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Abstract

Background: There is an urgent need for the development of global analytic frameworks that can perform analyses in a
privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of
federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have
solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational
studies, disease surveillance, and clinical trials recruitment.

Objective: The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning
across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another.

Methods: We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash
codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting
hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic
encryption to patient similarity search in a federated setting.

Results: We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-II1
database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved
averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in k-nearest neighbor with
x=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption.

Conclusions: The proposed algorithm can help search similar patients across institutions effectively to support federated data
analysis in a privacy-preserving manner.

(JMIR Med Inform 2018;6(2):¢20) doi:10.2196/medinform.7744
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Introduction

Data-Driven Decision Making in Medical Fields

Electronic health records (EHRs) are becoming ubiquitous
across almost all medical institutions. They provide insight into
diagnoses [1-6], as well as prognoses [7-10] and can assist in
the development of cost-effective treatment and management
programs [8,11-14]. All kinds of data across institutions are
being collected in EHRs, including diagnosis, medication, lab
results, procedures, and clinical notes. In the recently announced
precision medicine initiative, many more other types of data
including omics data such as genomic and proteomic data and
behavior data such as activity sensor data are being generated
and collected by doctors and patients. As such rich and
heterogeneous health data become available, the entire medical
research and practice are shifting from the knowledge or
guideline-driven approaches to the data or evidence-driven
paradigm, where effective and efficient algorithms become the
key for clinical research and practice.

Limitations of Single-Institutional Studies

Previously, many biomedical studies were conducted within a
single institution having limited EHR data because of the lack
of federated data analysis framework and the institutional
privacy concerns on data sharing. However, such an approach
has many limitations. For example, it has been demonstrated
that genome-wide association studies on EHR data often failed
to discover known biomarkers from a single institution because
of limited sample size [15,16]. To enable cross-institutional
studies, many collaborative networks have been proposed, such
as mini-sentinel [17], Observational Health Data Sciences and
Informatics [18], National Patient-Centered Clinical Research
Network [19], and i2b2 Shared Health Research Informatics
Network [20]. These frameworks enable certain analyses (such
as database queries with very specific inclusion or exclusion
criteria) to be conducted efficiently in a federated manner.
However, more sophisticated analyses such as predictive models
[21] and context-specific patient similarity search [22] are still
a challenge for most existing frameworks, as cross-institutional
EHR data exchange is required to build such models, which is
usually infeasible because of the institutional privacy and
security concerns. There is an urgent need for the development
of novel frameworks that can perform analyses in a
privacy-preserving federated environment across multiple
institutions. In this way, global analytic models can be built
collectively without sharing raw EHR data. A few studies on
the topic of federated clinical analysis [23-26] have been
conducted recently with the focus on different algorithms.
However, none of them have solved the problem of similar
patient matching, which is important for many biomedical
studies. Therefore, we plan to develop a privacy-preserving
analytic platform that focuses on a suite of algorithmic
challenges on patient similarity learning.

Patient Similarity Learning

Patient similarity learning aims to develop computational
algorithms for defining and locating clinically similar patients
to a query patient under a specific clinical context [7,27-30].
The patient similarity search is very challenging because the
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raw EHR data is sparse, high-dimensional, and noisy, which
makes finding an exact match among patients using EHR data
almost impossible. Besides, patient similarity learning is often
context-specific. For example, patient similarity measure for
heart disease management can be very different from cancer
management. The fundamental challenge is how we can perform
effective context-specific patient similarity learning in a
federated setting, which enables many different applications:

¢  Cohort construction: cross-institution observational studies
are challenging but necessary as many studies require a
large and specific patient cohort that does not exist within
a single institution. To conduct such a study, an efficient
similarity search needs to be conducted across institutions
to identify the focused patient cohort.

¢ Disease surveillance: The Centers for Disease Control and
Prevention monitors thousands of hospitals for potential
epidemics. When a suspicious case is reported, there is a
need to find similar cases across geographies.

¢ Clinical trial recruitment: pharmaceutical companies often
need to spend significant amount of time and resources to
identify targeted patients through many different clinical
institutions. Ideally, they would like to be able to perform
patient similarity search across all clinical institutions to
identify where those relevant patients are. Then they can
quickly focus on recruiting patients from the right clinical
institutions.

Patient similarity learning involves two computational phases:
(1) patient representation learning is to learn the context-specific
representation of patients based on their EHR data. For example,
patients may be given different representations in heart disease
management versus cancer management and (2) patient
similarity search is to find similar patients based on their
corresponding representations. In a federated environment where
multiple institutions exist, patient similarity learning has many
unique challenges: (1) how to design an efficient but flexible
patient representation that enables fast similarity search? (2)
how to learn patient representation from heterogeneous data
sources? and (3) how to preserve privacy while still allowing
the computation of the patient representation and the search of
similar patients across institutions?

Research Objective

The main objective of this paper was to develop a
privacy-preserving analytic platform for patient similarity
learning in a distributed manner. We propose to learn
context-specific binary hash codes to represent patients across
institutions. The similarities between patients can be efficiently
computed as the hamming distance using the resulting hash
codes of corresponding patients; the hamming distance is defined
to be the number of places where two binary codes differ. As
patient data are heterogeneous from multiple sources such as
diagnosis, medication, and lab results, we propose a multi-hash
approach that learns a hash function for each data source. Then,
the patient similarity is calculated by hash codes from data
sources. To avoid the potential security risk because of the attack
from malicious users, we also adopt homomorphic encryption
[31] to support secure patient similarity search in a federated
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setting. Finally, the proposed algorithm is applied and validated
on real data.

Methods

Feature Construction

For K feature domains, we assume a vector-based representation
for patients in every feature domain (1<k<K). There are different
ways to construct the feature vectors: (1) for nominal features
with standard dictionaries, such as diagnosis and procedure
codes, we can use either binary value for presence, or code
frequency within the observation period (where the features are
extracted from); (2) for continuous features such as age or lab
test values, we can use them as they are or we can first quantize
them and treat each quantized region as a nominal feature. For
example, the values of a specific lab test can be quantized as
critical low, low, normal, high, and critical high; and (3) for
time-evolving features, if we want to consider the temporal
trends in the feature construction process, we can first construct
a temporal pattern dictionary with either data-driven method or
expertise knowledge, and then treat each pattern as a nominal
feature. For example, if there are four types of features including
two demographics, 20 prescriptions, 15 lab tests, and 10
diagnoses, we can construct a vector-based representation for
patient A as shown in Figure 1. We represent gender as a binary
value and age as it is. For diagnosis, prescription, and lab test,

we add a one-hot representation of each event (ie, {0,1 }‘C‘ with
the number of codes | C|).

Hashing

In general, hashing is an approach of transforming the data item
to a low-dimensional representation, or equivalently a short
code consisting of a sequence of bits (Figure 2).

Lee et al

Hashing technologies can be applied in many applications such
as Bloom filter [32] and cryptography [33]. Similarity-based
hashing [34] is one specific type of hashing that aims to preserve
the data similarities in their original space with hash codes. On
the basis of the availability of supervision information, a
similarity-based hashing method can be categorized as
unsupervised [35-40], semi-supervised [41-43], or supervised
hashing [44,45]. Unsupervised methods learn hash functions
purely based on data distributions. Supervised methods exploit
the labeled pairwise relationship between entities to capture the
high-level data semantics. Semi-supervised methods lie in
between them, that is, they explore both data distribution
characteristics and labeled pairwise data relationships to learn
the hash functions. Most of these existing methods assume a
single vector-based representation for every data object.

However, one challenge in our scenario is that the patient
features are highly heterogeneous, that is, the features for
characterizing the patients are of different types. In this case, it
may not be effective to represent each patient as a single vector
(simple concatenation will not work as different features are of
different types and have different value range). There are some
existing multi-modal hashing methods [46-52] that aim to derive
a unified single-hash table for encoding the data objects with
heterogeneous features. The problem with single-hash (or
uni-hash) table is that it is difficult to discover the latent
similarity components [53] derived from different feature types,
which is crucial in our scenario. For example, it is important to
know how similar two patients are, but also why (eg, patients
A and B are similar to each other mainly because of their similar
demographics and patients B and C are similar because of their
similar diagnosis history and lab test values).

Figure 1. Example of feature construction. Prescription, lab test, and diagnosis are denoted by p, 1, and d, respectively.
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Figure 2. Example of hashing.
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Federated Patient Hashing Framework

Symbols used in this paper are listed in Textbox 1.

Figure 3 illustrates the overall federated patient matching
framework. Suppose there are M sites with the i-th site ' which
owns a patient population P'. We use pij to represent the j-th

patient in P'. Then, our problem is, given a query patient, how
to retrieve similar patients from those M sites without explicitly
accessing the patient feature vectors. Our plan is to resolve this
problem using similarity based hashing, which transforms the
patient’s raw features into a binary vector representing patient
characteristics (patient representation learning). The pairwise
patient similarities will be evaluated as the pairwise distance
based on those signatures (patient similarity search). In this
paper, we will focus on feature-based hashing, that is, those
binary patient signatures are obtained by proper transformation
from patient features. Therefore, to perform hashing, we need
to first construct feature-based representation for patients.

Without the loss of generality, we assume there are K different
feature types to characterize every pij, and we use pijk (=1,2,...,

K) to represent the k-th type of feature vector of pij. The goal is
to derive an effective computational framework for patient
matching in a federated environment, and the key idea is to
learn a good hash function that can transform the patient features
into binary hash codes. A uni-hash table approach shown in
Figures 2 and 3 is to learn only one hash function for the feature
vector f: Rd—>{-l,+l}b, where d is the dimensionality of the
whole feature vector, and b is the number of bits of the hash
codes learned d by f. In this paper, we propose a multi-hash
approach for patient hashing that aims to learn a hash function
S de—>{-1,+1}bk for every patient feature type & (k&=1,2,...,
K); d, is the dimensionality of the &-th feature type, and b, is
the number of bits of the learned hash codes for the £-th feature
type. Each f, (k=1,2,..., K) is shared across all the M sites. We
use the sign function to construct the hash codes, that is, sign

(0'D)E{-1,+13° N, | where O, is transformed numerical data
from original data of i-th site for k-th type of feature PikE de N,
by a hash function f; that incorporates function coefficients for
the k-th feature type Wkedk x bk; N, is the population size of i-th
site. How these components are formulated is described in the
next paragraph in detail. We use Hki:sign(Qik) to denote the

hash codes of k-th feature type for the patients at i-th site. Figure
4 shows the process of patient similarity calculation with a
multi-hash approach.

http://medinform.jmir.org/2018/2/e20/

RenderX

The u-th column ofHki, hiukE {-1,+1 }bk is the hash codes ofpiuk.
Then, the similarity between p', and p',, can be evaluated as

the inner product of hiuk and hiuk as shown in equation 1:

(1) sy = 1V Dy "(R )
Thus, the overall similarity can be computed as the average of

K similarities, as shown in equation 2, which is bounded on the
interval of (—1,1).

@) sy = 1V KS(H ) (')
Here, we suggest a general framework for learning {7, }*,_,,
which is the most important component. The framework
basically constructs an objective function in terms of {Wk}Kk: 1
such as shown in equation 3, where Ag, Ay, and Ay are
regularizers of S ({Wi} i), U ({Wi} i), and QU ),
respectively, and then minimizes (or maximizes) it:

B)J (W) = P U e)) + 468 (IR K= ) +
AUU({Wk}Kk= DT AwQ ({Wk}Kk= )

¥ ({W,}¥_)) is a reconfiguration error term between the

low-dimensional representation of the original data and hash
codes, which is the main term of the objective function, and
generates the hash codes from the original data, as shown in
equation 4, where ||-||r is a Frobenius norm [54]. On the basis

of this term, the hash function in our framework is formed as
fuPH=W, P/, and this transformation results in H,'=sign(Q',).

@ ¥ (W) = ST P - He
The objective function can incorporate regularizers, as well as
the main term to obtain better solutions of {,}*,_; by (1)

introducing additional information to improve either
unsupervised or supervised learning if desired, (2) solving an
ill-posed problem, and 3) preventing overfitting. Possible
regularizers are listed as follows:

S({Wk}Kkzl) is a supervised loss term that measures the

quantization loss during the hashing process when supervision
information is available for the patients. Here, the supervision
information could be the labels of the patients, such as the

disease the patients have. For example, if both piu and piv have
the same disease, then their relationship riuvzl, otherwise riuV:- L.

Then, we can set S({ Wk}Kkzl) as shown in equation 5:
) S (W35 ie) = TSy - St av
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Textbox 1. List of symbols.

M: the number of local sites

K: the number of feature types (domains)

S' i-th local site

P patient population in s

N: patient population size of s

Pik: patient population for k-th type of feature in s

pij:j—th column ofPi,j—th patient in P

pijk: j-th column of Pik, k-th type of feature vector for pij

fx: k-th hash function

dy: dimensionality of the k-th feature type

by: the number of bits of the learned hash codes for the 4-th feature type
Wy function coefficients of the hash function for the k-th feature type

wik: i-th column of Wy

Qik: numerical data transformed from Pik

sign(Qik): signed Qik

Hik: hash codes for Pik(=sign(Qik))

hijk: j-th column of Hik, the hash codes of pijk

Y({ Wk}Kkzl): reconfiguration error term for {Wk}Kk:I
S Wk}Kkzl): supervised loss term for {Wk}Kk:1
U Wk}Kkzl): unsupervised loss term for {Wk}Kk:1
Q ({Wk}Kkzl): term related to {Wk}Kk:1 itself

L (x, y): loss function between x and y

Ag: regularizer of S ({ Wy} Kkzl)

Ay: regularizer of U({Wk}Kkzl)

Aw: regularizer of Q ({ Wk}Kkzl)

A: regularizer of a supervised loss term

n: regularizer of a Frobenius norm for Q

aikuvz similarity between piuk and pivk

R pairwise relationship of R' for labeled information

Sik: pairwise similarity of Pik

riuvz relationship between piuk and pivk for labeled information
sikuv: similarity between piuk and pivk

SL(Qik): approximated sign function for Qik
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Figure 3. The whole process of patient matching in a federated environment. The user sends a patient matching request to the service center, which is
delegated to patient data resources from several clinical sites. Due to the privacy concerns, the center does not have access to the raw patient data. All
patients within different sites need to be first hashed, and the center only has the patient’s signatures after hashing. The hash functions are shared across
different sites.
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Figure 4. The process of calculating patient similarity with a multi-hash approach.
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The possible choices of supervised loss term could be any loss
function L (x,y), and examples include L(x,y)=-xy and
well-known binary loss functions such as (1) logistic loss, L
(x,y)=log(1+exp(- xy)) and (2) hinge loss, L (x,y)=max(0,1-xy).

Note that U({,}*,_,) is an unsupervised term that exploits the
intrinsic data distribution and enforces the resultant hash codes
to comply with the distribution. For example, we can request
similar patients to have similar hash codes on each feature type.
This can be achieved by minimizing the below regularizer, as

shown in equation 6, where ¢',,, is a similarity between p',, and
P'v« based on, for example, a Gaussian function for continuous
valued features or a cosine function after Term

Frequency-Inverse Document Frequency normalization on
bag-of-code (eg, diagnosis code or procedure code):

©6) U (W ) = ZiZkZu,vUikuthiuk' R udPe
Q{ Wk}Kkzl) is a term related to { Wk}Kk:1 themselves, which
is independent of the patient features. Examples of Q({ Wk}Kk:I)

include (1) Frobenius norm regularizer ¥, _|| Wk||2F, which can
be used for improving the numerical stability of the solution
process and (2) orthogonality regularizer ZKkzlz#ijTikwijZ,
where wy is the i-th column of W, which can encourage the
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diversity of the learned hash codes and thus improve their
representation effectiveness.

Figure 5 shows a running example of the proposed hashing
methodology. Such optimization problems can be solved with
Block Coordinate Descent technologies [55], with {7, }*,_, as
variable blocks that alternatively update W, (1<k<K) one by
one. Moreover, as different sites are continuously receiving new
patients (or new patient features), we will need to continuously
update the hash functions as well. Fortunately, as can be
observed from equations 4, 5, and 6, those terms are fully
decomposable with respect to different sites. Therefore, we can
update the hash functions in an asynchronous manner, that is,

K .
we can update the current {#, } ,_, as soon as new patient data
is received on site i.

Privacy-Preserving Patient Representation Learning
in a Federated Setting

Without loss of generality, let us instantiate the objective
function with the regularizer 4 of empirical error on the labeled
data for a family of hash codes; this choice might be the most
basic approach to similar patient learning based on the fact that
supervised learning is more commonly used than unsupervised
learning because data generated in the medical field usually
have label information.
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Figure 5. Example of transformation of patient vectors into hash codes and computation of similarity between hash codes.
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When solving the initiated objective function, two possible
problems because of the sign function for Q arise. First, O may
not be a unique solution, and thus, the objective function is
difficult to converge without considering any regularizer about
0. We add a Frobenius norm regularizer # to solve this problem.
In addition, the objective function f{W,Q) is nondifferentiable
in terms of Q. We can approximate the sign function with the
surrogate function. Then, we have the final objective function,
RNi xN

as shown in equation 7, where R'e ; is the pairwise

relationship of P' for labeled information:

(S, Q) = minE W PieSi( QI%e + 4 Zi%
(S QW RSO +n T ull Qull’e
If both p', and piv have the same disease, then their relationship
riuV:l, otherwise riuV:—l, and S; (+) is the surrogate function, as

shown in equation 8, where o is the hadamard (elementwise)
product:

®) S (Q) = (e Qi+ o0
The detailed process to derive the final objective function is
given in Multimedia Appendix 1 (Note & is the Kronecker
product [56]). The objective function for {W,}*,_, and

{Qik}K’Mk’izl can be solved one by one iteratively as variable

blocks [55] by using the Newton-Raphson method [57] until
the estimates converge. To be specific, this approach first allows
us to update W, for each of k (k=1,2,..., K) with other ¥ for all

I (1<l#k<K) and Q being fixed:
9) W\ =W, - (0°f 10 W) "o flo W,

Then, similarly, we update Qik for each combination of (i, k)
(1<isM,1<k<K) with other combinations of (i, /)
(15j#i<M,1<I#k<K) and W being fixed:
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The derivation process for the first and second derivatives of
W and Q is described in Multimedia Appendix 1. As derivatives
are linearly decomposable by sites i, the objective function
defined in equation 7 can be computed in a distributed manner.
This means the optimization only requires locally computed
statistics to be delivered to estimate the {W,}*,_, iteratively
until convergence.

The time complexity at each iteration depends on feature type
k and site i. When updating W, for each of k (1<k<K) with other

W, for all [ (1<l#k<K) and Q being fixed, the time complexity
is O (d,’) because each site has to inverse the d, x d, Hessian

matrix. When updating Qik for each combination of (i, k)
(1<i<M, 1<k<K) with all other combinations of (j, /) (1<j#i<M,
1<I#k<K) and W being fixed, the time complexity is O (bk3Ni3)
because S' has to inverse the b N; x b N; Hessian matrix.
Therefore, parameters that have a significant effect on time
complexity include original and projection dimensions by feature
type and population size by site. Other parameters such as the
number of sites M and the number of feature types K along with
the number of iterations are excluded in the big O notation
because they are just constants. That is unless the number of
site or the number of feature type goes to infinity, it only has a
small impact on the complexity.

Privacy-Preserving Patient Similarity Search in a
Federated Setting

To find similar patients across sites, hash codes for each site
(ie, {H1 .+ X,; have to be exchanged across institutions originally.

However, when all other sites expect for i-th site receive H' for
similarity search, the patient-level information of i-th site can
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be leaked by equation 4; other sites and a server can be united
for reverse engineering to extract P'because they have both
(W15, and H', as well as their information in equation 4.
Figure 6 illustrates the situation mentioned.

Therefore, we suggest the way to search similarity among

different sites by avoiding revealing Hik but able to compute

similarities based on Hik. We introduce homomorphic encryption
specifically that is a form of encryption where a specific
algebraic operation performed on the plaintext is equivalent to
another algebraic operation performed on the cipher-text, and
an encrypted result, when decrypted, matches the result of the
same operation performed on the plaintext. Unlike traditional
encryption schemes that do not allow any computations to be
performed on the cipher-text without first decrypting it,
homomorphic encryption allows computations to be performed
without decrypting the data. The results of the computations
remain encrypted and can only be read and interpreted by
someone with access to the decryption key. Therefore, it is
appropriate to use homomorphic encryption in our case that
other sites and a server can attack maliciously. It enables
cross-site comparison of health care statistics with protecting
privacy for each site. The procedure of homomorphic encryption
in this paper is summarized as follows: first, i-th site encrypts
hash codes for its query data and delivers encrypted codes to
Jj-th site. Next, j-th site performs the computation between
delivered encrypted codes of i-th site and encrypted codes of
Jj-th site without a decryption key and sends the computed value
to i-th site. Finally, i-th site decrypts the value to get the
hamming distance of hash codes between query data and data
of j-th site. Each site is restricted to only answer the hamming
distance to avoid the risk of privacy leakage. This process is
depicted in Figure 7.

We note that homomorphic encryption provides an extra layer
of privacy protection especially during patient similarity search.

Security

There are several participants in our framework.

e Data custodians (DCs) represent institutions or hospitals
who have access to patient data and would like to
collaborate in learning about similar patients.

¢ Crypto service provider (CSP) generates public and private
keys. The public key is provided to the data custodians to
safeguard the intermediary statistics.
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¢ Cloud server (CS) computes over summary statistics from
individual data custodians to obtain a global patient
similarity model.

Our goal is that a DC does not learn patient-level information
from other DCs during the process. We also want to ensure CS
cannot infer patient-level information from the data. We assume
a CSP is trustworthy and provides encryption keys (public and
private). In the threat model, we assume the CS to be
semi-honest, that is, it is honest to follow the protocol but
curious about patient’s private information while executing the
protocol. We make the following basic assumptions: (1) DC
and CS do not collude, (2) CS and CSP also do not collude, and
(3) DC always receives correct keys from the CSP. To evaluate
the security of our system, it is assumed that the security of the
system is compromised if patient-level data or intermediary
statistics that can infer patient-level data are leaked. CSP is only
involved in generating public and private keys and transferring
those keys to DCs, and no access to unintended fine-grained
local information is involved in this process.

The leakage is related to computation of {#,}*,_,, and possible
scenarios according to the participants are as follows:

e Leakage to CSP in each computation: CSP does not
participate in computation at all. Therefore, there is no
leakage.

e Leakage to DC in each computation: each DC cannot
indirectly learn patient data from other DCs only with

(W}, and its local information { ¥, }*,_, and {Qik}Kkzl.
If all DCs except for one collude, it is infeasible for the
other DCs to reconstruct Pik of that one DC because the
first and second derivatives of W, have a nonlinear
relationship for Pik. Specifically, it is not possible to specify

a certain matrix only given information of covariance matrix
because of insufficient equations. They also do not have

information (first and second derivatives) about Qik.

e Leakage to CS in each computation: CS cannot infer patient
data from {W,}*._,. Even though CS receives local
information for the first and second derivatives of { %, }*,_,,
it is infeasible for CS to recover {Pik}Kkzl for the same
reason as the collusion among DCs. In finding similar

patients, hash codes for each site {Hik}Kk:l have to be

exchanged across institutions originally, but the use of
homomorphic encryption prevents direct exchange of hash

codes {Hik}Kk:1 between DCs, and thus, there is no leakage.
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Figure 6. Example of potential privacy leakage in patient similarity search across sites.
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Results

Experimental Setting

We conducted experiments to validate our proposed method on
real data. For comparison, we assumed two different systems
against our system according to connection among M sites: open
and closed system. In the open system, M sites can exchange
their patient’s information without any restrictions; in the closed
system, each site can only utilize patient's information in each
site. Ours is in the middle of two systems. For better
understanding of these systems, let us assume that there are
three sites A, B, and C with the same number of patients N. In
this situation, an open system means that every site can access
the complete information of the entire patient cohort (3 x N),
including information from other sites as well, and thus, three
sites work like one site without any concerns on privacy. On
the other hand, closed system indicates that each site can only
access its patient-level information (V) exclusively. Open system
and closed system are derived based on an idealistic situation
and a realistic situation, respectively, and our system is in
between these two systems, which cannot access patient’s
information from other sites but can utilize it through { W, }*,_,.
Then, we predicted the incidence of a certain disease and
compared the standard x-nearest neighbor (k-NN) classification
results based on hamming distance of multi-hash codes from
our system with those based on hamming distance of multi-hash
codes from open and closed systems, as well as uni-hash codes
from open and closed systems. We also provided baseline results
based on four similarity distances of raw data without using
hashing for open and closed systems: Euclidean, cityblock,
cosine, and correlation. We utilized five-fold cross validation
(CV) that randomly splits patients into five folds with the equal
size; we used four folds for training, and one fold for testing.
As an evaluation measure, we used the area under the curve
(AUC) where the true positive rate (TPR; ie, the number of true
positives divided by the sum of true positives and false
negatives) is plotted against the false positive rate (ie, the
number of false positives divided by the sum of false positives
and true positives) at various thresholds. AUC as a summarized
single value for the curve has desirable properties that are
independent to the threshold and invariant to a priori class
probability distributions. An area of 1 represents a perfect model,
and an area of 0.5 represents a worthless model. As we repeated
CV ten times, we obtained ten vectors consisting of probabilities
based on x nearest neighbors’ voting. The program was
implemented by MATLAB 2015b (MathWorks).

Temporal Sequence Construction

A sequence is composed of lab tests, prescriptions, diagnoses,
conditions, and symptoms that were given to a patient in
multiple hospital admissions. We only extracted common lab
tests, prescriptions, diagnoses, conditions, and symptoms
(prefixed with“/ ,”“p ,”“d ,”“c ,”and“s_,” respectively).
We used the International Classification of Diseases, 9th revision
(ICD-9) level 3 codes instead of level 4 or 5 to avoid extreme
sparsity of diagnoses. We assumed space in time between all
events to be same. Then, we constructed data for incidence of
a target disease as follows: for patients in which a target disease
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occurs, we sliced the very admission that includes the diagnosis
event of a target disease out of the sequence, and used only
events before that admission as a feature sequence. For other
patients, we used all events. We utilized temporal information
of a sequence to make a time-decayed vector representation;
when we add a one-hot representation for each event, it is
multiplied by the time decaying function (ie, exp(-yf) with the
decay constant y) that enables to weaken the effect of old event
but to strengthen the effect of recent event. A graphical
illustration of this sequence and its vector representation is
presented in Figure 8.

Multiparameter Intelligent Monitoring in Intensive
Care-11I Database

We used Multiparameter Intelligent Monitoring in Intensive
Care-I1I (MIMIC-III) database that contains health-related data
associated with 46,520 patients and 58,976 admissions to the
intensive care unit of Beth Israel Deaconess Medical Center
from 2001 to 2012. The database consists of detailed information
about patients, including demographics such as gender, age,
and race; admissions; lab test results; prescription records;
procedures; and discharge ICD diagnoses. On the basis of this
database, we randomly selected several common diseases (ie,
diseases with relatively large number of positives) as a target
disease to verify that our method can perform well in general
not only for a specific disease. Then, we extracted temporal
sequences and constructed following six feature vectors (K=06)

for patients in i-th site: demographic information PiIERdl N
lab results PL,e R%,*N. diagnoses PLERY N, prescriptions
P,eR%,*N, conditions P's€R%, >
Time decay constant y was set to 0.01. We note that the feature
vector of diagnoses in each dataset does not include its outcome

of interest. Information of original datasets is described in Table
1.

N. and symptoms P's€ R% *N..

To test three-site scenario, we made datasets balanced and
horizontally partitioned the dataset into three, assuming data

are evenly partitioned among sites (M=3), PlkEdeXIZS,

PLERY P, and PPeRY ' for every k=l,...6; federated
system is needed when each institution has a limited sample
size that is not enough for an analysis. In addition, from the
complexity analysis, time to implement the algorithm
exponentially increases in proportion to the number of patients.
On the basis of these, we randomly selected and placed 125
patients in each site. Then, we predicted the incidence of five
diseases independently. We set parameters for regularizers 1=0.5

and 77=10'3 in common. In addition, for multi-hash approach,
we reduced the original dimensions for each feature to ten (ie,
b=10 for k=2,...,6) except for the demographic feature that
was reduced to two (ie, b;=2), and for uni-hash approach we
reduced the total dimensionality to the sum of projection
dimensions in multi-hash approach (ie, b=52). We note that the
results would be robust to the projection dimensionality unless
we have too many or too few of it. Table 2 shows the results of
x-NN with x=3 based on hamming distance for the following
configurations: our system, open and closed systems with
multi-hash, as well as open and closed systems with uni-hash.
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Figure 8. Example of constructing temporal sequence with target disease in red and its vector representation.
— Feature Sequences —
1st admission 2nd admission 3rd admission 4th admission
: 150902 ! 50912 : 1_50970 I 50971 : d_486 c_V_420 d_250 d_272
. — — H ] . . . ..
= Chloride  Creatinine E Phosphate Potassium EPneumonia Organ or tissue D|abf3tes Disorders Of lipoid
. . 3 replaced by transplant]  mellitus metabolism
>
! 1.50902 1_50012 1_50970 1_50971 . &
A 5
: 1-exp(-6y) 1-exp(-5y) 1-exp(—4y) 1-exp(-3y) :
d_250 d_486 i c_va0 °5
0 1. exp(-2y) i lexp(—y) :
Features Class

Table 1. Description of five datasets from Multiparameter Intelligent Monitoring in Intensive Care-111 (MIMIC-III) database.

Disease

Data size (negative or positive)

Dimension (dy, k=1,...,6)

Disorders of lipoid metabolism

Hypertensive chronic kidney disease

Cardiac dysrhythmias

Heart failure

Acute renal failure

4546/2990
5652/1884
3878/3658
4167/3369
4182/3354

(12,204,814,1338,262,170)
(12,204,822,1338,266,169)
(12,204,817,1338,263,169)
(12,204,819,1338,265,169)
(12,204,809,1338,268,170)

Table 2. Averaged area under the curve (AUC) with SD of x-NN (x=3) based on hamming distance from our, open and closed systems with multi-hash
approach and from open and closed systems with uni-hash approach and based on cosine distance from open and closed systems.

Disease Multi-hash Uni-hash Baseline
Our system, Open system, Closed system, Open system, Closed system, Open system, Closed system,
Averaged AUC  Averaged AUC Averaged AUC Averaged AUC Averaged AUC Averaged AUC Averaged AUC
(SD) (SD) (SD) (SD) (SD) (SD) (SD)
Disorders of lipoid 0.9330(0.0086) 0.9343 (0.0125) 0.9002 (0.0285) 0.9159 (0.0255) 0.8486(0.0271) 0.8079(0.0222) 0.7945(0.0308)
metabolism
Hypertensive chronic  0.9078 (0.0346) 0.9283 (0.0432) 0.8538(0.0421) 0.9270(0.0350) 0.8501 (0.0305) 0.7823(0.0261) 0.7762(0.0262)
kidney disease
Cardiac dysrhythmias 0.9135(0.0287) 0.9368 (0.0492) 0.8833(0.0397) 0.9072(0.0414) 0.8236(0.0328) 0.7695(0.0151) 0.7340(0.0343)
Heart failure 0.9058 (0.0282) 0.9351(0.0326) 0.8798 (0.0414) 0.9089 (0.0376) 0.8471(0.0248) 0.7986(0.0292) 0.7733(0.0421)
Acute renal failure 0.9169 (0.0397) 0.9477(0.0374) 0.8637(0.0320) 0.8821(0.0403) 0.7929 (0.0378) 0.7434(0.0380) 0.7289(0.0341)
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Figure 9. Averaged area under the curve (AUC) of k-NN (k=3) for heart failure based on hamming distance from our, open and closed systems with

multi-hash approach.
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Additionally, Table 2 presents a baseline result based on cosine
distance obtained from open and closed systems, which has the
highest AUC among baseline results. We note that the results
for closed systems are the average of three sites.

Figure 9 shows the comparison for heart failure of our open and
closed systelabelms with multi-hash approach as an example.
The prediction performance of our system is moderate between
those of open and closed systems. It is encouraging that our
system approaches open system without sharing local data.
Figure 10 also shows the comparison result for heart failure of
our system with multi-hash approach and open and closed
system with uni-hash approach. We can see the superior
performance of our system over closed system as before.
However, in this case, our system is comparable with open
system and even outperformed it for three diseases; this may
come from multi-hash approach is more effective than uni-hash
approach to construct context-specific hash codes. Figure 11
shows the results of our system with different x. The detailed
results with different x are presented in Multimedia Appendix
2. AUC generally increases as x increases.

However, in real life, different sites have a different specialty
and have a different distribution in patient data. To see how our
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platform works in random and skewed distribution, we
differentiated the ratio of samples having negative and positive
classes by site. We assumed that three sites, respectively, have
10%, 30%, and 50% of positive class for five diseases. Note
that all other settings including the number of sites and patients
for each site, projection dimensions, and parameters were set
the same as before to test only the change originated from the
class imbalance and for experimental convenience; we omitted
the uni-hash approach, which is expected to have the similar
trend about multi-hash approach to that shown in Table 2. Table
3 shows the averaged AUC results from x-NN with x=3 based
on hamming distance for our system, open and closed systems
with multi-hash, and based on cosine distance for open and
closed systems with raw data. For more elaborate comparison,
F1, sensitivity (ie, TPR), and specificity (ie, the number of true
negatives divided by the sum of true negatives and false
positives) [S8] were also measured along with AUC (Multimedia
Appendix 3); F1 is the harmonic mean of precision and recall
where it reaches its best value at 1 and worst at 0. It can be
interpreted as weighted average of the precision (ie, the number
of true positives divided by the sum of true positives and false
positives) and recall (ie, TPR, sensitivity) with their equal
contribution.
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Figure 10. Averaged area under the curve (AUC) of k-NN (k=3) for heart failure based on hamming distance from our system with multi-hash approach
and open and closed systems with uni-hash approach.
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Figure 11. Averaged area under the curve (AUC) of k-NN with different k (k=1,3,9) for five diseases from our system.
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Table 3. Averaged area under the curve (AUC) with SD of x-NN (x=3) based on hamming distance from our, open, and closed systems with multi-hash

approach and based on cosine distance from open and closed systems.

Disease Multi-hash Baseline
Our system, AUC Open system, AUC Closed system, AUC  Open system, AUC Closed system, AUC
(SD) (SD) (SD) (SD) (SD)
Disorders of lipoid 0.8056 (0.0386) 0.8309 (0.0412) 0.7629 (0.0295) 0.7525 (0.0212) 0.7104 (0.0187)
metabolism
Hypertensive chronic kidney 0.7637 (0.0367) 0.7924 (0.0209) 0.7275 (0.0266) 0.7296 (0.0215) 0.7141 (0.0207)
disease
Cardiac dysrhythmias 0.7840 (0.0301) 0.7937 (0.0228) 0.7659 (0.0223) 0.7638 (0.0198) 0.7385 (0.0188)
Heart failure 0.8287 (0.0283) 0.8832 (0.0278) 0.7459 (0.0331) 0.7735 (0.0206) 0.6778 (0.0213)
Acute renal failure 0.8239 (0.0326) 0.8704 (0.0335) 0.7558 (0.0263) 0.7304 (0.0218) 0.7415 (0.0225)

Table 4. Averaged execution time of each basic cryptographic operation for five diseases.

Operation Time (seconds)
Disorders of lipoid Hypertensive chronic ~ Cardiac dysrhythmias Heart failure Acute renal failure
metabolism kidney disease
Homomorphic encryption 1.9 2.2 22 23 2.2
Initialization 5.2 6.3 5.8 6.5 6.0
Comparison 994.2 1243.9 1067.1 1131.7 1066.5
Homomorphic decryption 0.4 0.4 0.4 0.4 0.4

Most of the results can be interpreted in the same context as
Table 2, but it should be noted that the degree of performance
degradation in our system (~13%) is greater than that at baseline
(~5%). Given these results from open and closed systems, as
well as our system with multi-hash approach, accuracy might
be lost because of the instability caused by updating weights
{W,}*,_, with information from skewed distributions. However,
it is encouraging that sensitivity is obtained stably in multi-hash
approach rather than baseline. Sensitivity is an important
measure in medical analysis because it is much more dangerous
to diagnose that the disease has not occurred even though it has
already developed than the opposite case. The fact that F1 is
significantly larger is consistent with this. Therefore, considering
all the results, we believe that our system is a useful alternative.

Next, we performed secure data aggregation and data
comparison among different sites in a federated setting by which
each site is able to retrieve its hamming distance under certain
criteria in a privacy-preserving manner. In our experiments with
balanced data, each row has 52 bits (hash code), and a 128-bit
encryption key is used for homomorphic encryption. We
measured the execution time of some key cryptographic
operations in a workstation with an Intel 2.5 GHz CPU, where
all the results are averaged over five-fold CV of total time for
six cases (three test sets by two training sets). The execution
time of each basic cryptographic operation has been profiled
and shown in Table 4.

We confirmed that the calculated similarities across sites are
the same when exchanging raw {H}*,_; directly with each
other (ie, without homomorphic encryption) or exchanging
encrypted {H' k}Kk:1 (ie, with homomorphic encryption) with
each other. Therefore, the results after homomorphic encryption
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were obtained exactly the same as the results in Tables 2 and 3
and Figures 9 to 11 without any privacy leakage.

Discussion

Principal Findings

There are several limitations in the proposed framework. When
learning hash functions, the assumption is that each site has
common feature events that should be needed. However,
different sites, for example, hospitals, may have different event
types, and additionally, the notation system for each event type
cannot be standardized except for diagnoses, symptoms, and
conditions that are based on ICD-9. Even though we have the
limitation of common feature events, we believe that our
methodology can be still useful for cooperating hospitals eager
to find similar patients across sites at the point of care. We are
planning to develop a new and more practical approach to relax
this assumption.

Basically, our system works better when all the participants
have similar distributions. However, we have confirmed through
the imbalance class experiment that our system still works well
with different distributions, as well at the cost of some
performance degradation. We will address more generalized
imbalance data problem in future work.

Next, even if we have computational benefits by adopting a
multi-hash approach compared with a uni-hash approach, and
the computational complexity is not prohibitive in practice, a
technical challenge still remains in scalable hash function
learning when the sample size and the feature dimensionality
are large. This is because the complexity for inverting Hessian
matrices in our algorithm is affected by the sample size and the
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feature dimensionality. This is an expensive operation of time
complexity and requires a lot of memory. We can solve this
problem by using parallelization or graphics processing units
or utilizing a gradient descent method that replaces the inversion
of Hessian matrix with a constant or a variable varying with the
iteration number.

We demonstrated the feasibility of privacy-preserving similarity
search, and the experiments were conducted on a single machine
(with different processes) to serve as a proof of concept. In
practice, we need to deploy the algorithm in multiple computers,
and that is a trivial task. We will execute this algorithm using
secure multiparty computation such as in the Secure Multi-pArty
Computation Grid LOgistic REgression [59] in future work.

We have also listed several limitations to consider for more
elaborate future work. When constructing temporal sequences,
it assumes the sequence events are sampled at the same
frequency for simplicity, which means the temporal effect has
not been represented in this work. We roughly determined
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parameters of projection dimension and decay factor, which
might not be optimal. In our experiment, we used 3-digit ICD
to show a proof of concept, but the granularity of the ICD code
will affect the performance in real applications, especially if the
interest is related to the rare ones.

Conclusions

We proposed a federated patient hashing framework and
developed a privacy-preserving patient similarity learning
algorithm. This technique allows to learn hash codes for each
patient reflecting information of different sites without sharing
patient-level data. Using MIMIC-III database, we conducted
experiments to demonstrate the accuracy and usability of the
proposed algorithm. By utilizing the multi-hash approach, our
algorithm obtained more usable and practical results than the
uni-hash approach. To avoid privacy leakage in patient similarity
search, we also applied homomorphic encryption able to
calculate the hamming distance without transmitting hash codes.
As a result, we confirmed the same results without any privacy
leakage.
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