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Fusion genes are those that result from the fusion of two or more genes, and they are typically
generated due to the perturbations in the genome structure in cancer cells. In turn, fusion genes
can contribute to tumor formation and progression by promoting the expression of an oncogene,
deregulation of a tumor-suppressor, or producing much more active abnormal proteins. More
importantly, oncogenic fusion genes are specifically expressed in the tumor cells, which provide
enormous diagnostic and therapeutic advantages for cancer treatment. With the development of
next-generation sequencing (NGS) technology, RNA-Seq becomes increasingly popular for
transcriptomic study because of its high sensitivity and the capability of detecting novel
transcripts including fusion genes. To date, many fusion gene detection tools have been
developed, most of which attempt to find reliable alignment evidence for chimeric transcripts
from RNA-Seq data. It is well accepted that the alignment quality of sequencing reads against the
reference genome is often limited when significant differences in the genomes exist, which is the
case with cancer genomes that contain many genomic perturbations and structural variations.
Hence, regions where fusion genes occur in the cancer genome tend to be largely different from
those in the reference genome, which prevents the alignment-based fusion gene detection

methods from achieving good accuracies.

We developed a tool called ChimeRScope. ChimeRScope, being an alignment-free method,

bypasses the sequence alignment step by assessing the gene fingerprint profiles (in the form of .-



mers) from RNA-Seq paired-end reads for fusion gene prediction (Chapter Two). We also
optimized the data structure and ChimeRScope algorithms, in order to overcome the common
limitations (memory-utilization, low accuracies) that are commonly seen in alignment-free
methods (Chapter Two). Results on simulated datasets, previously studied cancer RNA-Seq
datasets, and experimental validations on in-house datasets have shown that ChimeRScope
consistently performed better than other popular alignment-based methods irrespective of the read
length and depth of sequencing coverage (Chapter Three). ChimeRScope also generates graphical
outputs for illustrations of the fusion patterns. Lastly, we also developed downloadable software
for ChimeRScope and implemented an online data analysis server using the Galaxy platform

(Chapter Four). ChimeRScope is available at https://github.com/ChimeRScope/ChimeRScope/.



https://github.com/ChimeRScope/ChimeRScope/
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Chapter 1: INTRODUCTION TO CARCINOGENESIS AND FUSION GENES IN

CANCER

1. Introduction to cancer and the genetic nature of cancer

Cancer is a group of genetic diseases that can cause severe health consequences. It is one of
the leading causes (~13%) of all deaths worldwide. According to World Health Organization
(WHO) GLOBOCAN 2012 estimation, there were 14.1 million new cancer cases and 8.2 million
cancer deaths each year (Table 1-1). According to the WHO estimation, there will be an increase

of 70% new cancer cases over the next 20 years.

Table 1-1. Cancer fact sheet in 2012 worldwide [1]. This table shows the statistics of new cancer cases, deaths, and

patients that are alive with cancer within 5 years of diagnosis, for men, women and combined in 2012 worldwide.

Men Women Both sexes
Estimated numbers
thousands = o =
( ) Cases | Deaths > yea: Cases | Deaths S-year Cases Deaths 5-year
prev. prev. prev.
World 7410 | 4653 15296 6658 3548 17159 14068 8202 32455

More  developed

. 3227 | 1592 8550 2827 1287 8274 6054 2878 16823
regions

Less  developed

. 4184 | 3062 6747 3831 2261 8885 8014 5323 15632
regions

* 5-year prevalence: The number of people who live with cancer within 5 years of diagnosis.

It is well accepted that mutations on cancer-susceptible genes are the most common causes of
cancer [2]. Those genetic variations can be acquired from exposures to mutagens, or inherited
from parents. The clinical manifestations of cancer result from the uncontrolled growth of cells,
which can also be metastasized into other parts of the body. Based on the origins of the cells,
cancer can be classified into different types such as carcinoma, sarcoma, lymphoma/leukemia,

germ cell tumor, blastoma, etc. More than 100 types of cancers have been identified based on the



histological type, tissue type, cell type, or other biomarkers. The aggressive behaviors of cancer
cells often occur as a consequence of the malfunctioning of cancer-susceptibility genes. These
genes can be further divided into three types: (i) genes that control the cell growth and cell death;
malfunctioning of these genes can lead to uncontrolled cell growth; (ii) genes that control the
DNA repair mechanisms, which in normal state prevent the cells from accumulating deleterious
mutations; (iii) genes that control the cell-cell interactions, which when impaired can lead to the
neoplasm [3].

The biological system is a complex system. A single alteration on one cancer-susceptibility
gene may not induce carcinogenesis in cells; however, cells with certain gene mutations in driver
genes are more prone to chromosomal instability (one of the hallmarks of many cancers), thereby
increasing the risk of acquiring more deleterious alterations. Once the cell accumulates a
sufficient set of deleterious mutations, the tumorigenesis will be initiated. Therefore, it is crucial

for researchers to identify those oncogenic driver events in order to prevent or treat cancer.

2. Oncogenic variations

One simple fact of biological systems is that genetic variation exists in all individuals. These
variations can be classified into different types that include (i) SNP, or Single Nucleotide
Polymorphism; (ii) INDEL, a genomic sequence (often less than 50 base pairs (bp)) that were
INserted into or DELeted from the genome; (iii) CNV (Copy Number Variation) is the deletion
or duplication of a large chunk (> 50 bp) of the genomic sequence; (iv) Other genomic
rearrangements such as translocation, inversion or a combination of these two; A SNP variation is
considered as synonymous if this variation does not impair the function of the protein due to the
degeneracy of the genetic code, or non-deleterious if the SNP does not occur in the functional
elements of the genome. Even if deleterious mutations occur, multiple DNA damage response
processes will try to maintain genome stability via processes such as DNA repair, cell cycle

checkpoints, and controlled cell death (apoptosis).



When oncogenic (meaning “causing the development of a tumor or tumors”, often involving
cancer-susceptibility genes) driver mutations are induced from the exposure to carcinogens, or are
inherited from parents, it will make the genome less stable. In turn, an unstable genome is more
likely to introduce more deleterious mutations with selective advantages in the microenvironment
by either increasing the survival of the cell (e.g., bypassing the apoptosis) or reproduction rate of
the cell (e.g., uncontrolled cell division). Therefore, it is important to identify those oncogenic
driver mutations before the cancer progresses to advanced stages. Studies on different cancers
over the last several decades revealed many oncogenic driver events with huge therapeutic
potentials. For instance, a non-synonymous SNP on BRAF (B-Raf proto-oncogene,
serine/threonine kinase) at position 600 that changes the amino acid from Valine to Glutamic
Acid (V600E) has been reported in many different types of human cancers [4]. BRAF is a protein
kinase that regulates the MAP kinase/ERKSs signaling pathway (MAPK pathway), which affects
cell division, differentiation and secretion [5]. BRAF V600E leads to hyper-activation of MAPK
pathway, which will eventually lead to unregulated cell proliferation and survival [4]. Patients
with melanoma treated with drugs that target BRAF with V60OE mutation have shown improved

survival rate [6].

3. Fusion genes in cancer

Fusion genes, also known as chimeric transcripts, are one class of abnormal transcripts that
are formed by the fusion of two different genes. Fusion genes have gained increasing attention
because of their significance in diagnosis and prognosis. However, identification of the fusion
genes remains to be a big challenge due to the complexities of the cancer genomes. In this study,
we focused on identifying fusion genes in cancer, particularly using an alignment-free approach

for fusion gene prediction using NGS-based transcriptome datasets.

3.1.Formation of a fusion gene



Fusion genes results from the fusion of two or more genes, which typically happen during
perturbations in the genomic level or during the gene transcription. At the genomic level, a fusion
gene event can happen because of chromosomal rearrangements such as translocation, interstitial
deletion, or inversion. These types of fusion genes can be generated between genes from the same
chromosome or from different chromosomes. For instance, the Philadelphia chromosome [7] is a
translocation event between chromosome 9 and chromosome 22 and it has been mainly
discovered in Chronic Myelogenous Leukemia (CML) cells. This translocation event joins ABL1
gene on Chromosome 9 with BCR gene on Chromosome 22 and creates an abnormal fusion
protein BCR-ABL (Figure 1-1). ABLI1 encodes a protein kinase that regulates cell cycle and
cellular differentiation. The activity of the wild type ABL1 is negatively regulated by its own
SH3 domain. The BCR-ABL fusion often results in the deletion of SH3 region, thereby keeping
the expression level of ABL1 in a constantly active state, which leads to uncontrolled
proliferation of the cell.

Fusion genes can also be generated at transcription stage due to unterminated transcriptions
(e.g., stop-loss mutations) or abnormal splicing events (e.g., mutations near splicing site). This

type of fusion genes is more likely to happen between genes located on the same chromosome.



Figure 1-1. Philadelphia chromosome and BCR-ABL fusion [8]. A translocation event between Chr9 and Chr22

creates an abnormal fusion product BCR-ABL near the junction site.
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3.2.Role of Oncogenic Fusion Genes in Carcinogenesis

Cancer-susceptibility genes (Chapter 1, section 1) are responsible for carcinogenesis. A
fusion gene involving one or more of these genes can become oncogenic when it functions as one
of the following. (a) Promote the expression of a proto-oncogene; (b) Deregulate a tumor
suppressor gene; (¢) Modify the original structure/function of a protein or form a novel abnormal
protein that stimulates tumorigenesis. Specifically, oncogenic transcription factors such as ERG,
ETV1, and ETV4 are often fused with androgen-regulated promoters in 50-70% of prostate
cancer patients [9]. This category of fusion genes (category a) up-regulate the expression of

oncogenic transcription factors, thereby promoting tumorigenesis [9]. Another transcription factor



from the same ETS gene family, ETV6, functions as a tumor suppressor gene and is required for
hematopoiesis and maintenance of vascular network development [10]. In pre-B acute
lymphoblastic leukemia, fusions between ETV6 and BZA2A result in the loss of function of
ETV6 [11] (category b fusion event). One example for category (c) fusion event is FGFR3-
TACC3 fusion in glioblastoma. This fusion gene can promote cell proliferation and tumor
progression and it can escape the miRNA regulation because of the deletion of FGFR3 3’-UTR in

the fusion gene [12].

3.3. Clinical Significance of Oncogenic Fusion Genes

Fusion events at the genome level are naturally irreversible. Hence, the presence of an
oncogenic fusion gene in tumor cells is traceable at the genomic or transcriptome level. More
importantly, these evidences should not be observed in normal cells. Therefore, the cancer-
specific fusion events can be used as special biomarkers for diagnostic and prognostic purposes
and as ideal drug targets for targeted-therapy.

In the previous subsection, we described three different types of oncogenic fusion genes.
Most of the FDA-approved drugs for cancer treatment today target category (a) fusion genes, a
class of fusion genes that always involves a proto-oncogene (often a protein kinase). Protein
kinase is a class of enzymes that play a major role in various processes such as regulating protein
function/structure, enzyme activity, cell-cell signaling, and cell cycle. Category (a) fusion genes
keep the expression level of a gene in a constant active state, resulting in aggressive cell
proliferation. In such a scenario, we expect to see high expression level of the fusion gene,
exclusively in cancer cells. Kinase inhibitors can be designed to target the active proto-oncogene
product, in order to block the activity of the kinase protein without having too many side effects
on normal cells. Imatinib, a drug that targets BCR-ABL fusion protein (category (a) fusion gene

product) in CML, has recorded a global sale of $4.7b in 2012 [13].



Fusion genes involving tumor suppressors are category (b) fusion genes and their effect on
tumorigenesis works differently from category (a) fusions. Tumor suppressors generally have one
or more functions such as repairing DNA damage, regulating cell cycle, or promoting apoptosis.
Hence, when tumor suppressors are not expressed or down-regulated, the cell can eventually
progress to cause cancer. The category (b) oncogenic fusion genes will have similar regulatory
effect on the tumor suppressors by either negatively regulating their expression level, or even
create an abnormal fusion product with no or limited function, due to loss of certain functional
domains. Therefore, category (b) oncogenic fusion genes generally exhibit low expression levels.
In the drug discovery perspective, it is hard to design drugs to restore the expression levels of
tumor suppressors to the normal state, in order to “cure” cancer cells. Instead, it is easier to kill
cancer cells using synthetic lethality. To be more specific, synthetic lethality refers to a situation
when a mutation of one gene does not lead to apoptosis, whereas combination of that mutated
gene with other mutated genes does (Figure 1-2). If there exists such two or more genes that
forms such synthetic lethality interaction, with one of these genes be the oncogenic category (b)
fusion gene (e.g., mutated Gene B in figure 1-2), drugs that targets the other genes will trigger
apoptosis in cancer cells because all these genes in the synthetic lethality schema are silenced,
whereas for normal cells, the tumor suppressor (e.g., wild type Gene B in normal cells) is still

functional and the normal cells will be viable.



Figure 1-2. Synthetic lethality in targeted cancer therapy [14]. Loss of either gene A or gene B does not lead to cell
death. But loss of both genes will trigger apoptosis. Targeting Gene A will lead to cell death for cancer cells, whereas

normal cells will still be viable.
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Similarly, same strategy can be applied to category (c) fusion genes, depending on the

functional impact of the oncogenic fusion gene.

4. Summary

Cancer is one of the leading causes of death worldwide. Fusion genes, one among several
important classes of mutations observed in various cancers, has received increased attention
because oncogenic fusion genes are cancer-specific, which makes them ideal drug targets for
cancer therapy. The rapid advancement of NGS technology has resulted in affordable
transcriptome sequencing (RNA-Seq) for cancer patients. Hence, computational tools to predict
the fusion genes from transcriptome data are in need more than ever for cancer treatment. In this
study, we address this very need by developing ChimeRScope, a tool for accurate prediction of

fusion genes given the transcriptome data of a cancer patient.



Chapter 2: THE DISCOVERY OF FUSION GENES

1. Introduction
1.1. Use of sequencing technologies for the discovery of fusion genes

Before the advent of Next Generation Sequencing (NGS), the most common methods for
identifying fusion genes were Fluorescence In Situ Hybridization (FISH), and Reverse
Transcription Polymerase Chain Reaction (RT-PCR). Both the methods require probes (short
DNA/RNA sequences that are complementary to the target sequences) that are designed to
specifically bind to the targeted DNA/RNA sequences. Therefore, prior knowledge of the
candidate fusion genes is required for performing these experiments, which restricts their use on
large-scale fusion gene analysis. Moverover, they are also not applicable for identifying novel
fusion genes.

Sanger sequencing, or Sanger Dideoxy Sequencing invented by Frederick Sanger and
colleagues in 1977 represents the first generation sequencing technology. Sanger sequencing
generates long sequences with high accuracy, which can make the downstream analysis
(mapping/assembly) much easier when compared to NGS platforms. Sanger sequencing is often
used in fusion gene analysis as a confirmation step because it can determine the contiguous
nucleotide sequence of the fusion junctions. However, the bottleneck for Sanger sequencing is the
low sequencing speed and high costs. In 2011, the average sequencing cost for Sanger sequencing
is 6,000 dollars per trillion bases (or gigabyte) with a speed of only 1.5 million bases (or
megabyte) per hour [15]. Comparatively, the sequencing cost for NGS platforms like [llumina is
100 dollars per trillion bases with a sequencing speed of 20 million bases per hour. Hence, Sanger
sequencing is also not applicable to large scale fusion gene analysis.

The rapid advances in the NGS technologies in the past decade provided an excellent
opportunity to explore the genetic architecture of personal genomes. The low costs and high-

throughput capacities make it possible for sequencing complete genomes/transcriptomes in an
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efficient manner at an affordable cost. Among all the NGS platforms, Illumina(Solexa)
sequencing technology has been the most widely used NGS method across the world, dominating
the field by taking 70 percent of the market share in the genome-sequencing platforms [16].
[llumina platform is a massively parallel sequencing (sequencing-by-synthesis) system that uses
“bridge amplification” to produce millions of short reads at once. To be more specific, the first
step of Illumina sequencing is to randomly fragment the genomic DNA (or cDNA for
transcriptome sequencing). Normally, only fragments with length in a certain range (300-500bp)
will be used for sequencing, in order to improve the overall sequencing quality. If the fragment is
too short (or shorter than the designed read length), it will introduce adapter contaminations to the
reported reads because the sequencing range will extend to the adapters. This will lead to several
problems in the data analysis step. On the other hand, if the fragment is too long, the sequencing
quality diminishes toward the tail end of the sequence read (Figure 2-1) because longer sequences
tend to bend, resulting in low sequencing quality for that cluster or even infiltration of adjacent
clusters during bridge amplification step. After washing out the unqualified DNA fragments,
adaptors will be added to both sides of the remaining DNA fragments for amplification. After the
initial fragment amplification step, all these DNA fragments will be amplified and the library is
ready for sequencing (Figure 2-1a). The bridge amplification step begins by washing DNA library
across the flow cell. All the DNA fragments in the library will then bind to the flow cell (Figure
2-1c, part 1). The flow cell is a plate with short oligonucleotides complementary to the adaptor
sequences. It can have multiple lanes and each lane can form millions of clusters. During each
cycle of the bridge amplification, a DNA fragment will form a “bridge” with its neighboring
primer. By using this DNA fragment as the template, it will synthesize a double stranded DNA,
where the synthesized strand is the reverse (because of the adaptor position) complementary
strand of the template (Figure 2-1c part 2). Next, the hydrogen bonds between these double
stranded DNA break and each of DNA strand (including newly synthesized ones) will then form

a new “bridge” with its neighboring primer. After a certain number of cycles, this “cluster
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formation” stage will be completed. Ideally, each DNA fragment in the library will be amplified
in an exponential rate (2™™ °'“°*%) and the cluster originated from that DNA fragment consists
of two mixed sub-clusters (original strand cluster and synthesized strand cluster). In single-end
sequencing, the synthesized strand cluster will be cleaved and washed out (Figure 2-1c part 3).
Comparatively, in paired-end sequencing, another cycle of bridge amplification will be conducted
after the sequencing for the original strand is done, in order to generate the synthesized strand
cluster within the same cluster. Then, the original strand cluster will be cleaved and washed out,
leaving the synthesized strand cluster for sequencing (Figure 2-1e).

Figure 2-1d illustrates how Illumina sequencers capture the chemical signals and translate
them into human-readable sequence information. Four types of fluorescently labeled nucleotides
(A, T, C, and G) are added to the flow cell. During each sequencing cycle, only one nucleotide
will be added to the synthesizing DNA in that cluster and the related fluorescent signal is released.
Because all the fragments within the same cluster are identical, they will release the same
fluorescent signal during that sequencing cycle, and the signal will be strong enough to be
captured by the built-in light sensor (Figure 2-1 d). At the end of each sequencing cycle, an image
will be taken from the flow cell, capturing all the nucleotides that were added to all the clusters
during that sequencing cycle. After all the sequencing cycles are done, all the images will be
stacked together. The nucleotide sequence for a certain cluster (DNA fragment) can be obtained
by checking all the colors at the corresponding location from the first image to the last image.
Because the flow cell contains millions of sites in each lane Illumina sequencers can generate
millions of short reads in one run in the massive parallel manner; thus, drastically improving the
sequencing throughput. The paired-end reads reported from Illumina sequencers are in the
Sforward-reverse direction because of the bridge amplification. For example, a paired-end read of
200bp (forward read 100bp, reverse read 100bp) sequenced from a DNA fragment of 300bp is
reported as follows. The forward read reports nucleotide sequence that is the same as the

fragment from position 1 to 100, and the reverse read reports nucleotide sequence that is the
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complementary form of the fragment from position 300 to 201. This leaves the 101 to 200 bases
unsequenced (defined as the insert-size for paired-end reads). This gives information about how
close the forward read and the reverse read should be, and hence paired-end sequencing is
extremely useful for accurate alignment of NGS reads to the reference genomes and especially

aid in resolving alignments near the repetitive regions or multiple alignments.
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Figure 2-1. Bridge amplification mechanism from Illumina Sequencers [17]. a. Library preparation. Random
fragmented DNA with certain size (usually 300 to 500bp) were selected and ligated with adaptors on both sides. The
next PCR amplification step will amplify these DNA fragments in order to construct the complete library for
sequencing. b. The structure of the Y-shaped adaptor. The Phosphorothioate bond on the 3’ end provides resistance to
nuclease. c. Bridge amplification. The main purpose of this step is to, for each DNA fragment, generate a cluster of the
same DNA fragment, thereby creating sufficient fluorescent signals when Sequencing-by-synthesis step actually
happens. d. Sequencing by synthesis step. Primers and fluorescently labeled nucleotides are added to the sequencing
chip for sequencing step to begin. When a new nucleotide is added in each sequencing cycle/reaction, the fluorescent
signal of that type of nucleotide is emitted. Because the sequence cluster formed in the bridge amplification step are
identical and the reaction time for each sequencing cycle is also constant. Each sequence in the same cluster will emit
the same fluorescent signal during each sequencing cycle, representing an addition of that nucleotide during that
sequencing cycle. Once all the sequencing cycles are completed, all images will be stacked together and translated to
text-based sequencing result. e. During bridge amplification step, each sequence cluster actually contains both the
original (original strand) form and its reverse-complementary (synthesizing strand) form of the same DNA fragment,
due to the specific feature of the bridge PCR amplification. In single-end reads experiment, the synthesized strand
cluster will be washed out and only the original strand will be sequenced. The strategy for generating paired-end reads
involves an extra step by performing another cycle of bridge PCR. The synthesized strand will be generated in the same
cluster. This time, the original strand cluster will be washed out and the synthesized strand will be sequenced (resulting

in forward-reverse direction for Illumina paired-end reads).
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The first and foremost advantage of using NGS (particularly transcriptome sequencing, or
RNA-Seq) for fusion gene prediction is that RNA-Seq offers novel and dynamic range of
transcripts than probe-based methods. RNA-Seq does not require any prior information about the
fusion gene and no transcript-specific probes are required in the sequencing step. In this case,
there will not be any preferences on which transcripts (normal transcripts, alternative splicing
isoforms, and fusion genes) will be captured for sequencing. This is extremely useful for data-
driven research projects, or hypothesis-driven projects with limited information of the target
fusion gene(s). Other advantages of using RNA-Seq over other probe-based methods include: 1)
RNA-Seq is a method for comprehensive transcriptome analysis and it is cost-effective; 2) Probes
designed for the target fusion genes can be less specific if mutations are manifested near the
probe binding site, which makes the probe-based methods less sensitive to detect such fusion
genes. Therefore, RNA-Seq has become one of the most widely used methods for fusion gene
prediction in cancer research [18, 19].

Although NGS has been widely used in biomedical research, accurate methods that can be
applied for genome-scale data analysis are still evolving. Each NGS run generates millions of
reads and it requires enormous computational resources to process and analyze these datasets
Additionally, NGS technologies like Illumina sequencing have higher error rate (~0.1%) when
compared to Sanger sequencing (~0.001%). Also, the sequencing quality of the reads from
[lumina sequencer tends to deteriorate towards the end of the reads due to the technical aspects
of the Illumina sequencers (e.g., lower fluorescent signals caused by the decreased concentration
of the fluorescent labeled nucleotides, or sequencing error caused by decreased DNA polymerase
activity). Accordingly, attention should be paid at the data pre-processing step for NGS datasets.
Moreover, the read length from Illumina sequencers (100-300bp) is much shorter than that from
Sanger sequencing (500-1000bp), making the NGS data analysis harder to resolve highly

repetitive regions than Sanger sequencing reads. Shorter reads also have higher chances of
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aligning at multiple locations and it will require more sophisticate statistic models to determine

the original genomic locations for these reads.

1.2. Current methods for fusion gene prediction using RNA-Seq

Over the last several years, many methods have been developed for detecting fusion genes
from RNA-Seq datasets, most of which are alignment-based methods (methods that perform
sequence alignment). Sequence alignment is a way of comparing two or more sequences, in order
to identify similar (homologous) regions. Generally, there are two different approaches for
sequence alignment: global alignment and local alignment. Global alignment is used to compare
two sequences that are similar with approximately the same size, whereas local alignment often
aligns a shorter sequence (such as NGS reads) to a substring of a longer sequence (such as the
reference genome) and it is more suitable for this problem. Therefore, in NGS data analysis,
pairwise local alignment is used by these alignment-based methods for determining the most
possible origins of the reads by checking which part of the genome/transcriptome contains the
most similar sequences to those reads.

Here, we take the most representative local alignment algorithm used in NGS data analysis,
the Smith-Waterman algorithm, as an example to briefly explain the details of how sequence
alignment works. The Smith-Waterman algorithm, first introduced by Temple F. Smith and
Michael S. Waterman in 1981 [20], is a dynamic programming algorithm that aligns all the
possible combinations of the segments from two sequences and reports the best similarity
measure between two subsequences of the query sequences. Figure 2-2 illustrates the detailed
calculation step using SW algorithm. Here, Seq4 of size 8bp (CTTAAGCG) and SeqB of size 7bp
(GGAGCGT) were aligned against each other using a parameter set, where a match scores +2 and
a mismatch scores -1. The first step is to construct a 2D matrix H of size a+1 by b+1, where a is
the size of the first sequence (i.e. SeqA) and b is the size of the second sequence (i.e. SeqB). The

H matrix is build using following rules.
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H(i,0)=0,i€[0,a]
H(0,j)=0,;<[0,b]
0
o H(i—1,j-1)+m(i, j),match | mismatch| )
H (i, j) = max L : ,i€[0,a],j €[0,b]
max,, {H(i—k,j)—W,}, deletion

max,, {H (i, j—1)—W,},insertion

The basic idea of this algorithm is, for a given cell H(i, j), the score of that cell is calculated
based on the scores of the top, left and top-left cells, represented by H(i, j-1), H(i-1, j), and H(i-1,
Jj-1) respectively. Three new scores will be generated from each of these three directions and the
maximum score will be taken for H(i, j). The new score from top-left cell is updated with m(i,j).
In the example in Figure 2-2, m(ij) is defined as +2 if i" character from SeqA matches j"
character from SeqB, or -1 if otherwise. The new scores calculated from the left cell or the top
cell are updated based on W (gap-penalty score). If the gap-penalty score is a constant value w,
meaning the gap-opening penalty and the gap-extension penalty are the same (e.g., gap penalty is
-1 in Figure 2-2), the new score is calculated directly by using H(i-1, j)-w and H(i, j-1)-w for cells
from left and top, respectively. If the gap-penalty score is different (e.g., most frequently used
parameter set is, match = 2; mismatch = -3, gapOpen = 5, gapExtension = 2), then, the gap-
penalty score W for a gap of size g should be calculated as W= gapOpen + (g-1)* gapExtension.
If all of these three new scores are negative, it will reset the score to zero for the current cell.
Therefore, bad alignment results from previous regions will not affect the score for other
unchecked combinations. Once the whole scoring matrix done updating, we trace back from the
cell with the highest score to each of the previous cell where the maximum score of that cell is

generated from. The corresponding tracing path is the final alignment result. The example in
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Figure 2-2 shows the best trace path H(S, 6) -> H(7,5) -> H(6,4) -> H(5, 3), which gives the best

local alignment sequence “AGCG”.

Figure 2-2 SW-algorithm example. A sequence match scores +2, a mismatch scores -1, and gap penalty is 1.

Alignment result for SeqA and SeqB found a high similar subsequence “AGCG”.

- lclT T | A|A|G|C|G. SeqA = CTTAAGCG (Size a = 8)
= . . - i c 2 . % SeqB = GGAGCGT (Sizeb="7)
= 0 0 0 0 0 0 0 0 0
— N N Construct 2D scoring matrix H
G oo 0010707211 2 ofsize (at])*(b+1) =9*8
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G | O 0 0 0 0 0 2 1 3 . . . .
2 Ic - I~ 5 m(i, j) = +2 if SeqA@{) = SeqB(j)
A o jo|o |0 | 2|21 |1 | 2 | mij=-1iSeqAd) !=SeqB(j)
- ¥ v N N
G Y 0 0 0 0 1 1 ‘I‘ 3 Trace back from highest score from
S VNN H(8.6)=8 gives best local alignment
c | o 2 >1 0 0 0 ?I’ 6I -5
5 |
v v S
' SRS SRR Iy
T |0 0 3 4 3221 4 7 | SegB GGAGCGT

Table 2-1 lists 10 of the most widely used fusion gene detection methods using RNA-Seq
data. These methods are all alignment-based methods. Based on different alignment strategies
they use, these methods can be further categorized into five different groups. 1) FusionSeq [21],
deFuse [22], FusionHunter [23], and SOAPfuse [24] identify discordant paired-end reads with the
forward read completely aligning to one gene, and the reverse read completely aligning to another
gene (referred to as spanning reads). The fusion junction falls in between the insert-size region,
or inside the gap between the paired-end reads. Then, they will look for paired-end reads that
align across the gene fusion boundary (referred to as split reads. Fusion junction is inside the
forward read or the reverse read. Or the forward/reverse read is split by the fusion junction). 2)

Methods such as FusionFinder [25], create smaller pseudo paired-end reads (pseudo-PE reads)
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from each read by discarding the middle part of each single read. The smaller fragments from the
pseudo-PE reads are then aligned to different genes separately. If there are enough pseudo-PE
reads that have similar alignment pattern as the spanning reads for a gene pair, this gene pair will
be reported as a fusion gene. 3) Tophat-Fusion [26] splits each single read into three equivalent
fragments and tries to align the first fragment and the last fragment to different genes, just like the
strategy used by FusionFinder for pseudo-PE reads. Next, if a fusion pair is obtained, the middle
part of the read is then used to confirm the fusion boundary of that gene pair. For MapSplice [27],
it splits the reads into more than three parts. Then the strategies of identifying fusion pairs and
confirming fusion boundaries for MapSplice are quite similar to Tophat-Fusion. 4) FusionMap
[28] and FusionCatcher [29] look for splitting reads from unmapped reads directly using a more
exhaustive search approach. 5) JAFFA [30] performs the assembly from the short reads and
constructs the data-specific contigs. These contigs are then aligned against the reference
transcripts. If the contig sequence can be mapped to two genes exclusively without the mapped
regions from each gene overlapping with each other, this gene pair will be considered as a fusion

gene candidate for downstream analysis.

Table 2-1. 10 most widely used fusion gene prediction methods published since 2010. These methods are all

alignment-based methods (sorted by published date).

Name Author Affiliation Publish date | Journal

FusionSeq Weill Cornell Medical College 2010/10 Genome Biology
MapSplice University of Kentucky 2010/10 Nucleic Acids Research
deFuse University of British Columbia 2011/05 Plos Computational Biology
FusionHunter University of Illinois at Urbana-Champaign | 2011/06 Bioinformatics
FusionMap Amgen Inc 2011/07 Bioinformatics
TopHat-Fusion | University of Maryland 2011/08 Genome Biology
FusionFinder The University of Western Australia 2012/06 Plos One

SOAPfuse Beijing Genome Institute 2013/02 Genome Biology
FusionCatcher | Orion Corporation 2014/11 bioRXiv

JAFFA Murdoch Childrens Research Institute 2015/05 Genome Medicine
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Sequence alignment, in contrast to alignment-free algorithm, has advantages in sequence
analysis in certain conditions. It computes all possible pairwise comparisons between short reads
and the reference genome sequences, and it will give excellent outcomes when the reads correctly
map to the reference genome [31]. However, the reference genome used in most of the analysis is
the one assembled from healthy individuals (e.g., human reference genome GRCh37/hgl9 is
derived from 13 healthy individuals). Aligning reads originated from perturbed cancer genome
against the normal reference genome will prevent those reads from achieving good alignment,
especially in the complex rearranged regions where fusion events occur, thereby resulting in low

prediction accuracies [32].

2. Predicting fusion genes using alignment-free approach
2.1. ChimeRScope method Overview

Alignment-free methods are based on a broad collection of methods, including those based on
k-mer frequency or substrings, on information theory, on graphical representation, or on sequence
clustering. In this project, we designed a novel method named ChimeRScope (implemented in
Java) for fusion gene prediction by assessing gene fingerprint (in the form of k-mers) composition
from RNA-Seq short reads for fusion gene prediction. Unlike other methods that rank fusion
candidates based on the number of supporting reads with reliable alignment, ChimeRScope
generates gene fingerprint profile for each read and assigns different weights to the read based on
the pattern of its gene fingerprint profile. This novel approach eliminates the need for alignment
of reads to the reference genome; hence it is expected to work better with tumor transcriptomes
that are encoded by severely perturbed cancer genomes. Specifically, a Gene Fingerprint Library
(GF-library) will be constructed before the analysis (ChimeRScope Builder, Chapter 2

Subsection 2.2). This GF-library stores every possible gene sequence of size K, along with the
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gene IDs that contains that k-mer sequence. Then, discordant reads that fail the initial alignment
step in the standard RNA-Seq data analysis will be used as input for ChimeRScope. This helps to
reduce the search space and improves the search speed. After that, a k-mer list will be generated
using all possible substring of length k for each discordant read. A fingerprint profile will then be
obtained by searching each k-mer of that read against the GF-library for gene IDs that contain that
k-mer. Reads containing two sets of gene fingerprints from different genes will be scored based
on the quality and the quantity of the fingerprint sequences. Such reads will then be marked as a
Fusion Event Supporting Read (FESR) that supports the fusion event of corresponding genes
(ChimeRScope Scanner, Chapter 2 Subsection 2.3).. After parsing all the discordant reads using
this approach, all predicted fusion events will be ranked according to the overall scores of their
FESRs (ChimeRScope Sweeper, Chapter 2 Subsection 2.3).. Our method is less vulnerable to the
high rate of chromosomal abnormality (SNP, INDELSs, translocation, and inversion, etc.) of
cancer genome. For instance, if an inversion and an insertion both happened near a fusion
junction and one read is generated from that fusion transcript, other tools will not be able to
achieve reliable alignment because of this complicated chromosomal rearrangement.
Consequently, this fusion read will be discarded. However, this read should still contain several
gene fingerprints. ChimeRScope is capable of capturing those gene fingerprints (which indicates
high sensitivity) and will predict this read as an FESR, although with relatively lower weightage
score. We also implemented a targeted alignment module that maps the FESRs against the related
fusion partners for detailed forms of the fusion genes. The results are reported in both text format
and graphical outputs (ChimeRScope Examiner, Chapter 2 Subsection 2.5). Detailed methods and

results will be discussed in the following chapters.

2.2.ChimeRScope Builder: constructing of species-specific Gene Fingerprint libraries
GF-library serves as a dictionary of k-mers so that for a given sequence of size £, the list of

genes that contain that k~mer (considered as a gene fingerprint) can be retrieved in a constant time,
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irrespective of the input data size (O(1) time complexity). The first step for the GF-library
construction is to obtain the nucleotide sequences for every transcript. TopHat2 [33] aligner
provides a script called gtf fo_fasta that takes the reference genome file (.fasta) and the gene
model (in Gene Transfer Format, *.gtf) as inputs, outputting a single file that contains all the
nucleotide sequences for all the transcripts in the gene model. Example command for gtf to_fasta

1s shown as follows.

1 ## example for human reference genome hg38
2 gtf to fasta hg38.gtf hg38.fa hg38 allRNAs.fa

Once we obtained the file that contains all the nucleotide sequences for all transcripts, we can
create the k-mer profiles for all transcripts by generating all the subsequences of size k from each
transcript sequence. Each of these k-mer profiles contains all the unique k-mers found in that
transcript. We then compare all the k-mer profiles, in order to get the dictionary file that tracks

the origins for all k-mers (Figure 2-3).
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Figure 2-3. Screenshot of the example k-mer library in the early development version (k=25). The first column
shows the 25-mers and the second column lists all the related genes with 25-mer. Each element in the gene list is
separated by a comma and each element contains information like built-in ID, chromosomal location of the gene, and

the location of the A-mer in the sequence.

TGTTGCTGATTTTAATGTTATTTAL: [»8049 chrl0:l02672326-102719347 TCONS_00008050: 3354, »B050 chrl0:102672326-102724891 TCONS_000080
51:3354, >8047 chrl0:102672150-102713330 TCONS_00008048: 3530]

AACTCTAATTTACARAGGACAATCT: [»7933 chrl0:04050920-94113721 TCONS_00007934: 1025]

CCAARTACARARATGAATAALGCTT: [»7396 chrl0:22541001-22547477 TCONS_00007397:2450]

AALAGAALALCGAARATATTGTGTT: [»9741 chrl0:76959177-76959580 TCONS_00009742:269]

ATTTAATTCTAGATCTTTCATTCTA: [»>7848 chrl0:&6039736-86054415 TCONS 00007849 1153]

TTCCAAAGCCTCATGTACGAGTGAG: [»9298 chrl0:115881220-115934364 TCONS_00009298: 209, >9297 chrl0:115881220-115934364 TCONS_0000929
9:209]

AAAGCAGAATCTTTGTAALGTALTA: [»7879 chrl0:89267590-89313218 TCONS_00007880:32]

GGACGTGAAGCAGGTETATTAALALL: [»9034 chrl0:90973330-91011660 TCONS_00009035:225, >9033 chrl0:90973326-91011660 TCONS_00009034: 22
2]

GCAARTAAACGGARACAGTTTTAALL: [»9231 chrl0:105062553-105109160 TCONS_00009232: 1804]

TTATGACTTCATCTAGTTTTGGTAC: [»8456 chrl0:15147771-15210695 TCONS_00008457:4517]

TGEACAGGCTGCATGCCGTGTACTA: [»E914 chrli:74766526-74790026 TCONS_00008915:1547, »8916 chrii:74766950-74856732 TCONS_DO0O0G916: 1

093, »8916 chrl0:74766980-74556732 TCONS_000085915:1093, »>6915 chrl0:747665980-74556732 TCONS_00005919: 1093, »>5917 chrl0:74766950-74
§56732 TCONS_0000S917:1093]

ATAGTATCAALAGTGETACTTCAGT: [»8213 chrl0:116853124-117708496 TCONS_00008213: 358, »8210 chrl0:1165853124-116931125 TCONS_ 0000821
2:358]
ATGCCAAAAGAGEAAGGTCTGCTAC: [»8965 chrl0:78629359-79307577 TCONS_DO0DS8966:3380, »8964 chrlD: 78620350-79397577 TCONS_00008968: 3

360, »8967 chrl0:78629359-79397577 TCONS_000085963: 3380, »6966 chrl0:78629359-79397577 TCONS_00005964: 3350, »>8962 chrll:78625359-79
397577 TCONS_00005965: 3380, »8963 chrl0:78629359-78397577 TCONS_00008967:3380]

AGCCCCTGALAATACCTCCAGAGAG: [=10009 chrl0:116759750-116760333 TCONS_00010010:120]

GAGTGAAGGGCTGCTTTCTTC LA : [>8900 chrl0:73555790-73976199 TCONS_00008903:1973, >8902 chrl0:73855790-7359761599 TCONS_00005901:2
170, »8903 chrlD:73855790-739765692 TCONS_00008906: 1973, »B597 chrl0:73555790-73975867 TCONS_000058200: 1973, »>5904 chrl0:73855790-73
976592 TCONS_00005905: 2170, »8898 chrl0:73555790-739755867 TCONS_000085899: 2170, »8899 chrl0:73855790-73975567 TCONS_0000G6598: 2170,
»B901 chrl:73555790-739761958 TCONS_00005902: 2170, >8905 chrl0:73555790-7397658592 TCONS_00008904:2170]

GCAGATARACCALGGAAGGAGGAGS: [>7530 chrl0:44124265-44170147 TCONS_00007531:276]

CACTAGGTGTTGAGGACATAGLALT: [>8581 chrl0:31605457-31605024 TCONS_00005582:445]

GGCGGCTTCCTCATCAGGCCTTTTC : [>94158 chrl0:127702902-128077127 TCONS_00009420:3337]

TACAAACTGATTTCTCAGARACCAG: [>9328 chrl0:119764427-119506114 TCONS_00009330: 3692, »93258 chrl0:119764427-119793524 TCONS_000093
29:3692]

CACTCCACGACTTTAGACATCAALT: [>7794 chrl0:E81370695-51375199 TCONS_00007792:425, »>7790 chrl0:51370695-51375199 TCONS_00007793:31

1, »7795 chrl0:81370695-513751599 TCONS_00007791:455, >7791 chrl0:51370695-51375198 TCONS_00007795:395, »>7793 chrl0:81370695-5813751
99 TCONS_000077594:319, »7792 chrl0:81370695-51375199 TCONS_00007796:466]

According to NCBI (National Center for Biotechnology Information) Reference Sequence
Database (RefSeq annotation), there are 38,834 annotated mRNAs (at transcript level) in the
latest built of human reference (GRCh38/hg38). Depending on the size of the k-mer, there will be
60 to 75 million unique k-mers (when & ranges from 15 to 29) shown in all these transcripts. For
each discordant paired-end read, we compare all the k~-mer sequences against the GF-library. The
idea is to check every k-mer for all discordant paired-end reads (millions in average sized datasets)
against the GF-library. Therefore, it is crucial to choose the most optimal data structure in order

to solve the searching problem in constant O(1) complexity time.
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2.2.1. Data structure for the GF-library
Alignment-free methods are often memory-intensive. During the development stage of
ChimeRScope, we have tested many different data structures. Here, we discuss each of the data

structure we have tried and the performance of that data structure.

2.2.1.1. HashMap

HashMap is an implementation of Map class in Java. It uses hash functions to each hash key
to track the hash value. The average search time complexity for HashMap is O(1). During early
development stage, we stored detailed information of the A-mers in the HashMap, including gene
IDs, chromosomal location, and fingerprint position (Figure 2-3). The library file was also saved
to the hard disk using the default UTF-8 encoding. The average running time for creating such
GF-library took more than 8 hours to finish by consuming 25 GB of RAM. 1t is still feasible to
use because GF-library only needs to be created once. However, the primitive structure of the
hash key and hash value makes it very slow and memory-intensive for massive data analysis.

We introduced binary transformation for k-mers and the gene IDs using the following ideas.
Before binary transformation, the hash key in GF-library is a String object of size k. A String
object in java can be considered as an array of Char type (character type known as ‘Char’ in
computer science to represent any of the 256 printable characters), and each Char takes 16 bits.
Therefore, each k-mer in the HashMap takes 16*k bits. Each hash value is an array of strings with
each element in the array stores all the related information for each gene with that k-mer. The
estimated size for each hash value is at least 40*n (n denotes the total number of associated
transcripts and 40 is the estimated length of each string element, see Figure 2-3). Here we convert
all these Strings into the binary forms using mapping functions. Each character in k-mer
represents a nucleotide, and it can only take 4 different values (A, T, C, G). Here, we encode each

‘A’ into ‘00°, ‘T’ into ‘01°, ‘C’ into ‘10’, and ‘G’ into ‘11°. Every four nucleotides can now be
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converted into a 16-bit binary String, which can then be converted into one Char. Therefore, there
will be up to four times decrease in size for hash value (Table 2-2).

As we mentioned earlier, there are 38,834 transcripts in human reference model. In the
improved version, we assign a built-in ID of two Chars (reserved for up to 2*2'°=131,072
different values) for each transcript. The hash value is now a String of size 2*z, where ¢ is the

number of associated genes for the hash key.

Table 2-2. Estimated improvements for the HashMap object using binary transformation. There is up to 4 times
reduction for hash key and at least 20 times improvement in average for hash value. Here, £ is the size of the k-mer, and

¢ is the number of genes associated with the hash key.

Binary Transformation Before After Improvement rate
k] :

Hash key (k-mer) k 2 Up to 4 times

Hash value (gene lists) >40xt 2xt At least 20 times

a The math symbol here is the ceil function. Ceil function round up the number to the smallest following integer.

The binary strings of zeroes and ones can be interpreted directly as a numeric value by
computers. Each binary string for hash key is converted to the Chars as an extra computational
step. To test if the conversion step is necessary or not, we compare the computational costs for
Long (a numeric data type that takes 64-bits, equivalent to four Chars in size) keys against Char
keys with equivalent size in bits. Results (Table 2-3) have shown that HashMap using Char as
keys perform much better than Long keys when the number of entries increases (average GF-

library size is 70 million).
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Table 2-3. The writing (write the object to the local disk) and the reading speed of the HashMap object using
Long type or Char type as hash key data type. Tested for HashMap with 1,000 to 1,000,000 entries. The values are

in nanoseconds. The ones with better performance in each group are highlighted in red.

Writing speed (nanoseconds) Reading Speed (nanoseconds)
Number of entries

Long Char Long Char
1,000 21,042,746 43,611,302 18,627,304 42,011,000
10,000 107,513,624 | 57,007,196 101,237,318 57,720,639
100,000 971,794,028 | 364,712,442 822,193,258 393,103,809
1,000,000 9,389,967,972 | 7,762,445,515 | 18,838,800,741 | 8,892,180,472

In summary, we used the HashMap data structure for GF-library. Since the size of the GF-
library is too big, several approaches were used to improve the performance. The final GF-library
uses the binary transformed String (Chars) as hash keys, and the shortened String as the hash
values (every two Chars represent a gene ID). The detailed improvement for GF-libraries used in

analysis listed in Table 2-4.
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Table 2-4. Average run time, memory consumption, and library size on local disk for GF-libraries with different
k value on average sized datasets. The code improvement shows that, for the same 25-mer library, the time costs
decreased from 25 hours to only 25 mins (60 times improvement). It also reduces the memory usage from 100 GB to
only 16.2 GB (approximately six times improvement). The size of the library object on the local disk dropped from 7.9

GB to only 1.8 GB (about four times smaller).

Before | After improvement®

k-mer size (bp) 25 13 15 17 19 21 23 25 27 29

Time (minutes) | 25 hrs” | 17 25 25 25 26 22 25 26 25

Memory (GB) ~100 10.8 | 165 | 174 | 193 | 164 | 14.6 | 16.2 | 155 | 21.8

File size (GB) 7.9 1.1 1.4 1.6 1.6 1.6 1.6 1.8 1.8 1.9

a The memory usage is calculated using TotalMem()-freeMem() functions during the running time. The actual memory
usage should be smaller.

b Average time cost for analysis using initial GF-library takes 25 hours, comparing to only 25 mins for the same GF-
library after the code improvement.

2.2.1.2. Other data structures

ChimeRScope loads the entire GF-library into RAM (Random-Access Memory) in the
beginning of the analysis. Therefore, a minimum usage of 16 GB RAM is required before the
analysis starts. To optimize the memory consumption, we tried several alternative indexing

methods or data structures. However, none of these performed better than the HashMap.

Java RandomAccessFile class

Java RandomAccessFile class can be used to access the specific location of a random access
file. It works as a file pointer and it can access the specific byte location of a file in O(1)
complexity time (however slower than HashMap when number of entries are huge) without the

need for loading the file into RAM. Using this strategy, we tried several data structures where
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each k-mer can be mapped to a numeric value that is directly associated to the byte location of the

corresponding gene IDs.

A data structure we applied to reduce the usage of RAM is a ‘large bytes array’. We defined
that for each k-mer, if that k&~-mer can be found in more than 100 transcripts, it is considered as a
common k-mer and will not be used as a gene fingerprint. The maximum length of the gene IDs is
100*32-bits (each gene ID takes 32 bits), which is the maximum of 400 bytes per k-mer. In
theory, for a k-mer of size of 17, there will be 4'" (~17.2 billion) possible k-mers (the actual
number of 17-mers for human reference genome is around 62 million). It is necessary to reserve
the maximum space for all possible k-mers for consistency. Now, for a given k-mer that ranked at
x (can be easily calculated), we can get the related gene IDs by looking at position 400x in the file.
However, the estimated size of the index file will be over one petabyte, which makes it

unpractical to use.

We also tried to group k-mers and built separate index files within each group. This reduces
total number of entries and at the same time, averages the maximum number of Gene IDs per .-
mer by releasing unnecessary space reservations. One example we tried is to mask the last 4-mers
for each 17-mer. Therefore, there will be 4" = 67,108,864 entries and each entry contains
information for 4* = 256 k-mers. However, it still takes at least 4*4'" (~68.7GB) even if in

average, all k-mers were unique k-mers.

Next, we separated the GF-library file into two different files. One of the file is the index file
that serves similar purpose as previous attempts. The difference is, instead of returning a list of
gene IDs, it returns two numeric values. The first value is the start location of the k-mer while the
second value is the size of the gene list. Then, these two values will be used to retrieve gene IDs
from the second file. This data structure completely removes the necessity for space reservation.

However, the sizes of these two files are still huge (each takes more than 200GB hard disk space).
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Moreover, generating such index files also takes very long because of the calculation and large

number of I/O operations (>20 hours).

Java FileHashMap class

Java FileHashMap class belongs to Map class. Instead of loading the whole Map into the
memory, FileHashMap only keeps the hash keys in memory. The hash values are saved as
serialized objects in a random access disk file. It will create two files, one with a *.ix extension
(index for hash keys) and another with a *.db extension (hash values). The loading time for GF-
library using FileHashMap takes less than 1 minute, comparing to ~17 mins for HashMap class. It
also reduces the memory usage to only 4 GB. However, the downside of FileHashMap is the
search time. The time cost for each searching query is 100 times slower than HashMap. For
analysis involving millions of short reads, the time cost makes FileHashMap less affordable even

with the improvement on memory use.

In Conclusion, considering all the advantages and disadvantages of the data structures tested,
we chose HashMap class as the data structure for constructing the GF-library. The huge HashMap
(GF-library) is generated by comparing all the k-mers for all transcripts, and saved to local disk
using java ObjectOutputStream as a binary file. Moreover, the binary transformation of k-mers
and gene IDs greatly improves the computational performance. Other data structures were not

used for GF-library due to various issues such as data storage or searching speed.

2.2.2. Determining the optimal k-mer length
The size of the k-mer will not only affect the size and the memory usage of the GF-library, it

will also affect the sensitivities and specificities in the fusion gene prediction method. We used



30

the following criteria to optimize the best k-mer size. (1) & should not be too small, because a
small & will generate redundant gene fingerprints; (2) k& should not be too large because it
generates too many unique k-mers resulting in a large search space. Also, a large k-mer will be
more vulnerable to mutations (e.g., a SNP occuring in a k-mer at position 18 can affect a 19-mer
but not a 17-mer). (3) & should be an odd number due to the design of the algorithm (k-mers were
tracked using the index of the central nucleotides; hence, the inversion of the sequence will not
alter the value of that index.

To decide the most optimized k value for human reference genome GRCh38/hg38 (with
38,834 mRNA transcripts), we plotted the k-mer composition for all k-mer libraries with all the
odd k& from 13 to 29 (Figure 2-4A). We defined that GF-libraries with higher level of
discriminative k-mers (or lower Shannon Index [13]) are generally better for evaluating gene
fingerprint sequences [34]. Shannon Index, known as Shannon’s entropy, quantifies the
uncertainty in predicting the species identity of an individual that is taken at random from the

dataset [35] (initially described in ecological literature [36]). We calculated the Shannon Index

R

using H'= —Z p, In p, (i refers to a k-mer type and p; is the percentage of that -mer type. R is a

i=1
collection of k-mer types that have been seen in no more than 100 transcripts) for these k-mer
libraries, in order to measure the uncertainty in predicting the origins of the reads using different
k-mer libraries. Higher the Shannon Index, more challenging it is to correctly predict the origins
of a read. Results (Figure 2-4) have shown that k=17 is the most optimized k-mer size for human
reference model (GRCh38/hg38) because it is the smallest & size that gives the equivalent levels
of discriminative fingerprints (or similar low levels of Shannon Index) as those GF-libraries with

larger k values.
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Figure 2-4. k-mer percentages for nine selected k-mer libraries (GRCh38/hg38, RefSeq mRNAs only). (A) The 4-
mer percentages for nine selected k-mer libraries (k=13, 15, 17, 19, 21, 23, 25, 27, 29) are plotted using 3D line chart,
where each line in this chart represents a unique k-mer library. Libraries with larger & values are plots to the further side
of the figure. The x-axis lists all k-mer classes (characterized by the number of transcripts that use the k-mer as a
fingerprint) and y-axis shows the corresponding percentages of the k-mer class in the certain k-mer library. For instance,
approximately 48% of the k-mers in the 15-mer library are unique fingerprint sequences (y=48% when x=1 and k=15).
For each k-mer library, the majorities (~99%) of the k-mer classes are those discriminative k-mers with less than 10
associated genes. Overall, larger £ often gives better k-mer library because it contains more discriminative k-mers
(higher value towards left part of the x-axis). (B) Shannon Indices for all nine GF-libraries. GF-libraries for &=17 or
larger have similar low levels (~1.400) of Shannon Indices (highlighted in the red box). Consequently, &=17 is the
optimized k-mer size for GRCh38/hg38 because k=17 is the smallest k-mer size that gives highest levels of

discriminative k-mers (or roughly lowest Shannon Index).
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To conclude, we choose k=17 as the most optimized k-mer size for GRCh38/hg38 because it
is the smallest £ value that gives the highest levels of discriminative k-mers (or low Shannon

index), comparing with the A-mer libraries with larger & (Figure 2-4).
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We further evaluated the fingerprint sequences in the 17-mer library and plot the ranked
distribution of all unique k-mers (Figure 2-5) for 17-mer GF-library. Results have shown that
approximately 82% of all the transcripts (31501/38834=81%) have at least 10 unique fingerprint
sequences. The figure also shows that more than 32,026 transcripts have at least one unique
fingerprint sequence. Additionally, results from other discriminative k-mers (k-mers found in less
than ten transcripts) have shown that more than 99.4% (38587/38834) of the transcripts contain at
least one of these fingerprint sequences, suggesting 17-mer GF-library contains sufficient

fingerprint sequences for most of the transcripts/genes.

Figure 2-5. The distribution of unique 17-mers across all transcripts. All transcripts are ranked based on the
number of unique 17-mer fingerprints. Nearly half of the transcripts have at least 100 unique 17-mers. More than

32,000 transcripts have at least one unique fingerprint sequence.
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2.3.ChimeRScope Scanner: identifying Fusion Event Supporting Reads from discordantly

aligned reads
2.3.1. Extracting discordantly alignment reads

During the sequencing stage, most of the expressed RNAs (not only fusion transcripts) will
be captured and sequenced into short reads. Because reads generated from normal transcripts will
not support any fusion events, instead of searching fusion genes from the whole RNA-Seq
datasets, we can align all the short reads against the normal reference genome, in order to filter
out reads originated from normal transcripts. This will greatly reduce the search space to 10% of
the total reads as only the discordant reads (reads that failed to align or aligned with conflicted
insert-size) will be used for fusion gene prediction. Any aligners that support spliced alignment
(e.g., TopHat/TopHat2 [33, 37], STAR [38]) for RNA-Seq short reads can be used in this step.
For example, we can use Tophat2 to align paired-end reads (in *.fastq format) against reference
genome (indexed genome, precisely). The aligned reads are then saved into a single file called
accepted_hits.bam, whereas the unmapped reads are saved into a separate file named
unmapped.bam. We can retrieve all discordant reads using SAMtools [39] from these two BAM
files (Binary Sequence Alignment/Map format) based on the bitwise flag value of the reads. All
the discordant reads can be converted back into the original fastq format using bamtofastq from

BEDTools [40] repository. An example of bash script for this step is given as follows.
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#!/bin/sh

## Set the path for required files, along with other necessary parameters
OUTDIR=[OUTPUT_ DIRECTORY] #Output directory

INDEX=[PATH TO INDEXED GENOME] #Bowtiel index

READ1=[PATH TO FORWARD READ] #Read 1 in paired-end read

READ2=[PATH TO REVERSE READ] #Read 2 in paired-end read
THREADS=[NUMBER OF THREADS] #Multi-threads

O Joy Ul bW

[aliNe]
o

## alignment using tophat2 with bowtiel index (just an example)
tophat2 -p --bowtiel --output-dir
cd

e
SwWw N

## Retrieve discordant reads (FLAG = 2)
## -f = INCLUDE; -F = EXCLUDE. -b = output binary format
samtools view -F 2 -b accepted hits.bam > discordant.bam

B e e
® J o u

## Combine discordant reads with other unmapped reads
samtools cat -o merged unmapped.bam discordant.bam unmapped.bam

NN
= O O

## Sort the merged BAM file based on read name
## bamToFastqg requires the BAM to be sorted on read name
samtools sort -n merged unmapped.bam unmapped sorted

NN DN DN
g w N

## Retrieve all reads with primary alignment (duplicates are removed)
## FLAG 256 means "not primary alignment"
samtools view -F 256 -b unmapped sorted.bam > unmapped sorted primary.bam

NN DN DN
O o0 Jo

## Convert all retrieved reads into fastg format.
## unmapped 1.fastq and unmapped 2.fastqg are input reads for ChimeRScope
bamToFastq -i unmapped sorted primary.bam -fq unmapped 1.fastqg -fg2 unmapped 2.fastg

w W
= O

2.3.2. Evaluating fingerprint sequences

As we mentioned earlier, [llumina’s paired-end sequencing reads are in forward-reverse
orientation. Therefore, for k-mers derived from paired-end reads, we will also need to check their
reverse-complementary forms. Moreover, genomic variations like chromosomal inversion can
also happen, which can inverse the direction of the genes in the genomic level. In this case, we
should also check the reverse form (reverse of the original form) and the complementary form
(reverse of the reverse complementary form) for these k-mers. In total, four different forms for
each k-mer will be assessed, including original form (sequenced from template strand), reverse-
complementary form (sequenced from non-template strand), reverse form (sequenced from
template strand with an inversion), and complementary form (sequenced from non-template

strand with an inversion).
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ChimeRScope treats each gene fingerprint (k-mer) differently. A commonly observed gene
fingerprint (shared in many transcripts) should have a small weightage score, whereas unique -
mers should be assigned with higher weightage scores because they are more discriminative. We
also defined that for a common k-mer with more than 100 associated IDs, this k-mer will not be
used as a fingerprint sequence. Using this idea, we calculated the weightage score of a given k-

mer using the following scoring function. The final weightage score w(x) is a normalized score

that ranges from O to 1. The higher the score, the more unique the k-mer is.

1_rnin()c,l()O)

10 0

W=

,we[0,1)

x = total number of unique IDs associated with the k-mer (and other variations)

We also tested the scoring function using Euler’s number e as the base instead of 10. There is

not much difference for the final result between these two different bases.

2.3.3. Detection of Fusion Event Supporting Reads (FESRs)
We model the problem of identifying the fusion genes from discordant paired-end reads into
a problem in graph theory. Figure 2-6 shows an example of how we define a FESR based on its -

mer content. Details of the algorithm in mathematic terms will be shown later.
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Figure 2-6. Strategies used in ChimeRScope for identification of FESRs: an example. (A) A discordant paired-end
read (100bps x 2) that fails the alignment against the reference genome is plotted in a circular layout with each
nucleotide base type represented by a unique color. (B) Four different variations (original, reverse, complementary,
reverse complementary) for each possible &-mer in the read (the 11th 17-mer for read 1 from base 11 to 27 is shown in
this example) will be created and searched against the 4-mer library, in order to obtain, (C) a list of gene IDs that uses
the corresponding 4-mer as fingerprints. Each block represents a &-mer and each color here represents a unique gene ID.
For example, four genes (G1: red, G2: green, G3: yellow, and G4: orange) are related to the 11" 17-mer (from the 11™
nucleotide to 27" nucleotide, as highlighted in grey region) and two genes (G1 and G4) are associated with the 29" 17-
mer (highlighted in light yellow). (D) A complete graph is drawn for all genes that are associated with both reads (in
this figure there are 8 genes). Each vertex in the complete graph represents a unique gene with the size of the vertex
proportional to the overall fingerprint weightage score (defined in the previous section) for that gene. The edge value
between two genes is defined by the distance (denoted as d) between two closest fingerprints of the gene pair (only a
few values are listed). Two genes with edge value less than the k-mer size will have at least k-d nucleotides overlap.
Gene pairs with small distance values tend to be false positives due to the similar sequences (Chapter 2, subsection
2.4.1.2). Here, if we define that only those gene pairs with less than 5 bps overlap (or with the distance more than 17-
5=12) can be valid fusion candidates, this read will be classified as a FESR that supports the fusion between G1 and G6

because G1 and G6 are two of the largest vertices with the edge value larger than 12.
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Here we list all the notions we used in the following paragraphs for better explanations.

ﬁ : The total number of the discordant reads
R :  Thei"read, i €[1, N]
fi: The length of R,
71.: Total number o_fk-mers inR,
E The size of the k-mer, shotﬁ be the same as k defined in GF-library
S.(R) The j"k-merin R,, j€[l,J]
H,(R) The list of transcgts that contains fingerprint sequence S, (R,)
Z,: Thesizeof H (R). Z, =size(H ,(R)))
_min(Z;.100)

10 100 —1
w(R): The weightage score for S;(R,). w,(R,) = 0 -1
U(R): The list of all transcripts shown in the read R,
X; The size of the unique transcript ID list U(R,) o
El.(xl.) : An array of transcript IDs for R, with the size of X,
M (x,) or M : A two dimensional square matr?g (M [x,x]) tl; tracks overall weightage score for
- each transcript and the overlap relationship between each transcript pair.
D, or D,(x;): D, is the diagonal array of M (X;), It stores the overall weightage scores for all
B alscripts related to R;. Can be calculated as D.[t] = M,[t,t],t €[0,x;,)
P: The gene fingerprint profile for_Rl. . P can be represented by a vector P =(M,(x,),G,(x;))
Ez The parameter that defines whethe_rtv; fingerprints are considered as overlap or not.
conf (i,G,,G ) The confidence score of R, that supports fusion event between G, and G,
F(G,,G,):  The overall confidence score for fusion event between G, and G, o

For each discordant paired-end read, we pose a sliding window of size & from its start

position 1 to the last possible position L, —k +1, in order to generate all k-mers from i" read (R).
For j™ k-mer S (R,) in this read, we check its original form (S j[l] ), reverse-complementary form
(S j[2] ), reverse form (S jm), and complementary form (S j[4]) against the GF-library, in order to

obtain the list of transcript IDs associated with each variation ( H j[l] JH j[z] JH j[3] ,and H j[4]).

Next, we calculate the union set of transcript IDs for this k-mer, represented by
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4
H,(R)= U Hﬁ”](Ri) . The weightage score of this k&-mer w (R,) can be calculated using the
’ a=1 ;

scoring function we described before. Once all the k-mers have been processed, we can obtain the

Li—k+1

union set of all transcripts for this read using U(R) = U H,(R).
P

Next, we initiate the 2D square matrix M, (x;), The row and column index can be projected
to the same index for genes in U(R)). We only utilize half of the matrix A _,(a>b) .
M, ,(a=b)or D, is the diagonal array and it stores the quantitative value of overall fingerprint
weightage score for all the transcripts identified in R,. For each k-mer in R;,, we update the
elements in D, by adding the weightage score of the k-mer to these elements if the corresponding

transcripts use this k-mer as a fingerprint sequence. Comparatively, M _,(a > b) stores the

distance (denoted as d ) of two closest k-mers for each transcript pair after all the k-mers are

parsed. If the distance is too small for the transcript pair, it suggests that these two transcripts
share a common sequence of size kK —d . ChimeRScope classifies such transcript pair as potential
false positive (here we use transcript instead of gene for conveniently describing the problem,
fusion genes found by ChimeRScope have to be between two different genes). The principle
behind this can be described with the following example. Suppose we have d =1and k =17 for

gene X and gene Y in R,, it means that these two genes share a common sequence of length 16.

Suppose the read is sequenced from the cDNA of gene X only and there is a point mutation right
after the “common sequence”. There is a 1/3 of the chance that this mutation will change the -
mer originated from gene X into the k-mer derived from gene Y. Using the strategy we described
in this subsection without the distance filter, this read will support a fusion event between gene X
and gene Y while it is actually sequenced solely from gene X. If the distance value is less than the

cut-off for a transcript pair, we define this transcript pair as an overlapped pair and filter it out.
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The selection of the most optimized distance cut-off will be described in subsection 5.2 of this
Chapter.

The problem of identifying FESR can be described as follows using mathematical terms.

Find the index of the maximum value in the diagonal array

m=argmax(M, ,),a €[0,x,)

a

If there exists a value of s where

s=argmax(M, ),aela|(M,, 2d)&(a+m)}

Here wehave M, =M  ifa<m

a

Then, this read (i read) supports fusion between G, and G, with a confidence score of

Conf(iﬁ G n Gs‘)

n

4xM, <M,
conf(i,G,,G,) = j2

Basically, we try to find two largest values from the diagonal array where the corresponding
transcript pair is not an overlapped pair. If there exists such pair, we define that this read is a
FESR that supports the fusion event for this pair.

The evidence of why this confidence score function works the most appropriate for this

problem is shown as follows.
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The weightage score for a given k-mer ranged from 0 to 1.
w,(R) €[0,1)

which gives,

Ji
Mm’m +MS’S < ZWJ(RI) < Ji = O SMm,m XMs,S < (%)2

J=1

4xM,  xM_
S 5

m,m

VE <1

=0

We define the confidence score
4 X Mm,m X Ms,s
J?

1

conf (i,G,,G,) =

= 0<conf(i,G,,G,)<1

It achieves the maximum value only and if only

Mmm :MSS zi
’ 2

The last equation shows a perfect fusion pattern with each end of the paired-end read (half of
the total k-mer count) matched uniquely to each transcript. This is when the confidence score

function achieves the maximum score. Decrease of the k-mer weightage score w, (R,) (quality of
the k-mer), or M, and M on either/both sides (quantity of the k-mers) will lower the

confidence score, which is also correlated with the significance of the fusion pattern.

2.4. ChimeRScope Sweeper: predicting fusion gene candidates
2.4.1. Summarization of the FESRs confidence scores

The confidence score for a given FESR can be calculated using the method described in the
previous subsection. Once we identified all the FESRs, we group all the scores based on the
supported fusion pair. We use an iterative function in java to summarize all the scores for each

fusion gene candidate (Code shown below).
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/*
* Summarize the final confidence score from a sorted list of FESR scores
* (@param sorted float ArrayList
* @return final confidence score (float value ranged from 0 to 1)
*/
private float calculateScore(ArrayList<Float> sortedScorelList) {

float score = 0;

boolean first = true;
for (int i = 0; i1 < sortedScorelList.size(); i++) {
if (first) {
score = sortedScorelist.get (i)
first = false;
continue;

}
float tempScore;
float newProb = sortedScorelist.get (i)
if (newProb > score) {
tempScore = score;
score = newProb;
newProb = tempScore;
}

score = score+(l-score) *newProb* (l-score) *newProb;

}
if (score>l) {
score = 1;

}

return score;

This java function takes out the smallest FESR score from the list one at a time and updates
this FESR score to the final confidence score. This function guarantees that, (1) the final score is
always higher than the maximum FESR score. (2) The false positive fusion genes with large

amounts of low quality FESRs will not have high confidence scores..

The final confidence score for a fusion gene ranges from 0 to 1. Any fusion gene with a score
of more than 0.5 is considered as a true fusion gene candidate. The cut-off score 0.5 suggests the
overall confidence for a fusion gene to be true when it receives, for example, 70% support in

average from each fusion partner (0.7*0.7=0.49).

2.4.2. Filtering false positives

2.4.2.1. Fusion partners with similar sequence
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In 3.3, we mentioned that genes with similar sequences can have higher chance to introduce
false positives (Figure 2-7a), even with the right distance parameter. To avoid such false positives,
we check the similarity of two sequences using the following methods.

We filter out the fusion gene if the fusion partners come from the same gene family. Genes
from the same family often have similar functions. They can share homologous structures in

certain regions like the functional domains. The HUGO Gene Nomenclature Committee

(http://www.genenames.org/), known as HGNC, provides information of the genes and their gene
families. ChimeRScope can take this optional information to filter out potential false positives
caused by sequence similarity.

Two genes from different gene families can still have similar sequences. To address this, we
align the fusion partner genes using Smith-Waterman algorithm (match = 2, mismatch = -3, gap
open = -5, gap extension = -2). This parameter set for SW algorithm is the default parameter set
used in NCBI BLAST (Basic Local Alignment Search Tool) for gapped alignment (blastn) and it
gives the best result in most of the alignments. Two sequences with an alignment score of 200 or
more is defined as similar pairs (because these two sequences need to have a sequence match of
at least 100 bps) and will be filtered out in the final result. We choose the cut-off alignment score
of 200 because the smallest length of the paired-end (PE) Illumina read is 100 bps (50%2). The
maximum alignment scores for a 100bp PE read mapped to the similar regions of these two genes
are also 200. Based on the predictions on the real RNA-Seq datasets, this cut-off filtered out most

of false positives with similar sequences.


http://www.genenames.org/
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Figure 2-7. False positive fusion reads caused by genes with similar sequences and adapter contaminations. (a)
An example of the false positives caused by similar sequence region. The reference sequences of G1 and G2 share a
similar sequence near the 5’ region. There are only a few nucleotides that are different (highlighted in red in G2). A
paired-end read sequenced from the subject G1 cDNA contains a mutation that changes the fingerprint sequences in
that region to the identical sequence of G2. This paired-end read, originated from G1 only, will now be classified as a
fusion read because it supports the fusion between G1 and G2 due to that specific mutation. We filter out this type of
false positives by checking if the reported fusion partners contain such similar regions. (b) An example of the false
positives caused by adapter sequences. Paired-end reads can have adapter contaminations when the template is smaller
than the length of the read or due to other technical issues. ChimeRScope checks four different variations of the k-mers,
including the reverse form. Although adapter sequences are designed not to significantly match any of the gene
sequences, the reverse forms of these adapter sequences can match to certain genes (G4 matches the reference form of
the adapter sequence in this example). All the paired-end reads sequenced from the cDNA library with adapter
contaminations can classified as fusion reads by ChimeRScope. We filter out this class of false positives by removing
fusion genes involving partners with high counts because this kind of fusion partners tend to pair with a large number

of genes.
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2.4.2.2. Conjoined genes

A conjoined gene is a gene that transcribed from two or more different genes (parent genes).
These parent genes are often located close to each other on the same chromosome in the same
orientation. A conjoined gene occurs either the transcription of the upstream gene is not properly
terminated or if a transcript is not properly spliced; thus multiple exons from different genes are
joined together to form the conjoined gene. Most of the conjoined genes are conserved [41] and
not significant for tumorigenesis. Therefore, we implement a genomic distance filter (not to
confuse with the distance parameter described in 3.3) in ChimeRScope. This filter marks the
fusion genes into categories as “overlapped” (if two genes are overlapped at the genomic
location), “<1k” (less than 1,000 bases), “<10k™  (less than 10,000 bases but more than 1,000
bases), “<100k” (10,000 bases to 100,000 bases), and “PASS” (more than 100,000 bases or on
different chromosomes). Fusion genes from “PASS” class are considered as true fusion events.
Fusion genes from “<100k” are also considered as true but they are further evaluated with caution.

Others are classified as conjoined genes because they are too close to each other.

2.4.2.3. Adapter contamination

In subsection 1.1 of this chapter, we mentioned that Illumina sequencers use adapter
sequences to anneal all DNA fragments to the flow cell. It is possible that NGS reads can contain
adapter sequences due to a variety of reasons [42]. Although adapter sequences are designed not
to significantly align to any part of the genome (both forward and reverse strand), the reverse
form of the adapter sequences can be part of the fingerprints for a subset of genes due to
complementary matching. Reads sequenced from any expressed gene containing adapter
contamination can exhibit a fusion pattern between the expressed gene and genes from that subset.
Such fusion pairs are false positives introduced by adapter contamination (Figure 2-7b).

We developed a simple filter for false positives caused by adapter contamination. This filter

calculates how many times one gene is paired with other genes in the raw result. If a gene paired
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with other genes more than other 200 genes, fusion genes involving this gene are more likely to
be false positives. This cut-off value is optimized based on predictions on real RNA-Seq datasets,
in order to avoid the majorities of the false positives. We do not set the cut-off to smaller values

to avoid false negatives.

2.4.2.4. Unannotated transcripts

Human genome is a well-studied genome with more than 20,000 well-annotated genes and
more than 38,000 transcripts in NCBI RefSeq annotations. However, it still contains many
uncharacterized regions and transcripts. During the development stage of ChimeRScope, we
identified a group of false positives, many of which are also predicted as true fusion genes in
some of the studies [43]. These fusion genes have perfect pattern of two distant genes fused
together. However, BLAST search revealed that these predicted fusion transcripts can be aligned
to regions corresponding to non-coding genes or predicted gene models with high similarities
indicating that such genes fusions are likely to be false positives. To address this issue, we
recommend that, for analysis on real RNA-Seq datasets using ChimeRScope, a BLAST search of
the fusion sequence against human nucleotide collection is necessary to remove such false

positives.

2.5.ChimeRScope Examiner: alignment module with graphical output

As an alignment-free method, the core algorithmic part of ChimeRScope is not capable of
identifying the exact fusion site because k-mers are treated as individual fingerprint sequences
without keeping their chromosomal location information. Therefore, we implemented a separate
alignment module called ChimeRScope Examiner (Step 4 in Chapter 3, subsection 2.2) to find
the fusion junction coordinates using sequence alignment. We also transformed the coordinates

reported from alignment results into vector graphics (Figure 2-8) for better result interpretation.
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2.5.1. Targeted alignment for fusion junction

ChimeRScope Sweeper outputs a list of fusion genes ranked by their confidence scores. It
also outputs a binary file that contains all the FESR sequences and the supported fusion pairs. In
ChimeRScope_Examiner, four different variations (original, reverse complementary, reverse, and
complementary) for each FESR are aligned against the sequences of the corresponding fusion
partners using Smith-Waterman algorithm. In other words, four different alignment attempts were
made for one read and a fusion partner. We defined that each fusion partner can only be aligned
to one form of the read. Therefore, we only keep the read form with the highest alignment score
as the primary alignment result form for that gene. We used the same parameter set for Smith-
Waterman scoring matrix (match=2, mismatch=-3, gap open=-5, gap extension=-2) for all
comparisons. Each alignment result is saved in a single line of text which contains the following
fields. These are read name, gene name, transcript 1D, original strand of the transcript, read 1 or
read 2 (paired-end reads), aligned strand, aligned direction (inversed or not), matched
coordinates in the read, matched coordinates in the original strand of the transcript, alignment
score, and unmatched regions. We also classified FESRs into spanning reads and split reads
(Chapter 2, subsection 1.2) from the alignment results. Spanning reads give an approximated
region for fusion junction while split reads support the exact fusion boundary. We calculated the
estimated fusion junction from each FESR and report the consensus fusion point for the fusion
gene. For a small sequence (often less than 50 bps) near the fusion junction that can be mapped to
both fusion partners, we resolve the fusion junction using following rules: If the overlapping
sequence at the junction covers an exon-exon junction for one fusion partner, we split the
sequence at the exon-exon junction site and assign each part of the sequence accordingly. The
rationale for this selection is based on the fact that the post-transcriptional modifications of the

fused pre-mRNAs follow the same RNA splicing mechanisms. The fusion gene is more likely to
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fuse at the exon-exon junction if the fusion at the genomic level is not occurred in the middle of a
coding region (exon) and the splice sites are intact. If the overlapped sequence does not span any
exon junctions, we assign the part of the sequence to the fusion partner with less number of
unmatched bases. If two fusion partners report the same number of unmatched bases, we split the
common sequence into half and report the fusion junction accordingly. We also report the
orientation and the strand of the fusion partners, along with the resolved fusion sequences near

the fusion junction (+/- 100bp of the fusion junction).

2.5.2. Scalable Vector Graphics images for fusion genes

For better understanding of the fusion patterns, we also transformed the target alignment
results into SVG figures. Scalable Vector Graphics (SVQG) is an XML-based vector image format.
Unlike raster graphics that uses a dot matrix to represent shapes and colors, vector images like
SVG use polygons to represent the objects. The objects in SVG images can also have different
attributes such as stroke color, shape, thickness, and fill color. For instance, a simple rectangle in
SVG is defined by its position (x and y in 2D coordinate system) and size (width and height). This
object can be easily repositioned and transformed by wrapping it with a single line of code (a
vector with parameters like x, y, transform, scale). This makes the objects in SVG images easily
implementable and editable. Comparatively, similar objects in raster images often take larger
space and can be edited only at the pixel level. Moreover, because vector images are not based on
matrices of pixels, they can be infinitely resized without losing image quality. Therefore, we

chose SV@ as the standard format for ChimeRScope graphical report.

Figure 2-8 illustrates the layout of the SVG output generated by ChimeRScope Examiner.
The width/height ratio for the image is set to 4/3. ChimeRScope Examiner calculates the exon
length from the reference gene model. Then, we create boxes with difference sizes that are

proportional to the length of the exons. We group these boxes and lines based on transcript names
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for better editability of the objects. The start location of the group objects are set to the origin
point [0, 0] and they will be transformed and moved to the right locations using vectors. The
alternative transcripts for the same gene are aligned vertically based on the chromosomal location
of the coding regions. The third track of the figure shows a maximum of 500bp region from each
fusion partner near the fusion junction. We transformed this amplified region to better fit the
width of the figure. This track will also be used as the standard ruler for the alignment results. We
use two different colors for forward reads (red) and reverse reads (green). It is evident that both
spanning reads and split reads are supporting the fusion event for HNRNPM-VAV1, as shown in

track four of Figure 2-8.
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Figure 2-8. Example SVG image for fusion gene HNRNPM-VAV1. This SVG figure is composed of four tracks
separated by different background colors. The first track on the top shows the gene names of two fusion partners, along
with their original orientation on the chromosomes. The second track lists all the transcripts from corresponding fusion
partners. Each string of boxes represents a transcript that is involved in the fusion event. The boxes and the lines
between the boxes represent exons and introns. The third track illustrates the amplified regions near the fusion junction
for each fusion partner. The lines pointing from track two to track three show the orientation of the amplified region. If
there is a cross between two lines, it means the amplified region is flipped over so that the fusion junction is between
these two genes. The first three tracks use two different colors for fusion partner 1 (red) and 2 (blue). The forth track on
the bottom lists the mapping results for a maximum of 71 paired-end reads. In this track, Forward reads are shown in
red and reverse reads are filled with green color. Using the first transcripts from both genes as an example, the fusion
junction is between the 3™ exon of HNRNPM and the 24™ exon of VAV 1. The SVG figure provides more information

when opened with a web browser such as Chrome to help locate the fusion junction.
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The recommended way of viewing this SVG output is to open the file using web browsers
like Chrome because the SVG file contains several interactive contents. For instance, the exon
number will be shown in the bottom of the image when users mouse-over to the exons in the
second track of the image. Moreover, the read name for the corresponding paired-end read will
also be displayed in the same region if users hover the mouse cursor to any of the reads shown in
4™ track, making the SVG output more informative. The SVG file also shows the clear fusion
junction and the direction of fusion in the two fusion partner genes. This SVG output file can be

converted into publication-quality images using programs such as Photoshop or Inkscape.

2.6. Program and parameters optimizations
2.6.1. Computational cost and code optimization

The early development version of ChimeRScope took approximately ten minutes to load the
GF-library into memory. It can process approximately 4000 reads per minute using
multithreading option. For an average sized NGS dataset with millions of discordant reads, it took
more than 10 hours and up to 100 GB RAM. In order to improve the performance, we optimized
the algorithm by reducing number of iterations, optimizing data structures, and releasing unused
variables in the program code. We describe these optimizations in the following paragraphs.

ChimeRScope was using a float square matrix to store the overall fingerprint scores for all
transcripts. The overlap relationship is also stored in the same matrix. ChimeRScope (old version)
uses several iterations to get the final updated matrix. The first iteration checks how many unique
transcripts are shown in the read, in order to determine the size of the square matrix. The second
iteration initiates the square matrix and calculates the overall fingerprint scores (diagonal array).
The third iteration calculates the distance for each transcript pair and the last iteration determines
the fusion gene from the matrix. We optimized the algorithm by separating the square matrix into

a float array (denoted as A) and a numeric byte array (denoted as B). Array A stores the overall
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fingerprint scores and the final size of A is the number of unique transcripts (denoted as n) shown
in the read. Array B stores the pairwise distances of all the transcripts and the final size of B is (n-
1)*(n-2)/2. In the optimized version, we do not pre-calculate the value of n. Instead, we define a
preset size of array A and B. Whenever Java throws an IndexOutOfBoundsException (meaning
the array container is smaller than what we want to use) for array A or B, we catch such
exceptions and copy this array into an array with larger size (2X for array A and 4X for array B).
This guarantees the least number of copy operations without reserving space that is too large that
affects the performance. Using this idea, we omitted the need of the first iteration. We also
combined the last three iterations into one iteration by updating all the arrays all at one for each -
mer we parsed. Overall, it reduced the total number of operations by about four times. We also
decreased the memory usage of the square matrix (n*n floats) from about 32n” bits into n*32-+(n-
1)*(n-2)/2*8=4n’-12n+8, reducing about eight times even with small 7.

We also optimized one of the most extensively used functions. As we mentioned earlier, we
also check the complementary form of a given k-mer. The initial function for calculating
complementary form of a k-mer checks each nucleotide (count as one operation) from the k-mer
and put the complementary character (one operation for retrieving complementary char) into a
new sequence (one operation for putting the char into new sequence). Therefore, there will be 3*k
operations each time when we retrieve the complementary form for a given k-mer
(complementary operation happened before binary transformation). In the optimized version, we
significantly reduce the number of operations by using bitwise operators. We took advantage of
the bitwise operation that is directly supported by the processor. It operates the binary numerals at
bits level. For example, the bitwise NOT (denoted by “~” in java) on a decimal value of 100
(01100100 in 8-bits binary) will return a decimal value of 155 (10011011 in 8-bits binary)
because it performs logical negation on each bit (~01100100=10011011). In the new version of
ChimeRScope, the complementary operation was performed after binary transformation. We

optimized the binary transformation code chart with ‘A’ maps to ‘00’, “T” maps to ‘11°, ‘C’ maps
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to ‘01°, and ‘G’ maps to ‘10’. Now, the complementary operation on the binary form of the k-mer
is equivalent to the bitwise NOT operation (~‘A’ =~00=11=‘T" and ~‘C’ =~01=10=‘G’, vice
versa). This greatly reduces the operation time from 3*k to only 1 operation for each k-mer we
processed.

Here we used a simulated dataset [28] to test the improvement in the performance. There are
around 6000 discordant paired-end reads in this dataset. We also replicate the dataset to 10x,
100x, and 1000x of the original volume. Results have shown that the running time is significantly
improved in the optimized version (10-100 times reduction). More importantly, it also scales
better as the total number of reads increased. The estimated time for running an averaged size
NGS dataset is less than 1 hour (the module looks for FESRs), which makes ChimeRScope much

more attractive for massive data analysis.

Table 2-5. Speed costs on simulated datasets before and after code optimization. The time is calculated after
excluding the constant GF-library loading time. Experiments using improved version take less than 40 GB RAM as
against the dataset with the largest volumn (1000X). The total time for old version on 1000X volume dataset takes
more than 24 hours and was killed due to Java OutOfMemoryError (specified 100 GB in that run). Therefore, it is

marked as N/A (Not Applicable).

Volume Read number Old version Improved version
1x ~ 6,000 00:01:20 00:00:04
10x ~ 60,000 00:13:48 00:01:06
100x ~ 600,000 02:53:17 00:02:18
1000x ~ 6,000,000 N/A 00:08:37

2.6.2. Distance cut-off for overlapped k-mer profiles

In subsection 2.3 of this chapter, we introduced a parameter called distance. It defines how
close two fingerprint profiles are in the FESR and is calculated based on the index difference of

two nearest k-mers. Small distance cut-off value tends to introduce more false positives caused by
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gene pairs with similar sequences (Chapter 2, subsection 2.3). During the development stage of
ChimeRScope, we have tested different distance cut-offs for the same simulated dataset [28]
(contains 50 simulated fusions), using three different GF-library (k=15, 17 and 19). Results have
shown that allowing 5 common nucleotides (distance = k-5) gives the best sensitivity and least
false discovery rate irrespective of the GF-library (Table 2-6). It also confirms that GF-library

with k=17 gives the best overall results, compared to other two GF-libraries.
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Table 2-6 Detailed prediction statistics using three different GF-library (k=15, 17, and 19) with other parameter
combinations on a simulated dataset with 50 true fusion genes, using the early development version of
ChimeRScope. TP: true positive. FP: false positive. TPR: True Positive Rates, also known as sensitivity. TPR=TP/50.
FDR: False Discovery Rate. FDR=FP/(TP+FP). The parameter o stands for overlap (o=k-d). Gene pairs with the
fingerprint profiles with larger overlap size will be filtered out. The parameter ¢ stands for read number cut-off. In this
dataset, c=2 generally gives better result. Cells with TPR more than 90% and FDR less than 10% are highlighted in red.
Results have shown that TRP=0.94, FDR=0.04 (k=17, 0=5 or 6, c=2) gives the best result using f-score (f-score is
described in detail in Chapter 3). Results have also shown that k=17 GF-library gives the best result using the right

parameter set, comparing to that of other two GF-libraries.
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c=1 c=2 c=3 c= c=1 c=2 c=3 c= c=1 c=2 c=3 c=
TP 48 46 44 39 48 46 44 39 48 46 44 39
FP 113 37 21 15 91 31 16 12 84 31 17 12
TPR 0.96 | 0.92 | 0.88 | 0.78 0.96 | 0.92 | 0.88 | 0.78 096 | 092 | 0.88 | 0.78
FDR 0.7 0.45 | 0.32 | 0.28 0.65 | 0.4 0.27 | 0.24 0.64 | 0.4 0.28 | 0.24
w TP 48 46 44 39 48 46 44 40 49 46 44 40
— | FP 67 21 13 8 45 18 10 8 32 14 8 7
& TPR 0.96 | 0.92 | 0.88 | 0.78 096 | 0.92 | 0.88 | 0.8 098 | 092 | 0.88 | 0.8
FDR 0.58 | 0.31 | 0.23 | 0.17 0.48 | 0.28 | 0.19 | 0.17 0.4 0.23 | 0.15 | 0.15
TP 49 45 44 38 44 40 37 32
FP 38 26 18 16 141 100 | 84 72
TPR 098 | 0.9 0.88 | 0.76 0.88 | 0.8 0.74 | 0.64
FDR 0.44 | 0.37 | 0.29 | 0.3 0.76 | 0.71 | 0.69 | 0.69
TP 49 47 44 39 49 47 44 39 49 47 44 39
FP 76 14 4 1 72 37 3 1 31 9 4 1
TPR 0.98 | 0.94 | 0.88 | 0.78 0.98 | 0.94 | 0.88 | 0.78 098 | 094 | 0.88 | 0.78
FDR 0.61 | 0.23 | 0.08 | 0.03 0.6 0.44 | 0.06 | 0.03 0.39 | 0.16 | 0.08 | 0.03
~ TP 49 47 44 39 49 47 44 39 49 47 44 39
— | FP 22 6 3 0 13 4 2 0 5 2 0 0
‘L TPR 098 | 0.94 | 0.88 | 0.78 098 | 094 | 0.88 | 0.78 098 | 094 | 0.88 | 0.78
FDR 0.31 | 0.11 | 0.06 | O 0.21 [ 0.08 | 0.04 | O 0.09 | 0.04 | O 0
TP 49 47 44 39 49 46 44 37 44 39 37 32
FP 4 2 0 0 16 12 10 8 59 43 35 30
TPR 098 | 094 | 0.88 | 0.78 098 | 0.92 | 0.88 | 0.74 0.88 | 0.78 | 0.74 | 0.64
FDR 0.08 | 0.04 | O 0 0.25 | 0.21 | 0.19 | 0.18 0.57 | 0.52 | 0.49 | 0.48
TP 48 46 44 39 48 46 44 39 48 46 44 39
FP 14 3 0 0 10 3 0 0 9 3 0 0
TPR 0.96 | 0.92 | 0.88 | 0.78 0.96 | 0.92 | 0.88 | 0.78 0.96 | 0.92 | 0.88 | 0.78
FDR 0.23 | 0.06 | 0 0 0.17 | 0.06 | 0 0 0.16 | 0.06 | O 0
TP 48 46 44 39 48 46 44 39 48 46 44 39
FP 6 2 0 0 5 2 0 0 5 2 0 0
oy TPR 096 | 0.92 | 0.88 | 0.78 0.96 | 0.92 | 0.88 | 0.78 096 | 092 | 0.88 | 0.78
— | FDR 0.11 | 0.04 | O 0 0.09 | 004 |0 0 0.09 | 004 | 0 0
'& TP 48 46 44 39 48 46 44 39 48 46 43 38
FP 4 2 0 0 4 2 0 0 5 2 1 1
TPR 096 | 0.92 | 0.88 | 0.78 0.96 | 0.92 | 0.88 | 0.78 0.96 | 092 | 0.86 | 0.76
FDR 0.08 | 0.04 [ 0O 0 0.08 | 0.04 |0 0 0.09 | 0.04 | 0.02 | 0.03
TP 44 40 37 33
FP 8 4 3 3
TPR 0.88 | 0.8 0.74 | 0.66
FDR 0.15 | 0.09 | 0.08 | 0.08
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To conclude, k=17 and d=12 (k-0=17-5=12) seems to be the best parameter set for fusion
gene prediction analysis on human samples. Predictions from other datasets (discussed in Chapter

3) also shown high accuracies using these parameters.

3. Conclusions

In this chapter, we discussed the strategies used in most alignment-based fusion gene
prediction methods and the drawbacks of alignment-based methods in general. We also discussed
the detailed algorithmic part of our alignment-free method, namely ChimeRScope. We optimized
the algorithm in different aspects and to greatly improve the performance of ChimeRScope. The
parameter set, k=17 and d=12 (d=k-5), is set as default values for analysis on human datasets

because it gives the best result on tested datasets.
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Chapter 3: COMPARISONS WITH OTHER FUSION GENE DETECTION METHODS

1. Introduction

In NGS, all expressed transcripts are captured and sequenced, including those from chimeric
fusion genes. These sequenced transcripts are then transformed into digital data, known as short
reads. The number of short reads related to fusion genes is correlated with various factors such as
the sequencing depth, the length and the expression level of the fusion genes. Besides, among all
the reads derived from fusion transcripts, only reads that cover the fusion boundaries can be
considered as direct evidences for the fusion genes (described as fusion reads in this study).
Therefore, we estimated that only less than 0.001% of the total reads support the fusion gene
junctions, irrespective of all factors described above. This poses a huge computational challenge

to precisely identify this miniscule fraction of reads from tens of millions of total NGS reads.

Currently, published fusion gene prediction methods use different approaches to mine the
fusion reads among millions of short reads. Many of the fusion genes have been identified and
validated using these methods. However, mutations and sequencing errors near the fusion
junctions hinder them from identifying these fusion genes. Recent studies [24, 29, 30] and
reviews [32, 44] on fusion gene prediction methods have shown that SOAPfuse [24],
FusionCatcher [29], and JAFFA [30] are generally the best methods for fusion gene prediction
among all the publicly available tools. Therefore, we chose to compare the accuracy of

ChimeRScope against these three methods in this study.

2. Materials and methods

2.1.Datasets

We have chosen two types of the datasets for assessing the accuracies of the selected fusion

gene prediction methods. The first dataset type is the simulated datasets. Simulated datasets are
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constructed with reads simulated from known number of artificially generated fusion genes. The
advantages and disadvantages of simulated datasets are described as follows. Simulated datasets
are often used to evaluate how good an algorithm works theoretically, because the characteristics
of the datasets can be precisely controlled. They provide the precise number of true fusion genes,
which is very difficult to get from real NGS datasets. However, because of the complexity of the
transcriptome and potential unidentified patterns of the fusion genes, simulated datasets are
generally considered as clean datasets and therefore, will introduce less number of false positives.
In this study, we collected several simulated datasets containing known artificial fusion genes
from previously published papers. One simulated dataset, originally released by FusionMap
research group [28], consists a total of 50 synthetic fusions (namely 50 pos set). There are
114,418 paired-end read (2x75bp), with 8,600 simulated fusion reads that support 50 fusion
events with RPKM levels ranged from 0.23 to 407.96 [28]. A review paper published in 2013 [32]
compared the sensitivity and false discovery rate for six of the popular fusion gene detection tools
using this 50 pos set. We chose this dataset for our study because it is one of the first publicly
available simulated datasets and has also been used in many other studies [30, 32, 44]. Apart from
50 pos set, we also used another simulated datasets from the latest research paper [44] that

comprehensively evaluated the performance of 15 different fusion gene prediction algorithms.

The second group of simulated datasets, namely comp sim_set, consisted of 15 different
datasets with three different read lengths (2x 50bp, 75bp, and 100bp) and five different coverage
depths (5X, 20X, 50X, 100X, and 200X) for each of them. There are the same 150 simulated
fusion genes in each dataset. We analyzed these datasets and carried out head-to-head
comparisons using the same F-measure [44] for performance assessment. We did not use
simulated datasets directly generated from SOAPfuse [24], FusionCatcher [29], and JAFFA [30]

groups to avoid bias. We also did not generate simulated datasets of our own for the same reason.
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However, there are several limitations of using the simulated datasets. Simulated datasets
might contain biologically insignificant fusion events like read-throughs. Besides, the distribution
of the mutations and sequencing errors in simulated datasets are often defined as simple
distributions such as multinomial distribution. In this case, simulated datasets might not reflect
the real state of fusion genes in cancer samples. To address these issues, we used several different
real RNA-Seq datasets. We have tested ChimeRScope, along with SOAPfuse, FusionCatcher and
JAFFA on seven published datasets that were obtained from four different breast cancer cell lines
(namely BC CL. Table 3-1) with 27 experimentally validated fusion genes [19]. We also tested
these tools on Nature Killer (NK) cell lines (in-house datasets) and did experimental validation
on all ChimeRScope predictions with commonly reported fusion genes. The in-house datasets
were downloaded from NCBI Short Reads Archive [45]. It consists of four different RNA-Seq
datasets (KHYG1, NKYS, NK92-PMIG, NK92-PRDM1), which can be divided into three
different cell lines (KHYGI1, NKYS and NK92). NK92 cell line samples used for sequencing
were transduced with either PMIG, a control vector, or a vector to knock-down PRDM1, a known
tumor suppressor. We only used the normal/non-transduced NK92 RNA in the experimental
validation step for those fusion genes predicted from NK92 samples because the original vector

treated NK92 RNA used in the transcriptome sequencing was not available.

Table 3-1. Description of the real RNA-Seq datasets from 4 breast cancer cell lines and the validated fusion
genes. 27 fusion genes were validated across all four breast cancer cell lines. The gene ID highlighted in red,
ENSG00000236127, is deprecated and no longer in the current EnsEMBL database. All gene symbols are the latest

official gene symbols.

Cell Read Read

lines length (bp) | number Validated fusions [19]

ACACA-STAC2, RPS6KB1-SNFS, VAPB-IKZF3, ZMYNDS-
BT474 | 50 21,423,697 | CEP250, RAB22A-MYO9B, SKA2-MYO19, DIDOI-TTII,
STARD3-DOKS, LAMP1-MCF2L, GLB1-CMTM?7, CPNE1-PI3

Breast
cancer
cell

lines | gprg |50 6,796,443 | BSG-NFIX, PPPIR12A-SEPT10, NOTCHI-NUP214
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MCEF7 50 8,409,785 BCAS4-BCAS3, ARFGEF2-SULF2, RPS6KB1-VMP1
TATDNI1-GSDMB, CSE1L-ENSG00000236127*,  RARA-
SKBR3 | 50 18,140,246 PKIA, ANKHDI-PCDH1, CCDC85C-SETD3, SUMFI-

LRRFIP2, TBC1D31-ZNF704, CYTHI1-EIF3H, DHX35-ITCH,
NFS1-PREX1

* ENSG00000236127 is not a valid identifier in the latest EnsSEMBL database (deprecated identifier).

2.2. Detailed analysis pipelines

As we stated earlier, we mainly focused on comparing ChimeRScope against SOAPfuse,

FusionCatcher and JAFFA. The analysis pipelines for a selected tool on simulated datasets and

real datasets are mostly the same. In this section, we will describe these pipelines in details.

ChimeRScope: Here we listed the complete ChimeRScope pipelines for all datasets. All the steps

are labeled separately. The differences among the pipelines for different datasets are shown in

Table 3-2. All major parameters are also listed, although most of the time the default values are

used.

Step 0 — ChimeRScope Builder: Generate GF-library

We build the GF-library with £ equals to 17 from human reference build GRCh38/hg38.

3

4
5

e

-k 17 \ # k-mer size.

1 ## Create GF-library with selected k-mer size

2 java -Xmx40g -jar ChimeRScope.jar Builder

-i mRNAs.fa \ # all mRNA sequences in fasta

\ # output directory for GF-library, with prefix
default: 17

Step 1 — Retrieve discordant reads (Chapter 2, subsection 2.3)
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Step 2 — ChimeRScope Scanner: Identify FESRs

1 ## Identify FESRs from discordant reads

2 java —-Xmx40g -jar ChimeRScope.jar Scanner

3 -fgl unmapped 1.fq \ # discordant reads, forward
-fg2 unmapped 2.fg \ # discordant reads, reverse
-1lib \ # GF-library

-k 17 \ # size of the k-mer used in GF-library
-0 ./ChimeRScope Out \ # output directory

-t 1 \ # number of threads

-d 12 # distance cut-off. Recommend d=k-5

W 0 J oy U

Step 3 — ChimeRScope Sweeper: Summarize FESRs scores with filters

1 ## Summarize FESR scores for fusion candidates

2 java -Xmx40g -jar ChimeRScope.jar Sweeper \

3 -i chimeRScope out/raw FESRs.txt \ # Output from previous step

-cc 0.2 \ # confidence score cut-off for FESR to be true

-mc 0.36 \ # Default. True fusion must have at least 1 read with score>0.36
-1lib \ # library path with prefix

-rn 2 \ # read number cut off

~ o U b

Step 4 — ChimeRScope Examiner: Graphical output and analysis of the fusion sequences

1 java -jar ChimeRScope.jar Examiner \

2 -i ./ChimeRScope Out/raw FESRs.txt rawFusions.txt \ # Output by Sweeper
3 -1lib \ # library path with prefix

4 —indir ./ChimeRScope Out \ # mRNA sequences

5 -alignOut ./ChimeRScope Out/blastResult.txt \ # alignment result

6 -0 chimeRScope ExaminerOut # other output (e.g. svg figures)

Step 5 — BLAST fusion sequences against human nucleotide collection

To summarize, we did not apply any filters for simulated datasets (including the last BLAST
step) because of the limitations of simulated datasets we described earlier. We reduced the rn
parameter to 2 because some of the simulated datasets have less than five reads for some true

fusions. Besides, the step for extracting discordant reads from alignment step is not used for
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comp_sim_set because they are not mixed with background reads. For analysis on real RNA-Seq
datasets, we applied all the recommended filters. For in-house datasets, we also increased the mc
parameter to 0.5 (at least one FESR should have a weightage score of more than 0.5, which
suggests that around 70% (0.7*0.7=0.49) of the k-mer composition belongs to two fusion

partners.) in order to get high confident fusions.

Table 3-2 Detailed pipelines used in four different datasets. Cells highlighted in red are different from the default

values.
50 pos_set comp sim set | BC CL In-house datasets
Step 0 GF-library with k=17, one time generation
Step 1 \ X \ \
Step 2 \ \ \
Step3 | m 2 2 5 5
hf x x v v
mc 0.36(0.6*%0.6) | 0.36(0.6*%0.6) | 0.36(0.6%0.6) | 0.49(0.7*0.7)
Other X x y S
filters
Step 4 \ \
Step 5 X % N N

SOAPfuse: We ran the SOAPfuse (version 1.26) pipeline using the default parameters. The
version of the reference database is GRCh38 release version 79. Other reference files are

prepared under SOAPfuse instructions.

For the in-house datasets, we applied the similar filters for SOAPfuse using “awk” in Linux.



cat SAMPLE.final.Fusion.specific.for.genes |
awk ' ($2!=57 |
($2==87 && ($4-59>100000 || $9-$4>100000))) &&
$11+$12>=5 {print}'
Explaination:
$2!=$7: two genes are on different chromosomes (for read-through filter)
$2==87 & & ($4-$9>=100000 || $9-$4>=100000): 1f two genes are on the same

chromosome, the distance of these two genes should be more than 100,000 bp

$11+812>=5: read number no less than 5.
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FusionCatcher: FusionCatcher (version 0.99.4d beta) by default uses three different aligners.

They are Bowtie [46], Blat [47], and STAR aligner [38]. We failed to set up STAR aligner for

FusionCatcher due to the version conflict. Therefore, we disabled the use of STAR in

FusionCatcher pipeline. Other parameters used in the pipeline are set as default.

We applied similar filters for FusionCatcher on the in-house datasets as well.

cat final-list candidate-fusion-genes.txt |
awk '$5>=5 {print}' |
grep -v readthrough

Explaination:
$5>=5: read number no less than 5

grep —v readthrough: filter out all read-throughs.
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JAFFA: JAFFA (version 1.06) uses three different modes for fusion gene prediction. Assembly
mode is used for paired-end reads with 50 bps (involves assembly). Direct mode is used for reads
with longer length (>100 bps) because the read is long enough for direct mapping. Hybrid mode
is used for reads with length of around 70 bps. Both assembly and mapping will be used in
Hybrid mode. We analyzed all the datasets using different modes based on the read length.

Similar filters were also applied for the in-house datasets.

cat jaffa results.csv | sed -e 's/,/\t/g' |
awk '$8+59>=5 && (S$S7=="Inf" || $7>=100) {print}' |
grep -v LowConfidence

Explaination:
$8+89>=5: read number no less than 5
$7=="Inf" || $7>=100: on different chromosome or no less than 100k bp

grep —v LowConfidence: filter out all lowConfidence fusion genes

2.3. Statistical measurements

Here we list all the statistical terms we used for accuracy measurements. For real RNA-Seq
datasets, because the total number of true fusion genes is unknown, it is not applicable to
calculate the sensitivity. Besides, we could not calculate the specificity for datasets like BC CL
also, because many predicted fusions have not been validated to be false. Therefore, we only

calculate statistics like 7P, FP, and precision.

TP: True positive. Positive instances correctly classified as true.

FP: False positive. Negative instances incorrectly classified as true. Also known as Type I error.
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TN: True negative. Negative instances correctly classified as false.

FN: False negative. Positive instances incorrectly classified as false. Known as Type II error.
Sensitivity or recall: TP/P = TP/(TP+FN). It measures the ability of a method to correctly classify
a positive instance. Also known as true positive rate (TPR).

Specificity: TN/N=TN/(TN+FP). It measures the ability of a method to correctly classify a
negative instance. Equivalent to true negative rate (TNR).

Precision: also known as positive predictive value (PPV). PPV=TP/(TP+FP). It measures the
proportion of the positive results reported by a method that are truly positive.

FDR: False Discovery Rate. FDR=FP/(TP+FP)=1-PPV. 1t is used to measure type I errors.

F-measure: Also known as Fj-score, or F-score. It is the hormonic mean of precision and recall.

recision x recall
F=2x P . It measures the overall accuracy of a method.

precision +recall

3. Results
Simulated dataset 1 (50_pos_set)

To avoid the analysis bias on other methods, we compared the prediction performance of
ChimeRScope against the best reported results (either from this study or from other published
studies, if applicable). The performance of the selected methods on 50 pos set is shown in Table
3-3. We failed to run JAFFA on 50 pos set in this study. However, the statistics reported in this
table is directly obtained from JAFFA publication [30] and can be considered as the best
prediction results for JAFFA. In summary, ChimeRScope achieves the highest F-score by
predicting 47 true positives without reporting any false positives. Even after applying all the
filters, ChimeRScope still reported the best results. Here, we also listed the impact of the filters

used in FusionCatcher. With all filters enabled, only 3 false positives were removed at the cost of
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removing 16 true positives. Moreover, the highest f-score reported from “other methods™ group is

only 0.83 by FusionMap, which is lower than ChimeRScope and other three major methods.

Table 3-3. Detailed prediction results on 50_pos_set. This dataset contains in total of 50 simulated fusion genes. Our
method, ChimeRScope, predicts 47 true positives without reporting any false positives. ChimeRScope achieves the
highest f-score with highest sensitivity (recall = 94%) and lowest FDR (0%). Even with all filters enabled, the

performance of ChimeRScope on this dataset is still better than other methods, with a second highest f-score of 0.95.

50_pos_set Study TP | FP | Precision | Recall | FDR | F-score | Note Best score
This study 47 0 1.00 0.94 0.00 0.97 No filtering
ChimeRScope 0.97
This study 45 | 0 1.00 0.90 0.00 | 0.95 With all filters*
This study 38 1 0.97 0.76 0.03 0.85
SOAPfuse 0.85
PMID:26019724 | 37 1 0.97 0.74 0.03 0.84
Major methods PMID:26019724 | 44 | 0 1.00 0.88 0.00 | 0.94 JAFFA-hybrid
JAFFA PMID:26019724 | 39 | 0 1.00 0.78 0.00 | 0.88 JAFFA-assembly | 0.94
PMID:26019724 | 34 | 0 1.00 0.68 0.00 | 0.81 JAFFA-direct
This study 31 0 1.00 0.62 0.00 | 0.77 Final result
FusionCatcher 0.94
This study 47 | 3 0.94 0.94 0.06 | 0.94 Raw result
FusionMap PMID:23815381 | 40 | 6 0.87 0.80 0.13 0.83 0.83
FusionFinder PMID:23815381 | 41 10 | 0.80 0.82 0.20 | 0.81 0.81
PMID:26019724 | 27 | 0 1.00 0.54 0.00 | 0.70
tophat-fusion 0.70
PMID:23815381 | 40 | 73 | 0.35 0.80 0.65 0.49
Other methods
MapSplice PMID:23815381 | 39 | 23 | 0.63 0.78 0.37 0.70 0.70
PMID:23815381 | 32 | 4 0.89 0.64 0.11 0.74
deFuse 0.81
PMID:26019724 | 34 | 0 1.00 0.68 0.00 | 0.81
FusionHunter | PMID:23815381 | 20 | 4 0.83 0.40 0.17 0.54 0.54

* Two fusion genes were filtered out by similarity filter (PRKCA&USP49 score: 384; FKTN&SCAL: 367). However,

the F-score is still higher than others (0.95 is the second highest score)

Simulated dataset 2 (comp_sim_set)

We also analyzed comp_sim_set using four primary methods and compared our results
against the original study for this dataset [44]. We carefully checked the gene name alias for all

fusion pairs to make sure the reported numbers are the most current ones. We failed to run
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JAFFA on datasets with 50bp and 75bp read length due to computational issues caused by
JAFFA assembly mode. Nevertheless, considering the results for JAFFA on 100bp datasets as the
best results it can get on 50bp and 75bp datasets may not put JAFFA as one of the best tools for
comp_sim_set (Table 3-4). During the analysis stage, we also carefully inspected all the
simulated genes. For comp sim_set, all the fusion genes are simulated using sequences from
EnsEMBL database. We aligned the fusion junction sequences against each fusion partner using
both EnsEMBL and RefSeq version. We found out that 15 fusion genes could not align to RefSeq
version (Table 3-5). Because ChimeRScope GF-library is built only based on RefSeq sequences,
it will be impossible for ChimeRScope to report any of these fusion genes. Therefore, we also
reported the normalized results by setting the total number of fusion genes to 135. The final
results are shown in Table 3-6. ChimeRScope reports the highest F-scores in 13 out of 15 datasets.
Notably, ChimeRScope has significantly higher f-scores on datasets with low coverage depth
(5X), suggesting better performance on fusion genes with low expression levels. More
importantly, the variation of the f-scores reported by ChimeRScope is subtle (max=0.957 and
min=0.905) across different datasets irrespective of the read length and coverage depth, indicating

a cosistently good performance on all datasets.
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Table 3-4 F-scores for selected methods on 15 simulated datasets (comp_sim_set). The highest f-scores are
highlighted in red for each dataset. ChimeRScope achieves significantly higher f-scores for datasets with low coverages
(5X in 50bp, 75bp, and 100bp), suggesting that ChimeRScope is more sensitive to fusion genes with low expression

level.

comp_sim_set F0bp [75bp 100bp

(TP=150)

X R0X 50X 100X R00OX 5X R0X 50X 100X 200X |5X R0X 50X 100X 200X

IChimeRScope .898  0.905 .899 .864 .861 .898  0.900  0.908 .906 .900 .890  0.907 0.908 0.909 0.909

SOAPfuse 0.830  0.890 .863 .871 .858  0.833 0.883 0.873 [0.871 [0.874 0.844 0.895 0.887 [0.883 [0.887

SOAPfuse* .801  0.923 .938 .918 .945 .828  0.925 0.925 .932 .932 .840  10.940 0.932 .939 .935

[FusionCatcher ~ 0.565 [0.746 762 157 766 0.675  0.745  0.779 .792 .792 741 0.785 0.758 0.777 0.781

[FusionCatcher*  10.337 .842 .886 .890 .894 .687 .850 .875 .884 .891 .678 .873 .887 .891 .891

JAFFA 0.052  0.605 0.667 0.678 0.678 0.101 0.461 0.597 [0.619 [0.616 [0.441 0.675 0.698 0.693 0.693
UAFFA* F F F F F F F F F F .579 .857 .867 .867 .867
[EricScript .454 .680 .669 519 .612 .568 .759 .763 .695 773 .593 .782 .793 779 .788

chimerascan 0.672 0.743 0.744 0.730 0.724 0.631 0.751 0.821 [0.744 0.752 [0.565 0.745 0.746 0.730 0.737

IPRADA .077 .512 .534 .534 .534 .101 .505 .545 .543 .543 .204 .498 .538 .545 .543
deFuse 0.284 [0.551 0.634 0.588 0.750 0.281 0.608 0.566 [0.741 0.744 0.192 p.611 0.502 0.629 0.779
[FusionMap .039 .485 .611 .619 .623 .343 .535 .691 .627 .650 .343 .635 .691 .684 .658

TopHat-Fusion  0.165 0.406 0.457 (0.453 [0.460 0.295 0.417 0.498 0.491 0.509 (0.312 [0.444 0.488 0.488 0.507

MapSplice 0.144  0.414 .443 .493 514 0249 0426 0.468 .495 .512 241 [0.406 0.416 .488 .486

BreakFusion .741 .756 .743 .739 .735 .624 .729 .730 .730 731 .408 .619 .692 .707 .704

SnowShoes-FTD 0.039 .039 .039 .039 .039  0.026 0.026 .039 .039 .039 .026 .039 .039 .039 .039

[FusionQ .428 .542 .560 415 .176 .462 .579 .642 .558 197 471 .495 .552 .651 .443

ShortFuse F .780 177 776 785 0.587  0.748 775 7183 b F F F - -

* Marked rows are the results reported by our study. Stats for other rows are reported from this study [44].
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Table 3-5 15 fusion genes simulated from EnsEMBL sequences with incompatible partners. If a fusion gene is
simulated from a region where RefSeq defined that as a non-coding region while EnsEMBL does the contrary, we
named the corresponding fusion partner as an “incompatible partner”. Comp_sim_set contains 150 fusion genes
simulated from EnsEMBL sequences. 13 of the fusion genes are found as fusion genes with incompatible partners. The

other two genes, STAG3L1 and KIAA1875, were defined as genes with no protein products in the latest RefSeq build

when we performed the study. Therefore, we classified these two genes as incompatible partners as well.

Index | Genel Gene2 Genel ensID Gene2 ensID Incompatible partner
1 AFTPH HOMERI | ENSG00000119844 | ENSG00000152413 | HOMERI

2 Céorf130 ASPH ENSG00000124596 | ENSG00000198363 | ASPH

3 CAPN2 TMEM223 | ENSG00000162909 | ENSG00000168569 | TMEM223
4 CCDC88C | STAG3L1 | ENSG00000015133 | ENSG00000205583 | STAG3L1*"
5 FAM92A1 | HNRNPL | ENSG00000188343 | ENSG00000104824 | FAM92Al1
6 FGFR4 NREP ENSG00000160867 | ENSG00000134986 | NREP

7 GPR128 MLLT6 ENSG00000144820 | ENSG00000108292 | GPR128

8 IPOS5 MS4A6A | ENSG00000065150 | ENSG00000110077 | IPOS

9 KIAA1328 | EXOSC7 ENSG00000150477 | ENSG00000075914 | EXOSC7
10 MAPK10 | KIAA1875 | ENSG00000109339 | ENSG00000179698 | KIAA1875°
11 MYHI10 GPR155 ENSG00000133026 | ENSG00000163328 | MYH10

12 SFTPA2 THOC2 ENSG00000185303 | ENSG00000125676 | THOC2

13 SLC19A1 | LLPH ENSG00000173638 | ENSG00000139233 | SLC19A1
14 TBX22 RBM48 ENSG00000122145 | ENSG00000127993 | RBM48

15 USP45 COBL ENSG00000123552 | ENSG00000106078 | USP45

* STAG3L1 is a pseudogene in the current RefSeq build. We believe fusion genes involving pseudogenes are
functionally not important and are excluded in the GF-library.

® KIAA1875 was considered as a non-coding gene (updated in Mar.15™, 2015) and was later replaced with WDR97 (a
coding gene). However, it is not included in the latest RefSeq database when we performed the analysis.
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Table 3-6. F-scores for 4 major methods on comp_sim_set, with 15 incompatible fusion genes removed. The
results are calculated from 135 effective fusion genes. ChimerRScope achieves the highest F-scores in 13 out of 15
datasets. Only SOAPfuse reports higher f-scores in 100X _50bp and 200X_50bp, with marginal increases of 0.001 and

0.034 in F-scores, respectively.

comp, sim_set  POPP 75bp 100bp

(TP=135)

X R0X 50X 100X R00OX 5X R0X 50X 100X 200X |5X R0X 50X 100X 200X

IChimeRScope .948 .954 .947 .908 .905 .948 .949 .957 .954 .947 .940 .957 .957 .957 .957

SOAPfuse 0.807 [0.922 .935 .913 943 0.836 0.921 0.921 0.929 0.925 0.840 0.942 0.928 0.932 0.929

FusionCatcher .357 .856 .894 .895 .899 .692 .855 .878 .888 .896 .707 .884 .891 .891 .891

JAFFA L L F F F F F F F F 0.609 0.849 0.856 [0.856 [0.856

Cancer RNA-Seq datasets (breast cancer cell lines)

We analyzed the 4 different breast cancer cell lines (BC_CL) using ChimeRScope, SOAPfuse,
JAFFA, and FusionCatcher. We also compared our results against this study [44]. Results (Table
3-5) have shown that ChimeRScope achieves the best performance with successfully identifying
22 true fusion events. ChimeRScope also predicts the highest number of fusion genes in all 4 cell
lines. Besides, among all predicted fusion genes from ChimeRScope results, another 8 fusion
genes are also validated by other studies [43, 48, 49]. However, we only compare the true fusion

genes reported from the original study [19] for consistency of the comparison in Table 3-6.
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Table 3-7. Predictions on breast cancer cell lines for selected methods. The numbers in parenthesis next to the cell
line names are the total number of validated fusion genes in each cell line. ChimeRScope reports the highest number of
fusion genes in all four cell lines. Overall, ChimeRScope reports the highest number of true positives by identifying 22

true fusion genes out of 26 validated fusion genes.

BT474(11 SKBR3(10 MCF7(3 ;

BC_CL TP "i‘otll TP ’Ifota)l TP fI‘())tzll TP Total ?l))tal IT)::adlicﬁon
Prediction Prediction Prediction Prediction

ChimeRScope* | 10 | 24 6 24 3 14 3 4 22 66
SOAPfuse 9 35 6 19 2 6 3 8 20 68
SOAPfuse* 7 26 6 11 3 7 3 4 19 48
fusionCatcher 9 31 6 24 2 7 2 5 19 67
fusionCatcher* 5 13 5 7 3 7 3 3 16 30
JAFFA 8 15 5 9 2 6 2 2 17 32
JAFFA* 7 17 4 9 3 10 3 5 17 41
EricScript 8 31 4 37 2 10 2 5 16 83
chimerascan 9 50 5 33 2 22 3 10 19 115
PRADA 7 23 4 7 2 4 2 3 15 37
deFuse 9 57 6 50 2 16 2 12 19 135
FusionMap 4 76 0 0 2 50 0 6 6 132
TopHat-Fusion 9 28 3 31 1 9 2 5 15 73
MapSplice 8 27 4 15 2 6 2 5 16 53
BreakFusion 8 636 4 676 2 387 1 239 15 1938
E‘%‘]’)WSI“OGS' 8 |12 4 |s 2 |2 1|1 15 20
FusionQ - - - - 2 199 2 258 4 457
ShortFuse 8 19 7 15 1 5 3 4 19 43

* Marked rows are the results reported by our study. Stats for other rows are reported from a previous study [44].




74

In-house cancer RNA-Seq datasets (lymphoma cell lines) with experiment validation

Figure 3-1. Venn diagram of all fusion genes reported by the four tested methods on lymphoma cell lines. In total,
30 unique fusion genes were reported. ChimeRScope and SOAPfuse predicted the most number of common fusion
genes (five genes), with two of them exclusively reported by these two methods. The results reported by FusionCatcher

have the lowest overlaps with other methods (only one gene).

JAFFA SOAPfuse

ChimeRScope FusionCatcher

20

We used paired-end RNA-Seq datasets from three natural killer (NK) lymphoma cell lines
that we have published earlier [39]. We analyzed these RNA-Seq datasets using ChimeRScope,
SOAPfuse, FusionCatcher and JAFFA. In total, ChimeRScope predicted 10 unique fusion genes,

compared with 25 unique fusion genes by SOAPfuse, three by JAFFA and only one by
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FusionCatcher (Figure 3-1). Among all tested methods, 30 unique fusion genes were predicted,
including five that were reported by at least two of the four methods. Further analysis on fusion
genes predicted by SOAPfuse has shown that BOLA2B&SMGIP2, TVP23C&CDRT4, and
DSCR4&DSCR4-IT1 are directly associated with well-annotated read-through mRNAs (with NM
IDs in NCBI Reference Sequence database). This type of predictions is classified as false fusion
event by ChimeRScope and hence is filtered out. In addition, we failed to design primers for
ORC6&PLEKG4B and MAPKS&NMU due to low complexity regions. Therefore, these five

fusion genes predicted by SOAPfuse are excluded from our experimental validation.



Table 3-8. Eleven fusion genes selected for experimental validation on NK cell lines.

76

Fusion read counts*
Cell line Fusion Gene
ChimeRScope JAFFA FusionCatcher SOAPfuse
KHYGI1 PEX2&YWHAZ 34 22 3) 49
KHYGI1 ARIH2&PRKAR2A 3) (2) (2) 5
KHYGI1 CTSC&RAB38 (2) (0) (5) 10
KHYGI PRKCH&FLJ22447 (0) (0) (1) 6
NKYS LRRFIP]&RBM44 10 (0) (64) 192
NKYS RPLI4&SRP14 7 (0) (0) 0)
NK92 Cl50rf57&CBX3 6 (6) (1) 10
NK92 DAB2&FRYL 48 33 30 59
NK92 LEP&SNDI 92 51 (60) 121
NK92 LRRC37A3&NSF 5 (0) (0) 4
NK92 MAST2&METTL21A 8 (0) (0) (0)
NK92 NCOR2&UBC 5 (3) (5) 4
NK92 NPIPB5 &SMG1 15 (0) (0) (0)
NK92 PTMA&NPM 1 9) (0) (0) 13
Tool Unique prediction | Test size TP FP | Sensitivity FDR F-score
ChimeRScope 10 10 10 0 0.714 0 0.833
SOAPfuse** 25 20 9 11 0.643 0.55 0.529
JAFFA 3 3 3 0 0.214 0 0.353
FusionCatcher 1 1 1 0 0.071 0 0.133

" The number of identified fusion reads for each fusion gene identified by each method is listed in the corresponding

cells. Cells with parenthesis indicate that the fusion genes were filtered out by the corresponding tools and thus not

reported in their final results.

** Five fusion genes predicted by SOAPfuse were excluded from the validation list because either the complete fusion

sequence were associated with well annotated read-through mRNAs or the specific primer binding sites were not

available due to repeated nucleotide sequences.
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Of all the fusions predicted by different algorithms, we designed primers for 25 unique fusion
genes and confirmed 14 fusion genes (56%; 14 out of 25 tested fusions) by RT-PCR and Sanger
sequencing (Table 3-8). Due to space limitations, we chose to show validation results from only
four fusion genes that are predicted by ChimeRScope with relatively lower number of fusion
reads (five to seven FESRs, see Table 3-8). Figure 3-2 highlights the PCR results, primer target
regions, Sanger sequencing chromatograms, and the exact fusion junctions marked by red lines
(except for RPLI4&SRP14 and LRRC37A3&NSF) for these four fusion genes. In total,
ChimeRScope predicted 10 fusion genes from the lymphoma cell lines and we were able to
experimentally validate all of these predictions. Thus, there are no false positives predicted by our
method (FDR: 0%). However, our method missed four true positives that were predicted by other
methods, hence the sensitivity of this method is at 71.4% (10 out of 14), which is the highest
among all methods tested. Comparatively, among the 20 tested fusion genes from SOAPfuse
predictions, only nine fusion genes were experimentally confirmed (sensitivity is 64.3% and FDR
is 55%). All the fusion genes reported by JAFFA (three fusions) and FusionCatcher (one fusion)
are also predicted by ChimeRScope and SOAPfuse. Therefore, both JAFFA and FusionCatcher
achieve 100% precision rate, but with only 21.4% and 7.1% sensitivities, respectively. Overall,
ChimeRScope reported the best F-score (0.833) for this dataset, compared with 0.529 for

SOAPfuse, 0.353 for JAFFA and 0.133 for FusionCatcher (Table 3-8).

Figure 3-2. PCR and Sanger sequencing results for four fusion genes with low number of FESRs from
ChimeRScope predictions. For each fusion gene track, the left panel is the PCR panel and the right panel displays the
predicted fusion sequence and the primer binding site, along with the Sanger sequencing chromatogram. Specifically,
each PCR image has four lanes for a 100bp ladder marker, the fusion gene amplicon with the band of the matched
product pointed by a red arrow, the positive control (actin beta, or ACTB) and negative control (water). The right panel

shows the name of the fusion partners, the predicted fusion junction sequence (100bp upstream and downstream,
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separated by the wildcard “N”), the binding sites of the primer pair used in the PCR panel, the chromatogram for the
highlighted region (mostly the fusion junction, if applicable). The PCR experiments and the Sanger sequencing results
confirmed the existences of these four genes in the NK cell lines. We were unable to resolve the fusion junctions for
RPLI4&SRP14 and LRRC37A3&NSF due to the poor Sanger sequencing data quality. Therefore, the exact fusion

junctions of these two fusions were not marked in the chromatograms.
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PCR panel LancM 100bp marker; Lanel: RPLI4&SRP14 amplicon (expected: 157bp);
Lane2: positive control (ACTB); Lane 3: nagative control (water).
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PCR panel LaneM: IOObp marker; Lanel: NCOR2&UBC amplicon (expected: 98bp);
Lane2: nagative control (water); Lane 3: positive control (ACTB).
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PCR panel LaneM: lOObp marker; Lanel: LRRC37A3&NSF amplicon (expected 115bp);
Lane2: nagative control (water); Lane 3: positive control (ACTB).

Cl50rf57 CBX3

1 10 20 30 40 50 60 70 80 80 100 110 120 130 [140 150 160 170 |180 200!
NGGTGAAGGCCAGAGRGAGRTORCTGACTTTGC T CAGCCAGCTGTAMGE CTTRGGCTCCCTTGLAGGATTCAGAAGTGTATTTAGC ATCTC TAGN G GOGRABGGECREAGACGCTCAGACCCGCGALCCGOAGCARCTOGRAGGCGETCAATAATAGTTCTTC AAGTCTGCAATARAARATGGLCTCOARCA
T

\Xx\f\ﬂ)\x\/ W ol >w\/\/\”k N W M

PCR panel LaneM: 100bp marker; Lanel: Cl50rf57&CBX3 amplicon (expected: 103bp);
Lane2: positive control (ACTB); Lane 3: nagative control (water).
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Literature searches for all experimentally validated fusion genes have suggested that some of
the chimeric transcripts are potentially oncogenic. For instance, a fusion gene that is only
predicted by ChimeRScope, NCOR2&UBC (Table 3-8), has also been reported previously in CLL
patients [40]. NCOR?2 is a nuclear receptor corepressor that interacts with members of MAPK-
signaling [41], Notch and NF-kappa-B pathways [42]. The altered expression of this gene is
associated with cell cycle progression and apoptosis in multiple cancers [43, 44]. Figure 3-3
illustrates the fusion model of NCOR2&UBC with the predicted [45] functional domains in the
resulting chimeric protein. This chimeric transcript combines the first exon of NCOR?2 and the
second exon of UBC, creating a new transcript with the loss of the SANT (named after switching-
defective protein 3 or SWI3, adaptor 2 or ADA2, nuclear receptor co-repressor or N-CoR,
transcription factor IIIB or 7FI/IB) domain that is responsible for chromatin-remodeling and
transcription regulation [46, 47]. Another validated fusion gene, LRRC3743&NSF is predicted
only by ChimeRScope method (Table 3-8). This fusion involves a gene named N-ethylmaleimide
sensitive factor (NSF). Studies have shown that NSF directly interacts with CD28 [48], a gene
responsible for T-cell activation and survival. Although triggering of human NK cells by CD&80
and CDS86 (ligands of CD28) seems to be independent of CD28 [49], the absence of CD28
expressions in NK cell lines [49] could be the result of the LRRC37A43&NSF fusion event. Other
exclusive ChimeRScope’s predictions like MAST2&METTL214 and NPIPB5&SMG] are kinase
fusions [50] that are more likely to have oncogenic functions in cancer because they involve
kinases like MAST2 (microtubule associated serine/threonine kinase 2) and SMGI (nonsense
mediated mRNA decay associated PI3K related kinase). Lastly, the only fusion gene predicted by
all four methods, DAB2&FRYL, includes a potential tumor suppressor gene named DAB2
(Disabled homolog 2) which has been found to be associated with tumorigenesis in different
cancers [51-53]. These fusion genes mentioned above warrants further investigation to confirm

their specific roles in tumorigenesis.
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Figure 3-3. The fusion model of NCOR2&UBC and the predicted functional domains. This fusion gene is fused
between the first exon of NCOR2 (3’ end) and the second exon of UBC (5° end). The SANT domain from NCOR?2 and
the ubiquitin domains from UBC are plotted to the approximate position of the corresponding exons. Because the exons
with the SANT motif sequence are not included in NCOR2&UBC, the predicted domains of the NCOR2&UBC fusion

gene only contain the ubiquitin domains from UBC.
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4. Discussion and conclusions

We tested the predictive power of ChimeRScope against SOAPfuse, JAFFA, and
FusionCatcher on simulated datasets and cancer datasets. Comparison results have clearly
demonstrated that ChimeRScope has better performance on all tested simulated datasets and real
RNA-Seq datasets. Notably, results on simulated datasets have shown that alignment-based
methods rely largely on the technical aspects like read length and sequencing depth of the RNA-
Seq datasets, whereas alignment-free methods like ChimeRScope are less likely to be affected by
these factors because it gives constantly superior F-scores across all datasets with different read

length and coverage depth.

For analysis on real RNA-Seq datasets, a BLAST search of the fusion sequences is
recommended for removing false positives and biologically insignificant fusion genes. For
instance, the fusion gene reported in the original SOAPfuse paper, GATSL1-GTF2I, can be

aligned to several non-coding RNAs (NR 002206.3 and NR 003580.2). ChimeRScope also
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found a similar fusion gene named GATSL2-GTF2I in the breast cancer samples. This class of
fusion genes should be excluded in the downstream analysis because it should not be considered

as a fusion event.

We have successfully amplified all the 10 predicted fusion products with the exact amplicon
size. We also confirmed the exact fusion junctions from the Sanger sequencing for eight out of 10
predictions, but unable to do so for two of the fusion genes (RPLI4&SRPI4 and
LRRC37A3&NSF) that have faint PCR bands (Figure 3-2). However, these two fusions were still
considered as true fusion events based on the specific amplicon size and the alignment evidences
between the predicted fusion sequences and the Sanger sequencing results. Specifically, the
fusion junction of the RPLI4&SRP14 fusion contains CAG repeats, which could also affect the
Sanger sequencing quality near the 3’ end of the repeat region. We were unable to resolve the
fusion junction due to the CAG repeats, thus the exact fusion junction is not marked for this
fusion in Figure 3-2. For LRRC3743&NSF, we were only able to design the primer pair with the
forward primer spanning the fusion junction (Figure 3-2). Therefore, the Sanger sequencing result
generated from the forward primer does not span the fusion junction. Due to the poor Sanger
sequencing quality observed in the first 15 to 40 bases, the chromatogram of LRRC37A43&NSF
(Figure 3-2) only shows the comparison between the predicted fusion sequence roughly 40bp
downstream of the forward primer binding site and the Sanger sequencing result. We were not
able to obtain high quality Sanger sequencing result from the reverse primer, thus the Sanger
sequencing result that covers the fusion junction was not available for this fusion gene.
Nevertheless, the PCR result shows the band with the exact amplicon size. Additionally, the
forward and the reverse primer are very specific to LRRC3743 and NSF, respectively. Since the
Sanger sequencing result shows significant match with the 3° gene (NSF), we believe that this

fusion gene is also a true fusion event.
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Among four of the validated fusion genes that are missed by ChimeRScope, ChimeRScope
still reports FESRs for three of those fusions, but filters them out due to the stringent filters it uses
to remove false positives. For example, the preliminary result from ChimeRScope Scanner shows
that ChimeRScope identified nine FESRs for PTMA&NPMI. However, some of these FESRs
have very low weightage score and was not considered as valid FESRs due to insufficient
fingerprint sequences (possibly caused by evenly distributed sequence variations). Allowing a
couple of mismatches when comparing the k-mers could potentially improve the sensitivity of our

method to detect such fusion genes.

Here we conclude that, ChimeRScope has superior advantages over other popular tools for
fusion gene prediction based on all tested datasets. Also, ChimeRScope relies less on the
technical aspect of the datasets (read length, sequencing depth, etc.) or the expression levels of
fusion genes, comparing to other alignment-based methods. This also suggests that the alignment-
free methods, in addition to providing alternative ways of analyzing NGS data, can also address

the issues that we often encounter using alignment-based methods.
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Chapter 4: ADDITIONAL TOOLS TO ADD THE ANALYSIS (LOCAL GALAXY

SERVER)

1. Overview

Many of the bioinformatics tools for biomedical research only run on linux-based servers
using command lines. They also have other tool dependencies, some of which are lacking proper
update procedures and installation documentations. For example, fusionCatcher [29] has over 15
different dependencies. Installing some of these dependencies also require root privileges, which
are not always feasible for end users. Installation of python modules also involves changing
environmental variables like python library path. Therefore, it can be extremely hard for
researchers with limited programming and system administrative expertize to install and use these

tools.

To facilitate the usage of ChimeRScope for different user groups, we also implemented an
online Graphical User Interface (GUI) data analysis server for ChimeRScope using the Galaxy
Server platform. Researchers can submit the data analysis jobs to this server online using a web
browser and all the parameters can be set using check-boxes and dropdown menus. Below, we

discuss the GUI of ChimeRScope in detail.

2. Introduction to Galaxy server

Galaxy server [67] is an open, web-based platform with large collection of bioinformatics
tools installed, and accessible to the research community for local installation. It is initially
developed by the Nebrutenko lab in the Center of Comparative Genomics and bioinformatics at
Penn State and the Taylor lab at Emory University. Galaxy server provides Graphic User
Interface (GUI) support for installed bioinformatics tools, thereby making data analysis more

accessible for users with limited programming experience. Moreover, Galaxy server also includes
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a workflow system. Users can easily construct the workflows from all tools in the Galaxy server.
This makes the analysis in the Galaxy server more reproducible. Apart from that, Galaxy server is

also transparent. Users can share their workflow and analysis histories with other colleagues.

The main Galaxy server (https://usegalaxy.org/) currently is built at the Texas Advanced
Computing Center, with support from the National Science Foundation. It is a free, public
resource with no encryption on the data. Therefore, it is suggested to build a local Galaxy
instance for local usage. The Galaxy team provides detailed instructions on how to build a local
Galaxy server and install customized tools. We followed these instructions and successfully build

a local Galaxy server.

Figure 4-1 shows a screenshot of our local Galaxy server at UNMC. The left panel lists all
the installed tools, the central panel displays the data analysis parameters for the currently
selected tool and the right panel displays the history of the workflow. When a tool is selected (e.g.,
ChimeRScope Scanner in Figure 4-1), menus for all the input parameters are listed in the central
display panel. As we mentioned earlier, ChimeRScope Scanner takes two fastq files (discordant
paired-end reads), GF-library, and several other parameters as input, and outputs a list of Fusion
Event Supporting Reads. In the example shown in Figure 4-1, we have uploaded two fastq files,
namely sim_unmapped_1.fastq and sim_unmapped_2.fastq. We have also added several built-in
GF-libraries in our Galaxy server. However, users can also upload their own k-mer libraries into
the Galaxy server using the uploading application. We have set all recommended parameters as
the default values, however, users have the ability to alter the input parameters and customize
their jobs. Once a job is submitted to the Galaxy server, selected output files will be listed in the
history panel on the right. Users can view these files by clicking the view bottom (first bottom
with the “eye” symbol). If a job fails, the error log will also be listed in the history panel. Users
can also use the workflow system to automate the analysis pipeline. The workflows and analysis

results can be easily accessed by other authorized users using the “Share Data” application.



85

Figure 4-1. The layout of our local Galaxy server at UNMC. All the installed tools are grouped and listed in the left

panel. The history panel on the right part lists all the datasets involved in the analysis, including the input files,

intermediate files, and output files. The central panel in this example displays all the parameters used for running the

ChimeRScope (see Chapter 3, subsection 2.2).
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3. Local Galaxy server installation

We installed the Galaxy instance on our local bioinformatics server (named metastasis) at

UNMC. The metastasis server has 48 cores and 128 GB memory with CentOS Linux version

7.2.1511, which provides sufficient computational power for the users. We create a separate

administrator account named galaxy for our Galaxy server. All the following steps are processed

under the user galaxy, unless mentioned specifically. We changed the Galaxy home directory to
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the root directory of the Galaxy repository to maintain consistency for the file paths if we want to

migrate the whole Galaxy directory to other servers.

Galaxy server requires python version 2.6 or 2.7. We installed the stable python version 2.7.5
on metastasis. To protect the integrity of the Galaxy environment, we also used the ‘virtualenv’
tool to create an isolated Python environment solely for our Galaxy server. We downloaded the
latest Galaxy source code from https.//github.com/galaxyproject/galaxy/ and installed it on the
metastasis server. We used nginx for the proxy server of our Galaxy instance, as suggested by the
Galaxy group for server security issue. Galaxy server by default uses SQLite for quick
development. Unfortunately, SQLite does not handle concurrency. To make our Galaxy server

more efficient, we replaced SQLite with PostgreSQL for better data and job handling.

4. Galaxy server structure

Galaxy server is a sophisticated system that offers a variety of functions. It is crucial to
understand the structure of the Galaxy server if we want to customize our own Galaxy server.
Here we list all the essential directories for our Galaxy server and highlight the main purposes of

these directories (Table 4-1).

Table 4-1. Key directories and the main purposes of the directories for the Galaxy server.

Galaxy server path Purpose

~/galaxy-dist/database/files/ Stores all input/output datasets

~/galaxy-dist/referenceFiles/ Stores all reference files, including k-mer libraries.

~/galaxy-dist/tool-data/ Configuration files for all registered tools and built-in reference data. (text files)
~/galaxy-dist/scripts/ System scripts for Galaxy server (python files).

~/galaxy-dist/tools/ Default path for installed tools and the corresponding python wrapper scripts
~/shed_tools/ Path for customized tools in the local Galaxy server

~/galaxy-dist/config/ Galaxy server configuration directory. Including server configuration, data types, etc. (xml files)
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Galaxy server is mainly implemented in python and XML. For a customized tool to be usable
in a Galaxy server, developers also need to implement specific wrapper script for that tool. XML
stands for eXtensible Markup Language and was designed to be both human- and machine-
readable. The XML wrapper script redirects the input files and output files to relative file paths.

All the parameters set by users on the Galaxy server page will also be parsed to the selected tool.

Here we show an example of how to install a customized tool in the Galaxy server. We
registered ChimerScope by adding a tool section called ngs: ChimeRScope under the toolbox

section in the tool shed configuration file (shed tool conf.xml).

~/galaxy-dist/config/shed tool conf.xml
<toolbox tool path="~/shed tools>

<section id="ngs: ChimeRScope" name="NGS: ChimeRScope repository" version="1.0">
<tool file="localTools/chimeRScope/chimeRScope_ Scanner.xml" />
<tool file="localTools/chimeRScope/chimeRScope Sweeper.xml" />
</section>
</toolbox>

ChimeRScope repository is registered under ~/shed tools/localTools/chimeRScope/. A

simple screenshot of the ChimeRScope wrapper script is shown below.
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~/shed_tools/localTools/chimeRScope/chimeRScope Scanner.xml

<tool id="ChimeRScope Scanner" name="ChimeRScope Scanner" version="1.0">

<requirements>
<requirement type="package" version="1.0">ChimeRScope</requirement>
</requirements>
<description>
Identifies Fusion Event Supporting Reads FESR among discordant reads
</description>
<command>
#set kmer lib path = ''
#if $klibSource.selectklibSource == "buildin":
#set kmer_ lib path = $klibSource.prebuild.fields.path
felse:
#set kmer lib path = $klibSource.ownFile
#end if

java -Xmx20g -jar ~/shed tools/localTools/chimeRScope/ChimeRScope Scanner.jar
-galaxy
-fql "${inputl}"
-£q2 "${input2}"
-k ${k_value}
-d ${d_value}
-1lib ${kmer_lib path}
-t 10
-o chimeRScope_ out

</command>
<inputs>

<param name="k value" type="integer" value="17" />
<param name="d_value" type="integer" value="12" />
</inputs>
<outputs>
<data name="outputl" format="txt" from work dir="chimeRScope out/FESRs.txt"/>
</outputs>
</tool>

The command for running ChimeRScope_Scanner.jar is shown in the command section of the
XML file. The variables used in the command line are defined in the inputs section. We also
registered the latest GF-libraries for human reference build GRCh38/hg38 in the Galaxy server
database. Users can choose the built-in GF-libraries by selecting the right GF-library in the
dropdown menu from the webpage, or select GF-library files from the history datasets (defined as
kmer lib_path in the command section). Once a job is submitted by the user, this java task will be
run on the local server. We only wrapped the most important file, namely FESRs.txt, for the
downstream analysis (defined in the outputs section). Direct interactions between the Galaxy

webserver and the database are shown in Figure 4-2.
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Figure 4-2 Interactions of the local Galaxy server/database using ChimeRScope_Scanner as an example. Tools
are installed via XML wrapper scripts. A data analysis job is submitted by users from the Galaxy webserver. Input files
and variables submitted through the website are parsed into command lines to the data analysis server. Once the job is

done, the output will be sent back to the Galaxy website for users.

ChimeRScope Scanner Database
Identifies Fusion Event
Supporing Resds FESE ChimeRScope_Scanner x

among discordant reads
RNA-Seq FASTQ file, sorted by read
name

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
ChimeRScope Sweeper i
Summarize FESRs from i
1

1

1

1

1

1

1

1

1

1

1

1

1

1

:

1

1

1

1

previous step

|

shed_tool_conf.xml

RNA-Seq FASTQ file, sorted by read
name

outputl (txt)

[ |

!

5. Workflows in Galaxy server

Recent advances in the sequencing technologies make it affordable to sequence hundreds or
thousands of samples in a single research project. Consequently, these advances also posed a big
challenge for the handling and analysis of these massive datasets. Tools designed for
bioinformatics data analysis can take anywhere from minutes to days to finish in a single run. It is
recommended to automate the whole data analysis pipeline, in order to maximize the
computational power of the data analysis server and to prevent idle time when a downstream job
is not submitted immediately after the upstream job is finished. Moreover, the data analysis in the
same study often follows the same pipeline for the same data type. Analyzing and monitoring
hundreds of data analysis jobs at the same time can be a tedious task that requires lots of human

attention. Bioinformaticians often write a separate wrapping script using scripting languages (e.g.,
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bash, perl, and python) to automate the pipeline, which requires advanced knowledge on
programming, system /O, etc. Alternatively, the Galaxy server platform helps to develop
automated data analysis pipelines for routine tasks to enable users to run hundreds of jobs with

minimal human supervision.

Using the Galaxy server, users can drag and drop the required tools in the workflow editor.
Then, the workflow can be constructed by linking the output ports of the upstream tools to the
input ports of the downstream tools. Figure 4-3 shows how the ChimeRScope workflow looks
like in our local Galaxy server. Users can modify all the parameters and reference datasets before
the analysis starts. This workflow can be now considered as a single tool. By specifying two fastq
files as inputs, this workflow will automatically process all the steps in the workflow and outputs

a list of predicted fusion genes once the pipeline is finished.
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Figure 4-3. The complete ChimeRScope workflow on the local Galaxy server. The workflow starts with the
discordant reads from the alignment step using Tophat. Then, the discordantly aligned paired-end reads are extracted
from accepted_hits.bam, and unmapped reads are extracted from unmapped.bam. The output from the previous step are
merged together. Then, the output bam file will be sorted and converted back to paired-end fastq files. The unmapped
paired-end reads serve as input files for the fusion gene prediction pipeline. The final output is a text file that lists the

predicted fusion genes with other values (e.g., confidence scores, number of FESRs).
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We analyzed the 50 pos set using the regular command line version of ChimeRScope and
the workflow in the Galaxy server (with the same versions of the tools) to check the consistency
of the output. We compared the final output files using diff command in bash. Results have shown

that there is no difference between these two versions of the workflow.

6. Limitations and conclusions

Galaxy server is a great resource for bioinformatics data analysis. The Graphical User

Interface makes the data analysis much easier for researchers with limited programming expertise.
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The sharing utility also makes the analysis transparent and the workflow system makes the
analysis reproducible. However, there are still limitations for using Galaxy server for large-scale

data analysis.

Galaxy server is less flexible on the data analysis part in certain situations. For example, the
sequencing read quality control step is necessary for NGS data analysis. We often use FastQC [68]
to check the stats on sequencing errors, GC content, possible adapter contamination, etc. It
generates both text reports and graphical reports. For large-scale data analysis using Galaxy
server, users will need to manually check each graphical report to obtain different parameters for
the sequence trimming step. On the other hand, using the command lines, researchers can write a

single script that parses all the text reports to retrieve the parameter sets.

Galaxy server is less flexible for resource allocation. Galaxy server is an efficient data
analysis server; however, users often do not have permissions to alter the computational resources
for each job. For instance, ChimeRScope Scanner in our local galaxy server will reserve 20GB of
memory for the Java virtual machine, irrespective of the dataset size. This can cause
Jjava.lang.OutOfMemoryError on large datasets. Administrators cannot set it to reserve more
memory because it will be a waste of computational resources for smaller datasets. It is also not
recommended to set the memory usage parameter to a publicly accessible variable for security

1Ssues.

The data transfer rate is also one of the biggest bottlenecks for using the Galaxy server on
large-scale data analysis. Downloading data from public databases (denoted as D) to the local
computer (denoted as C) and uploading them to the Galaxy server (denoted as S) takes two
operations for each dataset (D to C, then C to S), and the transferring speed is often limited to the
bandwidth of the client C. Comparatively, for data analysis using command line on Linux servers,
the data can be downloaded directly to the server (D to S). In this way, it takes only one operation

and the transferring speed is irrelevant to the client bandwidth.
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In conclusion, the Galaxy server implemented for ChimeRScope offers an alternative
approach for fusion gene analysis. It offers GUI for researchers with limited programming
experience. It is best suitable for smaller project (often less than 100 sequencing samples) with
medium size datasets (paired-end reads, less than 10GB). Although the wrapper scripts for
ChimeRScope can be easily modified by server administrators for large-scale data analysis, we
still recommend using the command-line version for large-scale data analysis projects for better

project management experience, result integration and interpretation.
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Chapter 5: PROJECT SUMMARY AND FUTURE DIRECTIONS

Fusion genes are a class of chimeric transcripts often observed in different types of cancers
that can have significant impact on the tumorigenesis and cancer progression. Rapid advances in
the next generation sequencing technologies make it more feasible to generate transcriptomics
data (RNA-Seq data) from cancer patients and identify fusion genes. We developed a novel
alignment-free method named ChimeRScope for fusion gene discovery by evaluating the
fingerprint sequences from RNA-Seq paired-end reads. Comparison results against other popular
fusion gene detection tools show that ChimeRScope has better performance on all tested datasets
that include both simulated and real RNA-Seq datasets. Notably, results on simulated datasets
have shown that alignment-based methods rely largely on the technical aspects like read length
and sequencing depth of the RNA-Seq datasets, whereas alignment-free methods like
ChimeRScope are less likely to be affected by these factors as indicated by consistently superior

F-scores across all datasets.

1. Configuration and installation

1.1. Summary

Java is a platform-independent language that typically compiles to the Java Virtual Machine
(JVM). Theoretically, java programs can be executed on any operating systems with Java
Runtime Environment (JRE) support. Its ability to move easily between different computer
systems has been one of the most significant advantages of Java. ChimeRScope suite,
implemented in Java Standard Edition 7, inherits this advantage. Users can download and set up
JRE (version 1.7 or higher) from its official website at www.java.com. No extra installation steps

are required for ChimeRScope.


http://www.java.com/
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ChimeRScope requires several reference files. The detailed instruction of how to prepare the

files is shown below (using human reference genome build 38 with 17-mers as an example).

Step 1: Open UCSC table browser at

https://genome.ucsc.edu/cgi-bin/hgTables

Step 2: Select following options in the UCSC Table Browser

clade: Mammal genome: Human assembly: Dec. 2013 (GRCh38/hg38)
group: Genes and Gene Predictions track: RefSeq Genes

table: refGene

region: genome

output format: GTF - gene transfer format

output file: hg38.gtf

file type returned: plain text

Step 3: Extract all mRNA entries on chrl-22 chrX, chrY, ChrM from
the gtf file using awk on linux.

cat hg38.gtf | awk 'length($1)<=5 { print }' | grep "\"NM " > hg38 mRNAs.gtf

Step 4: Download hg38.fa.gz from
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigzips/

Step 5: Unzip the gzip file and create all mRNAs sequences from the
downloaded gtf file and fasta file (use gtf to fasta from
TopHat package) .

gunzip hg38.fa.gz
STOPHAT PATH/gtf to fasta hg38 mRNAs.gtf hg38.fa hg38_ allmRNA.fa

Step 6: Download ID conversion files from UCSC table browser

clade: Mammal genome : Human assembly: Dec. 2013 (GRCh38/hg38)

group: Genes and Gene Predictions track: RefSeq Genes

table: refGene


https://genome.ucsc.edu/cgi-bin/hgTables
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/
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region: genome

output format: selected fields from primary and related tables
output file: refseq2gs.txt

file type returned: plain text

Click get output -> Under Select Fields from hg38.refGene, Only select

name and name2 -> output is saved as refseq2gs.txt

Step 7: Download gene family information from HGNC database
at http://www.genenames.org/ (Optional/Recommended)

Click Downloads -> Custom Downloads -> Under Curated by the HGNC, only
select RefSeq IDs and Gene Family ID -> Uncheck all boxes under
Downloaded from external sources -> submit -> save output as

geneFamily.txt

Step 8: Run ChimeRScope builder. E.g., output library directory is
./GF_lib/homo_sapiens. It creates hg38 mRNA kl17.ids,
hg38 mRNA k17.loc, and hg38 mRNA k17.1ib after it is done.

java -jar ChimeRScope.jar Builder \
-i hg38 allmRNA.fa \
-k 17 \
-id refseqg2gs.txt \
-o ./GF_lib/homo_sapiens/hg38 mRNA k17

Final step: Compile files

Link other files to the library directory with the same prefix

1n -s hg38 allmRNA. fa ./GF_lib/homo_sapiens/hg38 mRNA kl7.fa
ln -s geneFamily.txt ./GF_lib/homo_sapiens/hg38 mRNA k17.gf


http://www.genenames.org/
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Under ./GF_lib/homo_sapiens/, it should contain 5 files with the

same prefix. They are,

hg38 mRNA k17.fa
hg38 mRNA k17.gf
hg38 mRNA k17.ids
hg38 mRNA k17.1ib
hg38 mRNA kl7.loc

The preparation of the reference files for ChimeRScope is a one-time operation that usually
takes less than one hour with 40GB memory. We also provide pre-compiled files for the users on
the ChimeRScope homepage at

https://github.com/ChimeR Scope/ChimeR Scope/wiki/ChimeRScopeManual.

1.2. Limitations and future directions

ChimeRScope aims to identify biologically significant fusion genes. We defined that fusion
genes involving non-coding RNAs are less likely to produce functional fusion proteins or
maintain their intended regulatory functions. Besides, tests on simulated datasets show that GF-
libraries created from total RNAs can introduce more false positive fusion genes. Therefore, we
recommend that the GF-library should be constructed only from mRNAs sequences for best
prediction results. In RefSeq sequence database, the RefSeq IDs for mRNAs (start with “NM )
and non-coding RNAs (start with “NR_”) are easily distinguishable. Comparatively, the transcript
IDs for coding RNAs and non-coding RNAs in EnsEMBL database all start with “ENSG”. For
ChimeRScope GF-libraries, we prefer to use RefSeq sequences because it is easier to extract all
the mRNA sequences from RefSeq annotation. Another reason for the preference on RefSeq

annotation is that, RefSeq is a collection of non-redundant, curated RNA models, whereas
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EnsEMBL database includes RNA sequences from different sources like GENCODE [69], CDDS
database [70], automatically-annotated pseudogenes, and non-coding RNAs. The redundant
sequences and predicted RNAs in EnsEMBL can introduce more false fusion genes (Chapter 4
BC _CL result). Moreover, the number of coding genes in EnsEMBL (~56,000) is more than
twice as that for the RefSeq database (~25,000). In this case, the memory cost using the
EnsEMBL reference database will be doubled. Considering all the points described above, the

current version of ChimeRScope only supports the use of RefSeq annotations.

The choice of the gene annotation database can hinder some users from using ChimeRScope.
However, we still believe that fusion gene prediction should be based on more conserved mRNA
database like RefSeq for the best prediction results. We are not planning to offer direct support
for EnsEMBL sequences. However, we will modify the code in the future release of

ChimeRScope so that EnsEMBL sequences can also be used without causing any technical issues.

2. Prediction performance

2.1. Summary

In sequence comparison analysis, alignment-based methods will perform better than
alignment-free methods if the target sequences are similar. Most of alignment-based fusion gene
prediction methods identify fusion gene candidates by aligning RNA-Seq short reads against the
normal reference genome. In cancer research, RNA-Seq reads are sequenced from cancer
genome/transcriptome, where the genomes are high perturbed compared to normal ones.
Comparing reads derived from cancer genome against normal reference genome will prevent
alignment-based methods from getting reliable alignment results, especially for the highly

perturbed regions where fusion events occur.



99

As we discussed earlier, ChimeRScope is less likely to be affected by genetic variations.
Similarly, ChimeRScope is also tolerant to sequencing errors. Therefore, ChimeRScope does not
take the sequencing quality scores into consideration. We believe that, the decrease of the
sequencing quality near 3’ of the reads (often observed in Illumina RNA-Seq data) will have little
impact to the prediction results because only a few of k-mers will be affected. Removing reads
with overall low quality scores (e.g., average score of all bases lower than 30) is not required for
ChimeRScope because such reads are more likely to occur near repetitive regions and polymer
regions. k-mers generated from these regions will have low or zero weightage scores.
Nevertheless, low quality reads are often excluded after the quality control step, because it is a

part of the standard NGS data analysis pipeline.

The core algorithm used in ChimeRScope is an alignment-free algorithm based on k-mers to
represent the gene fingerprints. The comparison results on both simulated datasets and cancer
RNA-Seq datasets all suggested the better performance of ChimeRScope against other popular
methods. Moreover, results on the simulated datasets show that ChimeRScope consistently
performs better than other methods in datasets with different length and coverage depth,

suggesting the unique advantage of ChimeRScope over other alignment-based methods.

2.2.Limitations and future directions

For analysis on real RNA-Seq datasets, we recommend users to manually perform a BLAST
search of the fusion sequences against the NCBI non-coding sequence database collections. This
is because the non-coding RNA sequences are not included in the GF-library. Occasionally, some
of the expressed non-coding RNAs are transcribed from coding exons of two different mRNAs.

Reads sequenced from this type of non-coding RNAs can exhibit fusion patterns for the
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corresponding mRNAs. For instance, the fusion gene reported in the original SOAPfuse paper,
GATSL1-GTF2I, can be aligned to several non-coding RNAs (NR 002206.3 and NR_003580.2).
ChimeRScope also found a similar fusion gene named GATSL2-GTF2I in the breast cancer
samples. This class of fusion genes should be excluded in the downstream analysis because they

should not be considered as cancer specific chimeras.

This manual filtering step can be tedious for projects with hundreds of samples. Here we present
several alternatives to minimize the need of this extra step. (1) Incorporate a BLAST database
into ChimeRScope suite. Tools such as SOAPfuse have built-in BLAST databases. However,
several drawbacks are apparent. Firstly, it takes longer time to install and configure the database.
Some of the key scripts for BLAST also require root privilege and only a server administrator can
install it. Moreover, as a heuristic method, BLAST sometimes can also fail to filter out certain FP
fusion genes (e.g., false positives with highly repetitive sequences near the fusion junction).
Because we designed ChimeRScope suite as a clean, platform-independent package with
minimum database dependencies, we did not incorporate BLAST database into the ChimeRScope
package. (2) Updating the list of known false positives. ChimeRScope is very sensitive to
sequences with fusion patterns, no matter they are true fusion events or not. A false positive
fusion gene can be introduced from non-coding genes that can be mapped to two different genes
separately, or known germline insertions in a gene where the inserted sequences show
homologies to other genes, or other unannotated transcripts with similar fusion patterns, all of
which are recurrently shown across different samples (including normal samples). ChimeRScope
constantly classify these “normal” transcripts into false positives. These false positives can be
manually filtered out in the last filtering step but it requires extra work. Alternatively, we can
constantly update the list of the false positives that we already know from the previous analysis
results. If a false positive fusion gene is reported in the new samples, it is automatically classified

as a false positive in the final output and we will also provide the reason why this fusion is a false
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positive. In summary, we plan to choose the latter option to facilitate the use of ChimeRScope

because the results can be more accurate without incorporating the BLAST databases.

ChimeRScope does not allow any mismatches when comparing the fingerprint sequences,
which might be the main reason why some of the true fusion genes in the tested datasets were not
predicted by this method. The regular approach for allowing one mismatch when comparing -
mers can increase the processing time of each k-mer for a maximum of 3* times and may also
increase false positives. Hashing algorithm called SimHash [71, 72] might be useful to solve this
computational issue. SimHash is an efficient algorithm that can be used to find similar
fingerprints within a certain Hamming distance. It creates similar hash values for strings with
similar sequences. We plan to explore the applicability of using SimHash in the future releases of

ChimeRScope (ChimeRScope currently uses HashMap) for fusion gene detection.

ChimeRScope achieves better prediction accuracies overall when compared to other popular
tools. However, there is still room for improvement. For example, FPs caused by large insertions
(mentioned in the previous paragraph) can be filtered out by alignment-based methods with
adjusted scoring matrices that allow gapped alignment. Currently, the alignment module of
ChimeRScope (Examiner) only uses a fixed substitution matrix for targeted alignment (Chapter 4,
subsection 2.1), which rarely allows the identification of long insertions (>50bp). To improve, we
can test different substitution matrices and output the best alignment results for each targeted

alignment so that this class of FPs will be automatically recognized.

The current version of ChimeRScope can only report fusion sequences near the fusion
junctions in a range that is limited to the read length and the insert size of the paired-end reads.
One obvious limitation is that ChimeRScope is not capable of accurately predicting the complete
fusion gene sequences because reads covering regions other than the fusion junctions will not be
analyzed. Ultimately, it will be less accurate for ChimeRScope to predict the functional impact of

the fusion event (e.g., predict if a frameshift is involved so that the fusion protein might not be
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translated or the functional domains might be changed). To overcome this limitation, we can
extract the consensus nucleotide sequences for each fusion partner from the Sequence AlignMent
Files (SAM or Binary SAM files, generated by aligners like TopHat) and combine them with the

predicted fusion junction sequences.

Another improvement that might be used to increase the overall prediction accuracies rather
than directly fix any limitations is to adopt machine learning, particularly Artificial Neural
Network (ANN) [73] or evolutionary algorithms [74]. Information such as the expression levels
of each fusion partner, sequencing quality scores, mutations near the fusion junctions, and known
structural variations can be transformed as vectors and they might be directly associated with the
confidence level of the fusion genes. We can download cancer cell lines RNA-Seq datasets and
construct training and testing datasets using all the experimentally validated fusion genes found in
these cancer cell lines. Therefore, all the fixed parameters used in the current version of
ChimeRScope can be optimized automatically for each predicted fusion gene, which eventually,

should lead to higher sensitivities and lower false discovery rate.

3. Epilogue

The current version of ChimeRScope has shown superior performance on a variety of tested
datasets. We will regularly update ChimeRScope to fix bugs and improve the accuracy. We are

maintaining the ChimeRScope wiki page at https://github.com/ChimeRScope/ChimeRScope/wiki

to keep track of the version changes, updates and FAQs. We will also create ChimeRScope

mailing lists to provide support for the ChimeRScope user community.
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