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Abstract

Long-term records of the flow of water through tidal channels are essential to constrain the budgets of
sediments and biogeochemical compounds in salt marshes. Statistical models which relate discharge to water
level allow the estimation of such records from more easily obtained records of water stage in the channel.
Here, we compare four different types of stage-discharge models, each of which captures different characteris-
tics of the stage-discharge relationship. We estimate and validate each of these models on a 2-month long
time series of stage and discharge obtained with an acoustic Doppler current profiler in a salt marsh channel.
We find that the best performance is obtained by models that account for the nonlinear and time-varying
nature of the stage-discharge relationship. Good performance can also be obtained from a simplified version
of these models, which captures nonlinearity and nonstationarity without the complexity of the fully non-

linear or time-varying models.

The flow of water into and out of tidal channels carries with
it nutrients, sediment, and biota thus exerting a strong control
on the biology and geomorphology of environments such as
mudflats, mangroves, and salt marshes (Morris et al. 2002;
Chmura et al. 2003; Duarte et al. 2005; Cai 2011; Fagherazzi
et al. 2013). Accurately estimating the volumetric flux of water,
or discharge, through a channel is a crucial component of esti-
mating the flux of materials transported through these systems.
The flux of an advected material is equal to its concentration
multiplied by the discharge. Precise estimates of discharge are
therefore important to quantify the exchange of biogeochemi-
cal compounds between marshes and nearby bays (Carey and
Fulweiler 2014) and determine the stability of salt marshes
from channel sediment fluxes (Ganju et al. 2013, 2015).

Discharge can readily be measured in tidal channels with
a towed acoustic Doppler current profiler (ADCP) survey
(Ruhl and Simpson 2005; Mueller et al. 2009), but such sur-
veys are labor-intensive and do not provide the long time
series of discharge which are necessary to capture low-
frequency variability and the effects of storms. Such time
series can be developed from deployments of bottom-
mounted upward-looking ADCPs, properly calibrated to the
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true discharge through the channel. If one is interested, how-
ever, in understanding the stability of tidal wetlands from
their sediment budgets (Ganju et al. 2013, 2015), one might
like to instrument simultaneously dozens of channels in
marshes in a wide variety of geomorphic and hydrological set-
tings. The expense of ADCPs becomes prohibitive at these
scales. Stage-discharge models allow one to estimate discharge
using measurements from an independent water level logger,
an instrument much more cost-effective to deploy at scale.
The development of rating curves, which relate the easily
measured water level, or stage, in a stream cross section to
the flow through that cross section, is routinely carried out
in rivers (Kennedy 1984). Once a rating curve is constructed,
discharge can be instantaneously estimated by measuring
water level. In coastal streams influenced by tides, simple
models for rating curves (such as power laws) fail because of
the bidirectional and nonstationary nature of flow in these
environments. Bidirectionality means that, in one tidal
cycle, there are two discharges with opposite signs for a giv-
en stage. Moreover, tidal asymmetry (Boon 1975; Pethick
1980; Healey et al. 1981; Fagherazzi et al. 2008) means these
discharges display a hysteresis between ebb and flood—the
ebb discharge is not simply the time-reversed flood dis-
charge. Nonstationarity in tidal channel flow means that a
single water level corresponds to many different discharges
over the course of a stage-discharge record. This nonstatio-
narity arises from tides amplified by storm events and from
lower-frequency harmonics of the tide such as the spring-
neap cycle. Bidirectionality, hysteresis and nonstationarity
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Fig. 1. (a) An aerial image (Data available from the United States Geolog-
ical Survey) of the Sweeney Creek marsh acquired April 15, 2013. The red
star is the location of the ADCP. The Rowley River is the large channel at
the top of the image. (b) The GPS cross section of the channel.

confound attempts to estimate an instantaneous rating curve
for tidal systems.

Here, we examine a suite of models for estimating dis-
charge from stage measurements. We explore the structure
of each of these models and their relation to our physical
understanding of flow in tidal systems and discuss the chal-
lenges to estimating the parameters of each model from
stage and discharge data. We present a case study using
stage-discharge records from a salt marsh creek along the
Rowley River, Massachusetts, U.S.A., to compare the
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Table 1. ADCP parameters.

Parameter Value
Acoustic frequency 2.0 MHz
Blanking distance 10 cm
Cell size 20 cm
Sampling interval 10 min

performance of each of these methods. We conclude by dis-
cussing the advantages of each model and our recommenda-
tions for stage-discharge modeling in tidal creeks.

Procedures

Discharge measurements

A data set associating discharge with creek stage was
acquired over 230-d deployments in August and September
2015 in a salt marsh creek (Sweeney Creek) along the Rowley
River, Massachusetts. The measurement location is just after
the confluence of two first-order channels (Fig. 1), though
there has been extensive ditching of the Sweeney Creek
marsh. The marsh surface is vegetated by Spartina patens
with Spartina alterniflora along the creek banks. The tidal
range at the site is just over 2 m and the channel drains
nearly completely at low tide. The channel is asymmetric,
with the thalweg of the creek closer to the right bank (look-
ing toward the Rowley River, downstream on ebb tide), and
the right bank consists of a step, vegetated with S. alterniflora
before rising to the S. patens dominated platform.

A Nortek Aquadopp ADCP operating at 2.0 MHz was pro-
grammed to record velocities in 20 cm bins at 10-min inter-
vals. The blanking distance of the ADCP was set to 10 cm, so
that the center of the first bin is 20 cm above the ADCP
(Table 1). The ADCP was installed looking upward in the
creek thalweg. The velocity data retrieved from the ADCP
consist of three BxN matrices where B is the number of bins
and N is the number of points recorded in time. Each of the
three matrices represents velocity in one of three directions
(east, north, and up, ENU). In addition, the water pressure
recorded by the ADCP is retrieved. This pressure is converted
to a height of water above the ADCP by dividing by the spe-
cific weight of water. The velocity data are filtered to remove
velocities recorded in bins above the water level and then
the filtered velocities are averaged to provide a trivariate
time series of average velocity above the ADCP in each of
the three directions. The ENU velocity time series must be
rotated to extract the along-channel velocity, which will
serve as the index velocity in the cross section. The variabili-
ty in velocity in a long channel driven by the tides is domi-
nated by the along-channel flow. Principal components
analysis resolves this dominant axis of variability, rotating
the velocity into three principal components in the along-
channel, across-channel, and vertical directions (Fig. 2a).
Choosing the first principal component of the rotated data
set provides a time series of index velocity.
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A channel cross section was measured on foot by RTK-
GPS (Topcon HIPER-V; Fig. 1b) with sub-centimeter accuracy
in the horizontal and vertical dimensions. The stage
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measurements from a pressure transducer in the ADCP along
with the GPS cross section were used to calculate the flooded
cross-sectional area. The index discharge is calculated by
multiplying this area by the index velocity. Calibration of
the index discharge to the true discharge through the chan-
nel is essential for any consistent estimate of material flux in
the channel (Ruhl and Simpson 2005). Two index discharge
calibrations were performed at the Sweeney Creek cross sec-
tion using two different methods. The first, recorded during
the second ADCP deployment in September 2015, used a
handheld flow meter (Marsh-McBirney Flo-Mate 2000) to
sample velocities at stations spaced every 1 m across the
channel. Two or three velocity measurements were taken at
each station following the two-point method (measurements
at 20% and 80% of the total depth) for water levels under
150 cm and the three-point method (measurements at 20%,
60%, and 80% of the total depth) for water levels above
150 cm. The velocity measurements at each station were
averaged and then multiplied by the area of the station (1 m
times the water level) to determine discharge through that
station. The true discharge in the channel is the sum of dis-
charges at each station. Measurements were recorded every
30 min for an entire tidal cycle. A second calibration was
carried out in September 2016 at the same cross-section
using a tow-across ADCP (Teledyne RD Instruments Stream-
Pro ADCP) following the procedures in Mueller and Wagner
(Mueller et al. 2009). Four transects of the channel were per-
formed every 10 min for an entire tidal cycle, and the four
measurements were averaged together to estimate the dis-
charge at 10-min intervals. A linear regression from the
index discharge to the true discharge (Ruhl and Simpson
2005) was calculated using the data from both calibration
methods simultaneously and then applied to the entire
index discharge time series to obtain a true discharge time
series. This approach resulted in two time series—one of true
discharge and one of stage—for each of the two deployments
of the ADCP.

Modeling of the discharge

We examine four different classes of model: a geometric
model of flow proposed Boon (1975), a linear, time-invariant
model inspired by the unit hydrograph formulation of flow
in rivers (the TIGER model presented in Fagherazzi et al.

Fig. 2. (a) Velocities in the horizontal plane recorded by the ADCP.
The dominant direction of variability corresponds to the along-channel
velocities. (b) The true discharge obtained with a handheld flow meter
plotted against the index discharge derived from the ADCP. The line
represents the linear model Q= 0.3477Q;—0.0416 used to calibrate the
index discharge (Q;) to the true discharge (Q). (c) Stage and discharge
time series. The spring-neap tidal cycle over the course of the month
results in nonstationarity in the discharge time series. (d) An example
stage-discharge relationship from a 1-month ADCP record in Sweeney
Creek, Rowley, Massachusetts. Note the bidirectionality and hysteresis in
ebb and flood.
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2008), a nonlinear, time-invariant model based on the Vol-
terra series (Rugh 1981), and a new linear, time-variant mod-
el inspired by the recent interest in time-variable travel time
distributions (Fagherazzi et al. 2008; Botter et al. 2010; Beven
and Davies 2015; Harman 2015). Below, we briefly describe
the models we estimate on our stage-discharge time series.
More detail on each model and on the procedures used to
estimate the parameters of these models can be found in the
Supporting Information.

Throughout, we use the notation Q(f) to represent the time-
varying discharge in a cross section and h(f) the time-varying
stage in that cross section, {Q;}~.," and {h;}.;' are the discrete
stage-discharge time series of length N taken at a sampling
interval of At (i.e., Q;=Q(iAt) and likewise for the stage).

The Boon model
Boon (1975) proposed a stage-discharge model as follows

I M
where A(h) represents the hypsometric curve, the distribu-
tion of area within the salt marsh as a function of height.
This model can be derived from the continuity of mass
under the assumption that water surface slopes are negligible
throughout the marsh. If adequate topographic data is avail-
able, the hypsometric curve can be estimated (Boon 1975).
In the absence of those data, a representation of the hypso-
metric curve can be estimated from the stage-discharge data.
We assume a power law form for the hypsometric curve,
A(h)=ahP. We approximate dh/dt by the backward difference
operator: dh/dt|,_;y, = (hi—hi—1)/At. These assumptions lead
to a nonlinear system of equations in the parameters o and f
of the form

Qi=ah? (hi—hi_y) 2)

for i € {2,...,n} which we solve for the optimal values of «
and f using nonlinear least squares with the Nelder-Mead
method (Kelley 1999).

Extensions of Boon’s model have been studied by Pethick
(1980), who proposed, based on simple models of channel
geometry, theoretical forms of A(h) which are encompassed
by the power law model we use here.

Linear, time-invariant models

The Boon model is a first-order approximation to flow in
small tidal systems which captures the large-scale behavior
of the flow (Fagherazzi 2002; Fagherazzi et al. 2003). Howev-
er, the assumption in the Boon model that water surface
slopes are negligible has been pointed out as unrealistic, par-
ticularly on the ebb tide and as the tide rises over the chan-
nel banks and flows onto the marsh surface (Healey et al.
1981; Fagherazzi et al. 2008), and the model also requires an
asymmetric tide to generate asymmetric discharges (Pethick
1980). More fundamentally, the Boon model assumes that
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the tide propagates instantaneously into the marsh. Instanta-
neous propagation forces the discharge to be in phase with
the rate of change in stage even though lags between the
peak discharge and the maximum rate of change in stage are
observed in many tidal channels (Myrick and Leopold 1963;
Bayliss-Smith et al. 1979). Fagherazzi et al. (2008) put for-
ward a model based on the instantaneous unit hydrograph
developed for river runoff which relaxes this assumption,
assuming that the tidal propagation can be described by a
travel time distribution p(t) which determines how much of
the flow at time ¢ is due to the increase in stage at time t=0.
The tidal discharge is obtained by convolving this travel
time distribution with the Boon model.

av=[ amf| _pie—od )

Because of the dependence of the hypsometric curve A(h)
and the travel time distribution on water stage, this formula-
tion is naturally time-variant. We first consider a time-
invariant version of this model (p,(t)=p(t) for all t> 0)
which is both very simple to estimate and able to draw on
the rich literature on system identification in linear, time-
invariant systems

t
awv=[ G| _se-od @)

where we note that we have also incorporated the hypsomet-
ric curve into the time-invariant travel time distribution,
averaging out its temporal variation to preserve the time-
invariance of the model. In other words, we do not estimate
a hypsometric curve explicitly in this or any of our later
models. This integral equation can be discretized at our sam-
pling frequency, which results in an overdetermined system

of linear equations in the parameters, f={p; f.igl.

X dh
&= ; Prie t=(n—i)At ®)

Since we ultimately approximate the derivative by a back-
ward difference, the linear model is equivalent to one with d
h/dt replaced by h in Eq. 5 and the backward difference
incorporated into the kernel coefficients, {ﬁi}?igl.

M is the system order which determines how far back in
time the discharge depends on stage. The system order is a
hyperparameter of the problem, which needs to be selected
before estimating the model parameters . We perform
hyperparameter optimization for this and all models using
cross-validation, explained below.

Nonlinear, time-invariant models

Frictional interactions between water, the banks of the
channel and the marsh surface introduce nonlinearities into
the continuity formulation (Speer and Aubrey 1985).
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Heterodyning of the stage signal by the nonlinear friction
terms introduces higher frequency harmonics of the tide
into the discharge, which helps explain the tidal discharge
asymmetry (Speer and Aubrey 1985; Blanton et al. 2002). A
linear model such as the system above is unable to account
for this behavior and therefore cannot generate frequencies
in the output signal that are not present in the input signal.
Rather the model only attenuates or amplifies the strength
of the tidal signal at certain frequencies. We therefore inves-
tigate a nonlinear (but still time-invariant) model that is
capable of generating these harmonics.

The canonical nonlinear equivalent to the linear, time-
invariant system is the Volterra series, also seen in its
orthogonalized version, the Wiener series. The Volterra series
bears the same relationship to a linear, time-invariant system
as a Taylor series does to the evaluation of a function at a
point: it can be thought of as a Taylor series with memory.
The Volterra series expands the system as a series of integrals
of products of the stage signal at different lags

K ot t k
Q(t):Z[ J fit=r1,- - t=r) [[ (5))dz;  (6)
. \

k=0 * —o0 j=

so that the first few terms look like

t t
J fz(t*‘rlit*’rz)h(T])h(Tz)d‘[ld‘Ez+*"

)

t
Q)=fo+ J, fi(t—r1)h(er e + J

Note that the first convolution in this series is simply the
linear time-invariant system, and the n-th term in the series
involves n-degree monomials of the stage at n different times
in the past. We can likewise discretize the Volterra series,
giving us a set of nonlinear equations in the coefficients (the
discrete versions of the functions fi). To estimate the coeffi-
cients effectively, we exploit the duality between the Vol-
terra series and polynomial kernel regression (Franz and
Scholkopf 2006).

Linear time-variant models

When water overtops the channel banks, discontinuities
in the flow regime are observed (Bayliss-Smith et al. 1979),
reflecting the activation of different flow mechanisms in
these different regimes. Both the linear, time-invariant mod-
el and the Volterra series model estimate a single model for
the entire time series, disregarding these changing flow
regimes. This leads to underestimating the high magnitude
discharges just before and after the high slack water and to
overestimating the discharge at relatively low flows, which
are dominated by residual drainage from the low-order
creeks and ditches in the system and from seepage out of
channel banks (Gardner 1975). Thus, the TIGER model of
Fagherazzi et al. (2008) and similar models developed for riv-
er basins (Botter et al. 2010; Harman 2015) explicitly
account for time-varying travel time distributions.

Tidal stage-discharge relationship

Estimating these travel time distributions is challenging
because one needs to estimate both the distribution itself
and the dynamics of the distribution as it changes in time. If
one attempts to estimate a different travel-time distribution
as in Eq. 5 for each point in the time series, then there is a
sample size of one for each estimation problem and the
problem is ill-posed.

We therefore have to approximate the dynamics of travel
time distributions so they can be estimated with the finite
amount of data that we have. We assume that there are a
finite number of states that the flow can be in. We partition
the time series into these states and estimate a linear, time-
invariant travel time distribution for each state with only
those data points representing these states. To predict dis-
charge from a new stage trajectory, we assign the new trajec-
tory to the appropriate state and use the linear model
associated with that state to estimate the discharge.

We need to devise a principled way to partition the train-
ing data set into states and to assign a new, unobserved stage
trajectory to a state. Here, for simplicity, an unsupervised
clustering method (k-means; Xu and Wunsch 2009) parti-
tions the M-dimensional training stage trajectories into k
clusters such that each trajectory belongs to the cluster with
the closest mean in the Euclidean distance. Upon recording
a new stage trajectory, we compute the distance from the
new trajectory to each of the k cluster centers, assign it to
the cluster with the smallest distance and use the appropri-
ate linear model to estimate discharge.

This unsupervised method uses only the information in
the stage trajectories to form the clusters. It does not take
into account the predictive performance of each cluster; this
is not necessarily the optimal clustering for discharge estima-
tion. One could, in principle, construct a clustering to opti-
mize the estimation performance, but one would then need
to model separately the process that assigns new stage trajec-
tories to these clusters using a supervised classification tech-
nique. In practice, the unsupervised clustering performs well
without this additional complication.

A further simplification can be made to the k-means-
based, linear, time-variant model. The k-means clustering
can be easily replaced by an ad hoc procedure that extracts
four clusters simply using local information on the stage and
stage derivative, making this approximation useful for real-
time discharge estimation. The clusters are replaced by four
states: high flood stages, low flood stages, high ebb stages,
and low ebb stages. The distinction between flood and ebb
tides can be found where the time derivative of stage
(approximated with the backward difference) changes sign.
It is positive on the flood tides and negative on the ebb
tides. The distinction between high and low stages can be
based on a threshold, which we choose by cross-validation.
A stage trajectory is assigned to one of these four states by
examining the stage and time derivative of stage at the time
point to be estimated (the end of the trajectory). Otherwise,
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estimation of the linear models proceeds as in the k-means
model.

Regularization

The individual stage measurements at each 10-min inter-
val are highly correlated with each other, so that each stage
data point does not provide independent information for
the discharge prediction. This is the collinearity problem
familiar to users of multiple regression (Hocking 1976; Wold
et al. 1984). When performing a straightforward regression
with this collinear data, we will tend to overfit our model to
the training data, reducing its ability to generalize to new
data. We will also obtain unphysical estimates of the parame-
ters that oscillate rapidly and are sensitive to noise. Regulariza-
tion trades off fitting the training data set and constraining
the parameters in some way. Variable selection by a stepwise
procedure or model selection with the Akaike information cri-
terion (Burnham and Anderson 2002) is one form of regulari-
zation. Here, we use Tikhonov regularization (also called ridge
regression) which adds a penalty term to the least-squares
objective function

N
p=argmin} _ (Q=Hif)* +|T B ®)
i=1

where H; is the i-th row of the design matrix and I' is some
positive semi-definite matrix. The penalty term enforces
some constraints on the structure of the coefficients, f, con-
straints chosen by the regularizing matrix I'. For I' a multiple
of the identity matrix, I'=AI, we obtain the common L, regu-
larization which penalizes solutions with higher Euclidean
norms, leading to smooth parameter estimates where the
degree of smoothness controlled by the hyperparameter A.
Other choices of I' impose different constraints on the sys-
tem that may enhance the interpretability of the model. For
example, stable spline kernels (Pillonetto and De Nicolao
2010) enforce stability of a linear, time-invariant system,
leading to an appropriately decaying impulse response, while
in kernel regression methods such as that used to implement
the Volterra series model, the matrix I" corresponds to the
measurement error covariance, which could, in principle, be
independently estimated. However, we use L, regularization
in our assessment below, as it offers reasonable performance
without much additional complexity.

Cross-validation

To estimate the hyperparameters of each model, such as
the system order or the regularization parameter, we use a
cross-validation approach. We divide our training data set
evenly into two blocks, define a set of values of each hyper-
parameter to test, and estimate the model with each possible
combination of hyperparameters using only the data from
the first block. We apply the estimated model to the second
half of the training data set and measure the mean squared
error between the estimated discharge and the observed
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discharge in that block. We choose the values of the hyper-
parameters that minimize this prediction mean squared error
and re-estimate the model on the entire training data set
using these optimal hyperparameters before applying it to
any further stage records from the same creek.

Discharge estimation with a fitted model

To apply these models to the stage-discharge relationship
for a particular channel, one must first collect a training
data set with an ADCP and fit the model as described above.
Thereafter, discharge can be estimated with only an indepen-
dent water level logger instrumenting the channel. One
records water level in the same cross section at the same
sampling rate as the training data in the same cross section.
Different cross sections will exhibit different stage-discharge
relationships, and a model estimated on one cross-section is
not valid at other cross sections within the same channel,
let alone in different channels. The sampling rate must be
identical because the each of the parameters in all of the
models takes the form of a coefficient that is applied to stage
a certain amount of time in the past. To estimate discharge
at the present time, one collects the stage time series from
the present stretching back into the past a certain amount of
time. We call this short record a “stage trajectory.” In our
measurements, at time steps of 10 min each, a 25-h-long
stage trajectory is a vector of length 150. Each model takes a
stage trajectory and applies some transformation to it—a lin-
ear combination of the stages in the linear, time-invariant
model, for instance—and returns an estimate of discharge. If
estimates of uncertainty are required for the estimated dis-
charge value, bootstrap methods adapted for time series
(Buhlmann 2002) can be easily applied to each of the mod-
els, though we will not specifically address methods for
uncertainty quantification here.

Assessment

To compare the performance of each of these models, we
estimate each model on our ADCP stage-discharge records
from the Rowley marshes. We follow the cross-validation
procedure outlined above to estimate the parameters for
each model on the first of the two stage-discharge records
and apply the model to the second ADCP record. We exam-
ine, in turn, the parameters estimated for each model, the
estimation performance of each model on the second stage-
discharge record, the behavior of the residuals, and the
impact that regularization has on both the estimated param-
eters and the estimation performance.

Model structure

Each of the four classes of model uses a slightly different
type of parameter set, and we show each of the resulting
parameters in Fig. 3. The Boon model produces an estimated
hypsometric curve in a power law form (Fig. 3a). The linear
time-invariant model produces a single impulse response,
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representing the contribution of stage in the past to flow in
the present (Fig. 3b). The Volterra series model generates a
set of multidimensional impulse response functions. For
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simplicity, we show just the first order Volterra operator,
which is just a linear, time-invariant impulse response, and
the second order Volterra operator, which is a two-
dimensional set of coefficients (Fig. 3c). The k-means model
produces k impulse responses, one for each of the clusters,
and also assigns each point in the time series to one of these
clusters (Fig. 3d).

The ideal system order in the linear models and the Vol-
terra series describes how much memory is needed to esti-
mate discharge effectively. Using cross-validation to select
the system order ensures that we do not choose an order too
large, in which case the model would overfit the data and
have poor prediction performance on the validation data set.
We find that, for the linear models, the optimal system order
corresponds to approximately 25 h or two full tidal cycles.

For the Volterra series, however, fewer lagged measure-
ments of stage are required to predict the discharge, with an
optimal system order around 3 h. In estimating the Volterra
series by a polynomial kernel regression, we exchange mem-
ory for degrees of nonlinearity as the number of parameters
for each order of the Volterra operator scales as N™ for a sys-
tem order of N and a Volterra operator order of m. Given
our finite data set, we will be able to estimate only a finite
total number of these parameters, so using a higher system
order—a longer memory—forces the order of the Volterra
series down. And indeed the optimal Volterra order for a 3-h
system order is 5, corresponding to polynomials up to quin-
tics, while that for a 25-h system is 3, corresponding to cubic
polynomials.

The k-means model uses an unsupervised method to
determine which cluster a new stage trajectory belongs to, so
that the clustering is determined entirely by the shape of the
stage signal. Two given stage trajectories will be closest in
the Euclidean metric when they are perfectly in phase and
farthest apart when they are perfectly out of phase, so any
unsupervised clustering method using the Euclidean metric
will naturally cluster based on the phase of the tidal signal,
as we find in Fig. 3d. For a system order of 25 h, the optimal
number of clusters is around four, corresponding roughly to
a low flood tide, a high flood tide, a high ebb tide, and a
low ebb tide. We have found in practice, that the k-means
clustering approach can be replaced by the thresholding pro-
cedure which extracts the four clusters mentioned above
without significant loss of discharge estimation ability.

Fig. 3. (a) The hypsometric curve estimated in the Boon model. (b)
The impulse response estimated in the linear, time-invariant model. (c)
The first-order Volterra kernel is equivalent to a linear, time-invariant
impulse response (top). The second-order kernel is a two-dimensional
analogue of the impulse response. The distance along the x- and y-axes
are the lags backward in time for each of the directions of the impulse
response. The color is the amplitude of the impulse response. (d) The k-
means model estimates k impulse responses (top). Each impulse
response is used to estimate from the correspondingly colored point in
the stage time series (bottom).
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Fig. 4. The modeled discharge plotted against the observed discharge for

a) the Boon model, b) the linear, time-invariant model, c) the Volterra series
model and d) the k-means model. The line in each plot is the one to one line.
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Table 2. Performance of the models.

Mean squared Nash-Sutcliffe Spectral
Model error efficiency flatness
Boon 0.234 0.816 0.041
LTI 0.463 0.647 0.021
Volterra 0.025 0.980 0.273
K-means 0.118 0.910 0.257

Model performance

For each of the models (Boon, LTI, Volterra, k-means), we
use cross validation to estimate the model with good choices
for hyperparameters. We re-estimate the model on the entire
first time series using the good hyperparameters and apply
each estimated model to our second stage-discharge time
series and plot the modeled discharge values against the
observed values in Fig. 4. The ideal modeled discharge values
would lie on the red one-to-one line in Fig. 4. We report the
Nash-Sutcliffe efficiency and the mean squared error of each
model in Table 2 to compare the prediction performance of
the four models.

The Volterra series model is the best performing (has the
highest Nash-Sutcliffe efficiency and lowest mean squared
error), followed by the k-means model, the Boon model, and
the linear, time-invariant model, a ranking which is sup-
ported by the visual representation of model fit, Fig. 4. Each
of the four models tends to underestimate the high dis-
charges and to overestimate the low discharges. At high
magnitudes of the discharge, both positive and negative,
points in Fig. 4 tend to lie on the side of the one-to-one line
closer to the x-axis, while at smaller discharges, they tend to
lie on the side further from the x-axis. This effect is more
pronounced in the more poorly performing models (Boon
and linear, time-invariant).

Residual structure

If our model completely captured the discharge-
generating behavior of our salt marsh system, we would
expect the residuals to be roughly independently distributed,
in other words the error in the model comes not from sys-
tematically misestimating discharge at certain points of the
time series but from random fluctuations in the velocity or
from instrument noise. In addition to examining the fit of
each model, we therefore also want to examine the structure
present in the residuals. The predictive capability of two
models being equal, we prefer the one with the least correla-
tion in the residuals, or, in the frequency domain, the model
with the flattest spectrum. We plot the residual time series
and power spectra for each of the four models in Fig. 5.
While we observe some structure in the residuals, it is hard
to determine visually which of the models whitens the resid-
uals the best. We would like a quantitative measure of the
residual structure. The Ljung-Box test (Ljung and Box 1978)
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Fig. 5. The residual time series for each of the four classes of models: (a) Boon, (c) Linear, time-invariant, (e) Volterra series, and (g) k-means. The
power spectrum of the residual time series for each of the four models: (b) Boon, (d) Linear time-invariant, (f) Volterra series, and (h) k-means.

provides a statistical test of the autocorrelation of the residu-
al time series, but as we expect, the test rejects the null
hypothesis of no autocorrelation for all of the models here,
so the test itself does not adequately discriminate between

the models. Instead, we use the spectral flatness (the ratio of
the geometric mean of the power spectrum to the arithmetic
mean) to measure how close to a white spectrum the resid-
uals are. Flatness ranges from zero, at a signal with a single
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Fig. 6. (a) The unregularized impulse response for the linear, time-
invariant model. (b) The regularized impulse response.

frequency, to one, at a purely white spectrum, so higher val-
ues of the spectral flatness indicate a better-specified model.

The estimated flatness of the residuals range from 0.021
for the linear, time-invariant model to 0.273 for the Volterra
series model (Table 2). These values suggest that the Volterra
series model is the best specified model of the four.

Effect of regularization

The unregularized linear, time-invariant impulse response
is compared to that estimated with regularization in Fig. 6.
We see that the effect of L, regularization is to smooth out
the estimated coefficients. The main features of the response
such as the high peak just after 100 lags (approximately
17 h) are preserved in the regularized impulse response, but
the finer scale oscillations are damped by the regularization.
As the regularization parameter A increases, lower and lower
frequency oscillations are filtered out, and the resulting
impulse response is smoother. Regularization improves the
predictive ability of the linear, time-invariant model very
slightly as measured by a larger out-of-sample Nash-Sutcliffe
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efficiency (from 0.640 to 0.646) and a smaller mean squared
error (from 0.472 to 0.463).

The impact of regularization is much greater on the Vol-
terra series model. The unregularized Volterra series parame-
ters are a set of coefficients each corresponding to one of the
data points in the training data set. The estimation proce-
dure, as a result, is extremely sensitive to noise in the data—
the Gram matrix of the polynomial Kkernel is ill-
conditioned—and regularized as necessary to achieve any
predictive ability with the model. When the fifth-order Vol-
terra series model with 19 lags, the optimal model shown
above, is estimated with no regularization (1=0), the model
is flatly unable to predict the discharge. The Nash-Sutcliffe
efficiency is —7x10% (note that negative Nash-Sutcliffe effi-
ciencies correspond to models that predict the discharge
worse than a constant model) while the mean squared error
is 9x10* (the respective values for the regularized model are
0.980 and 0.025). Also notable is the stark increase in the
variance of the parameters, from 3x10°!' to 8x10', and
the correspondingly inflated discharge estimates, reaching as
high as 200 m? - s~!. For such a high-dimensional regression
problem, regularization is absolutely essential. With regulari-
zation, however, the Volterra series performs the best of the
four models examined here.

Discussion

Physical realism and stage-discharge models

The physical realism of each model roughly corresponds
to its success in estimating the discharge. The Boon and line-
ar, time-invariant models both perform fairly poorly in all of
the measures examined (Table 2). The Boon model is derived
from a continuity law and is both nonlinear and nonstation-
ary because of its dependence on the hypsometric curve.
However, it has long been recognized as incapable of match-
ing the asymmetry and hysteresis between flood and ebb
tides because of its lack of memory. Only the slight asymme-
try of the stage on the ebb and flood tides enables a dis-
charge asymmetry. The linear, time-invariant model can
generate asymmetry because it estimates discharge from the
history of the stage over the course of two full tidal cycles. It
is therefore aware of whether it is on a flood or an ebb tide
and whether it is the higher or lower high tide of the day.
The linearity and, more importantly, the stationarity of this
model are nonphysical, and this lack of physical realism
shows up in the performance of the model. The linear, time-
invariant model systematically underpredicts very high dis-
charges and overpredicts the low discharges because a single
linear model is trained on the entire data set. It essentially
aims to interpolate between the high and the low discharges
which causes poor predictive performance on both.

The k-means model attempts to overcome this unphysical
assumption of stationarity by estimating several different
models and switching between the models throughout the
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tidal cycle. In doing so, it accounts somewhat for the non-
linearity problem as well. It segments the high-dimensional
space of the stage trajectories into k Voronoi cells and con-
structs a piecewise linear approximation to the nonlinear
function which predicts discharge from stage trajectories.
The piecewise linear approximation should converge to the
true nonlinear function as the number of partitions
increases, and the number of partitions is here limited most-
ly by the amount of data available for training. As a result of
this ability, it performs significantly better than the first two
models. The Volterra series, while time-invariant and, like
the linear, time-invariant model, unable to account for non-
stationarity, captures naturally the nonlinearity present in
the shallow water equations, which ultimately govern the
system. The spectral flatness results show that this model is
the best specified of the four. The Volterra series model is a
parametric nonlinear system, but the duality between the
Volterra series and polynomial kernel regression means we
estimate the series with the latter, a nonparametric estimator
of the system response. Because the kernel regression is non-
parametric, it is not restricted by our misspecification and,
with infinite training data and appropriate regularization to
reduce the effect of noise, we should be able to converge on
as close an approximation to the true system as is possible
with a time-invariant model.

L, regularization is straightforward to implement, and for
the discharge estimation problem, it is sufficient for estimat-
ing effective parameters. However, it does not necessarily
lead to straightforwardly interpretable model coefficients.
The impulse response of the linear, time-invariant model, for
example, is a combination of the travel-time distribution,
the hypsometric curve and the action of the time derivative,
all of which are approximations because of the assumptions
of linearity and time-invariance. A more sophisticated regu-
larization scheme would take into account knowledge of the
behavior of these parameters—such as the non-negativity
and decaying tail of the travel-time distribution. If formulat-
ed carefully, these prior assumptions can be easily incorpo-
rated into the present regularization scheme by choosing an
appropriate Tikhonov matrix (as in stable spline kernels (Pil-
lonetto and De Nicolao 2010)). More complex prior assump-
tions such as sparsity of the impulse response coefficients
cannot be handled with the quadratic penalty term of Tikho-
nov regularization, but other frameworks exist for these
alternative forms of regularization (Tibshirani 1996; Zou and
Hastie 2005; Aravkin et al. 2013) and in a Bayesian formula-
tion of the estimation problem, characterizing our physical
assumptions on the models by an arbitrary prior distribution
is a type of regularization.

Limitations of these models

We have tested our models on stage-discharge records
from a channel in a mesotidal salt marsh where the channel
flow is almost entirely driven by regular tidal forcing. The
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models almost certainly do not work as well in environ-
ments with multiple drivers of flow such as microtidal chan-
nels with strong effects of wind on flow, tidally influenced
streams with significant upland freshwater inputs, or loops
in a channel network where the inputs and outputs do not
flow through the same cross section. Future work will quan-
tify which properties of our suite of models remain useful in
other channels and what additional data might be necessary
to extend this modeling framework to these other environ-
ments. While the models will not perform as well in these
situations, their structure suggests that their relative perfor-
mance will be similar; the k-means and Volterra series mod-
els are expected to perform better than the Boon and linear,
time-invariant models because the structure of the former
models is more flexible, and captures more complicated
behavior than the latter models.

Calibration

The models presented here will estimate either the index
discharge from the ADCP or the true discharge calibrated to
cross-sectional discharge measurements, and they perform
equally well on either task. We have here compared the
modeled discharges against calibrated ADCP index dis-
charges, which mean our measures of model performance do
not account for the uncertainty in the calibration. Proper
calibration, is, however, essential to the estimation of mate-
rial fluxes from these time series since the index discharge
can vastly overestimate the water flux through the channel.
The calibration requires a sizeable effort and appropriate
instruments, and can also form a substantial part of the
uncertainty of the discharge estimates, so it is important to
stress the need for a good calibration. Several calibrations at
a variety of tides can be done over the course of a single
ADCP deployment, which collects the training data set for
the stage-discharge model. Over the period in which one
aims to estimate discharge from independent stage measure-
ments using the model, the calibration can be rechecked
infrequently to assess its stability.

The linear regression used here for the calibration does
not substantially affect the qualitative performance results of
the models. It simply scales all of the index discharges by
the same amount so that they match the range of the true
discharge. Nonlinear calibrations may be more appropriate
in some systems (Ruhl and Simpson 200S), and these scale
the discharges by amounts depending on the magnitude of
the discharge, which could amplify or dampen the time
series at high discharges. It is unlikely that these additional
effects would substantially impact the performance of the k-
means model or the Volterra series models, both of which
are flexible enough to adapt to this additional nonlinearity.

Low flows and missing data

When the stage in the creek is below the first cell of the
ADCP profile, no valid velocity bins are recorded by the
instrument. While the velocities at these stages can be fast,
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the flooded cross-sectional area of the channel is very small,
so the true discharges are also small. We fill these missing
discharges with zeros, and we estimate all of the models on
these zero-filled discharge time series. This imputation is
likely to bias our discharge estimates (Little and Rubin
2002), and it certainly prevents us from consistently estimat-
ing the discharge during these low-flow periods. Volumes
exchanged during these periods are small relative to the
entire tidal prism, so the imputation with zeros has little
impact on the estimated water balance of the marsh. If one
is not particularly interested in the exact discharge during
these periods, the Boon, Volterra series, and k-means model
are all able to estimate zero discharges during these periods.
These low flows during ebb tides, however, represent slow
drainage out of the marsh and creek system and so have the
potential to transport significant amounts of nutrients from
the marsh (Gardner 1975; Fagherazzi et al. 2013). If it is
important to capture these effects or to quantify the uncer-
tainty that results from imputation, more sophisticated
imputation of the discharge at low stages is possible (Hopke
et al. 2001).

Comments and recommendations

A simplified method to compute tidal discharges from
water levels

Based on the results presented herein, we suggest the fol-
lowing simplified method to estimate discharge in tidal
channels from water stage using the threshold-based approx-
imation to the k-means model. Choose a threshold stage
that corresponds to the elevation of the bank. If the left and
right banks are asymmetric or there are multiple steps up to
the marsh platform, choose the lowest bank elevation. Seg-
ment the time series into four groups: flood tide below the
threshold, flood tide above the threshold, ebb tide below the
threshold, and ebb tide above the threshold. The flood/ebb
distinction can be made quantitatively by taking differences
between the current stage and the stage at the previous time
step. These differences will be positive on the flood tide and
negative on the ebb tide.

For each of the four groups of data, form a design matrix
where each row represents a data point and each column con-
tains the stage data from the previous time steps. That is, for
row i, the first column contains the stage at time step i, h;, the
second column contains h;_q, the third column h;_,, and so
on. The number of columns, M, should cover two whole tides.
At the 10 min sampling interval of the time series presented
here, this is approximately M=150 time steps, resulting in a
design matrix with 150 columns. If the time series is at a dif-
ferent sampling interval, change the width of the design
matrix accordingly.

One should now have a design matrix for each of the four
time series segments Hy, H,, H3, and Hy, and four vectors of
discharge values Q;, Qz, Q3, and Q4 each of which contains
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Fig. 7. Mean absolute percent error for each of the four models as a
function of stage. The solid blue line corresponds to the Boon model,
the dashed red line to the linear, time invariant model, the dotted green
line to the Volterra series model, and the dot-dashed purple line to the
k-means model.

the corresponding discharge values for each of the data
points. The coefficients of the model are the four vectors ;=
(H'H;)"'HTQ; which can be obtained with standard routines
for linear regression. Once the four vectors of coefficients are
obtained, prediction of discharge at a new point proceeds by
first deciding to which of the four groups (high flood, low
flood, high ebb, low ebb) the water stage belongs. Each of
the previous M time steps of the stage is then multiplied by
each of the M model coefficients of the corresponding group
and added together to provide an estimate of discharge.

Model recommendations

The complexity of estimating each of these models tracks
closely their performance. The linear, time-invariant model
is a straightforward linear regression, but it performs the
worst (as measured by any of our error measures presented
in Table 2). The Boon model (as formulated here) requires a
nonlinear least squares algorithm but does significantly bet-
ter. The k-means model has a mean squared error half that
of the Boon model, but requires some clustering either
through k-means or the simplified threshold model pre-
sented above. The Volterra model performs the best of all
four models but requires a computationally-intensive kernel
regression. Choosing between the models is an exercise in
trading off complexity for predictive ability and requires a
rigorously defined selection criterion adapted to the particu-
lar application. We have used the mean squared error, Nash-
Sutcliffe efficiency and spectral flatness of residuals to argue
that the cubic Volterra series model with 25 h of lagged
stage observations performs the best of the four models.
However, each of these measures simply reflects the discrep-
ancy between modeled and observed instantaneous dis-
charges, which may not be appropriate for all applications.
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One could envision the integrated volume of water over a
tide being more important than the instantaneous discharge,
in which case it might be worth selecting model that slightly
misestimates the discharge to get a more accurate estimate
of the tidal prism.

To help quantify the tradeoff between complexity and per-
formance for applications, we have calculated the mean abso-
lute percent error for each model as a function of stage (Fig.
7). We bin the stage into 50 cm bins and calculate the mean
of the absolute value of the percent error between the mod-
eled and estimated discharge within each bin. This gives
some estimate of how far off one might expect to be when
using each model to predict discharge over a certain range of
stages. The general pattern follows our conclusions from the
other measures of the model error with the Volterra series
model performing the best, followed by k-means, Boon and
the linear, time-invariant model. The Volterra series percent
error is around 10-15% at all stages, while the k-means per-
cent error ranges from around 20-30%. While the Boon mod-
el has a percent error around 50% at high and low stages, it is
within one percent at stages just above the bankfull stage for
our channel. If one is interested in estimating only the bank-
full discharge in a channel, the Boon model performs just as
well as the significantly more complex k-means model.

The k-means model, and especially the thresholded varia-
tion on the k-means model, represents, we believe, the best
model for applications that need to estimate discharge from
long-term records of stage such as biogeochemical and eco-
logical investigations. It offers good estimation performance
throughout a long time series, its estimation complexity
comes from the selection of clusters, which can be well-
approximated by the heuristic of a threshold, and it provides
an appealing interpretation of the clusters in terms of flow
regimes.
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