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Abstract

Long-term records of the flow of water through tidal channels are essential to constrain the budgets of

sediments and biogeochemical compounds in salt marshes. Statistical models which relate discharge to water

level allow the estimation of such records from more easily obtained records of water stage in the channel.

Here, we compare four different types of stage-discharge models, each of which captures different characteris-

tics of the stage-discharge relationship. We estimate and validate each of these models on a 2-month long

time series of stage and discharge obtained with an acoustic Doppler current profiler in a salt marsh channel.

We find that the best performance is obtained by models that account for the nonlinear and time-varying

nature of the stage-discharge relationship. Good performance can also be obtained from a simplified version

of these models, which captures nonlinearity and nonstationarity without the complexity of the fully non-

linear or time-varying models.

The flow of water into and out of tidal channels carries with

it nutrients, sediment, and biota thus exerting a strong control

on the biology and geomorphology of environments such as

mudflats, mangroves, and salt marshes (Morris et al. 2002;

Chmura et al. 2003; Duarte et al. 2005; Cai 2011; Fagherazzi

et al. 2013). Accurately estimating the volumetric flux of water,

or discharge, through a channel is a crucial component of esti-

mating the flux of materials transported through these systems.

The flux of an advected material is equal to its concentration

multiplied by the discharge. Precise estimates of discharge are

therefore important to quantify the exchange of biogeochemi-

cal compounds between marshes and nearby bays (Carey and

Fulweiler 2014) and determine the stability of salt marshes

from channel sediment fluxes (Ganju et al. 2013, 2015).

Discharge can readily be measured in tidal channels with

a towed acoustic Doppler current profiler (ADCP) survey

(Ruhl and Simpson 2005; Mueller et al. 2009), but such sur-

veys are labor-intensive and do not provide the long time

series of discharge which are necessary to capture low-

frequency variability and the effects of storms. Such time

series can be developed from deployments of bottom-

mounted upward-looking ADCPs, properly calibrated to the

true discharge through the channel. If one is interested, how-

ever, in understanding the stability of tidal wetlands from

their sediment budgets (Ganju et al. 2013, 2015), one might

like to instrument simultaneously dozens of channels in

marshes in a wide variety of geomorphic and hydrological set-

tings. The expense of ADCPs becomes prohibitive at these

scales. Stage-discharge models allow one to estimate discharge

using measurements from an independent water level logger,

an instrument much more cost-effective to deploy at scale.

The development of rating curves, which relate the easily

measured water level, or stage, in a stream cross section to

the flow through that cross section, is routinely carried out

in rivers (Kennedy 1984). Once a rating curve is constructed,

discharge can be instantaneously estimated by measuring

water level. In coastal streams influenced by tides, simple

models for rating curves (such as power laws) fail because of

the bidirectional and nonstationary nature of flow in these

environments. Bidirectionality means that, in one tidal

cycle, there are two discharges with opposite signs for a giv-

en stage. Moreover, tidal asymmetry (Boon 1975; Pethick

1980; Healey et al. 1981; Fagherazzi et al. 2008) means these

discharges display a hysteresis between ebb and flood—the

ebb discharge is not simply the time-reversed flood dis-

charge. Nonstationarity in tidal channel flow means that a

single water level corresponds to many different discharges

over the course of a stage-discharge record. This nonstatio-

narity arises from tides amplified by storm events and from

lower-frequency harmonics of the tide such as the spring-

neap cycle. Bidirectionality, hysteresis and nonstationarity
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confound attempts to estimate an instantaneous rating curve

for tidal systems.

Here, we examine a suite of models for estimating dis-

charge from stage measurements. We explore the structure

of each of these models and their relation to our physical

understanding of flow in tidal systems and discuss the chal-

lenges to estimating the parameters of each model from

stage and discharge data. We present a case study using

stage-discharge records from a salt marsh creek along the

Rowley River, Massachusetts, U.S.A., to compare the

performance of each of these methods. We conclude by dis-

cussing the advantages of each model and our recommenda-

tions for stage-discharge modeling in tidal creeks.

Procedures

Discharge measurements

A data set associating discharge with creek stage was

acquired over 230-d deployments in August and September

2015 in a salt marsh creek (Sweeney Creek) along the Rowley

River, Massachusetts. The measurement location is just after

the confluence of two first-order channels (Fig. 1), though

there has been extensive ditching of the Sweeney Creek

marsh. The marsh surface is vegetated by Spartina patens

with Spartina alterniflora along the creek banks. The tidal

range at the site is just over 2 m and the channel drains

nearly completely at low tide. The channel is asymmetric,

with the thalweg of the creek closer to the right bank (look-

ing toward the Rowley River, downstream on ebb tide), and

the right bank consists of a step, vegetated with S. alterniflora

before rising to the S. patens dominated platform.

A Nortek Aquadopp ADCP operating at 2.0 MHz was pro-

grammed to record velocities in 20 cm bins at 10-min inter-

vals. The blanking distance of the ADCP was set to 10 cm, so

that the center of the first bin is 20 cm above the ADCP

(Table 1). The ADCP was installed looking upward in the

creek thalweg. The velocity data retrieved from the ADCP

consist of three BxN matrices where B is the number of bins

and N is the number of points recorded in time. Each of the

three matrices represents velocity in one of three directions

(east, north, and up, ENU). In addition, the water pressure

recorded by the ADCP is retrieved. This pressure is converted

to a height of water above the ADCP by dividing by the spe-

cific weight of water. The velocity data are filtered to remove

velocities recorded in bins above the water level and then

the filtered velocities are averaged to provide a trivariate

time series of average velocity above the ADCP in each of

the three directions. The ENU velocity time series must be

rotated to extract the along-channel velocity, which will

serve as the index velocity in the cross section. The variabili-

ty in velocity in a long channel driven by the tides is domi-

nated by the along-channel flow. Principal components

analysis resolves this dominant axis of variability, rotating

the velocity into three principal components in the along-

channel, across-channel, and vertical directions (Fig. 2a).

Choosing the first principal component of the rotated data

set provides a time series of index velocity.

Fig. 1. (a) An aerial image (Data available from the United States Geolog-

ical Survey) of the Sweeney Creek marsh acquired April 15, 2013. The red
star is the location of the ADCP. The Rowley River is the large channel at
the top of the image. (b) The GPS cross section of the channel.

Table 1. ADCP parameters.

Parameter Value

Acoustic frequency 2.0 MHz

Blanking distance 10 cm

Cell size 20 cm

Sampling interval 10 min
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A channel cross section was measured on foot by RTK-

GPS (Topcon HIPER-V; Fig. 1b) with sub-centimeter accuracy

in the horizontal and vertical dimensions. The stage

measurements from a pressure transducer in the ADCP along

with the GPS cross section were used to calculate the flooded

cross-sectional area. The index discharge is calculated by

multiplying this area by the index velocity. Calibration of

the index discharge to the true discharge through the chan-

nel is essential for any consistent estimate of material flux in

the channel (Ruhl and Simpson 2005). Two index discharge

calibrations were performed at the Sweeney Creek cross sec-

tion using two different methods. The first, recorded during

the second ADCP deployment in September 2015, used a

handheld flow meter (Marsh-McBirney Flo-Mate 2000) to

sample velocities at stations spaced every 1 m across the

channel. Two or three velocity measurements were taken at

each station following the two-point method (measurements

at 20% and 80% of the total depth) for water levels under

150 cm and the three-point method (measurements at 20%,

60%, and 80% of the total depth) for water levels above

150 cm. The velocity measurements at each station were

averaged and then multiplied by the area of the station (1 m

times the water level) to determine discharge through that

station. The true discharge in the channel is the sum of dis-

charges at each station. Measurements were recorded every

30 min for an entire tidal cycle. A second calibration was

carried out in September 2016 at the same cross-section

using a tow-across ADCP (Teledyne RD Instruments Stream-

Pro ADCP) following the procedures in Mueller and Wagner

(Mueller et al. 2009). Four transects of the channel were per-

formed every 10 min for an entire tidal cycle, and the four

measurements were averaged together to estimate the dis-

charge at 10-min intervals. A linear regression from the

index discharge to the true discharge (Ruhl and Simpson

2005) was calculated using the data from both calibration

methods simultaneously and then applied to the entire

index discharge time series to obtain a true discharge time

series. This approach resulted in two time series—one of true

discharge and one of stage—for each of the two deployments

of the ADCP.

Modeling of the discharge

We examine four different classes of model: a geometric

model of flow proposed Boon (1975), a linear, time-invariant

model inspired by the unit hydrograph formulation of flow

in rivers (the TIGER model presented in Fagherazzi et al.

Fig. 2. (a) Velocities in the horizontal plane recorded by the ADCP.

The dominant direction of variability corresponds to the along-channel
velocities. (b) The true discharge obtained with a handheld flow meter
plotted against the index discharge derived from the ADCP. The line

represents the linear model Q50.3477Qi20.0416 used to calibrate the
index discharge (Qi) to the true discharge (Q). (c) Stage and discharge

time series. The spring-neap tidal cycle over the course of the month
results in nonstationarity in the discharge time series. (d) An example
stage-discharge relationship from a 1-month ADCP record in Sweeney

Creek, Rowley, Massachusetts. Note the bidirectionality and hysteresis in
ebb and flood.
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2008), a nonlinear, time-invariant model based on the Vol-

terra series (Rugh 1981), and a new linear, time-variant mod-

el inspired by the recent interest in time-variable travel time

distributions (Fagherazzi et al. 2008; Botter et al. 2010; Beven

and Davies 2015; Harman 2015). Below, we briefly describe

the models we estimate on our stage-discharge time series.

More detail on each model and on the procedures used to

estimate the parameters of these models can be found in the

Supporting Information.

Throughout, we use the notation Q(t) to represent the time-

varying discharge in a cross section and h(t) the time-varying

stage in that cross section, Qif gN21
i50 and hif gN21

i50 are the discrete

stage-discharge time series of length N taken at a sampling

interval of Dt (i.e., Qi5Q iDtð Þ and likewise for the stage).

The Boon model

Boon (1975) proposed a stage-discharge model as follows

Q tð Þ5A hð Þ dh
dt

(1)

where A(h) represents the hypsometric curve, the distribu-

tion of area within the salt marsh as a function of height.

This model can be derived from the continuity of mass

under the assumption that water surface slopes are negligible

throughout the marsh. If adequate topographic data is avail-

able, the hypsometric curve can be estimated (Boon 1975).

In the absence of those data, a representation of the hypso-

metric curve can be estimated from the stage-discharge data.

We assume a power law form for the hypsometric curve,

A hð Þ5ahb. We approximate dh=dt by the backward difference

operator: dh=dtjt5iDt � hi2hi21ð Þ=Dt. These assumptions lead

to a nonlinear system of equations in the parameters a and b
of the form

Qi5ahb
i hi2hi21ð Þ (2)

for i 2 2; . . . ;nf g which we solve for the optimal values of a
and b using nonlinear least squares with the Nelder-Mead

method (Kelley 1999).

Extensions of Boon’s model have been studied by Pethick

(1980), who proposed, based on simple models of channel

geometry, theoretical forms of A hð Þ which are encompassed

by the power law model we use here.

Linear, time-invariant models

The Boon model is a first-order approximation to flow in

small tidal systems which captures the large-scale behavior

of the flow (Fagherazzi 2002; Fagherazzi et al. 2003). Howev-

er, the assumption in the Boon model that water surface

slopes are negligible has been pointed out as unrealistic, par-

ticularly on the ebb tide and as the tide rises over the chan-

nel banks and flows onto the marsh surface (Healey et al.

1981; Fagherazzi et al. 2008), and the model also requires an

asymmetric tide to generate asymmetric discharges (Pethick

1980). More fundamentally, the Boon model assumes that

the tide propagates instantaneously into the marsh. Instanta-

neous propagation forces the discharge to be in phase with

the rate of change in stage even though lags between the

peak discharge and the maximum rate of change in stage are

observed in many tidal channels (Myrick and Leopold 1963;

Bayliss-Smith et al. 1979). Fagherazzi et al. (2008) put for-

ward a model based on the instantaneous unit hydrograph

developed for river runoff which relaxes this assumption,

assuming that the tidal propagation can be described by a

travel time distribution p tð Þ which determines how much of

the flow at time t is due to the increase in stage at time t50.

The tidal discharge is obtained by convolving this travel

time distribution with the Boon model.

Q tð Þ5
ðt
21

A hð Þdh
dt

���
t5s

ph t2sð Þds (3)

Because of the dependence of the hypsometric curve A hð Þ
and the travel time distribution on water stage, this formula-

tion is naturally time-variant. We first consider a time-

invariant version of this model (ph tð Þ5p tð Þ for all t > 0)

which is both very simple to estimate and able to draw on

the rich literature on system identification in linear, time-

invariant systems

Q tð Þ5
ðt
21

dh

dt

���
t5s

b t2sð Þds (4)

where we note that we have also incorporated the hypsomet-

ric curve into the time-invariant travel time distribution,

averaging out its temporal variation to preserve the time-

invariance of the model. In other words, we do not estimate

a hypsometric curve explicitly in this or any of our later

models. This integral equation can be discretized at our sam-

pling frequency, which results in an overdetermined system

of linear equations in the parameters, b5 bif gM21
i50 .

Qn5
XM21

i50

bi
dh

dt

���
t5 n2ið ÞDt

(5)

Since we ultimately approximate the derivative by a back-

ward difference, the linear model is equivalent to one with d

h=dt replaced by h in Eq. 5 and the backward difference

incorporated into the kernel coefficients, bif gM21
i50 .

M is the system order which determines how far back in

time the discharge depends on stage. The system order is a

hyperparameter of the problem, which needs to be selected

before estimating the model parameters b. We perform

hyperparameter optimization for this and all models using

cross-validation, explained below.

Nonlinear, time-invariant models

Frictional interactions between water, the banks of the

channel and the marsh surface introduce nonlinearities into

the continuity formulation (Speer and Aubrey 1985).
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Heterodyning of the stage signal by the nonlinear friction

terms introduces higher frequency harmonics of the tide

into the discharge, which helps explain the tidal discharge

asymmetry (Speer and Aubrey 1985; Blanton et al. 2002). A

linear model such as the system above is unable to account

for this behavior and therefore cannot generate frequencies

in the output signal that are not present in the input signal.

Rather the model only attenuates or amplifies the strength

of the tidal signal at certain frequencies. We therefore inves-

tigate a nonlinear (but still time-invariant) model that is

capable of generating these harmonics.

The canonical nonlinear equivalent to the linear, time-

invariant system is the Volterra series, also seen in its

orthogonalized version, the Wiener series. The Volterra series

bears the same relationship to a linear, time-invariant system

as a Taylor series does to the evaluation of a function at a

point: it can be thought of as a Taylor series with memory.

The Volterra series expands the system as a series of integrals

of products of the stage signal at different lags

Q tð Þ5
XK
k50

ðt
21

� � �
ðt
21

fk t2s1; � � � ; t2skð Þ
Yk
j51

h sj
� �

dsj (6)

so that the first few terms look like

Q tð Þ5f01

ðt
21

f1 t2s1ð Þh s1ð Þds11
ðt
21

ðt
21

f2 t2s1;t2s2
� �

h s1ð Þh s2ð Þds1ds21 � � �

(7)

Note that the first convolution in this series is simply the

linear time-invariant system, and the n-th term in the series

involves n-degree monomials of the stage at n different times

in the past. We can likewise discretize the Volterra series,

giving us a set of nonlinear equations in the coefficients (the

discrete versions of the functions fk). To estimate the coeffi-

cients effectively, we exploit the duality between the Vol-

terra series and polynomial kernel regression (Franz and

Sch€olkopf 2006).

Linear time-variant models

When water overtops the channel banks, discontinuities

in the flow regime are observed (Bayliss-Smith et al. 1979),

reflecting the activation of different flow mechanisms in

these different regimes. Both the linear, time-invariant mod-

el and the Volterra series model estimate a single model for

the entire time series, disregarding these changing flow

regimes. This leads to underestimating the high magnitude

discharges just before and after the high slack water and to

overestimating the discharge at relatively low flows, which

are dominated by residual drainage from the low-order

creeks and ditches in the system and from seepage out of

channel banks (Gardner 1975). Thus, the TIGER model of

Fagherazzi et al. (2008) and similar models developed for riv-

er basins (Botter et al. 2010; Harman 2015) explicitly

account for time-varying travel time distributions.

Estimating these travel time distributions is challenging

because one needs to estimate both the distribution itself

and the dynamics of the distribution as it changes in time. If

one attempts to estimate a different travel-time distribution

as in Eq. 5 for each point in the time series, then there is a

sample size of one for each estimation problem and the

problem is ill-posed.

We therefore have to approximate the dynamics of travel

time distributions so they can be estimated with the finite

amount of data that we have. We assume that there are a

finite number of states that the flow can be in. We partition

the time series into these states and estimate a linear, time-

invariant travel time distribution for each state with only

those data points representing these states. To predict dis-

charge from a new stage trajectory, we assign the new trajec-

tory to the appropriate state and use the linear model

associated with that state to estimate the discharge.

We need to devise a principled way to partition the train-

ing data set into states and to assign a new, unobserved stage

trajectory to a state. Here, for simplicity, an unsupervised

clustering method (k-means; Xu and Wunsch 2009) parti-

tions the M-dimensional training stage trajectories into k

clusters such that each trajectory belongs to the cluster with

the closest mean in the Euclidean distance. Upon recording

a new stage trajectory, we compute the distance from the

new trajectory to each of the k cluster centers, assign it to

the cluster with the smallest distance and use the appropri-

ate linear model to estimate discharge.

This unsupervised method uses only the information in

the stage trajectories to form the clusters. It does not take

into account the predictive performance of each cluster; this

is not necessarily the optimal clustering for discharge estima-

tion. One could, in principle, construct a clustering to opti-

mize the estimation performance, but one would then need

to model separately the process that assigns new stage trajec-

tories to these clusters using a supervised classification tech-

nique. In practice, the unsupervised clustering performs well

without this additional complication.

A further simplification can be made to the k-means-

based, linear, time-variant model. The k-means clustering

can be easily replaced by an ad hoc procedure that extracts

four clusters simply using local information on the stage and

stage derivative, making this approximation useful for real-

time discharge estimation. The clusters are replaced by four

states: high flood stages, low flood stages, high ebb stages,

and low ebb stages. The distinction between flood and ebb

tides can be found where the time derivative of stage

(approximated with the backward difference) changes sign.

It is positive on the flood tides and negative on the ebb

tides. The distinction between high and low stages can be

based on a threshold, which we choose by cross-validation.

A stage trajectory is assigned to one of these four states by

examining the stage and time derivative of stage at the time

point to be estimated (the end of the trajectory). Otherwise,
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estimation of the linear models proceeds as in the k-means

model.

Regularization

The individual stage measurements at each 10-min inter-

val are highly correlated with each other, so that each stage

data point does not provide independent information for

the discharge prediction. This is the collinearity problem

familiar to users of multiple regression (Hocking 1976; Wold

et al. 1984). When performing a straightforward regression

with this collinear data, we will tend to overfit our model to

the training data, reducing its ability to generalize to new

data. We will also obtain unphysical estimates of the parame-

ters that oscillate rapidly and are sensitive to noise. Regulariza-

tion trades off fitting the training data set and constraining

the parameters in some way. Variable selection by a stepwise

procedure or model selection with the Akaike information cri-

terion (Burnham and Anderson 2002) is one form of regulari-

zation. Here, we use Tikhonov regularization (also called ridge

regression) which adds a penalty term to the least-squares

objective function

b̂5argmin
b

XN
i51

Qi2Hibð Þ21jCbj2 (8)

where Hi is the i-th row of the design matrix and C is some

positive semi-definite matrix. The penalty term enforces

some constraints on the structure of the coefficients, b, con-
straints chosen by the regularizing matrix C. For C a multiple

of the identity matrix, C5kI, we obtain the common L2 regu-

larization which penalizes solutions with higher Euclidean

norms, leading to smooth parameter estimates where the

degree of smoothness controlled by the hyperparameter k.
Other choices of C impose different constraints on the sys-

tem that may enhance the interpretability of the model. For

example, stable spline kernels (Pillonetto and De Nicolao

2010) enforce stability of a linear, time-invariant system,

leading to an appropriately decaying impulse response, while

in kernel regression methods such as that used to implement

the Volterra series model, the matrix C corresponds to the

measurement error covariance, which could, in principle, be

independently estimated. However, we use L2 regularization

in our assessment below, as it offers reasonable performance

without much additional complexity.

Cross-validation

To estimate the hyperparameters of each model, such as

the system order or the regularization parameter, we use a

cross-validation approach. We divide our training data set

evenly into two blocks, define a set of values of each hyper-

parameter to test, and estimate the model with each possible

combination of hyperparameters using only the data from

the first block. We apply the estimated model to the second

half of the training data set and measure the mean squared

error between the estimated discharge and the observed

discharge in that block. We choose the values of the hyper-

parameters that minimize this prediction mean squared error

and re-estimate the model on the entire training data set

using these optimal hyperparameters before applying it to

any further stage records from the same creek.

Discharge estimation with a fitted model

To apply these models to the stage-discharge relationship

for a particular channel, one must first collect a training

data set with an ADCP and fit the model as described above.

Thereafter, discharge can be estimated with only an indepen-

dent water level logger instrumenting the channel. One

records water level in the same cross section at the same

sampling rate as the training data in the same cross section.

Different cross sections will exhibit different stage-discharge

relationships, and a model estimated on one cross-section is

not valid at other cross sections within the same channel,

let alone in different channels. The sampling rate must be

identical because the each of the parameters in all of the

models takes the form of a coefficient that is applied to stage

a certain amount of time in the past. To estimate discharge

at the present time, one collects the stage time series from

the present stretching back into the past a certain amount of

time. We call this short record a “stage trajectory.” In our

measurements, at time steps of 10 min each, a 25-h-long

stage trajectory is a vector of length 150. Each model takes a

stage trajectory and applies some transformation to it—a lin-

ear combination of the stages in the linear, time-invariant

model, for instance—and returns an estimate of discharge. If

estimates of uncertainty are required for the estimated dis-

charge value, bootstrap methods adapted for time series

(B€uhlmann 2002) can be easily applied to each of the mod-

els, though we will not specifically address methods for

uncertainty quantification here.

Assessment

To compare the performance of each of these models, we

estimate each model on our ADCP stage-discharge records

from the Rowley marshes. We follow the cross-validation

procedure outlined above to estimate the parameters for

each model on the first of the two stage-discharge records

and apply the model to the second ADCP record. We exam-

ine, in turn, the parameters estimated for each model, the

estimation performance of each model on the second stage-

discharge record, the behavior of the residuals, and the

impact that regularization has on both the estimated param-

eters and the estimation performance.

Model structure

Each of the four classes of model uses a slightly different

type of parameter set, and we show each of the resulting

parameters in Fig. 3. The Boon model produces an estimated

hypsometric curve in a power law form (Fig. 3a). The linear

time-invariant model produces a single impulse response,
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representing the contribution of stage in the past to flow in

the present (Fig. 3b). The Volterra series model generates a

set of multidimensional impulse response functions. For

simplicity, we show just the first order Volterra operator,

which is just a linear, time-invariant impulse response, and

the second order Volterra operator, which is a two-

dimensional set of coefficients (Fig. 3c). The k-means model

produces k impulse responses, one for each of the clusters,

and also assigns each point in the time series to one of these

clusters (Fig. 3d).

The ideal system order in the linear models and the Vol-

terra series describes how much memory is needed to esti-

mate discharge effectively. Using cross-validation to select

the system order ensures that we do not choose an order too

large, in which case the model would overfit the data and

have poor prediction performance on the validation data set.

We find that, for the linear models, the optimal system order

corresponds to approximately 25 h or two full tidal cycles.

For the Volterra series, however, fewer lagged measure-

ments of stage are required to predict the discharge, with an

optimal system order around 3 h. In estimating the Volterra

series by a polynomial kernel regression, we exchange mem-

ory for degrees of nonlinearity as the number of parameters

for each order of the Volterra operator scales as Nm for a sys-

tem order of N and a Volterra operator order of m. Given

our finite data set, we will be able to estimate only a finite

total number of these parameters, so using a higher system

order—a longer memory—forces the order of the Volterra

series down. And indeed the optimal Volterra order for a 3-h

system order is 5, corresponding to polynomials up to quin-

tics, while that for a 25-h system is 3, corresponding to cubic

polynomials.

The k-means model uses an unsupervised method to

determine which cluster a new stage trajectory belongs to, so

that the clustering is determined entirely by the shape of the

stage signal. Two given stage trajectories will be closest in

the Euclidean metric when they are perfectly in phase and

farthest apart when they are perfectly out of phase, so any

unsupervised clustering method using the Euclidean metric

will naturally cluster based on the phase of the tidal signal,

as we find in Fig. 3d. For a system order of 25 h, the optimal

number of clusters is around four, corresponding roughly to

a low flood tide, a high flood tide, a high ebb tide, and a

low ebb tide. We have found in practice, that the k-means

clustering approach can be replaced by the thresholding pro-

cedure which extracts the four clusters mentioned above

without significant loss of discharge estimation ability.
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Fig. 3. (a) The hypsometric curve estimated in the Boon model. (b)
The impulse response estimated in the linear, time-invariant model. (c)
The first-order Volterra kernel is equivalent to a linear, time-invariant

impulse response (top). The second-order kernel is a two-dimensional
analogue of the impulse response. The distance along the x- and y-axes

are the lags backward in time for each of the directions of the impulse
response. The color is the amplitude of the impulse response. (d) The k-
means model estimates k impulse responses (top). Each impulse

response is used to estimate from the correspondingly colored point in
the stage time series (bottom).
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Model performance

For each of the models (Boon, LTI, Volterra, k-means), we

use cross validation to estimate the model with good choices

for hyperparameters. We re-estimate the model on the entire

first time series using the good hyperparameters and apply

each estimated model to our second stage-discharge time

series and plot the modeled discharge values against the

observed values in Fig. 4. The ideal modeled discharge values

would lie on the red one-to-one line in Fig. 4. We report the

Nash-Sutcliffe efficiency and the mean squared error of each

model in Table 2 to compare the prediction performance of

the four models.

The Volterra series model is the best performing (has the

highest Nash-Sutcliffe efficiency and lowest mean squared

error), followed by the k-means model, the Boon model, and

the linear, time-invariant model, a ranking which is sup-

ported by the visual representation of model fit, Fig. 4. Each

of the four models tends to underestimate the high dis-

charges and to overestimate the low discharges. At high

magnitudes of the discharge, both positive and negative,

points in Fig. 4 tend to lie on the side of the one-to-one line

closer to the x-axis, while at smaller discharges, they tend to

lie on the side further from the x-axis. This effect is more

pronounced in the more poorly performing models (Boon

and linear, time-invariant).

Residual structure

If our model completely captured the discharge-

generating behavior of our salt marsh system, we would

expect the residuals to be roughly independently distributed,

in other words the error in the model comes not from sys-

tematically misestimating discharge at certain points of the

time series but from random fluctuations in the velocity or

from instrument noise. In addition to examining the fit of

each model, we therefore also want to examine the structure

present in the residuals. The predictive capability of two

models being equal, we prefer the one with the least correla-

tion in the residuals, or, in the frequency domain, the model

with the flattest spectrum. We plot the residual time series

and power spectra for each of the four models in Fig. 5.

While we observe some structure in the residuals, it is hard

to determine visually which of the models whitens the resid-

uals the best. We would like a quantitative measure of the

residual structure. The Ljung-Box test (Ljung and Box 1978)
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Fig. 4. The modeled discharge plotted against the observed discharge for
a) the Boon model, b) the linear, time-invariant model, c) the Volterra series
model and d) the k-means model. The line in each plot is the one to one line.

Table 2. Performance of the models.

Model

Mean squared

error

Nash-Sutcliffe

efficiency

Spectral

flatness

Boon 0.234 0.816 0.041

LTI 0.463 0.647 0.021

Volterra 0.025 0.980 0.273

K-means 0.118 0.910 0.257
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provides a statistical test of the autocorrelation of the residu-

al time series, but as we expect, the test rejects the null

hypothesis of no autocorrelation for all of the models here,

so the test itself does not adequately discriminate between

the models. Instead, we use the spectral flatness (the ratio of

the geometric mean of the power spectrum to the arithmetic

mean) to measure how close to a white spectrum the resid-

uals are. Flatness ranges from zero, at a signal with a single
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Fig. 5. The residual time series for each of the four classes of models: (a) Boon, (c) Linear, time-invariant, (e) Volterra series, and (g) k-means. The

power spectrum of the residual time series for each of the four models: (b) Boon, (d) Linear time-invariant, (f) Volterra series, and (h) k-means.
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frequency, to one, at a purely white spectrum, so higher val-

ues of the spectral flatness indicate a better-specified model.

The estimated flatness of the residuals range from 0.021

for the linear, time-invariant model to 0.273 for the Volterra

series model (Table 2). These values suggest that the Volterra

series model is the best specified model of the four.

Effect of regularization

The unregularized linear, time-invariant impulse response

is compared to that estimated with regularization in Fig. 6.

We see that the effect of L2 regularization is to smooth out

the estimated coefficients. The main features of the response

such as the high peak just after 100 lags (approximately

17 h) are preserved in the regularized impulse response, but

the finer scale oscillations are damped by the regularization.

As the regularization parameter k increases, lower and lower

frequency oscillations are filtered out, and the resulting

impulse response is smoother. Regularization improves the

predictive ability of the linear, time-invariant model very

slightly as measured by a larger out-of-sample Nash-Sutcliffe

efficiency (from 0.640 to 0.646) and a smaller mean squared

error (from 0.472 to 0.463).

The impact of regularization is much greater on the Vol-

terra series model. The unregularized Volterra series parame-

ters are a set of coefficients each corresponding to one of the

data points in the training data set. The estimation proce-

dure, as a result, is extremely sensitive to noise in the data—

the Gram matrix of the polynomial kernel is ill-

conditioned—and regularized as necessary to achieve any

predictive ability with the model. When the fifth-order Vol-

terra series model with 19 lags, the optimal model shown

above, is estimated with no regularization (k50), the model

is flatly unable to predict the discharge. The Nash-Sutcliffe

efficiency is 273103 (note that negative Nash-Sutcliffe effi-

ciencies correspond to models that predict the discharge

worse than a constant model) while the mean squared error

is 93104 (the respective values for the regularized model are

0.980 and 0.025). Also notable is the stark increase in the

variance of the parameters, from 3310211 to 831014, and

the correspondingly inflated discharge estimates, reaching as

high as 200 m3 � s21. For such a high-dimensional regression

problem, regularization is absolutely essential. With regulari-

zation, however, the Volterra series performs the best of the

four models examined here.

Discussion

Physical realism and stage-discharge models

The physical realism of each model roughly corresponds

to its success in estimating the discharge. The Boon and line-

ar, time-invariant models both perform fairly poorly in all of

the measures examined (Table 2). The Boon model is derived

from a continuity law and is both nonlinear and nonstation-

ary because of its dependence on the hypsometric curve.

However, it has long been recognized as incapable of match-

ing the asymmetry and hysteresis between flood and ebb

tides because of its lack of memory. Only the slight asymme-

try of the stage on the ebb and flood tides enables a dis-

charge asymmetry. The linear, time-invariant model can

generate asymmetry because it estimates discharge from the

history of the stage over the course of two full tidal cycles. It

is therefore aware of whether it is on a flood or an ebb tide

and whether it is the higher or lower high tide of the day.

The linearity and, more importantly, the stationarity of this

model are nonphysical, and this lack of physical realism

shows up in the performance of the model. The linear, time-

invariant model systematically underpredicts very high dis-

charges and overpredicts the low discharges because a single

linear model is trained on the entire data set. It essentially

aims to interpolate between the high and the low discharges

which causes poor predictive performance on both.

The k-means model attempts to overcome this unphysical

assumption of stationarity by estimating several different

models and switching between the models throughout the
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tidal cycle. In doing so, it accounts somewhat for the non-

linearity problem as well. It segments the high-dimensional

space of the stage trajectories into k Voronoi cells and con-

structs a piecewise linear approximation to the nonlinear

function which predicts discharge from stage trajectories.

The piecewise linear approximation should converge to the

true nonlinear function as the number of partitions

increases, and the number of partitions is here limited most-

ly by the amount of data available for training. As a result of

this ability, it performs significantly better than the first two

models. The Volterra series, while time-invariant and, like

the linear, time-invariant model, unable to account for non-

stationarity, captures naturally the nonlinearity present in

the shallow water equations, which ultimately govern the

system. The spectral flatness results show that this model is

the best specified of the four. The Volterra series model is a

parametric nonlinear system, but the duality between the

Volterra series and polynomial kernel regression means we

estimate the series with the latter, a nonparametric estimator

of the system response. Because the kernel regression is non-

parametric, it is not restricted by our misspecification and,

with infinite training data and appropriate regularization to

reduce the effect of noise, we should be able to converge on

as close an approximation to the true system as is possible

with a time-invariant model.

L2 regularization is straightforward to implement, and for

the discharge estimation problem, it is sufficient for estimat-

ing effective parameters. However, it does not necessarily

lead to straightforwardly interpretable model coefficients.

The impulse response of the linear, time-invariant model, for

example, is a combination of the travel-time distribution,

the hypsometric curve and the action of the time derivative,

all of which are approximations because of the assumptions

of linearity and time-invariance. A more sophisticated regu-

larization scheme would take into account knowledge of the

behavior of these parameters—such as the non-negativity

and decaying tail of the travel-time distribution. If formulat-

ed carefully, these prior assumptions can be easily incorpo-

rated into the present regularization scheme by choosing an

appropriate Tikhonov matrix (as in stable spline kernels (Pil-

lonetto and De Nicolao 2010)). More complex prior assump-

tions such as sparsity of the impulse response coefficients

cannot be handled with the quadratic penalty term of Tikho-

nov regularization, but other frameworks exist for these

alternative forms of regularization (Tibshirani 1996; Zou and

Hastie 2005; Aravkin et al. 2013) and in a Bayesian formula-

tion of the estimation problem, characterizing our physical

assumptions on the models by an arbitrary prior distribution

is a type of regularization.

Limitations of these models

We have tested our models on stage-discharge records

from a channel in a mesotidal salt marsh where the channel

flow is almost entirely driven by regular tidal forcing. The

models almost certainly do not work as well in environ-

ments with multiple drivers of flow such as microtidal chan-

nels with strong effects of wind on flow, tidally influenced

streams with significant upland freshwater inputs, or loops

in a channel network where the inputs and outputs do not

flow through the same cross section. Future work will quan-

tify which properties of our suite of models remain useful in

other channels and what additional data might be necessary

to extend this modeling framework to these other environ-

ments. While the models will not perform as well in these

situations, their structure suggests that their relative perfor-

mance will be similar; the k-means and Volterra series mod-

els are expected to perform better than the Boon and linear,

time-invariant models because the structure of the former

models is more flexible, and captures more complicated

behavior than the latter models.

Calibration

The models presented here will estimate either the index

discharge from the ADCP or the true discharge calibrated to

cross-sectional discharge measurements, and they perform

equally well on either task. We have here compared the

modeled discharges against calibrated ADCP index dis-

charges, which mean our measures of model performance do

not account for the uncertainty in the calibration. Proper

calibration, is, however, essential to the estimation of mate-

rial fluxes from these time series since the index discharge

can vastly overestimate the water flux through the channel.

The calibration requires a sizeable effort and appropriate

instruments, and can also form a substantial part of the

uncertainty of the discharge estimates, so it is important to

stress the need for a good calibration. Several calibrations at

a variety of tides can be done over the course of a single

ADCP deployment, which collects the training data set for

the stage-discharge model. Over the period in which one

aims to estimate discharge from independent stage measure-

ments using the model, the calibration can be rechecked

infrequently to assess its stability.

The linear regression used here for the calibration does

not substantially affect the qualitative performance results of

the models. It simply scales all of the index discharges by

the same amount so that they match the range of the true

discharge. Nonlinear calibrations may be more appropriate

in some systems (Ruhl and Simpson 2005), and these scale

the discharges by amounts depending on the magnitude of

the discharge, which could amplify or dampen the time

series at high discharges. It is unlikely that these additional

effects would substantially impact the performance of the k-

means model or the Volterra series models, both of which

are flexible enough to adapt to this additional nonlinearity.

Low flows and missing data

When the stage in the creek is below the first cell of the

ADCP profile, no valid velocity bins are recorded by the

instrument. While the velocities at these stages can be fast,

Kearney et al. Tidal stage-discharge relationship
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the flooded cross-sectional area of the channel is very small,

so the true discharges are also small. We fill these missing

discharges with zeros, and we estimate all of the models on

these zero-filled discharge time series. This imputation is

likely to bias our discharge estimates (Little and Rubin

2002), and it certainly prevents us from consistently estimat-

ing the discharge during these low-flow periods. Volumes

exchanged during these periods are small relative to the

entire tidal prism, so the imputation with zeros has little

impact on the estimated water balance of the marsh. If one

is not particularly interested in the exact discharge during

these periods, the Boon, Volterra series, and k-means model

are all able to estimate zero discharges during these periods.

These low flows during ebb tides, however, represent slow

drainage out of the marsh and creek system and so have the

potential to transport significant amounts of nutrients from

the marsh (Gardner 1975; Fagherazzi et al. 2013). If it is

important to capture these effects or to quantify the uncer-

tainty that results from imputation, more sophisticated

imputation of the discharge at low stages is possible (Hopke

et al. 2001).

Comments and recommendations

A simplified method to compute tidal discharges from

water levels

Based on the results presented herein, we suggest the fol-

lowing simplified method to estimate discharge in tidal

channels from water stage using the threshold-based approx-

imation to the k-means model. Choose a threshold stage

that corresponds to the elevation of the bank. If the left and

right banks are asymmetric or there are multiple steps up to

the marsh platform, choose the lowest bank elevation. Seg-

ment the time series into four groups: flood tide below the

threshold, flood tide above the threshold, ebb tide below the

threshold, and ebb tide above the threshold. The flood/ebb

distinction can be made quantitatively by taking differences

between the current stage and the stage at the previous time

step. These differences will be positive on the flood tide and

negative on the ebb tide.

For each of the four groups of data, form a design matrix

where each row represents a data point and each column con-

tains the stage data from the previous time steps. That is, for

row i, the first column contains the stage at time step i, hi, the

second column contains hi21, the third column hi22; and so

on. The number of columns, M, should cover two whole tides.

At the 10 min sampling interval of the time series presented

here, this is approximately M5150 time steps, resulting in a

design matrix with 150 columns. If the time series is at a dif-

ferent sampling interval, change the width of the design

matrix accordingly.

One should now have a design matrix for each of the four

time series segments H1, H2, H3; and H4, and four vectors of

discharge values Q1, Q2, Q3; and Q4 each of which contains

the corresponding discharge values for each of the data

points. The coefficients of the model are the four vectors bi5
HT

i Hi

� �21
HT

i Qi which can be obtained with standard routines

for linear regression. Once the four vectors of coefficients are

obtained, prediction of discharge at a new point proceeds by

first deciding to which of the four groups (high flood, low

flood, high ebb, low ebb) the water stage belongs. Each of

the previous M time steps of the stage is then multiplied by

each of the M model coefficients of the corresponding group

and added together to provide an estimate of discharge.

Model recommendations

The complexity of estimating each of these models tracks

closely their performance. The linear, time-invariant model

is a straightforward linear regression, but it performs the

worst (as measured by any of our error measures presented

in Table 2). The Boon model (as formulated here) requires a

nonlinear least squares algorithm but does significantly bet-

ter. The k-means model has a mean squared error half that

of the Boon model, but requires some clustering either

through k-means or the simplified threshold model pre-

sented above. The Volterra model performs the best of all

four models but requires a computationally-intensive kernel

regression. Choosing between the models is an exercise in

trading off complexity for predictive ability and requires a

rigorously defined selection criterion adapted to the particu-

lar application. We have used the mean squared error, Nash-

Sutcliffe efficiency and spectral flatness of residuals to argue

that the cubic Volterra series model with 25 h of lagged

stage observations performs the best of the four models.

However, each of these measures simply reflects the discrep-

ancy between modeled and observed instantaneous dis-

charges, which may not be appropriate for all applications.
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One could envision the integrated volume of water over a

tide being more important than the instantaneous discharge,

in which case it might be worth selecting model that slightly

misestimates the discharge to get a more accurate estimate

of the tidal prism.

To help quantify the tradeoff between complexity and per-

formance for applications, we have calculated the mean abso-

lute percent error for each model as a function of stage (Fig.

7). We bin the stage into 50 cm bins and calculate the mean

of the absolute value of the percent error between the mod-

eled and estimated discharge within each bin. This gives

some estimate of how far off one might expect to be when

using each model to predict discharge over a certain range of

stages. The general pattern follows our conclusions from the

other measures of the model error with the Volterra series

model performing the best, followed by k-means, Boon and

the linear, time-invariant model. The Volterra series percent

error is around 10–15% at all stages, while the k-means per-

cent error ranges from around 20–30%. While the Boon mod-

el has a percent error around 50% at high and low stages, it is

within one percent at stages just above the bankfull stage for

our channel. If one is interested in estimating only the bank-

full discharge in a channel, the Boon model performs just as

well as the significantly more complex k-means model.

The k-means model, and especially the thresholded varia-

tion on the k-means model, represents, we believe, the best

model for applications that need to estimate discharge from

long-term records of stage such as biogeochemical and eco-

logical investigations. It offers good estimation performance

throughout a long time series, its estimation complexity

comes from the selection of clusters, which can be well-

approximated by the heuristic of a threshold, and it provides

an appealing interpretation of the clusters in terms of flow

regimes.
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