using the mean chronology
§ - of all trees), a declining trend in RWI is observed for up to 3 years following
5 3 — 2 IS the extreme storm event, after which the RWI start recovering. A similar
% i 2 response is observed in the high tree group. However, the low tree group
S g shows a decline in RWIfor up to 4 years after the extreme storm event, after
§ i Lo & which it begins to recover (Figure 5). Because of the occurrence of extreme
Q 4 storms associated with the 1998 Nor'easter, 2003 Hurricane Isabel, and
J ‘ “ ‘ ‘ ” ||| ’ 2009 Nor'lda, within short intervals (<13 years) there is a bias introduced

o : H ||| ‘|| A .||‘| Il " " Lo in the pre-storm lag years (—6 to —1) (Figure 5).
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3.2. Nonlinear Growth Response Model

1920 1940 1960 1980 2000 Variations in radial growth of the trees were modeled by climate, age,
Year storm disturbance, and individual tree variations, with the final GAMM
High Tree Group explaining 49.80% of deviance in radial growth. Spring, summer, fall, and
§ —b.] - winter temperature, total precipitation, tree age, storm disturbance, and
: - variation among individual trees were found to be significant predictors
2 &8 — of radial growth (p-value <0.05) (Table 1). Tree group based on distance
|°:> . from the forest-marsh boundary was found to be a nonsignificant predic-
5 Q -2 8 tor at a 95% confidence level. Overall, variation among individual trees
% . g explained the highest proportion of deviance in radial growth (18.96%) fol-
‘EC): 2 g lowed by tree age (14.54%). Total annual precipitation (1.65%) explained
E . — 0 ® slightly more deviance in radial growth as compared to the mean temper-
L atures in spring (0.45%), summer (0.38%), fall (0.35%), and winter (0.16%).
i ‘ ‘ ‘ | ‘ ‘ H ‘ ‘ HH Total annual precipitation and mean seasonal temperature show variable
o - .. “ |||||!|| " ............. ‘ ‘H ............ ‘ AAAAAAAAA ||| !|I ih", ) influences on radial growth. High precipitation influenced radial growth
P R e e negatively (Figure 6). High radial growth was observed in both low and
1920 1940 1960 1980 2000 high tree groups at a young age (<20 years old), and a decline in radial

Year

Figure 4. Percentage of trees showing negative event years among the (a)
low tree group and (b) high tree group at the study site. Red line indicates
the sample size and red markers on the x-axis represent the seven extreme

storm events considered in this study.

growth was observed as the trees grow older (>90 years old) (Figure 6).

3.3. Forest Resilience to Discrete Disturbance Events

The mean RWI across the disturbance periods associated with the seven
extreme storm events showed a significant inverse relationship with both
storm surge height (r = —0.809) and wind speed (r = —0.975) at p-value
<0.05 from the results of Kendall's correlation analysis. Furthermore, the two-way ANOVA indicated a statisti-
cally significant effect of extreme storm events and the interaction between tree groups and extreme storm
events on RWI. Pairwise comparison using Tukey’s HSD post hoc test indicated that mean growth of the high
tree group was significantly lower (p-value <0.05) during the disturbance period associated with the 1933,
2003, and 2009 extreme storm events than that during the 1962 and 1998 extreme storms. In addition, the
mean growth of the high tree group during the disturbance period associated with the 2011 extreme storm
event was significantly lower (p-value <0.05) than that during the 1998 extreme storm only. No significant dif-
ferences in mean growth of the low tree group were observed between the analyzed extreme storm events at
95% confidence level. In addition, no significant, consistent difference was observed between low and high
tree groups during all the disturbance periods. Additional information on the results of ANOVA and Tukey’s
HSD post hoc test are provided in supporting information Table S5.

The radial growth of low and high tree groups showed a mixed response to extreme storm events in terms
of resistance, recovery, and resilience (Figure 7). The low tree group showed a significantly low resistance and
resilience toward the 1933 extreme storm event (mean <1, p-value <0.05). During the 1962 extreme storm
event, the high tree group showed a significantly low mean recovery and resilience (mean <1, p-value <0.05).
Both tree groups had high mean resistance to this extreme storm event (mean ~1 or higher). Both tree groups
also had high mean resistance and resilience toward the 1998 extreme storm event (mean ~1 or higher). A
significantly low mean resistance and resilience toward the 2003 extreme storm was observed in the high tree
group (mean <1, p-value <0.05).
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Figure 5. Results of superposed epoch analysis conducted on the mean chronology of (a) low tree group, (b) high tree
group, and (c) all trees, indicating the response of radial tree growth for a 13 year window centered on dates of five
extreme storms recorded in Virginia. (Refer to section 2.3.2.) Individual ring width indices (RWI) were normalized to
minimize the chance that a single anomaly may disproportionately influence the composite analysis. Bars above and
below the x-axis indicate above and below average RWI, respectively, for the 13 year window. Declining RWI trend
across years is indicative of low-growth periods, whereas a growing trend across years indicates radial growth recovery.
Dark gray shading shows statistically significant (at a 95% sample confidence) growth anomalies. (d) Summary of
superposed epoch analysis conducted on individual trees. Dark gray shading shows the percentage of trees with
statistically significant (at a 95% sample confidence) growth anomalies.

Table 1

Model Statistics of Radial Growth in Pinus taeda

Predictors F-statistic Deviance explained (%) p-value
Winter temperature 3.117 0.16 0.020
Fall temperature 12.468 0.35 <0.001
Summer temperature 14.533 0.38 <0.001
Spring temperature 10.715 0.45 <0.001
Precipitation 32.270 1.65 <0.001
Tree age (high) 128.828 14.54 <0.001
Tree age (low) 70.002 < 0.001
Individual tree effects 31.215 18.96 <0.001
Storm disturbance 58.701 NA <0.001
Tree group (low or high trees) 0.098 NA 0.754

Note. The approximate deviance explained by individual predictors and their correspond-
ing F-statistic and p-values are listed. Predictors with p-value <0.05 are considered statis-
tically significant. Mean seasonal temperatures, total annual precipitation, and tree age
were modeled as fixed effects using cubic regression splines. Storm disturbance and tree
group were included as fixed categorical variables and variations among individual trees
was modeled as a random effect. Total deviance explained: 49.80%, adjusted R2: 0.489.
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Figure 6. (a—g) Standardized partial predictors of radial growth in Pinus taeda estimated using cubic regression splines
in generalized additive mixed model. Dashed lines represent 95% confidence intervals. The x-axis represents the
measured values of each variable.

4. Discussion

4.1. Influence of Climate and Extreme Storm Events on Tree Ring Growth Patterns

An association is observed between the decline in radial growth and extreme storm events on the Eastern
Shore of Virginia National Wildlife Refuge. This decline in radial growth of Pinus taeda was observed for up to
4 years following the seven extreme storm events analyzed in this study (Figures 3 and 5). Growth suppression
observed in both low and high tree groups during the 1978-1980 period (Figure 4) may be associated with
the 1978 Northeastern United States blizzard or due to a storm surge from an unnamed meteorological event
(Figure 2). While the cause of a strong growth suppression during the 1955-1957 period (Figure 3a) could not
be analyzed as no local tidal records are available for that period, we hypothesize this low-growth period to be
associated with the 1954 Hurricane Hazel and 1955 tropical storms Connie and Diane. The growth suppression
following storms observed from our study is in accord with several other works. Johnson and Young (1992)
observed a similar association between decline in ring width of Pinus taeda and occurrence of hurricanes and
nor'easters on the Delmarva barrier islands. Samuelson et al. (2013) and Robichaud and Bégin (1997) also
reported a similar 3 to 4 year growth decline in ring width following storm events.

We associate the growth reduction observed in Pinus taeda with flooding and storm wind effects. Flooding
affects the soil structure and salinity, decreases or eliminates soil O,, accumulates CO,, produces potentially
toxic compounds, reduces Fe and Mn, and induces anaerobic decomposition of organic matter (Kozlowski,
1997; Ponnamperuma, 1984). These changes in soil properties can affect the physiological functions of
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Figure 7. Resistance, recovery, and resilience of low and high tree groups for the 1933, 1962, 1998, and 2003
low-growth periods. The band inside each box represents the corresponding median value. Gray regions represent
indices that are significantly different (p-value <0.05) from the base value one as indicated by one-sample t-test.

Pinus taeda. Storms can exert multiple stresses on forests. Storm surges bring salt water to flood forests, while
heavy precipitation can result in freshwater flooding. Precipitation can also lower the salt stress associated
with a storm surge by flushing salt from soil (Ponnamperuma, 1984). Defoliation and structural damage from
wind can stress trees or lead to mortality (Brokaw & Walker, 1991; Cooper-Ellis et al., 1999). Each storm brings
a different amount of surge, precipitation, and wind, and the relative strength of each of these processes can
vary over the course of a storm. The present data are unable to distinguish between these different mecha-
nisms for forest decline. However, further analysis might model the effects of storms with different ratios of
storm surge, precipitation, and wind on forest health or look at the effects of storms on forests in different
edaphic or topographic settings. These analysis might magnify the importance of one stressor over another,
to identify the processes responsible for specific episodes of forest decline. Soil salinization due to flooding
has been reported to cause browning and loss of needles or leaves in Pinus taeda along with a decrease in
nutrient use efficiency, nitrogen retention, and physiochemical retention mechanisms (Blood et al., 1991). Soil
inundation can also reduce root growth of Pinus taeda (DeBell et al., 1984). The reduced supply of oxygen to
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tree roots and sedimentation during flooding can further damage or injure the roots (Bratkovich et al., 1993;
Kozlowski, 1985). Wind associated with hurricanes and nor'easters have been reported to affect the growth of
Pinus taeda by increased salt spray (Levy, 1983), damage, or loss of branches and defoliation (Brokaw & Walker,
1991; Gresham et al., 1991; Negrén-Juarez et al., 2010).

Major losses in leaf surface area due to the storm would result in reduced radial growth of Pinus taeda until the
leaf surface is replaced (Kuprionis, 1970). Wiley and Zeide (1991) observed a reduction in diameter growth of
Pinus taeda for 8 years after the 1974 ice storm in southeast Arkansas that caused severe crown damage, bend-
ing and breakage of stems; the following 6 years, however, showed similar or increased diameter growth of
broken trees relative to undamaged trees (see also Bragg & Shelton, 2010). Belanger et al. (1996) also reported
a lack of recovery in diameter growth of Pinus taeda with severe crown damage for a 5 year period following
the 1983 storm in central Georgia. Similar effects may have resulted in reduced radial growth of Pinus taeda
observed in our study for up to 4 years following the extreme storms. The decline in radial growth during the
disturbance period can be further explained by the allocation of carbohydrates to dormant buds, branch for-
mation, and to add roots, thereby giving precedence to the demands for restoring crown components and
roots in damaged trees over lower stem growth (Belanger et al., 1996; Bragg & Shelton, 2010; Shelburne et al.,
1993; Waring & Pitman, 1985).

Radial growth usually begins to recover after the disturbance period depending on the frequency of storms
in the immediate future. High frequency of disturbances is expected to accelerate environmental change
and deplete individual tree reserves needed to withstand and overcome stressful episodes, thereby reducing
their resilience (Lloret et al., 2011). One disturbance can increase the susceptibility of the forest to another
disturbance (Oliver & Larson, 1996). The combined effect of successive disturbances of different nature can
lead to negative responses and slow forest-canopy recovery (Diaz-Delgado et al., 2002; Payette & Delwaide,
2003). The low tree group, which lies closer to the marsh, is subject to frequent low-magnitude storm surges
(Figure 1b). The increased exposure of the low tree group to storm surges could be the reason for the relatively
higher number of low group trees exhibiting a decline in growth as compared to high group trees, follow-
ing the 1933, 1962, and 1998 extreme storms as seen in the results of event year analysis (Figures 3 and 4).
However, considering that decline in growth of both low and high tree groups was variable following the
2009, 2011, and 2012 extreme storm events, no definite conclusion about the impact of extreme storm events
as a function of distance from the forest-marsh boundary can be made.

In addition, tree age was found to be an important variable that influences radial growth (Table 1). Initially,
the low and high tree groups show a reverse-J growth pattern, typical of trees growing in an increasingly
competitive environment. Both tree groups display high radial growth prior to age 20 and lower radial growth
after 90 years (Figure 6). A possible scenario is that rapid radial growth occurred until canopy closure at the
age of 20 years, after which growth begins to decline due to increasing competition, structural changes, and
shifts in carbon allocation associated with canopy closure and maximum foliage (Smith & Long, 2001). This is
consistent with the growth pattern observed by Reams (1996) in Pinus taeda from the Virginia Coastal Plain.
Bendtsen and Senft (1986) also observed a decline in radial growth of Pinus taeda from North Carolina until
the age of 12 years after which the ring width remained relatively constant till the age of 30 years. The drop
in radial growth of both low and high group trees post-90 years may be associated with the beginning of
senescence.

Furthermore, variations among individual trees was found to be a significant predictor that explained the
highest proportion of deviance in radial growth (18.96%) (Table 1). This could be attributed to microsite vari-
ability, competition, and variations in tree vigor (Amateis & Burkhart, 2016; Bullock & Burkhart, 2005; Ryu et al.,
2013). Microsite effects include the heterogeneity in soil moisture levels and nutrient availability across rela-
tively small distances within the study site, which can affect the competition among trees (Amateis & Burkhart,
2016; Bullock & Burkhart, 2005; Fajardo & Mclntire, 2007). The competition involves the struggle between
individual trees to acquire limiting resources like light, water, and nutrients that together determine rates of
carbon acquisition (Grime, 2001).

Radial growth was also found to be influenced by mean seasonal temperature and total annual precipitation,
although the deviance explained by these predictors was relatively low as compared to tree age and indi-
vidual tree variability (Table 1). Radial growth was found to be negatively associated with high precipitation
(Figure 6). A plausible explanation to this could be water stress associated with an increase in saturation of
the soil and associated low aeration (Fowells, 1965; Schultz, 1997).
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Figure 8. The relationship between resistance, recovery, and resilience of 25 Pinus taeda trees during low-growth
periods associated with extreme storm events occurring during the growing (1933 and 2003) and dormant (1962 and
1998) seasons. The solid lines represent linear regression lines. Asterisk indicates significant linear relationship at p-value
<0.05. High leverage points were not included in the regression analysis.

4.2. Forest Resilience to Discrete Disturbance Events

The resistance, recovery, and resilience to extreme storm events varied between low and high tree groups
(Figure 7). The forest resilience toward extreme storm events was found to be partially related to the timing of
the storm, that is, whether the storm occurred during the growing season or the dormancy period. Flooding
during the growing season, especially in late spring, is found to be more detrimental to the immediate tree
growth than flooding during the dormant season (Bratkovich et al., 1993). This is consistent with the results of
two-way ANOVA on RWI as a function of tree group and disturbance period associated with extreme storms.
The results indicated a significantly lower (p-value <0.05) mean growth in high tree group during the distur-
bance period associated with extreme storms occurring in the growing season (1933 Chesapeake-Potomac
Hurricane and 2003 Hurricane Isabel) than those occurring in the dormancy period (1962 Ash-Wednesday
Nor'easter and 1998 Nor'easter).

Recovery of the trees is a function of the impact of the event inducing the disturbance (Lloret et al., 2011). In
our case, this impact, which can be defined by the magnitude of decline in ring width during the disturbance
period, would be a function of storm characteristics (proximity to the site, wind speeds, storm surge height,
and duration of flooding) as well as resistance of individual trees and overall stand dynamics. Comparison
of resistance versus recovery points toward an inverse relationship as expected (Figure 8). Strong resistance
would indicate a very low decline in ring width during the disturbance period. This can be interpreted as a low
damage and a fast recovery. This trade-off between resistance and recovery after extreme storm events could
occur if both these components at least partially depend on the amount of stored carbon reserves needed to
withstand and overcome the stress (Galiano et al., 2011). More resilient trees showed higher recovery (Figure 8)
that could be attributed to either high amount of stored reserves or increased availability of resources due to
a decrease in competition. In addition, we observe a very gentle but positive linear trend between resistance
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and resilience (Figure 8). This indicates that if the impact during the extreme storm events was large (low
resistance), the trees do not return to their original pre-disturbance state (low resilience). These could be signs
of a progressive decrease in resilience over time on account of constant exposure to coastal inundation due
to the proximity to the forest-marsh boundary.

Although multiple factors (tree age, competition, microsite factors, and to some extent macroclimate) pro-
vide an explanation for variation in growth of Pinus taeda over time, the focus of our study points toward
how discrete occurrences like extreme storm events could influence the growth pattern periodically. Carefully
controlled experimental data would be necessary to derive the cause and effect relationship with storms.

This study was an exploratory data analysis to understand how extreme storm events disrupt the regular
annual tree growth patterns in coastal forests. While this study is purely based on classical statistical approach,
a tidal simulation modeling approach would serve as a confirmatory analysis to support the findings in this
work. Currently, this research is constricted by the availability of a variety of data and research design. First,
the limited continuous tidal data at approximately 22 km from the study site cover only about 36.6% of the
temporal span of our tree ring record. The remaining records are present only for extreme storm events and
are not at the same temporal resolution. Second, continuous records of hourly maximum sustained wind
speed obtained from the Norfolk Weather station span only 63.4% of our tree ring record and are located
approximately 35 km away. Third, lack of tree mortality data hinders the possibility of understanding if the
observed reduced growth in the years following hurricanes and nor‘easters could also lead to tree mor-
tality. No high-resolution data on changes in canopy cover post-hurricanes and nor'easters are available,
which could have helped provide better ecological interpretations. Lastly, data collection is always limited
by the research design and primary scope of the project. Having similar sampling conducted across multi-
ple transects in surrounding regions would provide further verification on the dominant geomorphological
and climatic controls. Coastal forests are constantly subject to flooding, and these may overlap with years
of climate-limited growth; this further complicates the signal between the impact of storms versus the low
growth from unfavorable climatic conditions. Although we use statistical methods like SEA (section 2.3.2) to
try and isolate the common signal across different storms, sampling trees from adjacent local regions that
were not flooded could help run better and more complicated signal processing analysis.

5. Conclusion

The projected increase in frequency and intensity of storm surges is likely to affect the Mid-Atlantic coastal
forests in the foreseeable future. This study aimed at identifying periods of declining tree ring growth follow-
ing hurricanes and nor'easters and understanding the response and resilience of vegetation in this region
following these disturbances. Results indicated episodic suppressions in radial growth for up to 4 years after
the extreme storm events, following which the radial growth started recovering. The timing, intensity, and
frequency of the storms were found to partially influence tree growth response. We observed a statistically
significant correlation between the decline in radial growth and the storm intensity (storm surge height and
wind speed). An inverse relationship was also observed between the resistance of trees to extreme storm
events and their recovery. Although the growth at our site was found to be influenced by age, regional climate
trends, and individual tree effects, however, episodic disturbances due to extreme storms appear to control
radial growth trend from time to time. Carefully controlled experimental data are required to identify con-
crete thresholds for storm impact parameters, which in turn would help in better managing storm affected
coastal forests.
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