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Fusion genes are those that result from the fusion of two or more genes, and they are typically 

generated due to the perturbations in the genome structure in cancer cells. In turn, fusion genes 

can contribute to tumor formation and progression by promoting the expression of an oncogene, 

deregulation of a tumor-suppressor, or producing much more active abnormal proteins. More 

importantly, oncogenic fusion genes are specifically expressed in the tumor cells, which provide 

enormous diagnostic and therapeutic advantages for cancer treatment. With the development of 

next-generation sequencing (NGS) technology, RNA-Seq becomes increasingly popular for 

transcriptomic study because of its high sensitivity and the capability of detecting novel 

transcripts including fusion genes. To date, many fusion gene detection tools have been 

developed, most of which attempt to find reliable alignment evidence for chimeric transcripts 

from RNA-Seq data. It is well accepted that the alignment quality of sequencing reads against the 

reference genome is often limited when significant differences in the genomes exist, which is the 

case with cancer genomes that contain many genomic perturbations and structural variations. 

Hence, regions where fusion genes occur in the cancer genome tend to be largely different from 

those in the reference genome, which prevents the alignment-based fusion gene detection 

methods from achieving good accuracies.  

We developed a tool called ChimeRScope. ChimeRScope, being an alignment-free method, 

bypasses the sequence alignment step by assessing the gene fingerprint profiles (in the form of k-



 
 

mers) from RNA-Seq paired-end reads for fusion gene prediction (Chapter Two). We also 

optimized the data structure and ChimeRScope algorithms, in order to overcome the common 

limitations (memory-utilization, low accuracies) that are commonly seen in alignment-free 

methods (Chapter Two). Results on simulated datasets, previously studied cancer RNA-Seq 

datasets, and experimental validations on in-house datasets have shown that ChimeRScope 

consistently performed better than other popular alignment-based methods irrespective of the read 

length and depth of sequencing coverage (Chapter Three). ChimeRScope also generates graphical 

outputs for illustrations of the fusion patterns. Lastly, we also developed downloadable software 

for ChimeRScope and implemented an online data analysis server using the Galaxy platform 

(Chapter Four). ChimeRScope is available at https://github.com/ChimeRScope/ChimeRScope/.  

 

 

 

https://github.com/ChimeRScope/ChimeRScope/
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Chapter 1:  INTRODUCTION TO CARCINOGENESIS AND FUSION GENES IN 

CANCER 

1. Introduction to cancer and the genetic nature of cancer 

Cancer is a group of genetic diseases that can cause severe health consequences. It is one of 

the leading causes (~13%) of all deaths worldwide. According to World Health Organization 

(WHO) GLOBOCAN 2012 estimation, there were 14.1 million new cancer cases and 8.2 million 

cancer deaths each year (Table 1-1). According to the WHO estimation, there will be an increase 

of 70% new cancer cases over the next 20 years.  

 

Table 1-1. Cancer fact sheet in 2012 worldwide [1]. This table shows the statistics of new cancer cases, deaths, and 

patients that are alive with cancer within 5 years of diagnosis, for men, women and combined in 2012 worldwide.  

Estimated numbers 
(thousands) 

Men Women Both sexes 

Cases Deaths 5-year 
prev.* Cases Deaths 5-year 

prev. Cases Deaths 5-year 
prev. 

World 7410 4653 15296 6658 3548 17159 14068 8202 32455 

More developed 
regions 3227 1592 8550 2827 1287 8274 6054 2878 16823 

Less developed 
regions 4184 3062 6747 3831 2261 8885 8014 5323 15632 

* 5-year prevalence: The number of people who live with cancer within 5 years of diagnosis.  

 

It is well accepted that mutations on cancer-susceptible genes are the most common causes of 

cancer [2]. Those genetic variations can be acquired from exposures to mutagens, or inherited 

from parents. The clinical manifestations of cancer result from the uncontrolled growth of cells, 

which can also be metastasized into other parts of the body. Based on the origins of the cells, 

cancer can be classified into different types such as carcinoma, sarcoma, lymphoma/leukemia, 

germ cell tumor, blastoma, etc. More than 100 types of cancers have been identified based on the 
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histological type, tissue type, cell type, or other biomarkers. The aggressive behaviors of cancer 

cells often occur as a consequence of the malfunctioning of cancer-susceptibility genes. These 

genes can be further divided into three types: (i) genes that control the cell growth and cell death; 

malfunctioning of these genes can lead to uncontrolled cell growth; (ii) genes that control the 

DNA repair mechanisms, which in normal state prevent the cells from accumulating deleterious 

mutations; (iii) genes that control the cell-cell interactions, which when impaired can lead to the 

neoplasm [3].  

The biological system is a complex system. A single alteration on one cancer-susceptibility 

gene may not induce carcinogenesis in cells; however, cells with certain gene mutations in driver 

genes are more prone to chromosomal instability (one of the hallmarks of many cancers), thereby 

increasing the risk of acquiring more deleterious alterations. Once the cell accumulates a 

sufficient set of deleterious mutations, the tumorigenesis will be initiated. Therefore, it is crucial 

for researchers to identify those oncogenic driver events in order to prevent or treat cancer.  

 

2. Oncogenic variations 

One simple fact of biological systems is that genetic variation exists in all individuals. These 

variations can be classified into different types that include (i) SNP, or Single Nucleotide 

Polymorphism; (ii) INDEL, a genomic sequence (often less than 50 base pairs (bp)) that were 

INserted into or DELeted from the genome; (iii) CNV (Copy Number Variation) is the deletion 

or duplication of a large chunk (> 50 bp) of the genomic sequence; (iv) Other genomic 

rearrangements such as translocation, inversion or a combination of these two; A SNP variation is 

considered as synonymous if this variation does not impair the function of the protein due to the 

degeneracy of the genetic code, or non-deleterious if the SNP does not occur in the functional 

elements of the genome. Even if deleterious mutations occur, multiple DNA damage response 

processes will try to maintain genome stability via processes such as DNA repair, cell cycle 

checkpoints, and controlled cell death (apoptosis).  
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When oncogenic (meaning “causing the development of a tumor or tumors”, often involving 

cancer-susceptibility genes) driver mutations are induced from the exposure to carcinogens, or are 

inherited from parents, it will make the genome less stable. In turn, an unstable genome is more 

likely to introduce more deleterious mutations with selective advantages in the microenvironment 

by either increasing the survival of the cell (e.g., bypassing the apoptosis) or reproduction rate of 

the cell (e.g., uncontrolled cell division). Therefore, it is important to identify those oncogenic 

driver mutations before the cancer progresses to advanced stages. Studies on different cancers 

over the last several decades revealed many oncogenic driver events with huge therapeutic 

potentials. For instance, a non-synonymous SNP on BRAF (B-Raf proto-oncogene, 

serine/threonine kinase) at position 600 that changes the amino acid from Valine to Glutamic 

Acid (V600E) has been reported in many different types of human cancers [4]. BRAF is a protein 

kinase that regulates the MAP kinase/ERKs signaling pathway (MAPK pathway), which affects 

cell division, differentiation and secretion [5].  BRAF V600E leads to hyper-activation of MAPK 

pathway, which will eventually lead to unregulated cell proliferation and survival [4]. Patients 

with melanoma treated with drugs that target BRAF with V600E mutation have shown improved 

survival rate [6].  

 

3. Fusion genes in cancer 

 Fusion genes, also known as chimeric transcripts, are one class of abnormal transcripts that 

are formed by the fusion of two different genes. Fusion genes have gained increasing attention 

because of their significance in diagnosis and prognosis. However, identification of the fusion 

genes remains to be a big challenge due to the complexities of the cancer genomes. In this study, 

we focused on identifying fusion genes in cancer, particularly using an alignment-free approach 

for fusion gene prediction using NGS-based transcriptome datasets.  

3.1. Formation of a fusion gene 
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Fusion genes results from the fusion of two or more genes, which typically happen during 

perturbations in the genomic level or during the gene transcription. At the genomic level, a fusion 

gene event can happen because of chromosomal rearrangements such as translocation, interstitial 

deletion, or inversion. These types of fusion genes can be generated between genes from the same 

chromosome or from different chromosomes. For instance, the Philadelphia chromosome [7] is a 

translocation event between chromosome 9 and chromosome 22 and it has been mainly 

discovered in Chronic Myelogenous Leukemia (CML) cells. This translocation event joins ABL1 

gene on Chromosome 9 with BCR gene on Chromosome 22 and creates an abnormal fusion 

protein BCR-ABL (Figure 1-1). ABL1 encodes a protein kinase that regulates cell cycle and 

cellular differentiation. The activity of the wild type ABL1 is negatively regulated by its own 

SH3 domain. The BCR-ABL fusion often results in the deletion of SH3 region, thereby keeping 

the expression level of ABL1 in a constantly active state, which leads to uncontrolled 

proliferation of the cell.  

Fusion genes can also be generated at transcription stage due to unterminated transcriptions 

(e.g., stop-loss mutations) or abnormal splicing events (e.g., mutations near splicing site). This 

type of fusion genes is more likely to happen between genes located on the same chromosome.  
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Figure 1-1. Philadelphia chromosome and BCR-ABL fusion [8]. A translocation event between Chr9 and Chr22 

creates an abnormal fusion product BCR-ABL near the junction site.  

 

 

 

3.2. Role of Oncogenic Fusion Genes in Carcinogenesis 

Cancer-susceptibility genes (Chapter 1, section 1) are responsible for carcinogenesis. A 

fusion gene involving one or more of these genes can become oncogenic when it functions as one 

of the following. (a) Promote the expression of a proto-oncogene; (b) Deregulate a tumor 

suppressor gene; (c) Modify the original structure/function of a protein or form a novel abnormal 

protein that stimulates tumorigenesis. Specifically, oncogenic transcription factors such as ERG, 

ETV1, and ETV4 are often fused with androgen-regulated promoters in 50-70% of prostate 

cancer patients [9]. This category of fusion genes (category a) up-regulate the expression of 

oncogenic transcription factors, thereby promoting tumorigenesis [9]. Another transcription factor 
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from the same ETS gene family, ETV6, functions as a tumor suppressor gene and is required for 

hematopoiesis and maintenance of vascular network development [10]. In pre-B acute 

lymphoblastic leukemia, fusions between ETV6 and BZA2A result in the loss of function of 

ETV6 [11] (category b fusion event). One example for category (c) fusion event is FGFR3-

TACC3 fusion in glioblastoma. This fusion gene can promote cell proliferation and tumor 

progression and it can escape the miRNA regulation because of the deletion of FGFR3 3’-UTR in 

the fusion gene [12]. 

 

3.3. Clinical Significance of Oncogenic Fusion Genes 

Fusion events at the genome level are naturally irreversible. Hence, the presence of an 

oncogenic fusion gene in tumor cells is traceable at the genomic or transcriptome level. More 

importantly, these evidences should not be observed in normal cells. Therefore, the cancer-

specific fusion events can be used as special biomarkers for diagnostic and prognostic purposes 

and as ideal drug targets for targeted-therapy.  

In the previous subsection, we described three different types of oncogenic fusion genes. 

Most of the FDA-approved drugs for cancer treatment today target category (a) fusion genes, a 

class of fusion genes that always involves a proto-oncogene (often a protein kinase). Protein 

kinase is a class of enzymes that play a major role in various processes such as regulating protein 

function/structure, enzyme activity, cell-cell signaling, and cell cycle. Category (a) fusion genes 

keep the expression level of a gene in a constant active state, resulting in aggressive cell 

proliferation. In such a scenario, we expect to see high expression level of the fusion gene, 

exclusively in cancer cells. Kinase inhibitors can be designed to target the active proto-oncogene 

product, in order to block the activity of the kinase protein without having too many side effects 

on normal cells. Imatinib, a drug that targets BCR-ABL fusion protein (category (a) fusion gene 

product) in CML, has recorded a global sale of $4.7b in 2012 [13].  
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Fusion genes involving tumor suppressors are category (b) fusion genes and their effect on 

tumorigenesis works differently from category (a) fusions. Tumor suppressors generally have one 

or more functions such as repairing DNA damage, regulating cell cycle, or promoting apoptosis. 

Hence, when tumor suppressors are not expressed or down-regulated, the cell can eventually 

progress to cause cancer. The category (b) oncogenic fusion genes will have similar regulatory 

effect on the tumor suppressors by either negatively regulating their expression level, or even 

create an abnormal fusion product with no or limited function, due to loss of certain functional 

domains. Therefore, category (b) oncogenic fusion genes generally exhibit low expression levels. 

In the drug discovery perspective, it is hard to design drugs to restore the expression levels of 

tumor suppressors to the normal state, in order to “cure” cancer cells. Instead, it is easier to kill 

cancer cells using synthetic lethality. To be more specific, synthetic lethality refers to a situation 

when a mutation of one gene does not lead to apoptosis, whereas combination of that mutated 

gene with other mutated genes does (Figure 1-2). If there exists such two or more genes that 

forms such synthetic lethality interaction, with one of these genes be the oncogenic category (b) 

fusion gene (e.g., mutated Gene B in figure 1-2), drugs that targets the other genes will trigger 

apoptosis in cancer cells because all these genes in the synthetic lethality schema are silenced, 

whereas for normal cells, the tumor suppressor (e.g., wild type Gene B in normal cells) is still 

functional and the normal cells will be viable.  
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Figure 1-2. Synthetic lethality in targeted cancer therapy [14]. Loss of either gene A or gene B does not lead to cell 

death. But loss of both genes will trigger apoptosis. Targeting Gene A will lead to cell death for cancer cells, whereas 

normal cells will still be viable. 

 

Similarly, same strategy can be applied to category (c) fusion genes, depending on the 

functional impact of the oncogenic fusion gene.  

 

4. Summary 

Cancer is one of the leading causes of death worldwide. Fusion genes, one among several 

important classes of mutations observed in various cancers, has received increased attention 

because oncogenic fusion genes are cancer-specific, which makes them ideal drug targets for 

cancer therapy.  The rapid advancement of NGS technology has resulted in affordable 

transcriptome sequencing (RNA-Seq) for cancer patients.  Hence, computational tools to predict 

the fusion genes from transcriptome data are in need more than ever for cancer treatment.  In this 

study, we address this very need by developing ChimeRScope, a tool for accurate prediction of 

fusion genes given the transcriptome data of a cancer patient. 
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Chapter 2: THE DISCOVERY OF FUSION GENES 

1. Introduction 

1.1. Use of sequencing technologies for the discovery of fusion genes 

Before the advent of Next Generation Sequencing (NGS), the most common methods for 

identifying fusion genes were Fluorescence In Situ Hybridization (FISH), and Reverse 

Transcription Polymerase Chain Reaction (RT-PCR). Both the methods require probes (short 

DNA/RNA sequences that are complementary to the target sequences) that are designed to 

specifically bind to the targeted DNA/RNA sequences. Therefore, prior knowledge of the 

candidate fusion genes is required for performing these experiments, which restricts their use on 

large-scale fusion gene analysis.  Moverover, they are also not applicable for identifying novel 

fusion genes.  

Sanger sequencing, or Sanger Dideoxy Sequencing invented by Frederick Sanger and 

colleagues in 1977 represents the first generation sequencing technology. Sanger sequencing 

generates long sequences with high accuracy, which can make the downstream analysis 

(mapping/assembly) much easier when compared to NGS platforms. Sanger sequencing is often 

used in fusion gene analysis as a confirmation step because it can determine the contiguous 

nucleotide sequence of the fusion junctions. However, the bottleneck for Sanger sequencing is the 

low sequencing speed and high costs. In 2011, the average sequencing cost for Sanger sequencing 

is 6,000 dollars per trillion bases (or gigabyte) with a speed of only 1.5 million bases (or 

megabyte) per hour [15]. Comparatively, the sequencing cost for NGS platforms like Illumina is 

100 dollars per trillion bases with a sequencing speed of 20 million bases per hour. Hence, Sanger 

sequencing is also not applicable to large scale fusion gene analysis. 

The rapid advances in the NGS technologies in the past decade provided an excellent 

opportunity to explore the genetic architecture of personal genomes. The low costs and high-

throughput capacities make it possible for sequencing complete genomes/transcriptomes in an 
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efficient manner at an affordable cost. Among all the NGS platforms, Illumina(Solexa) 

sequencing technology has been the most widely used NGS method across the world, dominating 

the field by  taking 70 percent of the market share in the genome-sequencing platforms [16].  

Illumina platform is a massively parallel sequencing (sequencing-by-synthesis) system that uses 

“bridge amplification” to produce millions of short reads at once. To be more specific, the first 

step of Illumina sequencing is to randomly fragment the genomic DNA (or cDNA for 

transcriptome sequencing). Normally, only fragments with length in a certain range (300-500bp) 

will be used for sequencing, in order to improve the overall sequencing quality. If the fragment is 

too short (or shorter than the designed read length), it will introduce adapter contaminations to the 

reported reads because the sequencing range will extend to the adapters. This will lead to several 

problems in the data analysis step. On the other hand, if the fragment is too long, the sequencing 

quality diminishes toward the tail end of the sequence read (Figure 2-1) because longer sequences 

tend to bend, resulting in low sequencing quality for that cluster or even infiltration of adjacent 

clusters during bridge amplification step. After washing out the unqualified DNA fragments, 

adaptors will be added to both sides of the remaining DNA fragments for amplification. After the 

initial fragment amplification step, all these DNA fragments will be amplified and the library is 

ready for sequencing (Figure 2-1a). The bridge amplification step begins by washing DNA library 

across the flow cell. All the DNA fragments in the library will then bind to the flow cell (Figure 

2-1c, part 1). The flow cell is a plate with short oligonucleotides complementary to the adaptor 

sequences. It can have multiple lanes and each lane can form millions of clusters. During each 

cycle of the bridge amplification, a DNA fragment will form a “bridge” with its neighboring 

primer. By using this DNA fragment as the template, it will synthesize a double stranded DNA, 

where the synthesized strand is the reverse (because of the adaptor position) complementary 

strand of the template (Figure 2-1c part 2). Next, the hydrogen bonds between these double 

stranded DNA break and each of DNA strand (including newly synthesized ones) will then form 

a new “bridge” with its neighboring primer. After a certain number of cycles, this “cluster 
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formation” stage will be completed. Ideally, each DNA fragment in the library will be amplified 

in an exponential rate (2number of cycles) and the cluster originated from that DNA fragment consists 

of two mixed sub-clusters (original strand cluster and synthesized strand cluster). In single-end 

sequencing, the synthesized strand cluster will be cleaved and washed out (Figure 2-1c part 3). 

Comparatively, in paired-end sequencing, another cycle of bridge amplification will be conducted 

after the sequencing for the original strand is done, in order to generate the synthesized strand 

cluster within the same cluster. Then, the original strand cluster will be cleaved and washed out, 

leaving the synthesized strand cluster for sequencing (Figure 2-1e).  

Figure 2-1d illustrates how Illumina sequencers capture the chemical signals and translate 

them into human-readable sequence information. Four types of fluorescently labeled nucleotides 

(A, T, C, and G) are added to the flow cell. During each sequencing cycle, only one nucleotide 

will be added to the synthesizing DNA in that cluster and the related fluorescent signal is released. 

Because all the fragments within the same cluster are identical, they will release the same 

fluorescent signal during that sequencing cycle, and the signal will be strong enough to be 

captured by the built-in light sensor (Figure 2-1 d). At the end of each sequencing cycle, an image 

will be taken from the flow cell, capturing all the nucleotides that were added to all the clusters 

during that sequencing cycle. After all the sequencing cycles are done, all the images will be 

stacked together. The nucleotide sequence for a certain cluster (DNA fragment) can be obtained 

by checking all the colors at the corresponding location from the first image to the last image. 

Because the flow cell contains millions of sites in each lane Illumina sequencers can generate 

millions of short reads in one run in the massive parallel manner; thus, drastically improving the 

sequencing throughput. The paired-end reads reported from Illumina sequencers are in the 

forward-reverse direction because of the bridge amplification. For example, a paired-end read of 

200bp (forward read 100bp, reverse read 100bp) sequenced from a DNA fragment of 300bp is 

reported as follows. The forward read reports nucleotide sequence that is the same as the 

fragment from position 1 to 100, and the reverse read reports nucleotide sequence that is the 
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complementary form of the fragment from position 300 to 201. This leaves the 101 to 200 bases 

unsequenced (defined as the insert-size for paired-end reads). This gives information about how 

close the forward read and the reverse read should be, and hence paired-end sequencing is 

extremely useful for accurate alignment of NGS reads to the reference genomes and especially 

aid in resolving alignments near the repetitive regions or multiple alignments.  
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Figure 2-1. Bridge amplification mechanism from Illumina Sequencers [17].  a. Library preparation. Random 

fragmented DNA with certain size (usually 300 to 500bp) were selected and ligated with adaptors on both sides. The 

next PCR amplification step will amplify these DNA fragments in order to construct the complete library for 

sequencing. b. The structure of the Y-shaped adaptor. The Phosphorothioate bond on the 3’ end provides resistance to 

nuclease. c. Bridge amplification. The main purpose of this step is to, for each DNA fragment, generate a cluster of the 

same DNA fragment, thereby creating sufficient fluorescent signals when Sequencing-by-synthesis step actually 

happens. d. Sequencing by synthesis step. Primers and fluorescently labeled nucleotides are added to the sequencing 

chip for sequencing step to begin. When a new nucleotide is added in each sequencing cycle/reaction, the fluorescent 

signal of that type of nucleotide is emitted. Because the sequence cluster formed in the bridge amplification step are 

identical and the reaction time for each sequencing cycle is also constant. Each sequence in the same cluster will emit 

the same fluorescent signal during each sequencing cycle, representing an addition of that nucleotide during that 

sequencing cycle. Once all the sequencing cycles are completed, all images will be stacked together and translated to 

text-based sequencing result. e. During bridge amplification step, each sequence cluster actually contains both the 

original (original strand) form and its reverse-complementary (synthesizing strand) form of the same DNA fragment, 

due to the specific feature of the bridge PCR amplification. In single-end reads experiment, the synthesized strand 

cluster will be washed out and only the original strand will be sequenced. The strategy for generating paired-end reads 

involves an extra step by performing another cycle of bridge PCR. The synthesized strand will be generated in the same 

cluster. This time, the original strand cluster will be washed out and the synthesized strand will be sequenced (resulting 

in forward-reverse direction for Illumina paired-end reads).  
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The first and foremost advantage of using NGS (particularly transcriptome sequencing, or 

RNA-Seq) for fusion gene prediction is that RNA-Seq offers novel and dynamic range of 

transcripts than probe-based methods. RNA-Seq does not require any prior information about the 

fusion gene and no transcript-specific probes are required in the sequencing step. In this case, 

there will not be any preferences on which transcripts (normal transcripts, alternative splicing 

isoforms, and fusion genes) will be captured for sequencing. This is extremely useful for data-

driven research projects, or hypothesis-driven projects with limited information of the target 

fusion gene(s). Other advantages of using RNA-Seq over other probe-based methods include: 1) 

RNA-Seq is a method for comprehensive transcriptome analysis and it is cost-effective; 2) Probes 

designed for the target fusion genes can be less specific if mutations are manifested near the 

probe binding site, which makes the probe-based methods less sensitive to detect such fusion 

genes. Therefore, RNA-Seq has become one of the most widely used methods for fusion gene 

prediction in cancer research [18, 19].  

Although NGS has been widely used in biomedical research, accurate methods that can be 

applied for genome-scale data analysis are still evolving. Each NGS run generates millions of 

reads and it requires enormous computational resources to process and analyze these datasets 

Additionally, NGS technologies like Illumina sequencing have higher error rate (~0.1%) when 

compared to Sanger sequencing (~0.001%). Also, the sequencing quality of the reads from 

Illumina sequencer tends to deteriorate towards the end of the reads due to the technical aspects 

of the Illumina sequencers (e.g., lower fluorescent signals caused by the decreased concentration 

of the fluorescent labeled nucleotides, or sequencing error caused by decreased DNA polymerase 

activity). Accordingly, attention should be paid at the data pre-processing step for NGS datasets. 

Moreover, the read length from Illumina sequencers (100-300bp) is much shorter than that from 

Sanger sequencing (500-1000bp), making the NGS data analysis harder to resolve highly 

repetitive regions than Sanger sequencing reads. Shorter reads also have higher chances of 
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aligning at multiple locations and it will require more sophisticate statistic models to determine 

the original genomic locations for these reads.  

 

1.2. Current methods for fusion gene prediction using RNA-Seq 

Over the last several years, many methods have been developed for detecting fusion genes 

from RNA-Seq datasets, most of which are alignment-based methods (methods that perform 

sequence alignment). Sequence alignment is a way of comparing two or more sequences, in order 

to identify similar (homologous) regions. Generally, there are two different approaches for 

sequence alignment: global alignment and local alignment. Global alignment is used to compare 

two sequences that are similar with approximately the same size, whereas local alignment often 

aligns a shorter sequence (such as NGS reads) to a substring of a longer sequence (such as the 

reference genome) and it is more suitable for this problem. Therefore, in NGS data analysis, 

pairwise local alignment is used by these alignment-based methods for determining the most 

possible origins of the reads by checking which part of the genome/transcriptome contains the 

most similar sequences to those reads.  

Here, we take the most representative local alignment algorithm used in NGS data analysis, 

the Smith-Waterman algorithm, as an example to briefly explain the details of how sequence 

alignment works. The Smith-Waterman algorithm, first introduced by Temple F. Smith and 

Michael S. Waterman in 1981 [20], is a dynamic programming algorithm that aligns all the 

possible combinations of the segments from two sequences and reports the best similarity 

measure between two subsequences of the query sequences. Figure 2-2 illustrates the detailed 

calculation step using SW algorithm. Here, SeqA of size 8bp (CTTAAGCG) and SeqB of size 7bp 

(GGAGCGT) were aligned against each other using a parameter set, where a match scores +2 and 

a mismatch scores -1. The first step is to construct a 2D matrix H of size a+1 by b+1, where a is 

the size of the first sequence (i.e. SeqA) and b is the size of the second sequence (i.e. SeqB). The 

H matrix is build using following rules.   



17 
 

 

1

1

( ,0) 0, [0, ]
(0, ) 0, [0, ]

0
( 1, 1) ( , ), /

( , ) max , [0, ], [0, ]
max { ( , ) },
max { ( , ) },

k k

l l

H i i a
H j j b

H i j m i j match mismatch
H i j i a j b

H i k j W deletion
H i j l W insertion





 

 

 
 

   
   

  
   

 

 

 

The basic idea of this algorithm is, for a given cell H(i, j), the score of that cell is calculated 

based on the scores of the top, left and top-left cells, represented by H(i, j-1), H(i-1, j), and H(i-1, 

j-1) respectively. Three new scores will be generated from each of these three directions and the 

maximum score will be taken for H(i, j). The new score from top-left cell is updated with m(i,j). 

In the example in Figure 2-2, m(i,j) is defined as +2 if ith character from SeqA matches jth 

character from SeqB, or -1 if otherwise. The new scores calculated from the left cell or the top 

cell are updated based on W (gap-penalty score). If the gap-penalty score is a constant value w, 

meaning the gap-opening penalty and the gap-extension penalty are the same (e.g., gap penalty is 

-1 in Figure 2-2), the new score is calculated directly by using H(i-1, j)-w and H(i, j-1)-w for cells 

from left and top, respectively. If the gap-penalty score is different (e.g., most frequently used 

parameter set is, match = 2; mismatch = -3, gapOpen = 5, gapExtension = 2), then, the gap-

penalty score W for a gap of size g should be calculated as W= gapOpen + (g-1)* gapExtension. 

If all of these three new scores are negative, it will reset the score to zero for the current cell. 

Therefore, bad alignment results from previous regions will not affect the score for other 

unchecked combinations. Once the whole scoring matrix done updating, we trace back from the 

cell with the highest score to each of the previous cell where the maximum score of that cell is 

generated from. The corresponding tracing path is the final alignment result. The example in 
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Figure 2-2 shows the best trace path H(8, 6) -> H(7,5) -> H(6,4) -> H(5, 3), which gives the best 

local alignment sequence “AGCG”.  

 

Figure 2-2 SW-algorithm example. A sequence match scores +2, a mismatch scores -1, and gap penalty is 1. 

Alignment result for SeqA and SeqB found a high similar subsequence “AGCG”.  

 

 

Table 2-1 lists 10 of the most widely used fusion gene detection methods using RNA-Seq 

data. These methods are all alignment-based methods. Based on different alignment strategies 

they use, these methods can be further categorized into five different groups. 1) FusionSeq [21], 

deFuse [22], FusionHunter [23], and SOAPfuse [24] identify discordant paired-end reads with the 

forward read completely aligning to one gene, and the reverse read completely aligning to another 

gene (referred to as spanning reads). The fusion junction falls in between the insert-size region, 

or inside the gap between the paired-end reads. Then, they will look for paired-end reads that 

align across the gene fusion boundary (referred to as split reads. Fusion junction is inside the 

forward read or the reverse read. Or the forward/reverse read is split by the fusion junction). 2) 

Methods such as FusionFinder [25], create smaller pseudo paired-end reads (pseudo-PE reads) 
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from each read by discarding the middle part of each single read. The smaller fragments from the 

pseudo-PE reads are then aligned to different genes separately. If there are enough pseudo-PE 

reads that have similar alignment pattern as the spanning reads for a gene pair, this gene pair will 

be reported as a fusion gene. 3) Tophat-Fusion [26] splits each single read into three equivalent 

fragments and tries to align the first fragment and the last fragment to different genes, just like the 

strategy used by FusionFinder for pseudo-PE reads. Next, if a fusion pair is obtained, the middle 

part of the read is then used to confirm the fusion boundary of that gene pair. For MapSplice [27], 

it splits the reads into more than three parts. Then the strategies of identifying fusion pairs and 

confirming fusion boundaries for MapSplice are quite similar to Tophat-Fusion. 4) FusionMap 

[28] and FusionCatcher [29] look for splitting reads from unmapped reads directly using a more 

exhaustive search approach. 5) JAFFA [30] performs the assembly from the short reads and 

constructs the data-specific contigs. These contigs are then aligned against the reference 

transcripts. If the contig sequence can be mapped to two genes exclusively without the mapped 

regions from each gene overlapping with each other, this gene pair will be considered as a fusion 

gene candidate for downstream analysis.  

 

Table 2-1. 10 most widely used fusion gene prediction methods published since 2010. These methods are all 

alignment-based methods (sorted by published date). 

Name Author Affiliation Publish date Journal 

FusionSeq Weill Cornell Medical College 2010/10 Genome Biology 

MapSplice University of Kentucky 2010/10 Nucleic Acids Research 

deFuse University of British Columbia 2011/05 Plos Computational Biology 

FusionHunter University of Illinois at Urbana-Champaign 2011/06 Bioinformatics 

FusionMap Amgen Inc 2011/07 Bioinformatics 

TopHat-Fusion University of Maryland 2011/08 Genome Biology 

FusionFinder The University of Western Australia 2012/06 Plos One 

SOAPfuse Beijing Genome Institute 2013/02 Genome Biology 

FusionCatcher Orion Corporation 2014/11 bioRXiv 

JAFFA Murdoch Childrens Research Institute 2015/05 Genome Medicine 
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Sequence alignment, in contrast to alignment-free algorithm, has advantages in sequence 

analysis in certain conditions. It computes all possible pairwise comparisons between short reads 

and the reference genome sequences, and it will give excellent outcomes when the reads correctly 

map to the reference genome [31]. However, the reference genome used in most of the analysis is 

the one assembled from healthy individuals (e.g., human reference genome GRCh37/hg19 is 

derived from 13 healthy individuals). Aligning reads originated from perturbed cancer genome 

against the normal reference genome will prevent those reads from achieving good alignment, 

especially in the complex rearranged regions where fusion events occur, thereby resulting in low 

prediction accuracies [32]. 

  

2. Predicting fusion genes using alignment-free approach   

2.1. ChimeRScope method Overview 

Alignment-free methods are based on a broad collection of methods, including those based on 

k-mer frequency or substrings, on information theory, on graphical representation, or on sequence 

clustering. In this project, we designed a novel method named ChimeRScope (implemented in 

Java) for fusion gene prediction by assessing gene fingerprint (in the form of k-mers) composition 

from RNA-Seq short reads for fusion gene prediction. Unlike other methods that rank fusion 

candidates based on the number of supporting reads with reliable alignment, ChimeRScope 

generates gene fingerprint profile for each read and assigns different weights to the read based on 

the pattern of its gene fingerprint profile. This novel approach eliminates the need for alignment 

of reads to the reference genome; hence it is expected to work better with tumor transcriptomes 

that are encoded by severely perturbed cancer genomes. Specifically, a Gene Fingerprint Library 

(GF-library) will be constructed before the analysis (ChimeRScope Builder, Chapter 2 

Subsection 2.2). This GF-library stores every possible gene sequence of size K, along with the 
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gene IDs that contains that k-mer sequence. Then, discordant reads that fail the initial alignment 

step in the standard RNA-Seq data analysis will be used as input for ChimeRScope. This helps to 

reduce the search space and improves the search speed. After that, a k-mer list will be generated 

using all possible substring of length k for each discordant read. A fingerprint profile will then be 

obtained by searching each k-mer of that read against the GF-library for gene IDs that contain that 

k-mer. Reads containing two sets of gene fingerprints from different genes will be scored based 

on the quality and the quantity of the fingerprint sequences. Such reads will then be marked as a 

Fusion Event Supporting Read (FESR) that supports the fusion event of corresponding genes 

(ChimeRScope Scanner, Chapter 2 Subsection 2.3).. After parsing all the discordant reads using 

this approach, all predicted fusion events will be ranked according to the overall scores of their 

FESRs (ChimeRScope Sweeper, Chapter 2 Subsection 2.3).. Our method is less vulnerable to the 

high rate of chromosomal abnormality (SNP, INDELs, translocation, and inversion, etc.) of 

cancer genome. For instance, if an inversion and an insertion both happened near a fusion 

junction and one read is generated from that fusion transcript, other tools will not be able to 

achieve reliable alignment because of this complicated chromosomal rearrangement. 

Consequently, this fusion read will be discarded. However, this read should still contain several 

gene fingerprints. ChimeRScope is capable of capturing those gene fingerprints (which indicates 

high sensitivity) and will predict this read as an FESR, although with relatively lower weightage 

score. We also implemented a targeted alignment module that maps the FESRs against the related 

fusion partners for detailed forms of the fusion genes. The results are reported in both text format 

and graphical outputs (ChimeRScope Examiner, Chapter 2 Subsection 2.5). Detailed methods and 

results will be discussed in the following chapters.  

 

2.2. ChimeRScope Builder: constructing of species-specific Gene Fingerprint libraries 

GF-library serves as a dictionary of k-mers so that for a given sequence of size k, the list of 

genes that contain that k-mer (considered as a gene fingerprint) can be retrieved in a constant time, 
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irrespective of the input data size (O(1) time complexity). The first step for the GF-library 

construction is to obtain the nucleotide sequences for every transcript. TopHat2 [33] aligner 

provides a script called gtf_to_fasta that takes the reference genome file (.fasta) and the gene 

model (in Gene Transfer Format, *.gtf) as inputs, outputting a single file that contains all the 

nucleotide sequences for all the transcripts in the gene model. Example command for gtf_to_fasta 

is shown as follows. 

1 ## example for human reference genome hg38 
2 gtf_to_fasta hg38.gtf hg38.fa hg38_allRNAs.fa 
 

 Once we obtained the file that contains all the nucleotide sequences for all transcripts, we can 

create the k-mer profiles for all transcripts by generating all the subsequences of size k from each 

transcript sequence. Each of these k-mer profiles contains all the unique k-mers found in that 

transcript. We then compare all the k-mer profiles, in order to get the dictionary file that tracks 

the origins for all k-mers (Figure 2-3). 
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Figure 2-3. Screenshot of the example k-mer library in the early development version (k=25). The first column 

shows the 25-mers and the second column lists all the related genes with 25-mer. Each element in the gene list is 

separated by a comma and each element contains information like built-in ID, chromosomal location of the gene, and 

the location of the k-mer in the sequence.  

 

 

According to NCBI (National Center for Biotechnology Information) Reference Sequence 

Database (RefSeq annotation), there are 38,834 annotated mRNAs (at transcript level) in the 

latest built of human reference (GRCh38/hg38). Depending on the size of the k-mer, there will be 

60 to 75 million unique k-mers (when k ranges from 15 to 29) shown in all these transcripts. For 

each discordant paired-end read, we compare all the k-mer sequences against the GF-library. The 

idea is to check every k-mer for all discordant paired-end reads (millions in average sized datasets) 

against the GF-library. Therefore, it is crucial to choose the most optimal data structure in order 

to solve the searching problem in constant O(1) complexity time. 
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2.2.1. Data structure for the GF-library 

Alignment-free methods are often memory-intensive. During the development stage of 

ChimeRScope, we have tested many different data structures. Here, we discuss each of the data 

structure we have tried and the performance of that data structure.  

 

2.2.1.1. HashMap  

HashMap is an implementation of Map class in Java. It uses hash functions to each hash key 

to track the hash value. The average search time complexity for HashMap is O(1). During early 

development stage, we stored detailed information of the k-mers in the HashMap, including gene 

IDs, chromosomal location, and fingerprint position (Figure 2-3). The library file was also saved 

to the hard disk using the default UTF-8 encoding. The average running time for creating such 

GF-library took more than 8 hours to finish by consuming 25 GB of RAM. It is still feasible to 

use because GF-library only needs to be created once. However, the primitive structure of the 

hash key and hash value makes it very slow and memory-intensive for massive data analysis.  

We introduced binary transformation for k-mers and the gene IDs using the following ideas. 

Before binary transformation, the hash key in GF-library is a String object of size k. A String 

object in java can be considered as an array of Char type (character type known as ‘Char’ in 

computer science to represent any of the 256 printable characters), and each Char takes 16 bits. 

Therefore, each k-mer in the HashMap takes 16*k bits. Each hash value is an array of strings with 

each element in the array stores all the related information for each gene with that k-mer. The 

estimated size for each hash value is at least 40*n (n denotes the total number of associated 

transcripts and 40 is the estimated length of each string element, see Figure 2-3). Here we convert 

all these Strings into the binary forms using mapping functions. Each character in k-mer 

represents a nucleotide, and it can only take 4 different values (A, T, C, G). Here, we encode each 

‘A’ into ‘00’, ‘T’ into ‘01’, ‘C’ into ‘10’, and ‘G’ into ‘11’. Every four nucleotides can now be 
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converted into a 16-bit binary String, which can then be converted into one Char. Therefore, there 

will be up to four times decrease in size for hash value (Table 2-2).  

As we mentioned earlier, there are 38,834 transcripts in human reference model. In the 

improved version, we assign a built-in ID of two Chars (reserved for up to 2*216=131,072 

different values) for each transcript. The hash value is now a String of size 2*t, where t is the 

number of associated genes for the hash key.  

 

Table 2-2. Estimated improvements for the HashMap object using binary transformation. There is up to 4 times 

reduction for hash key and at least 20 times improvement in average for hash value. Here, k is the size of the k-mer, and 

t is the number of genes associated with the hash key.  

Binary Transformation Before After Improvement rate 

Hash key (k-mer) k  
4

ak 
 
 

 Up to 4 times 

Hash value (gene lists) 40 t    2 t   At least 20 times  

a The math symbol here is the ceil function. Ceil function round up the number to the smallest following integer. 

  

 The binary strings of zeroes and ones can be interpreted directly as a numeric value by 

computers. Each binary string for hash key is converted to the Chars as an extra computational 

step. To test if the conversion step is necessary or not, we compare the computational costs for 

Long (a numeric data type that takes 64-bits, equivalent to four Chars in size) keys against Char 

keys with equivalent size in bits. Results (Table 2-3) have shown that HashMap using Char as 

keys perform much better than Long keys when the number of entries increases (average GF-

library size is 70 million).   
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Table 2-3. The writing (write the object to the local disk) and the reading speed of the HashMap object using 

Long type or Char type as hash key data type. Tested for HashMap with 1,000 to 1,000,000 entries. The values are 

in nanoseconds. The ones with better performance in each group are highlighted in red. 

Number of entries 
Writing speed (nanoseconds) Reading Speed (nanoseconds) 

Long Char Long Char 

1,000 21,042,746 43,611,302 18,627,304 42,011,000 

10,000 107,513,624 57,007,196 101,237,318 57,720,639 

100,000 971,794,028 364,712,442 822,193,258 393,103,809 

1,000,000 9,389,967,972 7,762,445,515 18,838,800,741 8,892,180,472 

 

 In summary, we used the HashMap data structure for GF-library. Since the size of the GF-

library is too big, several approaches were used to improve the performance. The final GF-library 

uses the binary transformed String (Chars) as hash keys, and the shortened String as the hash 

values (every two Chars represent a gene ID). The detailed improvement for GF-libraries used in 

analysis listed in Table 2-4.  
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Table 2-4. Average run time, memory consumption, and library size on local disk for GF-libraries with different 

k value on average sized datasets. The code improvement shows that, for the same 25-mer library, the time costs 

decreased from 25 hours to only 25 mins (60 times improvement). It also reduces the memory usage from 100 GB to 

only 16.2 GB (approximately six times improvement). The size of the library object on the local disk dropped from 7.9 

GB to only 1.8 GB (about four times smaller). 

 Before After improvementa 

k-mer size (bp) 25 13 15 17 19 21 23 25 27 29 

Time (minutes) 25 hrsb 17 25 25 25 26 22 25 26 25 

Memory (GB) ~100 10.8 16.5 17.4 19.3 16.4 14.6 16.2 15.5 21.8 

File size (GB) 7.9 1.1 1.4 1.6 1.6 1.6 1.6 1.8 1.8 1.9 

a The memory usage is calculated using TotalMem()-freeMem() functions during the running time. The actual memory 
usage should be smaller.  

b Average time cost for analysis using initial GF-library takes 25 hours, comparing to only 25 mins for the same GF-
library after the code improvement.  

 

 

2.2.1.2. Other data structures 

 ChimeRScope loads the entire GF-library into RAM (Random-Access Memory) in the 

beginning of the analysis. Therefore, a minimum usage of 16 GB RAM is required before the 

analysis starts. To optimize the memory consumption, we tried several alternative indexing 

methods or data structures. However, none of these performed better than the HashMap.  

 

Java RandomAccessFile class 

 Java RandomAccessFile class can be used to access the specific location of a random access 

file. It works as a file pointer and it can access the specific byte location of a file in O(1) 

complexity time (however slower than HashMap when number of entries are huge) without the 

need for loading the file into RAM. Using this strategy, we tried several data structures where 
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each k-mer can be mapped to a numeric value that is directly associated to the byte location of the 

corresponding gene IDs.  

 A data structure we applied to reduce the usage of RAM is a ‘large bytes array’. We defined 

that for each k-mer, if that k-mer can be found in more than 100 transcripts, it is considered as a 

common k-mer and will not be used as a gene fingerprint. The maximum length of the gene IDs is 

100*32-bits (each gene ID takes 32 bits), which is the maximum of 400 bytes per k-mer. In 

theory, for a k-mer of size of 17, there will be 417 (~17.2 billion) possible k-mers (the actual 

number of 17-mers for human reference genome is around 62 million). It is necessary to reserve 

the maximum space for all possible k-mers for consistency. Now, for a given k-mer that ranked at 

x (can be easily calculated), we can get the related gene IDs by looking at position 400x in the file. 

However, the estimated size of the index file will be over one petabyte, which makes it 

unpractical to use.  

 We also tried to group k-mers and built separate index files within each group. This reduces 

total number of entries and at the same time, averages the maximum number of Gene IDs per k-

mer by releasing unnecessary space reservations. One example we tried is to mask the last 4-mers 

for each 17-mer. Therefore, there will be 413 = 67,108,864 entries and each entry contains 

information for 44 = 256 k-mers. However, it still takes at least 4*417 (~68.7GB) even if in 

average, all k-mers were unique k-mers.  

 Next, we separated the GF-library file into two different files. One of the file is the index file 

that serves similar purpose as previous attempts. The difference is, instead of returning a list of 

gene IDs, it returns two numeric values. The first value is the start location of the k-mer while the 

second value is the size of the gene list. Then, these two values will be used to retrieve gene IDs 

from the second file. This data structure completely removes the necessity for space reservation. 

However, the sizes of these two files are still huge (each takes more than 200GB hard disk space). 
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Moreover, generating such index files also takes very long because of the calculation and large 

number of I/O operations (>20 hours).  

 

Java FileHashMap class 

 Java FileHashMap class belongs to Map class. Instead of loading the whole Map into the 

memory, FileHashMap only keeps the hash keys in memory. The hash values are saved as 

serialized objects in a random access disk file. It will create two files, one with a *.ix extension 

(index for hash keys) and another with a *.db extension (hash values). The loading time for GF-

library using FileHashMap takes less than 1 minute, comparing to ~17 mins for HashMap class. It 

also reduces the memory usage to only 4 GB. However, the downside of FileHashMap is the 

search time. The time cost for each searching query is 100 times slower than HashMap. For 

analysis involving millions of short reads, the time cost makes FileHashMap less affordable even 

with the improvement on memory use.   

 

 In Conclusion, considering all the advantages and disadvantages of the data structures tested, 

we chose HashMap class as the data structure for constructing the GF-library. The huge HashMap 

(GF-library) is generated by comparing all the k-mers for all transcripts, and saved to local disk 

using java ObjectOutputStream as a binary file. Moreover, the binary transformation of k-mers 

and gene IDs greatly improves the computational performance. Other data structures were not 

used for GF-library due to various issues such as data storage or searching speed.   

 

2.2.2. Determining the optimal k-mer length 

The size of the k-mer will not only affect the size and the memory usage of the GF-library, it 

will also affect the sensitivities and specificities in the fusion gene prediction method. We used 
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the following criteria to optimize the best k-mer size. (1) k should not be too small, because a 

small k will generate redundant gene fingerprints; (2) k should not be too large because it 

generates too many unique k-mers resulting in a large search space.  Also, a large k-mer will be 

more vulnerable to mutations (e.g., a SNP occuring in a k-mer at position 18 can affect a 19-mer 

but not a 17-mer). (3) k should be an odd number due to the design of the algorithm (k-mers were 

tracked using the index of the central nucleotides; hence, the inversion of the sequence will not 

alter the value of that index.  

To decide the most optimized k value for human reference genome GRCh38/hg38 (with 

38,834 mRNA transcripts), we plotted the k-mer composition for all k-mer libraries with all the 

odd k from 13 to 29 (Figure 2-4A). We defined that GF-libraries with higher level of 

discriminative k-mers (or lower Shannon Index [13]) are generally better for evaluating gene 

fingerprint sequences [34]. Shannon Index, known as Shannon’s entropy, quantifies the 

uncertainty in predicting the species identity of an individual that is taken at random from the 

dataset [35] (initially described in ecological literature [36]). We calculated the Shannon Index 

using 
1

' ln
R

i i
i

H p p


  (i refers to a k-mer type and pi is the percentage of that  -mer type. R is a 

collection of k-mer types that have been seen in no more than 100 transcripts) for these k-mer 

libraries, in order to measure the uncertainty in predicting the origins of the reads using different 

k-mer libraries. Higher the Shannon Index, more challenging it is to correctly predict the origins 

of a read. Results (Figure 2-4) have shown that k=17 is the most optimized k-mer size for human 

reference model (GRCh38/hg38) because it is the smallest k size that gives the equivalent levels 

of discriminative fingerprints (or similar low levels of Shannon Index) as those GF-libraries with 

larger k values.  
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Figure 2-4. k-mer percentages for nine selected k-mer libraries (GRCh38/hg38, RefSeq mRNAs only). (A) The k-

mer percentages for nine selected k-mer libraries (k=13, 15, 17, 19, 21, 23, 25, 27, 29) are plotted using 3D line chart, 

where each line in this chart represents a unique k-mer library. Libraries with larger k values are plots to the further side 

of the figure. The x-axis lists all k-mer classes (characterized by the number of transcripts that use the k-mer as a 

fingerprint) and y-axis shows the corresponding percentages of the k-mer class in the certain k-mer library. For instance, 

approximately 48% of the k-mers in the 15-mer library are unique fingerprint sequences (y=48% when x=1 and k=15). 

For each k-mer library, the majorities (~99%) of the k-mer classes are those discriminative k-mers with less than 10 

associated genes. Overall, larger k often gives better k-mer library because it contains more discriminative k-mers 

(higher value towards left part of the x-axis). (B) Shannon Indices for all nine GF-libraries. GF-libraries for k=17 or 

larger have similar low levels (~1.400) of Shannon Indices (highlighted in the red box). Consequently, k=17 is the 

optimized k-mer size for GRCh38/hg38 because k=17 is the smallest k-mer size that gives highest levels of 

discriminative k-mers (or roughly lowest Shannon Index). 

 

 

To conclude, we choose k=17 as the most optimized k-mer size for GRCh38/hg38 because it 

is the smallest k value that gives the highest levels of discriminative k-mers (or low Shannon 

index), comparing with the k-mer libraries with larger k (Figure 2-4). 
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 We further evaluated the fingerprint sequences in the 17-mer library and plot the ranked 

distribution of all unique k-mers (Figure 2-5) for 17-mer GF-library. Results have shown that 

approximately 82% of all the transcripts (31501/38834=81%) have at least 10 unique fingerprint 

sequences. The figure also shows that more than 32,026 transcripts have at least one unique 

fingerprint sequence. Additionally, results from other discriminative k-mers (k-mers found in less 

than ten transcripts) have shown that more than 99.4% (38587/38834) of the transcripts contain at 

least one of these fingerprint sequences, suggesting 17-mer GF-library contains sufficient 

fingerprint sequences for most of the transcripts/genes. 

 

Figure 2-5. The distribution of unique 17-mers across all transcripts. All transcripts are ranked based on the 

number of unique 17-mer fingerprints. Nearly half of the transcripts have at least 100 unique 17-mers. More than 

32,000 transcripts have at least one unique fingerprint sequence.  
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2.3. ChimeRScope Scanner: identifying Fusion Event Supporting Reads from discordantly 

aligned reads 

2.3.1. Extracting discordantly alignment reads 

During the sequencing stage, most of the expressed RNAs (not only fusion transcripts) will 

be captured and sequenced into short reads. Because reads generated from normal transcripts will 

not support any fusion events, instead of searching fusion genes from the whole RNA-Seq 

datasets, we can align all the short reads against the normal reference genome, in order to filter 

out reads originated from normal transcripts. This will greatly reduce the search space to 10% of 

the total reads as only the discordant reads (reads that failed to align or aligned with conflicted 

insert-size) will be used for fusion gene prediction. Any aligners that support spliced alignment 

(e.g., TopHat/TopHat2 [33, 37], STAR [38]) for RNA-Seq short reads can be used in this step. 

For example, we can use Tophat2 to align paired-end reads (in *.fastq format) against reference 

genome (indexed genome, precisely). The aligned reads are then saved into a single file called 

accepted_hits.bam, whereas the unmapped reads are saved into a separate file named 

unmapped.bam. We can retrieve all discordant reads using SAMtools [39] from these two BAM 

files (Binary Sequence Alignment/Map format) based on the bitwise flag value of the reads. All 

the discordant reads can be converted back into the original fastq format using bamtofastq from 

BEDTools [40] repository. An example of bash script for this step is given as follows.  
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1  #!/bin/sh 

2  

3  ## Set the path for required files, along with other necessary parameters 

4  OUTDIR=[OUTPUT_DIRECTORY]    #Output directory 

5  INDEX=[PATH_TO_INDEXED_GENOME]   #Bowtie1 index 

6  READ1=[PATH_TO_FORWARD_READ] #Read 1 in paired-end read 

7  READ2=[PATH_TO_REVERSE_READ] #Read 2 in paired-end read 

8  THREADS=[NUMBER_OF_THREADS]  #Multi-threads 

9  

10 ## alignment using tophat2 with bowtie1 index (just an example) 

11 tophat2 -p $THREADS --bowtie1 --output-dir $OUTDIR $INDEX $READ1 $READ2 

12 cd $OUTDIR 

13  

14 ## Retrieve discordant reads (FLAG = 2) 

15 ## -f = INCLUDE; -F = EXCLUDE. -b = output binary format 

16 samtools view -F 2 -b accepted_hits.bam > discordant.bam 

17 

18 ## Combine discordant reads with other unmapped reads 

19 samtools cat -o merged_unmapped.bam discordant.bam unmapped.bam 

20 

21 ## Sort the merged BAM file based on read name  

22 ## bamToFastq requires the BAM to be sorted on read name 

23 samtools sort -n merged_unmapped.bam unmapped_sorted 

24 

25 ## Retrieve all reads with primary alignment (duplicates are removed) 

26 ## FLAG 256 means "not primary alignment" 

27 samtools view -F 256 -b unmapped_sorted.bam > unmapped_sorted_primary.bam 

28 

29 ## Convert all retrieved reads into fastq format. 

30 ## unmapped_1.fastq and unmapped_2.fastq are input reads for ChimeRScope 

31 bamToFastq -i unmapped_sorted_primary.bam -fq unmapped_1.fastq -fq2 unmapped_2.fastq 

  

 

2.3.2. Evaluating fingerprint sequences 

As we mentioned earlier, Illumina’s paired-end sequencing reads are in forward-reverse 

orientation. Therefore, for k-mers derived from paired-end reads, we will also need to check their 

reverse-complementary forms. Moreover, genomic variations like chromosomal inversion can 

also happen, which can inverse the direction of the genes in the genomic level. In this case, we 

should also check the reverse form (reverse of the original form) and the complementary form 

(reverse of the reverse complementary form) for these k-mers. In total, four different forms for 

each k-mer will be assessed, including original form (sequenced from template strand), reverse-

complementary form (sequenced from non-template strand), reverse form (sequenced from 

template strand with an inversion), and complementary form (sequenced from non-template 

strand with an inversion).  
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ChimeRScope treats each gene fingerprint (k-mer) differently. A commonly observed gene 

fingerprint (shared in many transcripts) should have a small weightage score, whereas unique k-

mers should be assigned with higher weightage scores because they are more discriminative. We 

also defined that for a common k-mer with more than 100 associated IDs, this k-mer will not be 

used as a fingerprint sequence. Using this idea, we calculated the weightage score of a given k-

mer using the following scoring function. The final weightage score ( )w x  is a normalized score 

that ranges from 0 to 1. The higher the score, the more unique the k-mer is.   

( ,100)1
100

1

10 1( ) , [0,1)
10 1

min x

w x w



 


 

x = total number of unique IDs associated with the k-mer (and other variations) 
 

 We also tested the scoring function using Euler’s number e as the base instead of 10. There is 

not much difference for the final result between these two different bases.  

 

2.3.3. Detection of Fusion Event Supporting Reads (FESRs) 

 We model the problem of identifying the fusion genes from discordant paired-end reads into 

a problem in graph theory. Figure 2-6 shows an example of how we define a FESR based on its k-

mer content. Details of the algorithm in mathematic terms will be shown later.  
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Figure 2-6. Strategies used in ChimeRScope for identification of FESRs: an example. (A) A discordant paired-end 

read (100bps x 2) that fails the alignment against the reference genome is plotted in a circular layout with each 

nucleotide base type represented by a unique color. (B) Four different variations (original, reverse, complementary, 

reverse complementary) for each possible k-mer in the read (the 11th 17-mer for read 1 from base 11 to 27 is shown in 

this example) will be created and searched against the k-mer library, in order to obtain, (C) a list of gene IDs that uses 

the corresponding k-mer as fingerprints. Each block represents a k-mer and each color here represents a unique gene ID. 

For example, four genes (G1: red, G2: green, G3: yellow, and G4: orange) are related to the 11th 17-mer (from the 11th 

nucleotide to 27th nucleotide, as highlighted in grey region) and two genes (G1 and G4) are associated with the 29th 17-

mer (highlighted in light yellow). (D) A complete graph is drawn for all genes that are associated with both reads (in 

this figure there are 8 genes). Each vertex in the complete graph represents a unique gene with the size of the vertex 

proportional to the overall fingerprint weightage score (defined in the previous section) for that gene. The edge value 

between two genes is defined by the distance (denoted as d) between two closest fingerprints of the gene pair (only a 

few values are listed). Two genes with edge value less than the k-mer size will have at least k-d nucleotides overlap. 

Gene pairs with small distance values tend to be false positives due to the similar sequences (Chapter 2, subsection 

2.4.1.2). Here, if we define that only those gene pairs with less than 5 bps overlap (or with the distance more than 17-

5=12) can be valid fusion candidates, this read will be classified as a FESR that supports the fusion between G1 and G6 

because G1 and G6 are two of the largest vertices with the edge value larger than 12.   
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 Here we list all the notions we used in the following paragraphs for better explanations.  

N : The total number of the discordant reads 

iR  : The ith read, [1, ]i N   

iL : The length of iR  

iJ : Total number of k-mers in iR  

k : The size of the k-mer, should be the same as k defined in GF-library 

( )j iS R : The jth k-mer in  iR , [1, ]j J  

( )j iH R : The list of transcripts that contains fingerprint sequence  ( )j iS R  

jZ : The size of ( )j iH R . ( ( ))j j iZ size H R  

( )j iw R : The weightage score for ( )j iS R . 

( ,100)
1

100

1

10 1( )
10 1

jmin Z

j iw R






 

( )iU R :  The list of all transcripts shown in the read iR  

ix : The size of the unique transcript ID list ( )iU R  

( )i iG x :  An array of transcript IDs for iR  with the size of ix  

( )i iM x  or M : A two dimensional square matrix ( [ , ]i i iM x x  ) that tracks overall weightage score for 

each transcript and the overlap relationship between each transcript pair. 

iD  or ( )i iD x : iD is the diagonal array of ( )i iM x , It stores the overall weightage scores for all 

transcripts related to iR . Can be calculated as [ ] [ , ], [0, )i i iD t M t t t x    

iP : The gene fingerprint profile for  iR . iP  can be represented by a vector ( ( ), ( ))i i i i iP M x G x  

d : The parameter that defines whether two fingerprints are considered as overlap or not.  

( , , )x yconf i G G : The confidence score of iR  that supports fusion event between xG and yG  

( , )x yF G G : The overall confidence score for fusion event between xG and yG  
 

 For each discordant paired-end read, we pose a sliding window of size k from its start 

position 1 to the last possible position 1iL k  , in order to generate all k-mers from ith read ( iR ). 

For jth k-mer ( )j iS R  in this read, we check its original form ( [1]
jS ), reverse-complementary form 

( [2]
jS ), reverse form ( [3]

jS ), and complementary form ( [4]
jS ) against the GF-library, in order to 

obtain the list of transcript IDs associated with each variation ( [1]
jH , [2]

jH , [3]
jH , and [4]

jH ). 

Next, we calculate the union set of transcript IDs for this k-mer, represented by 
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4
[ ]

1
( ) ( )a

j i j i
a

H R H R


  . The weightage score of this k-mer ( )j iw R  can be calculated using the 

scoring function we described before. Once all the k-mers have been processed, we can obtain the 

union set of all transcripts for this read using 
1

1
( ) ( )

iL k

i j i
j

U R H R
 



 .  

Next, we initiate the 2D square matrix ( )i iM x , The row and column index can be projected 

to the same index for genes in ( )iU R . We only utilize half of the matrix , ( )a bM a b . 

, ( )a bM a b or iD  is the diagonal array and it stores the quantitative value of overall fingerprint 

weightage score for all the transcripts identified in iR . For each k-mer in iR , we update the 

elements in iD by adding the weightage score of the k-mer to these elements if the corresponding 

transcripts use this k-mer as a fingerprint sequence. Comparatively, , ( )a bM a b stores the 

distance (denoted as d ) of two closest k-mers for each transcript pair after all the k-mers are 

parsed. If the distance is too small for the transcript pair, it suggests that these two transcripts 

share a common sequence of size k d . ChimeRScope classifies such transcript pair as potential 

false positive (here we use transcript instead of gene for conveniently describing the problem, 

fusion genes found by ChimeRScope have to be between two different genes). The principle 

behind this can be described with the following example. Suppose we have 1d  and 17k  for 

gene X and gene Y in iR , it means that these two genes share a common sequence of length 16. 

Suppose the read is sequenced from the cDNA of gene X only and there is a point mutation right 

after the “common sequence”. There is a 1/3 of the chance that this mutation will change the k-

mer originated from gene X into the k-mer derived from gene Y. Using the strategy we described 

in this subsection without the distance filter, this read will support a fusion event between gene X 

and gene Y while it is actually sequenced solely from gene X. If the distance value is less than the 

cut-off for a transcript pair, we define this transcript pair as an overlapped pair and filter it out. 
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The selection of the most optimized distance cut-off will be described in subsection 5.2 of this 

Chapter.  

The problem of identifying FESR can be described as follows using mathematical terms.  

Find the index of the maximum value in the diagonal array 

,arg max( ), [0, )a a i
a

m M a x    

If there exists a value of s where  

 , ,arg max( ), { | ( ) &( )}a a a m
a

s M a a M d a m      

 Here we have , ,a m m aM M  if a m  

Then, this read (ith read) supports fusion between mG and sG with a confidence score of 

( , , )m sconf i G G  

 , ,
2

4
( , , ) m m s s

m s
i

M M
conf i G G

J
 

  
 

 Basically, we try to find two largest values from the diagonal array where the corresponding 

transcript pair is not an overlapped pair. If there exists such pair, we define that this read is a 

FESR that supports the fusion event for this pair.  

 The evidence of why this confidence score function works the most appropriate for this 

problem is shown as follows.  
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The weightage score for a given k-mer ranged from 0 to 1.  

 ( ) [0,1)j iw R   

which gives,  

 

2
, , , ,

1

, ,
2

( ) 0 (      

    

)
2

4
 0 1

iJ
i

m m s s j i i m m s s
j

m m s s

i

JM M w R J M M

M M
J



      

 
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We define the confidence score  

 , ,
2

4
       ( , , ) 0 ( , , 1 )m m s s

m s m s
i

M M
conf i G G conf i G G

J
 

     

It achieves the maximum value only and if only  

 , , 2
i

m m s s
JM M     

  

 The last equation shows a perfect fusion pattern with each end of the paired-end read (half of 

the total k-mer count) matched uniquely to each transcript. This is when the confidence score 

function achieves the maximum score. Decrease of the k-mer weightage score ( )j iw R (quality of 

the k-mer), or ,m mM  and ,s sM on either/both sides (quantity of the k-mers) will lower the 

confidence score, which is also correlated with the significance of the fusion pattern.  

 

2.4. ChimeRScope Sweeper: predicting fusion gene candidates 

2.4.1. Summarization of the FESRs confidence scores 

The confidence score for a given FESR can be calculated using the method described in the 

previous subsection. Once we identified all the FESRs, we group all the scores based on the 

supported fusion pair. We use an iterative function in java to summarize all the scores for each 

fusion gene candidate (Code shown below).  
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1   /* 

2   * Summarize the final confidence score from a sorted list of FESR scores 

3   * @param sorted float ArrayList 

4   * @return final confidence score (float value ranged from 0 to 1) 

5   */ 

6   private float calculateScore(ArrayList<Float> sortedScoreList){ 

7       float score = 0; 

8       boolean first = true; 

9        

10      for (int i = 0; i < sortedScoreList.size(); i++) { 

11          if (first) { 

12              score = sortedScoreList.get(i); 

13              first = false; 

14              continue; 

15          } 

16          float tempScore; 

17          float newProb = sortedScoreList.get(i); 

18          if (newProb > score) { 

19              tempScore = score; 

20              score = newProb; 

21              newProb = tempScore; 

22          } 

23          score = score+(1-score)*newProb*(1-score)*newProb; 

24           

25      } 

26      if (score>1) { 

27          score = 1; 

28      } 

29      return score; 

30  } 

  

 This java function takes out the smallest FESR score from the list one at a time and updates 

this FESR score to the final confidence score. This function guarantees that, (1) the final score is 

always higher than the maximum FESR score. (2) The false positive fusion genes with large 

amounts of low quality FESRs will not have high confidence scores..  

 The final confidence score for a fusion gene ranges from 0 to 1. Any fusion gene with a score 

of more than 0.5 is considered as a true fusion gene candidate. The cut-off score 0.5 suggests the 

overall confidence for a fusion gene to be true when it receives, for example, 70% support in 

average from each fusion partner (0.7*0.7=0.49). 

 

2.4.2. Filtering false positives 

2.4.2.1. Fusion partners with similar sequence 
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In 3.3, we mentioned that genes with similar sequences can have higher chance to introduce 

false positives (Figure 2-7a), even with the right distance parameter. To avoid such false positives, 

we check the similarity of two sequences using the following methods.  

We filter out the fusion gene if the fusion partners come from the same gene family. Genes 

from the same family often have similar functions. They can share homologous structures in 

certain regions like the functional domains. The HUGO Gene Nomenclature Committee 

(http://www.genenames.org/), known as HGNC, provides information of the genes and their gene 

families. ChimeRScope can take this optional information to filter out potential false positives 

caused by sequence similarity.  

Two genes from different gene families can still have similar sequences. To address this, we 

align the fusion partner genes using Smith-Waterman algorithm (match = 2, mismatch = -3, gap 

open = -5, gap extension = -2). This parameter set for SW algorithm is the default parameter set 

used in NCBI BLAST (Basic Local Alignment Search Tool) for gapped alignment (blastn) and it 

gives the best result in most of the alignments. Two sequences with an alignment score of 200 or 

more is defined as similar pairs (because these two sequences need to have a sequence match of 

at least 100 bps) and will be filtered out in the final result. We choose the cut-off alignment score 

of 200 because the smallest length of the paired-end (PE) Illumina read is 100 bps (50*2). The 

maximum alignment scores for a 100bp PE read mapped to the similar regions of these two genes 

are also 200. Based on the predictions on the real RNA-Seq datasets, this cut-off filtered out most 

of false positives with similar sequences.  

  

http://www.genenames.org/
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Figure 2-7.  False positive fusion reads caused by genes with similar sequences and adapter contaminations. (a) 

An example of the false positives caused by similar sequence region. The reference sequences of G1 and G2 share a 

similar sequence near the 5’ region. There are only a few nucleotides that are different (highlighted in red in G2). A 

paired-end read sequenced from the subject G1 cDNA contains a mutation that changes the fingerprint sequences in 

that region to the identical sequence of G2. This paired-end read, originated from G1 only, will now be classified as a 

fusion read because it supports the fusion between G1 and G2 due to that specific mutation. We filter out this type of 

false positives by checking if the reported fusion partners contain such similar regions. (b) An example of the false 

positives caused by adapter sequences. Paired-end reads can have adapter contaminations when the template is smaller 

than the length of the read or due to other technical issues.  ChimeRScope checks four different variations of the k-mers, 

including the reverse form. Although adapter sequences are designed not to significantly match any of the gene 

sequences, the reverse forms of these adapter sequences can match to certain genes (G4 matches the reference form of 

the adapter sequence in this example). All the paired-end reads sequenced from the cDNA library with adapter 

contaminations can classified as fusion reads by ChimeRScope. We filter out this class of false positives by removing 

fusion genes involving partners with high counts because this kind of fusion partners tend to pair with a large number 

of genes. 

 



45 
 

 

  



46 
 

2.4.2.2. Conjoined genes 

A conjoined gene is a gene that transcribed from two or more different genes (parent genes). 

These parent genes are often located close to each other on the same chromosome in the same 

orientation. A conjoined gene occurs either the transcription of the upstream gene is not properly 

terminated or if a transcript is not properly spliced; thus multiple exons from different genes are 

joined together to form the conjoined gene. Most of the conjoined genes are conserved [41] and 

not significant for tumorigenesis.  Therefore, we implement a genomic distance filter (not to 

confuse with the distance parameter described in 3.3) in ChimeRScope. This filter marks the 

fusion genes into categories as “overlapped” (if two genes are overlapped at the genomic 

location), “<1k” (less than 1,000 bases), “<10k” ” (less than 10,000 bases but more than 1,000 

bases), “<100k” (10,000 bases to 100,000 bases), and “PASS” (more than 100,000 bases or on 

different chromosomes). Fusion genes from “PASS” class are considered as true fusion events. 

Fusion genes from “<100k” are also considered as true but they are further evaluated with caution. 

Others are classified as conjoined genes because they are too close to each other.  

 

2.4.2.3. Adapter contamination 

In subsection 1.1 of this chapter, we mentioned that Illumina sequencers use adapter 

sequences to anneal all DNA fragments to the flow cell. It is possible that NGS reads can contain 

adapter sequences due to a variety of reasons [42]. Although adapter sequences are designed not 

to significantly align to any part of the genome (both forward and reverse strand), the reverse 

form of the adapter sequences can be part of the fingerprints for a subset of genes due to 

complementary matching. Reads sequenced from any expressed gene containing adapter 

contamination can exhibit a fusion pattern between the expressed gene and genes from that subset. 

Such fusion pairs are false positives introduced by adapter contamination (Figure 2-7b).  

We developed a simple filter for false positives caused by adapter contamination. This filter 

calculates how many times one gene is paired with other genes in the raw result. If a gene paired 
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with other genes more than other 200 genes, fusion genes involving this gene are more likely to 

be false positives. This cut-off value is optimized based on predictions on real RNA-Seq datasets, 

in order to avoid the majorities of the false positives. We do not set the cut-off to smaller values 

to avoid false negatives.  

 

2.4.2.4. Unannotated transcripts 

Human genome is a well-studied genome with more than 20,000 well-annotated genes and 

more than 38,000 transcripts in NCBI RefSeq annotations. However, it still contains many 

uncharacterized regions and transcripts. During the development stage of ChimeRScope, we 

identified a group of false positives, many of which are also predicted as true fusion genes in 

some of the studies [43]. These fusion genes have perfect pattern of two distant genes fused 

together. However, BLAST search revealed that these predicted fusion transcripts can be aligned 

to regions corresponding to non-coding genes or predicted gene models with high similarities 

indicating that such genes fusions are likely to be false positives. To address this issue, we 

recommend that, for analysis on real RNA-Seq datasets using ChimeRScope, a BLAST search of 

the fusion sequence against human nucleotide collection is necessary to remove such false 

positives.  

 

2.5. ChimeRScope Examiner: alignment module with graphical output 

As an alignment-free method, the core algorithmic part of ChimeRScope is not capable of 

identifying the exact fusion site because k-mers are treated as individual fingerprint sequences 

without keeping their chromosomal location information. Therefore, we implemented a separate 

alignment module called ChimeRScope_Examiner (Step 4 in Chapter 3, subsection 2.2) to find 

the fusion junction coordinates using sequence alignment. We also transformed the coordinates 

reported from alignment results into vector graphics (Figure 2-8) for better result interpretation. 
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2.5.1. Targeted alignment for fusion junction 

ChimeRScope Sweeper outputs a list of fusion genes ranked by their confidence scores. It 

also outputs a binary file that contains all the FESR sequences and the supported fusion pairs. In 

ChimeRScope_Examiner, four different variations (original, reverse complementary, reverse, and 

complementary) for each FESR are aligned against the sequences of the corresponding fusion 

partners using Smith-Waterman algorithm. In other words, four different alignment attempts were 

made for one read and a fusion partner. We defined that each fusion partner can only be aligned 

to one form of the read. Therefore, we only keep the read form with the highest alignment score 

as the primary alignment result form for that gene. We used the same parameter set for Smith-

Waterman scoring matrix (match=2, mismatch=-3, gap open=-5, gap extension=-2) for all 

comparisons. Each alignment result is saved in a single line of text which contains the following 

fields. These are read name, gene name, transcript ID, original strand of the transcript, read 1 or 

read 2 (paired-end reads), aligned strand, aligned direction (inversed or not), matched 

coordinates in the read, matched  coordinates in the original strand of the transcript, alignment 

score, and unmatched regions. We also classified FESRs into spanning reads and split reads 

(Chapter 2, subsection 1.2) from the alignment results. Spanning reads give an approximated 

region for fusion junction while split reads support the exact fusion boundary. We calculated the 

estimated fusion junction from each FESR and report the consensus fusion point for the fusion 

gene. For a small sequence (often less than 50 bps) near the fusion junction that can be mapped to 

both fusion partners, we resolve the fusion junction using following rules: If the overlapping 

sequence at the junction covers an exon-exon junction for one fusion partner, we split the 

sequence at the exon-exon junction site and assign each part of the sequence accordingly. The 

rationale for this selection is based on the fact that the post-transcriptional modifications of the 

fused pre-mRNAs follow the same RNA splicing mechanisms. The fusion gene is more likely to 
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fuse at the exon-exon junction if the fusion at the genomic level is not occurred in the middle of a 

coding region (exon) and the splice sites are intact. If the overlapped sequence does not span any 

exon junctions, we assign the part of the sequence to the fusion partner with less number of 

unmatched bases. If two fusion partners report the same number of unmatched bases, we split the 

common sequence into half and report the fusion junction accordingly. We also report the 

orientation and the strand of the fusion partners, along with the resolved fusion sequences near 

the fusion junction (+/- 100bp of the fusion junction).  

 

2.5.2. Scalable Vector Graphics images for fusion genes 

For better understanding of the fusion patterns, we also transformed the target alignment 

results into SVG figures. Scalable Vector Graphics (SVG) is an XML-based vector image format. 

Unlike raster graphics that uses a dot matrix to represent shapes and colors, vector images like 

SVG use polygons to represent the objects. The objects in SVG images can also have different 

attributes such as stroke color, shape, thickness, and fill color. For instance, a simple rectangle in 

SVG is defined by its position (x and y in 2D coordinate system) and size (width and height). This 

object can be easily repositioned and transformed by wrapping it with a single line of code (a 

vector with parameters like x, y, transform, scale). This makes the objects in SVG images easily 

implementable and editable. Comparatively, similar objects in raster images often take larger 

space and can be edited only at the pixel level. Moreover, because vector images are not based on 

matrices of pixels, they can be infinitely resized without losing image quality. Therefore, we 

chose SVG as the standard format for ChimeRScope graphical report.  

Figure 2-8 illustrates the layout of the SVG output generated by ChimeRScope_Examiner. 

The width/height ratio for the image is set to 4/3. ChimeRScope_Examiner calculates the exon 

length from the reference gene model. Then, we create boxes with difference sizes that are 

proportional to the length of the exons. We group these boxes and lines based on transcript names 
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for better editability of the objects. The start location of the group objects are set to the origin 

point [0, 0] and they will be transformed and moved to the right locations using vectors. The 

alternative transcripts for the same gene are aligned vertically based on the chromosomal location 

of the coding regions. The third track of the figure shows a maximum of 500bp region from each 

fusion partner near the fusion junction. We transformed this amplified region to better fit the 

width of the figure. This track will also be used as the standard ruler for the alignment results. We 

use two different colors for forward reads (red) and reverse reads (green). It is evident that both 

spanning reads and split reads are supporting the fusion event for HNRNPM-VAV1, as shown in 

track four of Figure 2-8.   
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The recommended way of viewing this SVG output is to open the file using web browsers 

like Chrome because the SVG file contains several interactive contents. For instance, the exon 

number will be shown in the bottom of the image when users mouse-over to the exons in the 

second track of the image. Moreover, the read name for the corresponding paired-end read will 

also be displayed in the same region if users hover the mouse cursor to any of the reads shown in 

4th track, making the SVG output more informative. The SVG file also shows the clear fusion 

junction and the direction of fusion in the two fusion partner genes. This SVG output file can be 

converted into publication-quality images using programs such as Photoshop or Inkscape.  

 

2.6. Program and parameters optimizations 

2.6.1. Computational cost and code optimization 

The early development version of ChimeRScope took approximately ten minutes to load the 

GF-library into memory. It can process approximately 4000 reads per minute using 

multithreading option. For an average sized NGS dataset with millions of discordant reads, it took 

more than 10 hours and up to 100 GB RAM. In order to improve the performance, we optimized 

the algorithm by reducing number of iterations, optimizing data structures, and releasing unused 

variables in the program code. We describe these optimizations in the following paragraphs.  

ChimeRScope was using a float square matrix to store the overall fingerprint scores for all 

transcripts. The overlap relationship is also stored in the same matrix. ChimeRScope (old version) 

uses several iterations to get the final updated matrix. The first iteration checks how many unique 

transcripts are shown in the read, in order to determine the size of the square matrix. The second 

iteration initiates the square matrix and calculates the overall fingerprint scores (diagonal array). 

The third iteration calculates the distance for each transcript pair and the last iteration determines 

the fusion gene from the matrix. We optimized the algorithm by separating the square matrix into 

a float array (denoted as A) and a numeric byte array (denoted as B). Array A stores the overall 
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fingerprint scores and the final size of A is the number of unique transcripts (denoted as n) shown 

in the read. Array B stores the pairwise distances of all the transcripts and the final size of B is (n-

1)*(n-2)/2. In the optimized version, we do not pre-calculate the value of n. Instead, we define a 

preset size of array A and B. Whenever Java throws an IndexOutOfBoundsException (meaning 

the array container is smaller than what we want to use) for array A or B, we catch such 

exceptions and copy this array into an array with larger size (2X for array A and 4X for array B). 

This guarantees the least number of copy operations without reserving space that is too large that 

affects the performance. Using this idea, we omitted the need of the first iteration. We also 

combined the last three iterations into one iteration by updating all the arrays all at one for each k-

mer we parsed. Overall, it reduced the total number of operations by about four times. We also 

decreased the memory usage of the square matrix (n*n floats) from about 32n2 bits into n*32+(n-

1)*(n-2)/2*8=4n2-12n+8, reducing about eight times even with small n.  

We also optimized one of the most extensively used functions. As we mentioned earlier, we 

also check the complementary form of a given k-mer. The initial function for calculating 

complementary form of a k-mer checks each nucleotide (count as one operation) from the k-mer 

and put the complementary character (one operation for retrieving complementary char) into a 

new sequence (one operation for putting the char into new sequence). Therefore, there will be 3*k 

operations each time when we retrieve the complementary form for a given k-mer 

(complementary operation happened before binary transformation). In the optimized version, we 

significantly reduce the number of operations by using bitwise operators.  We took advantage of 

the bitwise operation that is directly supported by the processor. It operates the binary numerals at 

bits level. For example, the bitwise NOT (denoted by “~” in java) on a decimal value of 100 

(01100100 in 8-bits binary) will return a decimal value of 155 (10011011 in 8-bits binary) 

because it performs logical negation on each bit (~01100100=10011011). In the new version of 

ChimeRScope, the complementary operation was performed after binary transformation. We 

optimized the binary transformation code chart with ‘A’ maps to ‘00’, ‘T’ maps to ‘11’, ‘C’ maps 
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to ‘01’, and ‘G’ maps to ‘10’. Now, the complementary operation on the binary form of the k-mer 

is equivalent to the bitwise NOT operation (~‘A’ =~00=11=‘T’ and ~‘C’ =~01=10=‘G’, vice 

versa). This greatly reduces the operation time from 3*k to only 1 operation for each k-mer we 

processed.  

Here we used a simulated dataset [28] to test the improvement in the performance. There are 

around 6000 discordant paired-end reads in this dataset. We also replicate the dataset to 10x, 

100x, and 1000x of the original volume. Results have shown that the running time is significantly 

improved in the optimized version (10-100 times reduction). More importantly, it also scales 

better as the total number of reads increased. The estimated time for running an averaged size 

NGS dataset is less than 1 hour (the module looks for FESRs), which makes ChimeRScope much 

more attractive for massive data analysis.  

 

Table 2-5. Speed costs on simulated datasets before and after code optimization. The time is calculated after 

excluding the constant GF-library loading time. Experiments using improved version take less than 40 GB RAM as 

against the dataset with the largest volumn (1000X). The total time for old version on 1000X volume dataset takes 

more than 24 hours and was killed due to Java OutOfMemoryError (specified 100 GB in that run). Therefore, it is 

marked as N/A (Not Applicable).  

Volume Read number Old version Improved version 

1x ~ 6,000 00:01:20 00:00:04 

10x ~ 60,000 00:13:48 00:01:06 

100x ~ 600,000 02:53:17 00:02:18 

1000x ~ 6,000,000 N/A 00:08:37 

 

2.6.2. Distance cut-off for overlapped k-mer profiles 

 In subsection 2.3 of this chapter, we introduced a parameter called distance. It defines how 

close two fingerprint profiles are in the FESR and is calculated based on the index difference of 

two nearest k-mers. Small distance cut-off value tends to introduce more false positives caused by 
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gene pairs with similar sequences (Chapter 2, subsection 2.3). During the development stage of 

ChimeRScope, we have tested different distance cut-offs for the same simulated dataset [28] 

(contains 50 simulated fusions), using three different GF-library (k=15, 17 and 19). Results have 

shown that allowing 5 common nucleotides (distance = k-5) gives the best sensitivity and least 

false discovery rate irrespective of the GF-library (Table 2-6). It also confirms that GF-library 

with k=17 gives the best overall results, compared to other two GF-libraries.  
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Table 2-6 Detailed prediction statistics using three different GF-library (k=15, 17, and 19) with other parameter 

combinations on a simulated dataset with 50 true fusion genes, using the early development version of 

ChimeRScope. TP: true positive. FP: false positive. TPR: True Positive Rates, also known as sensitivity. TPR=TP/50. 

FDR: False Discovery Rate. FDR=FP/(TP+FP). The parameter o stands for overlap (o=k-d). Gene pairs with the 

fingerprint profiles with larger overlap size will be filtered out. The parameter c stands for read number cut-off. In this 

dataset, c=2 generally gives better result. Cells with TPR more than 90% and FDR less than 10% are highlighted in red. 

Results have shown that TRP=0.94, FDR=0.04 (k=17, o=5 or 6, c=2) gives the best result using f-score (f-score is 

described in detail in Chapter 3). Results have also shown that k=17 GF-library gives the best result using the right 

parameter set, comparing to that of other two GF-libraries.   
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o c=1 c=2 c=3 c=4 o c=1 c=2 c=3 c=4 o c=1 c=2 c=3 c=4 

k=
15

 
TP 

0 

48 46 44 39 

1 

48 46 44 39 

2 

48 46 44 39 
FP 113 37 21 15 91 31 16 12 84 31 17 12 
TPR 0.96 0.92 0.88 0.78 0.96 0.92 0.88 0.78 0.96 0.92 0.88 0.78 
FDR 0.7 0.45 0.32 0.28 0.65 0.4 0.27 0.24 0.64 0.4 0.28 0.24 
TP 

3 

48 46 44 39 

4 

48 46 44 40 

5 

49 46 44 40 
FP 67 21 13 8 45 18 10 8 32 14 8 7 
TPR 0.96 0.92 0.88 0.78 0.96 0.92 0.88 0.8 0.98 0.92 0.88 0.8 
FDR 0.58 0.31 0.23 0.17 0.48 0.28 0.19 0.17 0.4 0.23 0.15 0.15 
TP 

6 

49 45 44 38 

7 

44 40 37 32 

  

        
FP 38 26 18 16 141 100 84 72         
TPR 0.98 0.9 0.88 0.76 0.88 0.8 0.74 0.64         
FDR 0.44 0.37 0.29 0.3 0.76 0.71 0.69 0.69         

k=
17

 

TP 

0 

49 47 44 39 

1 

49 47 44 39 

2 

49 47 44 39 
FP 76 14 4 1 72 37 3 1 31 9 4 1 
TPR 0.98 0.94 0.88 0.78 0.98 0.94 0.88 0.78 0.98 0.94 0.88 0.78 
FDR 0.61 0.23 0.08 0.03 0.6 0.44 0.06 0.03 0.39 0.16 0.08 0.03 
TP 

3 

49 47 44 39 

4 

49 47 44 39 

5 

49 47 44 39 
FP 22 6 3 0 13 4 2 0 5 2 0 0 
TPR 0.98 0.94 0.88 0.78 0.98 0.94 0.88 0.78 0.98 0.94 0.88 0.78 
FDR 0.31 0.11 0.06 0 0.21 0.08 0.04 0 0.09 0.04 0 0 
TP 

6 

49 47 44 39 

7 

49 46 44 37 

8 

44 39 37 32 
FP 4 2 0 0 16 12 10 8 59 43 35 30 
TPR 0.98 0.94 0.88 0.78 0.98 0.92 0.88 0.74 0.88 0.78 0.74 0.64 
FDR 0.08 0.04 0 0 0.25 0.21 0.19 0.18 0.57 0.52 0.49 0.48 

k=
19

 

TP 

0 

48 46 44 39 

1 

48 46 44 39 

2 

48 46 44 39 
FP 14 3 0 0 10 3 0 0 9 3 0 0 
TPR 0.96 0.92 0.88 0.78 0.96 0.92 0.88 0.78 0.96 0.92 0.88 0.78 
FDR 0.23 0.06 0 0 0.17 0.06 0 0 0.16 0.06 0 0 
TP 

3 

48 46 44 39 

4 

48 46 44 39 

5 

48 46 44 39 
FP 6 2 0 0 5 2 0 0 5 2 0 0 
TPR 0.96 0.92 0.88 0.78 0.96 0.92 0.88 0.78 0.96 0.92 0.88 0.78 
FDR 0.11 0.04 0 0 0.09 0.04 0 0 0.09 0.04 0 0 
TP 

6 

48 46 44 39 

7 

48 46 44 39 

8 

48 46 43 38 
FP 4 2 0 0 4 2 0 0 5 2 1 1 
TPR 0.96 0.92 0.88 0.78 0.96 0.92 0.88 0.78 0.96 0.92 0.86 0.76 
FDR 0.08 0.04 0 0 0.08 0.04 0 0 0.09 0.04 0.02 0.03 
TP 

9 

44 40 37 33                     
FP 8 4 3 3                     
TPR 0.88 0.8 0.74 0.66                     
FDR 0.15 0.09 0.08 0.08                     
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 To conclude, k=17 and d=12 (k-o=17-5=12) seems to be the best parameter set for fusion 

gene prediction analysis on human samples. Predictions from other datasets (discussed in Chapter 

3) also shown high accuracies using these parameters. 

 

3. Conclusions 

In this chapter, we discussed the strategies used in most alignment-based fusion gene 

prediction methods and the drawbacks of alignment-based methods in general. We also discussed 

the detailed algorithmic part of our alignment-free method, namely ChimeRScope. We optimized 

the algorithm in different aspects and to greatly improve the performance of ChimeRScope. The 

parameter set, k=17 and d=12 (d=k-5), is set as default values for analysis on human datasets 

because it gives the best result on tested datasets.  
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Chapter 3: COMPARISONS WITH OTHER FUSION GENE DETECTION METHODS 

1. Introduction 

In NGS, all expressed transcripts are captured and sequenced, including those from chimeric 

fusion genes. These sequenced transcripts are then transformed into digital data, known as short 

reads. The number of short reads related to fusion genes is correlated with various factors such as 

the sequencing depth, the length and the expression level of the fusion genes. Besides, among all 

the reads derived from fusion transcripts, only reads that cover the fusion boundaries can be 

considered as direct evidences for the fusion genes (described as fusion reads in this study). 

Therefore, we estimated that only less than 0.001% of the total reads support the fusion gene 

junctions, irrespective of all factors described above. This poses a huge computational challenge 

to precisely identify this miniscule fraction of reads from tens of millions of total NGS reads. 

Currently, published fusion gene prediction methods use different approaches to mine the 

fusion reads among millions of short reads. Many of the fusion genes have been identified and 

validated using these methods. However, mutations and sequencing errors near the fusion 

junctions hinder them from identifying these fusion genes. Recent studies [24, 29, 30] and 

reviews [32, 44] on fusion gene prediction methods have shown that SOAPfuse [24], 

FusionCatcher [29], and JAFFA [30] are generally the best methods for fusion gene prediction 

among all the publicly available tools. Therefore, we chose to compare the accuracy of 

ChimeRScope against these three methods in this study. 

 

2. Materials and methods 

2.1. Datasets 

We have chosen two types of the datasets for assessing the accuracies of the selected fusion 

gene prediction methods. The first dataset type is the simulated datasets. Simulated datasets are 
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constructed with reads simulated from known number of artificially generated fusion genes. The 

advantages and disadvantages of simulated datasets are described as follows. Simulated datasets 

are often used to evaluate how good an algorithm works theoretically, because the characteristics 

of the datasets can be precisely controlled. They provide the precise number of true fusion genes, 

which is very difficult to get from real NGS datasets. However, because of the complexity of the 

transcriptome and potential unidentified patterns of the fusion genes, simulated datasets are 

generally considered as clean datasets and therefore, will introduce less number of false positives. 

In this study, we collected several simulated datasets containing known artificial fusion genes 

from previously published papers. One simulated dataset, originally released by FusionMap 

research group [28], consists a total of 50 synthetic fusions (namely 50_pos_set). There are 

114,418 paired-end read (2x75bp), with 8,600 simulated fusion reads that support 50 fusion 

events with RPKM levels ranged from 0.23 to 407.96 [28]. A review paper published in 2013 [32] 

compared the sensitivity and false discovery rate for six of the popular fusion gene detection tools 

using this 50_pos_set. We chose this dataset for our study because it is one of the first publicly 

available simulated datasets and has also been used in many other studies [30, 32, 44]. Apart from 

50_pos_set, we also used another simulated datasets from the latest research paper [44] that 

comprehensively evaluated the performance of 15 different fusion gene prediction algorithms. 

The second group of simulated datasets, namely comp_sim_set, consisted of 15 different 

datasets with three different read lengths (2x 50bp, 75bp, and 100bp) and five different coverage 

depths (5X, 20X, 50X, 100X, and 200X) for each of them. There are the same 150 simulated 

fusion genes in each dataset. We analyzed these datasets and carried out head-to-head 

comparisons using the same F-measure [44] for performance assessment. We did not use 

simulated datasets directly generated from SOAPfuse [24], FusionCatcher [29], and JAFFA [30] 

groups to avoid bias. We also did not generate simulated datasets of our own for the same reason.  
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However, there are several limitations of using the simulated datasets. Simulated datasets 

might contain biologically insignificant fusion events like read-throughs. Besides, the distribution 

of the mutations and sequencing errors in simulated datasets are often defined as simple 

distributions such as multinomial distribution. In this case, simulated datasets might not reflect 

the real state of fusion genes in cancer samples. To address these issues, we used several different 

real RNA-Seq datasets. We have tested ChimeRScope, along with SOAPfuse, FusionCatcher and 

JAFFA on seven published datasets that were obtained from four different breast cancer cell lines 

(namely BC_CL. Table 3-1) with 27 experimentally validated fusion genes [19]. We also tested 

these tools on Nature Killer (NK) cell lines (in-house datasets) and did experimental validation 

on all ChimeRScope predictions with commonly reported fusion genes. The in-house datasets 

were downloaded from NCBI Short Reads Archive [45]. It consists of four different RNA-Seq 

datasets (KHYG1, NKYS, NK92-PMIG, NK92-PRDM1), which can be divided into three 

different cell lines (KHYG1, NKYS and NK92). NK92 cell line samples used for sequencing 

were transduced with either PMIG, a control vector, or a vector to knock-down PRDM1, a known 

tumor suppressor. We only used the normal/non-transduced NK92 RNA in the experimental 

validation step for those fusion genes predicted from NK92 samples because the original vector 

treated NK92 RNA used in the transcriptome sequencing was not available. 

 

Table 3-1. Description of the real RNA-Seq datasets from 4 breast cancer cell lines and the validated fusion 

genes. 27 fusion genes were validated across all four breast cancer cell lines. The gene ID highlighted in red, 

ENSG00000236127, is deprecated and no longer in the current EnsEMBL database. All gene symbols are the latest 

official gene symbols. 

 Cell 
lines 

Read 
length (bp) 

Read 
number Validated fusions [19] 

Breast 
cancer 
cell 
lines  

BT474 50 21,423,697 
ACACA-STAC2, RPS6KB1-SNF8, VAPB-IKZF3, ZMYND8-
CEP250, RAB22A-MYO9B, SKA2-MYO19, DIDO1-TTI1, 
STARD3-DOK5, LAMP1-MCF2L, GLB1-CMTM7, CPNE1-PI3 

KPL4 50 6,796,443 BSG-NFIX, PPP1R12A-SEPT10, NOTCH1-NUP214 
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MCF7 50 8,409,785 BCAS4-BCAS3, ARFGEF2-SULF2, RPS6KB1-VMP1 

SKBR3 50 18,140,246 

TATDN1-GSDMB, CSE1L-ENSG00000236127*, RARA-
PKIA, ANKHD1-PCDH1, CCDC85C-SETD3, SUMF1-
LRRFIP2, TBC1D31-ZNF704, CYTH1-EIF3H, DHX35-ITCH, 
NFS1-PREX1 

* ENSG00000236127 is not a valid identifier in the latest EnsEMBL database (deprecated identifier).  

 

2.2. Detailed analysis pipelines 

As we stated earlier, we mainly focused on comparing ChimeRScope against SOAPfuse, 

FusionCatcher and JAFFA. The analysis pipelines for a selected tool on simulated datasets and 

real datasets are mostly the same. In this section, we will describe these pipelines in details.  

 

ChimeRScope: Here we listed the complete ChimeRScope pipelines for all datasets. All the steps 

are labeled separately. The differences among the pipelines for different datasets are shown in 

Table 3-2. All major parameters are also listed, although most of the time the default values are 

used.  

 

Step 0 – ChimeRScope Builder: Generate GF-library 

We build the GF-library with k equals to 17 from human reference build GRCh38/hg38.  

 

  1 ## Create GF-library with selected k-mer size 

  2 java –Xmx40g -jar ChimeRScope.jar Builder  

  3    -i mRNAs.fa \ # all mRNA sequences in fasta 

  4    -o $GF_LIB \ # output directory for GF-library, with prefix 

  5    -k 17 \ # k-mer size. default: 17 

  

 

Step 1 – Retrieve discordant reads (Chapter 2, subsection 2.3) 
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Step 2 – ChimeRScope Scanner: Identify FESRs 

 

  1 ## Identify FESRs from discordant reads 

  2 java –Xmx40g -jar ChimeRScope.jar Scanner  

  3    -fq1 unmapped_1.fq \ # discordant reads, forward 

  4    -fq2 unmapped_2.fq \ # discordant reads, reverse 

  5    -lib $GF_LIB \ # GF-library 

  6    -k 17 \ # size of the k-mer used in GF-library 

  7    -o ./ChimeRScope_Out \ # output directory 

  8    -t 1 \ # number of threads 

  9    -d 12 # distance cut-off. Recommend d=k-5 

  

 

Step 3 – ChimeRScope Sweeper: Summarize FESRs scores with filters 

 

  1 ## Summarize FESR scores for fusion candidates 

  2 java –Xmx40g –jar ChimeRScope.jar Sweeper \ 

  3    -i chimeRScope_out/raw_FESRs.txt \ # Output from previous step 

  4    –cc 0.2 \ # confidence score cut-off for FESR to be true 

  5    –mc 0.36 \ # Default. True fusion must have at least 1 read with score>0.36 

  6    –lib $GF_LIB \ # library path with prefix 

  7    –rn 2 \ # read number cut off 

  

 

Step 4 – ChimeRScope Examiner: Graphical output and analysis of the fusion sequences 

   

  1 java -jar ChimeRScope.jar Examiner \ 

  2    -i ./ChimeRScope_Out/raw_FESRs.txt_rawFusions.txt \ # Output by Sweeper  

  3    -lib $GF_LIB \ # library path with prefix 

  4    –indir ./ChimeRScope_Out \ # mRNA sequences  

  5    -alignOut ./ChimeRScope_Out/blastResult.txt \ # alignment result 

  6    -o chimeRScope_ExaminerOut # other output (e.g. svg figures) 

  

 

Step 5 – BLAST fusion sequences against human nucleotide collection 

To summarize, we did not apply any filters for simulated datasets (including the last BLAST 

step) because of the limitations of simulated datasets we described earlier. We reduced the rn 

parameter to 2 because some of the simulated datasets have less than five reads for some true 

fusions. Besides, the step for extracting discordant reads from alignment step is not used for 
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comp_sim_set because they are not mixed with background reads. For analysis on real RNA-Seq 

datasets, we applied all the recommended filters. For in-house datasets, we also increased the mc 

parameter to 0.5 (at least one FESR should have a weightage score of more than 0.5, which 

suggests that around 70% (0.7*0.7=0.49) of the k-mer composition belongs to two fusion 

partners.) in order to get high confident fusions.  

 

Table 3-2 Detailed pipelines used in four different datasets. Cells highlighted in red are different from the default 

values.  

 50_pos_set comp_sim_set BC_CL In-house datasets 

Step 0 GF-library with k=17, one time generation 

Step 1 √ × √ √ 

Step 2 √ √ √ √ 

Step 3 rn 2 2 5 5 

hf × × √ √ 

mc 0.36(0.6*0.6) 0.36(0.6*0.6) 0.36(0.6*0.6) 0.49(0.7*0.7) 

Other 
filters 

× × √ √ 

Step 4 √ √ √ √ 

Step 5 × × √ √ 

 

 

SOAPfuse: We ran the SOAPfuse (version 1.26) pipeline using the default parameters. The 

version of the reference database is GRCh38 release version 79. Other reference files are 

prepared under SOAPfuse instructions. 

For the in-house datasets, we applied the similar filters for SOAPfuse using “awk” in Linux.  
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cat SAMPLE.final.Fusion.specific.for.genes |  

    awk '($2!=$7 ||  

    ($2==$7 && ($4-$9>100000 || $9-$4>100000))) &&  

    $11+$12>=5 {print}' 
 

Explaination: 

$2!=$7: two genes are on different chromosomes (for read-through filter) 

$2==$7 && ($4-$9>=100000 || $9-$4>=100000): If two genes are on the same 

chromosome, the distance of these two genes should be more than 100,000 bp 

$11+$12>=5: read number no less than 5.  

  

 

FusionCatcher: FusionCatcher (version 0.99.4d beta) by default uses three different aligners. 

They are Bowtie [46], Blat [47], and STAR aligner [38]. We failed to set up STAR aligner for 

FusionCatcher due to the version conflict. Therefore, we disabled the use of STAR in 

FusionCatcher pipeline. Other parameters used in the pipeline are set as default. 

We applied similar filters for FusionCatcher on the in-house datasets as well. 

   

cat final-list_candidate-fusion-genes.txt | 

    awk '$5>=5 {print}' | 

    grep -v readthrough 
 

 

Explaination: 

$5>=5: read number no less than 5 

grep –v readthrough: filter out all read-throughs.  
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JAFFA: JAFFA (version 1.06) uses three different modes for fusion gene prediction. Assembly 

mode is used for paired-end reads with 50 bps (involves assembly). Direct mode is used for reads 

with longer length (>100 bps) because the read is long enough for direct mapping. Hybrid mode 

is used for reads with length of around 70 bps. Both assembly and mapping will be used in 

Hybrid mode. We analyzed all the datasets using different modes based on the read length. 

Similar filters were also applied for the in-house datasets. 

   

cat jaffa_results.csv | sed -e 's/,/\t/g' |  

    awk '$8+$9>=5 && ($7=="Inf" || $7>=100) {print}' | 

    grep -v LowConfidence 
 
 

Explaination: 

$8+$9>=5: read number no less than 5 

$7==”Inf” || $7>=100: on different chromosome or no less than 100k bp 

grep –v LowConfidence: filter out all lowConfidence fusion genes 

  

 

2.3. Statistical measurements 

Here we list all the statistical terms we used for accuracy measurements.  For real RNA-Seq 

datasets, because the total number of true fusion genes is unknown, it is not applicable to 

calculate the sensitivity. Besides, we could not calculate the specificity for datasets like BC_CL 

also, because many predicted fusions have not been validated to be false. Therefore, we only 

calculate statistics like TP, FP, and precision.  

 

 

TP: True positive. Positive instances correctly classified as true. 

FP: False positive. Negative instances incorrectly classified as true. Also known as Type I error. 
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TN: True negative. Negative instances correctly classified as false.  

FN: False negative. Positive instances incorrectly classified as false. Known as Type II error.  

Sensitivity or recall: TP/P = TP/(TP+FN). It measures the ability of a method to correctly classify 

a positive instance. Also known as true positive rate (TPR).   

Specificity: TN/N=TN/(TN+FP). It measures the ability of a method to correctly classify a 

negative instance. Equivalent to true negative rate (TNR). 

Precision: also known as positive predictive value (PPV). PPV=TP/(TP+FP). It measures the 

proportion of the positive results reported by a method that are truly positive.  

FDR: False Discovery Rate. FDR=FP/(TP+FP)=1-PPV. It is used to measure type I errors.  

F-measure:  Also known as F1-score, or F-score. It is the hormonic mean of precision and recall.  

1 2 precision recallF
precision recall


 


 . It measures the overall accuracy of a method.  

 

3. Results 

Simulated dataset 1 (50_pos_set) 

To avoid the analysis bias on other methods, we compared the prediction performance of 

ChimeRScope against the best reported results (either from this study or from other published 

studies, if applicable). The performance of the selected methods on 50_pos_set is shown in Table 

3-3. We failed to run JAFFA on 50_pos_set in this study. However, the statistics reported in this 

table is directly obtained from JAFFA publication [30] and can be considered as the best 

prediction results for JAFFA. In summary, ChimeRScope achieves the highest F-score by 

predicting 47 true positives without reporting any false positives.  Even after applying all the 

filters, ChimeRScope still reported the best results. Here, we also listed the impact of the filters 

used in FusionCatcher. With all filters enabled, only 3 false positives were removed at the cost of 
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removing 16 true positives. Moreover, the highest f-score reported from “other methods” group is 

only 0.83 by FusionMap, which is lower than ChimeRScope and other three major methods.  

 

Table 3-3. Detailed prediction results on 50_pos_set. This dataset contains in total of 50 simulated fusion genes. Our 

method, ChimeRScope, predicts 47 true positives without reporting any false positives. ChimeRScope achieves the 

highest f-score with highest sensitivity (recall = 94%) and lowest FDR (0%). Even with all filters enabled, the 

performance of ChimeRScope on this dataset is still better than other methods, with a second highest f-score of 0.95.  

50_pos_set Study TP FP Precision Recall FDR F-score Note Best score 

Major methods 

ChimeRScope 
This study 47 0 1.00 0.94 0.00 0.97 No filtering 

0.97 
This study 45 0 1.00 0.90 0.00 0.95 With all filters* 

SOAPfuse 
This study 38 1 0.97 0.76 0.03 0.85   

0.85 
PMID:26019724 37 1 0.97 0.74 0.03 0.84   

JAFFA 

PMID:26019724 44 0 1.00 0.88 0.00 0.94 JAFFA-hybrid 

0.94 PMID:26019724 39 0 1.00 0.78 0.00 0.88 JAFFA-assembly 

PMID:26019724 34 0 1.00 0.68 0.00 0.81 JAFFA-direct 

FusionCatcher 
This study 31 0 1.00 0.62 0.00 0.77 Final result 

0.94 
This study 47 3 0.94 0.94 0.06 0.94 Raw result 

Other methods 

FusionMap PMID:23815381 40 6 0.87 0.80 0.13 0.83   0.83 

FusionFinder PMID:23815381 41 10 0.80 0.82 0.20 0.81   0.81 

tophat-fusion 
PMID:26019724 27 0 1.00 0.54 0.00 0.70   

0.70 
PMID:23815381 40 73 0.35 0.80 0.65 0.49   

MapSplice PMID:23815381 39 23 0.63 0.78 0.37 0.70   0.70 

deFuse 
PMID:23815381 32 4 0.89 0.64 0.11 0.74   

0.81 
PMID:26019724 34 0 1.00 0.68 0.00 0.81   

FusionHunter PMID:23815381 20 4 0.83 0.40 0.17 0.54   0.54 

* Two fusion genes were filtered out by similarity filter (PRKCA&USP49 score: 384; FKTN&SCAI: 367). However, 

the F-score is still higher than others (0.95 is the second highest score) 

 

Simulated dataset 2 (comp_sim_set) 

We also analyzed comp_sim_set using four primary methods and compared our results 

against the original study for this dataset [44]. We carefully checked the gene name alias for all 

fusion pairs to make sure the reported numbers are the most current ones. We failed to run 
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JAFFA on datasets with 50bp and 75bp read length due to computational issues caused by 

JAFFA assembly mode. Nevertheless, considering the results for JAFFA on 100bp datasets as the 

best results it can get on 50bp and 75bp datasets may not put JAFFA as one of the best tools for 

comp_sim_set (Table 3-4).  During the analysis stage, we also carefully inspected all the 

simulated genes. For comp_sim_set, all the fusion genes are simulated using sequences from 

EnsEMBL database. We aligned the fusion junction sequences against each fusion partner using 

both EnsEMBL and RefSeq version. We found out that 15 fusion genes could not align to RefSeq 

version (Table 3-5). Because ChimeRScope GF-library is built only based on RefSeq sequences, 

it will be impossible for ChimeRScope to report any of these fusion genes. Therefore, we also 

reported the normalized results by setting the total number of fusion genes to 135. The final 

results are shown in Table 3-6. ChimeRScope reports the highest F-scores in 13 out of 15 datasets. 

Notably, ChimeRScope has significantly higher f-scores on datasets with low coverage depth 

(5X), suggesting better performance on fusion genes with low expression levels. More 

importantly, the variation of the f-scores reported by ChimeRScope is subtle (max=0.957 and 

min=0.905) across different datasets irrespective of the read length and coverage depth, indicating 

a cosistently good performance on all datasets.    
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Table 3-4 F-scores for selected methods on 15 simulated datasets (comp_sim_set). The highest f-scores are 

highlighted in red for each dataset. ChimeRScope achieves significantly higher f-scores for datasets with low coverages 

(5X in 50bp, 75bp, and 100bp), suggesting that ChimeRScope is more sensitive to fusion genes with low expression 

level.  

comp_sim_set 
(TP=150) 

50bp 75bp 100bp 

5X 20X 50X 100X 200X 5X 20X 50X 100X 200X 5X 20X 50X 100X 200X 

ChimeRScope 0.898 0.905 0.899 0.864 0.861 0.898 0.900 0.908 0.906 0.900 0.890 0.907 0.908 0.909 0.909 

SOAPfuse 0.830 0.890 0.863 0.871 0.858 0.833 0.883 0.873 0.871 0.874 0.844 0.895 0.887 0.883 0.887 

SOAPfuse* 0.801 0.923 0.938 0.918 0.945 0.828 0.925 0.925 0.932 0.932 0.840 0.940 0.932 0.939 0.935 

FusionCatcher 0.565 0.746 0.762 0.757 0.766 0.675 0.745 0.779 0.792 0.792 0.741 0.785 0.758 0.777 0.781 

FusionCatcher* 0.337 0.842 0.886 0.890 0.894 0.687 0.850 0.875 0.884 0.891 0.678 0.873 0.887 0.891 0.891 

JAFFA 0.052 0.605 0.667 0.678 0.678 0.101 0.461 0.597 0.619 0.616 0.441 0.675 0.698 0.693 0.693 

JAFFA* - - - - - - - - - - 0.579 0.857 0.867 0.867 0.867 

EricScript 0.454 0.680 0.669 0.519 0.612 0.568 0.759 0.763 0.695 0.773 0.593 0.782 0.793 0.779 0.788 

chimerascan 0.672 0.743 0.744 0.730 0.724 0.631 0.751 0.821 0.744 0.752 0.565 0.745 0.746 0.730 0.737 

PRADA 0.077 0.512 0.534 0.534 0.534 0.101 0.505 0.545 0.543 0.543 0.204 0.498 0.538 0.545 0.543 

deFuse 0.284 0.551 0.634 0.588 0.750 0.281 0.608 0.566 0.741 0.744 0.192 0.611 0.502 0.629 0.779 

FusionMap 0.039 0.485 0.611 0.619 0.623 0.343 0.535 0.691 0.627 0.650 0.343 0.635 0.691 0.684 0.658 

TopHat-Fusion 0.165 0.406 0.457 0.453 0.460 0.295 0.417 0.498 0.491 0.509 0.312 0.444 0.488 0.488 0.507 

MapSplice 0.144 0.414 0.443 0.493 0.514 0.249 0.426 0.468 0.495 0.512 0.241 0.406 0.416 0.488 0.486 

BreakFusion 0.741 0.756 0.743 0.739 0.735 0.624 0.729 0.730 0.730 0.731 0.408 0.619 0.692 0.707 0.704 

SnowShoes-FTD 0.039 0.039 0.039 0.039 0.039 0.026 0.026 0.039 0.039 0.039 0.026 0.039 0.039 0.039 0.039 

FusionQ 0.428 0.542 0.560 0.415 0.176 0.462 0.579 0.642 0.558 0.197 0.471 0.495 0.552 0.651 0.443 

ShortFuse - 0.780 0.777 0.776 0.785 0.587 0.748 0.775 0.783 - - - - - - 

* Marked rows are the results reported by our study. Stats for other rows are reported from this study [44].   
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Table 3-5 15 fusion genes simulated from EnsEMBL sequences with incompatible partners. If a fusion gene is 

simulated from a region where RefSeq defined that as a non-coding region while EnsEMBL does the contrary, we 

named the corresponding fusion partner as an “incompatible partner”. Comp_sim_set contains 150 fusion genes 

simulated from EnsEMBL sequences. 13 of the fusion genes are found as fusion genes with incompatible partners. The 

other two genes, STAG3L1 and KIAA1875, were defined as genes with no protein products in the latest RefSeq build 

when we performed the study. Therefore, we classified these two genes as incompatible partners as well.   

Index Gene1 Gene2 Gene1_ensID Gene2_ensID Incompatible partner 

1 AFTPH HOMER1 ENSG00000119844 ENSG00000152413 HOMER1 

2 C6orf130 ASPH ENSG00000124596 ENSG00000198363 ASPH 

3 CAPN2 TMEM223 ENSG00000162909 ENSG00000168569 TMEM223 

4 CCDC88C STAG3L1 ENSG00000015133 ENSG00000205583 STAG3L1a 

5 FAM92A1 HNRNPL ENSG00000188343 ENSG00000104824 FAM92A1 

6 FGFR4 NREP ENSG00000160867 ENSG00000134986 NREP 

7 GPR128 MLLT6 ENSG00000144820 ENSG00000108292 GPR128 

8 IPO5 MS4A6A ENSG00000065150 ENSG00000110077 IPO5 

9 KIAA1328 EXOSC7 ENSG00000150477 ENSG00000075914 EXOSC7 

10 MAPK10 KIAA1875 ENSG00000109339 ENSG00000179698 KIAA1875b 

11 MYH10 GPR155 ENSG00000133026 ENSG00000163328 MYH10 

12 SFTPA2 THOC2 ENSG00000185303 ENSG00000125676 THOC2 

13 SLC19A1 LLPH ENSG00000173638 ENSG00000139233 SLC19A1 

14 TBX22 RBM48 ENSG00000122145 ENSG00000127993 RBM48 

15 USP45 COBL ENSG00000123552 ENSG00000106078 USP45 
a STAG3L1 is a pseudogene in the current RefSeq build. We believe fusion genes involving pseudogenes are 
functionally not important and are excluded in the GF-library.  
b KIAA1875 was considered as a non-coding gene (updated in Mar.15th, 2015) and was later replaced with WDR97 (a 
coding gene). However, it is not included in the latest RefSeq database when we performed the analysis. 
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Table 3-6. F-scores for 4 major methods on comp_sim_set, with 15 incompatible fusion genes removed. The 

results are calculated from 135 effective fusion genes. ChimerRScope achieves the highest F-scores in 13 out of 15 

datasets. Only SOAPfuse reports higher f-scores in 100X_50bp and 200X_50bp, with marginal increases of 0.001 and 

0.034 in F-scores, respectively.   

comp_sim_set 
(TP=135) 

50bp 75bp 100bp 

5X 20X 50X 100X 200X 5X 20X 50X 100X 200X 5X 20X 50X 100X 200X 

ChimeRScope 0.948 0.954 0.947 0.908 0.905 0.948 0.949 0.957 0.954 0.947 0.940 0.957 0.957 0.957 0.957 

SOAPfuse 0.807 0.922 0.935 0.913 0.943 0.836 0.921 0.921 0.929 0.925 0.840 0.942 0.928 0.932 0.929 

FusionCatcher 0.357 0.856 0.894 0.895 0.899 0.692 0.855 0.878 0.888 0.896 0.707 0.884 0.891 0.891 0.891 

JAFFA - - - - - - - - - - 0.609 0.849 0.856 0.856 0.856 

 

Cancer RNA-Seq datasets (breast cancer cell lines) 

We analyzed the 4 different breast cancer cell lines (BC_CL) using ChimeRScope, SOAPfuse, 

JAFFA, and FusionCatcher. We also compared our results against this study [44]. Results (Table 

3-5) have shown that ChimeRScope achieves the best performance with successfully identifying 

22 true fusion events. ChimeRScope also predicts the highest number of fusion genes in all 4 cell 

lines. Besides, among all predicted fusion genes from ChimeRScope results, another 8 fusion 

genes are also validated by other studies [43, 48, 49]. However, we only compare the true fusion 

genes reported from the original study [19] for consistency of the comparison in Table 3-6.  
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Table 3-7. Predictions on breast cancer cell lines for selected methods. The numbers in parenthesis next to the cell 

line names are the total number of validated fusion genes in each cell line. ChimeRScope reports the highest number of 

fusion genes in all four cell lines. Overall, ChimeRScope reports the highest number of true positives by identifying 22 

true fusion genes out of 26 validated fusion genes.  

BC_CL  
BT474(11) SKBR3(10) MCF7(3) KPL4(3) Total 

TP 
Total 
Prediction TP  Total 

Prediction TP Total 
Prediction TP Total 

Prediction TP Total 
Prediction 

ChimeRScope* 10 24 6 24 3 14 3 4 22 66 

SOAPfuse 9 35 6 19 2 6 3 8 20 68 

SOAPfuse* 7 26 6 11 3 7 3 4 19 48 

fusionCatcher 9 31 6 24 2 7 2 5 19 67 

fusionCatcher* 5 13 5 7 3 7 3 3 16 30 

JAFFA 8 15 5 9 2 6 2 2 17 32 

JAFFA* 7 17 4 9 3 10 3 5 17 41 

EricScript 8 31 4 37 2 10 2 5 16 83 

chimerascan 9 50 5 33 2 22 3 10 19 115 

PRADA 7 23 4 7 2 4 2 3 15 37 

deFuse 9 57 6 50 2 16 2 12 19 135 

FusionMap 4 76 0 0 2 50 0 6 6 132 

TopHat-Fusion 9 28 3 31 1 9 2 5 15 73 

MapSplice 8 27 4 15 2 6 2 5 16 53 

BreakFusion 8 636 4 676 2 387 1 239 15 1938 
SnowShoes-
FTD 8 12 4 5 2 2 1 1 15 20 

FusionQ - - - - 2 199 2 258 4 457 

ShortFuse 8 19 7 15 1 5 3 4 19 43 

* Marked rows are the results reported by our study. Stats for other rows are reported from a previous study [44].   
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FusionCatcher (Figure 3-1). Among all tested methods, 30 unique fusion genes were predicted, 

including five that were reported by at least two of the four methods. Further analysis on fusion 

genes predicted by SOAPfuse has shown that BOLA2B&SMG1P2, TVP23C&CDRT4, and 

DSCR4&DSCR4-IT1 are directly associated with well-annotated read-through mRNAs (with NM 

IDs in NCBI Reference Sequence database). This type of predictions is classified as false fusion 

event by ChimeRScope and hence is filtered out. In addition, we failed to design primers for 

ORC6&PLEKG4B and MAPK8&NMU due to low complexity regions. Therefore, these five 

fusion genes predicted by SOAPfuse are excluded from our experimental validation. 
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Table 3-8. Eleven fusion genes selected for experimental validation on NK cell lines.  

Cell line Fusion Gene 
Fusion read counts* 

ChimeRScope JAFFA FusionCatcher SOAPfuse 

KHYG1 PEX2&YWHAZ 34 22 (3) 49 

KHYG1 ARIH2&PRKAR2A (3) (2) (2) 5 

KHYG1 CTSC&RAB38 (2) (0) (5) 10 

KHYG1 PRKCH&FLJ22447 (0) (0) (1) 6 

NKYS LRRFIP1&RBM44 10 (0) (64) 192 

NKYS RPL14&SRP14 7 (0) (0) (0) 

NK92 C15orf57&CBX3 6 (6) (1) 10 

NK92 DAB2&FRYL 48 33 30 59 

NK92 LEP&SND1 92 51 (60) 121 

NK92 LRRC37A3&NSF 5 (0) (0) (4) 

NK92 MAST2&METTL21A 8 (0) (0) (0) 

NK92 NCOR2&UBC 5 (3) (5) (4) 

NK92 NPIPB5&SMG1 15 (0) (0) (0) 

NK92 PTMA&NPM1 (9) (0) (0) 13 

        Tool Unique prediction Test size TP FP Sensitivity FDR F-score 

ChimeRScope 10 10 10 0 0.714 0 0.833 

SOAPfuse** 25 20 9 11 0.643 0.55 0.529 

JAFFA 3 3 3 0 0.214 0 0.353 

FusionCatcher 1 1 1 0 0.071 0 0.133 
* The number of identified fusion reads for each fusion gene identified by each method is listed in the corresponding 

cells. Cells with parenthesis indicate that the fusion genes were filtered out by the corresponding tools and thus not 

reported in their final results.  

** Five fusion genes predicted by SOAPfuse were excluded from the validation list because either the complete fusion 

sequence were associated with well annotated read-through mRNAs or the specific primer binding sites were not 

available due to repeated nucleotide sequences. 
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Of all the fusions predicted by different algorithms, we designed primers for 25 unique fusion 

genes and confirmed 14 fusion genes (56%; 14 out of 25 tested fusions) by RT-PCR and Sanger 

sequencing (Table 3-8). Due to space limitations, we chose to show validation results from only 

four fusion genes that are predicted by ChimeRScope with relatively lower number of fusion 

reads (five to seven FESRs, see Table 3-8). Figure 3-2 highlights the PCR results, primer target 

regions, Sanger sequencing chromatograms, and the exact fusion junctions marked by red lines 

(except for RPL14&SRP14 and LRRC37A3&NSF) for these four fusion genes. In total, 

ChimeRScope predicted 10 fusion genes from the lymphoma cell lines and we were able to 

experimentally validate all of these predictions. Thus, there are no false positives predicted by our 

method (FDR: 0%). However, our method missed four true positives that were predicted by other 

methods, hence the sensitivity of this method is at 71.4% (10 out of 14), which is the highest 

among all methods tested. Comparatively, among the 20 tested fusion genes from SOAPfuse 

predictions, only nine fusion genes were experimentally confirmed (sensitivity is 64.3% and FDR 

is 55%). All the fusion genes reported by JAFFA (three fusions) and FusionCatcher (one fusion) 

are also predicted by ChimeRScope and SOAPfuse. Therefore, both JAFFA and FusionCatcher 

achieve 100% precision rate, but with only 21.4% and 7.1% sensitivities, respectively. Overall, 

ChimeRScope reported the best F-score (0.833) for this dataset, compared with 0.529 for 

SOAPfuse, 0.353 for JAFFA and 0.133 for FusionCatcher (Table 3-8). 

 

Figure 3-2.  PCR and Sanger sequencing results for four fusion genes with low number of FESRs from 

ChimeRScope predictions. For each fusion gene track, the left panel is the PCR panel and the right panel displays the 

predicted fusion sequence and the primer binding site, along with the Sanger sequencing chromatogram. Specifically, 

each PCR image has four lanes for a 100bp ladder marker, the fusion gene amplicon with the band of the matched 

product pointed by a red arrow, the positive control (actin beta, or ACTB) and negative control (water). The right panel 

shows the name of the fusion partners, the predicted fusion junction sequence (100bp upstream and downstream, 
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separated by the wildcard “N”), the binding sites of the primer pair used in the PCR panel, the chromatogram for the 

highlighted region (mostly the fusion junction, if applicable). The PCR experiments and the Sanger sequencing results 

confirmed the existences of these four genes in the NK cell lines. We were unable to resolve the fusion junctions for 

RPL14&SRP14 and LRRC37A3&NSF due to the poor Sanger sequencing data quality. Therefore, the exact fusion 

junctions of these two fusions were not marked in the chromatograms.  
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Literature searches for all experimentally validated fusion genes have suggested that some of 

the chimeric transcripts are potentially oncogenic. For instance, a fusion gene that is only 

predicted by ChimeRScope, NCOR2&UBC (Table 3-8), has also been reported previously in CLL 

patients [40]. NCOR2 is a nuclear receptor corepressor that interacts with members of MAPK-

signaling [41], Notch and NF-kappa-B pathways [42]. The altered expression of this gene is 

associated with cell cycle progression and apoptosis in multiple cancers [43, 44]. Figure 3-3 

illustrates the fusion model of NCOR2&UBC with the predicted [45] functional domains in the 

resulting chimeric protein. This chimeric transcript combines the first exon of NCOR2 and the 

second exon of UBC, creating a new transcript with the loss of the SANT (named after switching-

defective protein 3 or SWI3, adaptor 2 or ADA2, nuclear receptor co-repressor or N-CoR, 

transcription factor IIIB or TFIIIB) domain that is responsible for chromatin-remodeling and 

transcription regulation [46, 47]. Another validated fusion gene, LRRC37A3&NSF is predicted 

only by ChimeRScope method (Table 3-8). This fusion involves a gene named N-ethylmaleimide 

sensitive factor (NSF). Studies have shown that NSF directly interacts with CD28 [48], a gene 

responsible for T-cell activation and survival. Although triggering of human NK cells by CD80 

and CD86 (ligands of CD28) seems to be independent of CD28 [49], the absence of CD28 

expressions in NK cell lines [49] could be the result of the LRRC37A3&NSF fusion event. Other 

exclusive ChimeRScope’s predictions like MAST2&METTL21A and NPIPB5&SMG1 are kinase 

fusions [50] that are more likely to have oncogenic functions in cancer because they involve 

kinases like MAST2 (microtubule associated serine/threonine kinase 2) and SMG1 (nonsense 

mediated mRNA decay associated PI3K related kinase). Lastly, the only fusion gene predicted by 

all four methods, DAB2&FRYL, includes a potential tumor suppressor gene named DAB2 

(Disabled homolog 2) which has been found to be associated with tumorigenesis in different 

cancers [51-53]. These fusion genes mentioned above warrants further investigation to confirm 

their specific roles in tumorigenesis. 



80 
 

Figure 3-3. The fusion model of NCOR2&UBC and the predicted functional domains. This fusion gene is fused 

between the first exon of NCOR2 (3’ end) and the second exon of UBC (5’ end). The SANT domain from NCOR2 and 

the ubiquitin domains from UBC are plotted to the approximate position of the corresponding exons. Because the exons 

with the SANT motif sequence are not included in NCOR2&UBC, the predicted domains of the NCOR2&UBC fusion 

gene only contain the ubiquitin domains from UBC. 

 

 

4. Discussion and conclusions 

We tested the predictive power of ChimeRScope against SOAPfuse, JAFFA, and 

FusionCatcher on simulated datasets and cancer datasets. Comparison results have clearly 

demonstrated that ChimeRScope has better performance on all tested simulated datasets and real 

RNA-Seq datasets. Notably, results on simulated datasets have shown that alignment-based 

methods rely largely on the technical aspects like read length and sequencing depth of the RNA-

Seq datasets, whereas alignment-free methods like ChimeRScope are less likely to be affected by 

these factors because it gives constantly superior F-scores across all datasets with different read 

length and coverage depth.   

For analysis on real RNA-Seq datasets, a BLAST search of the fusion sequences is 

recommended for removing false positives and biologically insignificant fusion genes. For 

instance, the fusion gene reported in the original SOAPfuse paper, GATSL1-GTF2I, can be 

aligned to several non-coding RNAs (NR_002206.3 and NR_003580.2). ChimeRScope also 
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found a similar fusion gene named GATSL2-GTF2I in the breast cancer samples. This class of 

fusion genes should be excluded in the downstream analysis because it should not be considered 

as a fusion event.  

We have successfully amplified all the 10 predicted fusion products with the exact amplicon 

size. We also confirmed the exact fusion junctions from the Sanger sequencing for eight out of 10 

predictions, but unable to do so for two of the fusion genes (RPL14&SRP14 and 

LRRC37A3&NSF) that have faint PCR bands (Figure 3-2). However, these two fusions were still 

considered as true fusion events based on the specific amplicon size and the alignment evidences 

between the predicted fusion sequences and the Sanger sequencing results. Specifically, the 

fusion junction of the RPL14&SRP14 fusion contains CAG repeats, which could also affect the 

Sanger sequencing quality near the 3’ end of the repeat region. We were unable to resolve the 

fusion junction due to the CAG repeats, thus the exact fusion junction is not marked for this 

fusion in Figure 3-2. For LRRC37A3&NSF, we were only able to design the primer pair with the 

forward primer spanning the fusion junction (Figure 3-2). Therefore, the Sanger sequencing result 

generated from the forward primer does not span the fusion junction. Due to the poor Sanger 

sequencing quality observed in the first 15 to 40 bases, the chromatogram of LRRC37A3&NSF 

(Figure 3-2) only shows the comparison between the predicted fusion sequence roughly 40bp 

downstream of the forward primer binding site and the Sanger sequencing result. We were not 

able to obtain high quality Sanger sequencing result from the reverse primer, thus the Sanger 

sequencing result that covers the fusion junction was not available for this fusion gene. 

Nevertheless, the PCR result shows the band with the exact amplicon size. Additionally, the 

forward and the reverse primer are very specific to LRRC37A3 and NSF, respectively. Since the 

Sanger sequencing result shows significant match with the 3’ gene (NSF), we believe that this 

fusion gene is also a true fusion event. 
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Among four of the validated fusion genes that are missed by ChimeRScope, ChimeRScope 

still reports FESRs for three of those fusions, but filters them out due to the stringent filters it uses 

to remove false positives. For example, the preliminary result from ChimeRScope Scanner shows 

that ChimeRScope identified nine FESRs for PTMA&NPM1. However, some of these FESRs 

have very low weightage score and was not considered as valid FESRs due to insufficient 

fingerprint sequences (possibly caused by evenly distributed sequence variations). Allowing a 

couple of mismatches when comparing the k-mers could potentially improve the sensitivity of our 

method to detect such fusion genes.  

Here we conclude that, ChimeRScope has superior advantages over other popular tools for 

fusion gene prediction based on all tested datasets. Also, ChimeRScope relies less on the 

technical aspect of the datasets (read length, sequencing depth, etc.) or the expression levels of 

fusion genes, comparing to other alignment-based methods. This also suggests that the alignment-

free methods, in addition to providing alternative ways of analyzing NGS data, can also address 

the issues that we often encounter using alignment-based methods.  
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Chapter 4: ADDITIONAL TOOLS TO ADD THE ANALYSIS (LOCAL GALAXY 

SERVER) 

1. Overview 

Many of the bioinformatics tools for biomedical research only run on linux-based servers 

using command lines. They also have other tool dependencies, some of which are lacking proper 

update procedures and installation documentations. For example, fusionCatcher [29] has over 15 

different dependencies. Installing some of these dependencies also require root privileges, which 

are not always feasible for end users. Installation of python modules also involves changing 

environmental variables like python library path. Therefore, it can be extremely hard for 

researchers with limited programming and system administrative expertize to install and use these 

tools.  

To facilitate the usage of ChimeRScope for different user groups, we also implemented an 

online Graphical User Interface (GUI) data analysis server for ChimeRScope using the Galaxy 

Server platform. Researchers can submit the data analysis jobs to this server online using a web 

browser and all the parameters can be set using check-boxes and dropdown menus.  Below, we 

discuss the GUI of ChimeRScope in detail. 

 

2.  Introduction to Galaxy server 

Galaxy server [67] is an open, web-based platform with large collection of bioinformatics 

tools installed, and accessible to the research community for local installation. It is initially 

developed by the Nebrutenko lab in the Center of Comparative Genomics and bioinformatics at 

Penn State and the Taylor lab at Emory University. Galaxy server provides Graphic User 

Interface (GUI) support for installed bioinformatics tools, thereby making data analysis more 

accessible for users with limited programming experience. Moreover, Galaxy server also includes 
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a workflow system. Users can easily construct the workflows from all tools in the Galaxy server. 

This makes the analysis in the Galaxy server more reproducible. Apart from that, Galaxy server is 

also transparent. Users can share their workflow and analysis histories with other colleagues.  

The main Galaxy server (https://usegalaxy.org/) currently is built at the Texas Advanced 

Computing Center, with support from the National Science Foundation. It is a free, public 

resource with no encryption on the data. Therefore, it is suggested to build a local Galaxy 

instance for local usage. The Galaxy team provides detailed instructions on how to build a local 

Galaxy server and install customized tools. We followed these instructions and successfully build 

a local Galaxy server.  

Figure 4-1 shows a screenshot of our local Galaxy server at UNMC. The left panel lists all 

the installed tools, the central panel displays the data analysis parameters for the currently 

selected tool and the right panel displays the history of the workflow. When a tool is selected (e.g., 

ChimeRScope_Scanner in Figure 4-1), menus for all the input parameters are listed in the central 

display panel. As we mentioned earlier, ChimeRScope_Scanner takes two fastq files (discordant 

paired-end reads), GF-library, and several other parameters as input, and outputs a list of Fusion 

Event Supporting Reads. In the example shown in Figure 4-1, we have uploaded two fastq files, 

namely sim_unmapped_1.fastq and sim_unmapped_2.fastq. We have also added several built-in 

GF-libraries in our Galaxy server. However, users can also upload their own k-mer libraries into 

the Galaxy server using the uploading application. We have set all recommended parameters as 

the default values, however, users have the ability to alter the input parameters and customize 

their jobs. Once a job is submitted to the Galaxy server, selected output files will be listed in the 

history panel on the right. Users can view these files by clicking the view bottom (first bottom 

with the “eye” symbol). If a job fails, the error log will also be listed in the history panel. Users 

can also use the workflow system to automate the analysis pipeline. The workflows and analysis 

results can be easily accessed by other authorized users using the “Share Data” application.   
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Figure 4-1. The layout of our local Galaxy server at UNMC. All the installed tools are grouped and listed in the left 

panel. The history panel on the right part lists all the datasets involved in the analysis, including the input files, 

intermediate files, and output files. The central panel in this example displays all the parameters used for running the 

ChimeRScope (see Chapter 3, subsection 2.2).  

 

 

 

3. Local Galaxy server installation 

We installed the Galaxy instance on our local bioinformatics server (named metastasis) at 

UNMC. The metastasis server has 48 cores and 128 GB memory with CentOS Linux version 

7.2.1511, which provides sufficient computational power for the users. We create a separate 

administrator account named galaxy for our Galaxy server. All the following steps are processed 

under the user galaxy, unless mentioned specifically. We changed the Galaxy home directory to 
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the root directory of the Galaxy repository to maintain consistency for the file paths if we want to 

migrate the whole Galaxy directory to other servers.   

Galaxy server requires python version 2.6 or 2.7. We installed the stable python version 2.7.5 

on metastasis. To protect the integrity of the Galaxy environment, we also used the ‘virtualenv’ 

tool to create an isolated Python environment solely for our Galaxy server. We downloaded the 

latest Galaxy source code from https://github.com/galaxyproject/galaxy/ and installed it on the 

metastasis server. We used nginx for the proxy server of our Galaxy instance, as suggested by the 

Galaxy group for server security issue. Galaxy server by default uses SQLite for quick 

development. Unfortunately, SQLite does not handle concurrency. To make our Galaxy server 

more efficient, we replaced SQLite with PostgreSQL for better data and job handling.  

 

4. Galaxy server structure 

Galaxy server is a sophisticated system that offers a variety of functions. It is crucial to 

understand the structure of the Galaxy server if we want to customize our own Galaxy server. 

Here we list all the essential directories for our Galaxy server and highlight the main purposes of 

these directories (Table 4-1). 

 

Table 4-1. Key directories and the main purposes of the directories for the Galaxy server.  

Galaxy server path Purpose 

~/galaxy-dist/database/files/ Stores all input/output datasets   

~/galaxy-dist/referenceFiles/ Stores all reference files, including k-mer libraries. 

~/galaxy-dist/tool-data/ Configuration files for all registered tools and built-in reference data. (text files) 

~/galaxy-dist/scripts/ System scripts for Galaxy server (python files). 

~/galaxy-dist/tools/ Default path for installed tools and the corresponding python wrapper scripts 

~/shed_tools/ Path for customized tools in the local Galaxy server 

~/galaxy-dist/config/ Galaxy server configuration directory. Including server configuration, data types, etc. (xml files) 
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Galaxy server is mainly implemented in python and XML. For a customized tool to be usable 

in a Galaxy server, developers also need to implement specific wrapper script for that tool. XML 

stands for eXtensible Markup Language and was designed to be both human- and machine-

readable. The XML wrapper script redirects the input files and output files to relative file paths. 

All the parameters set by users on the Galaxy server page will also be parsed to the selected tool.  

Here we show an example of how to install a customized tool in the Galaxy server. We 

registered ChimerScope by adding a tool section called ngs:_ChimeRScope under the toolbox 

section in the tool shed configuration file (shed_tool_conf.xml).  

 

~/galaxy-dist/config/shed_tool_conf.xml 

 

<toolbox tool_path="~/shed_tools> 

    ... 

    <section id="ngs:_ChimeRScope" name="NGS: ChimeRScope repository" version="1.0"> 

      <tool file="localTools/chimeRScope/chimeRScope_Scanner.xml" /> 

      <tool file="localTools/chimeRScope/chimeRScope_Sweeper.xml" /> 

    </section> 

</toolbox> 

  

ChimeRScope repository is registered under ~/shed_tools/localTools/chimeRScope/. A 

simple screenshot of the ChimeRScope wrapper script is shown below.  
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~/shed_tools/localTools/chimeRScope/chimeRScope_Scanner.xml 

 

<tool id="ChimeRScope_Scanner" name="ChimeRScope_Scanner" version="1.0"> 

    <requirements> 

        <requirement type="package" version="1.0">ChimeRScope</requirement> 

    </requirements> 

 

    <description> 

        Identifies Fusion Event Supporting Reads FESR among discordant reads 

    </description> 

    <command> 

        #set kmer_lib_path = '' 

        #if $klibSource.selectklibSource == "buildin": 

            #set kmer_lib_path = $klibSource.prebuild.fields.path 

        #else: 

            #set kmer_lib_path = $klibSource.ownFile 

        #end if 

         

        java -Xmx20g -jar ~/shed_tools/localTools/chimeRScope/ChimeRScope_Scanner.jar 

            -galaxy 

            -fq1 "${input1}"  

            -fq2 "${input2}" 

            -k ${k_value} 

            -d ${d_value} 

            -lib ${kmer_lib_path} 

            -t 10 

            -o chimeRScope_out 

         

    </command> 

    <inputs>     

        ... 

        <param name="k_value" type="integer" value="17" />         

        <param name="d_value" type="integer" value="12" /> 

    </inputs> 

    <outputs> 

        <data name="output1" format="txt" from_work_dir="chimeRScope_out/FESRs.txt"/> 

    </outputs> 

</tool> 
  

The command for running ChimeRScope_Scanner.jar is shown in the command section of the 

XML file. The variables used in the command line are defined in the inputs section. We also 

registered the latest GF-libraries for human reference build GRCh38/hg38 in the Galaxy server 

database. Users can choose the built-in GF-libraries by selecting the right GF-library in the 

dropdown menu from the webpage, or select GF-library files from the history datasets (defined as 

kmer_lib_path in the command section). Once a job is submitted by the user, this java task will be 

run on the local server. We only wrapped the most important file, namely FESRs.txt, for the 

downstream analysis (defined in the outputs section). Direct interactions between the Galaxy 

webserver and the database are shown in Figure 4-2.  
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Figure 4-2 Interactions of the local Galaxy server/database using ChimeRScope_Scanner as an example. Tools 

are installed via XML wrapper scripts. A data analysis job is submitted by users from the Galaxy webserver. Input files 

and variables submitted through the website are parsed into command lines to the data analysis server. Once the job is 

done, the output will be sent back to the Galaxy website for users.  

 

 

5. Workflows in Galaxy server 

Recent advances in the sequencing technologies make it affordable to sequence hundreds or 

thousands of samples in a single research project. Consequently, these advances also posed a big 

challenge for the handling and analysis of these massive datasets. Tools designed for 

bioinformatics data analysis can take anywhere from minutes to days to finish in a single run. It is 

recommended to automate the whole data analysis pipeline, in order to maximize the 

computational power of the data analysis server and to prevent idle time when a downstream job 

is not submitted immediately after the upstream job is finished. Moreover, the data analysis in the 

same study often follows the same pipeline for the same data type. Analyzing and monitoring 

hundreds of data analysis jobs at the same time can be a tedious task that requires lots of human 

attention. Bioinformaticians often write a separate wrapping script using scripting languages (e.g., 
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bash, perl, and python) to automate the pipeline, which requires advanced knowledge on 

programming, system I/O, etc.  Alternatively, the Galaxy server platform helps to develop 

automated data analysis pipelines for routine tasks to enable users to run hundreds of jobs with 

minimal human supervision. 

Using the Galaxy server, users can drag and drop the required tools in the workflow editor. 

Then, the workflow can be constructed by linking the output ports of the upstream tools to the 

input ports of the downstream tools. Figure 4-3 shows how the ChimeRScope workflow looks 

like in our local Galaxy server. Users can modify all the parameters and reference datasets before 

the analysis starts. This workflow can be now considered as a single tool. By specifying two fastq 

files as inputs, this workflow will automatically process all the steps in the workflow and outputs 

a list of predicted fusion genes once the pipeline is finished.   
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Figure 4-3. The complete ChimeRScope workflow on the local Galaxy server. The workflow starts with the 

discordant reads from the alignment step using Tophat. Then, the discordantly aligned paired-end reads are extracted 

from accepted_hits.bam, and unmapped reads are extracted from unmapped.bam. The output from the previous step are 

merged together. Then, the output bam file will be sorted and converted back to paired-end fastq files. The unmapped 

paired-end reads serve as input files for the fusion gene prediction pipeline. The final output is a text file that lists the 

predicted fusion genes with other values (e.g., confidence scores, number of  FESRs). 

 

We analyzed the 50_pos_set using the regular command line version of ChimeRScope and 

the workflow in the Galaxy server (with the same versions of the tools) to check the consistency 

of the output. We compared the final output files using diff command in bash. Results have shown 

that there is no difference between these two versions of the workflow.  

 

6. Limitations and conclusions 

Galaxy server is a great resource for bioinformatics data analysis. The Graphical User 

Interface makes the data analysis much easier for researchers with limited programming expertise. 
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The sharing utility also makes the analysis transparent and the workflow system makes the 

analysis reproducible. However, there are still limitations for using Galaxy server for large-scale 

data analysis.  

Galaxy server is less flexible on the data analysis part in certain situations. For example, the 

sequencing read quality control step is necessary for NGS data analysis. We often use FastQC [68] 

to check the stats on sequencing errors, GC content, possible adapter contamination, etc. It 

generates both text reports and graphical reports. For large-scale data analysis using Galaxy 

server, users will need to manually check each graphical report to obtain different parameters for 

the sequence trimming step. On the other hand, using the command lines, researchers can write a 

single script that parses all the text reports to retrieve the parameter sets.  

Galaxy server is less flexible for resource allocation. Galaxy server is an efficient data 

analysis server; however, users often do not have permissions to alter the computational resources 

for each job. For instance, ChimeRScope_Scanner in our local galaxy server will reserve 20GB of 

memory for the Java virtual machine, irrespective of the dataset size. This can cause 

java.lang.OutOfMemoryError on large datasets. Administrators cannot set it to reserve more 

memory because it will be a waste of computational resources for smaller datasets. It is also not 

recommended to set the memory usage parameter to a publicly accessible variable for security 

issues.  

The data transfer rate is also one of the biggest bottlenecks for using the Galaxy server on 

large-scale data analysis. Downloading data from public databases (denoted as D) to the local 

computer (denoted as C) and uploading them to the Galaxy server (denoted as S) takes two 

operations for each dataset (D to C, then C to S), and the transferring speed is often limited to the 

bandwidth of the client C. Comparatively, for data analysis using command line on Linux servers, 

the data can be downloaded directly to the server (D to S). In this way, it takes only one operation 

and the transferring speed is irrelevant to the client bandwidth.  
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 In conclusion, the Galaxy server implemented for ChimeRScope offers an alternative 

approach for fusion gene analysis. It offers GUI for researchers with limited programming 

experience. It is best suitable for smaller project (often less than 100 sequencing samples) with 

medium size datasets (paired-end reads, less than 10GB). Although the wrapper scripts for 

ChimeRScope can be easily modified by server administrators for large-scale data analysis, we 

still recommend using the command-line version for large-scale data analysis projects for better 

project management experience, result integration and interpretation.   
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Chapter 5: PROJECT SUMMARY AND FUTURE DIRECTIONS 

Fusion genes are a class of chimeric transcripts often observed in different types of cancers 

that can have significant impact on the tumorigenesis and cancer progression. Rapid advances in 

the next generation sequencing technologies make it more feasible to generate transcriptomics 

data (RNA-Seq data) from cancer patients and identify fusion genes. We developed a novel 

alignment-free method named ChimeRScope for fusion gene discovery by evaluating the 

fingerprint sequences from RNA-Seq paired-end reads. Comparison results against other popular 

fusion gene detection tools show that ChimeRScope has better performance on all tested datasets 

that include both simulated and real RNA-Seq datasets. Notably, results on simulated datasets 

have shown that alignment-based methods rely largely on the technical aspects like read length 

and sequencing depth of the RNA-Seq datasets, whereas alignment-free methods like 

ChimeRScope are less likely to be affected by these factors as indicated by consistently superior 

F-scores across all datasets.   

 

1. Configuration and installation 

1.1. Summary 

Java is a platform-independent language that typically compiles to the Java Virtual Machine 

(JVM). Theoretically, java programs can be executed on any operating systems with Java 

Runtime Environment (JRE) support. Its ability to move easily between different computer 

systems has been one of the most significant advantages of Java. ChimeRScope suite, 

implemented in Java Standard Edition 7, inherits this advantage. Users can download and set up 

JRE (version 1.7 or higher) from its official website at www.java.com. No extra installation steps 

are required for ChimeRScope.  

http://www.java.com/
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ChimeRScope requires several reference files. The detailed instruction of how to prepare the 

files is shown below (using human reference genome build 38 with 17-mers as an example).  

 

Step 1: Open UCSC table browser at  

     https://genome.ucsc.edu/cgi-bin/hgTables 

 

Step 2: Select following options in the UCSC Table Browser 

 

clade: Mammal genome: Human assembly: Dec. 2013 (GRCh38/hg38) 

group: Genes and Gene Predictions track: RefSeq Genes 

table: refGene 

region: genome 

output format: GTF - gene transfer format 

output file: hg38.gtf 

file type returned: plain text  

 

Step 3: Extract all mRNA entries on chr1-22 chrX, chrY, ChrM from 

the gtf file using awk on linux. 

  
  cat hg38.gtf | awk 'length($1)<=5 { print }' | grep "\"NM_" > hg38_mRNAs.gtf 

 

Step 4: Download hg38.fa.gz from 

     http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/ 

 

Step 5: Unzip the gzip file and create all mRNAs sequences from the  

      downloaded gtf file and fasta file (use gtf_to_fasta from  

     TopHat package).  
 

  gunzip hg38.fa.gz 

  $TOPHAT_PATH/gtf_to_fasta hg38_mRNAs.gtf hg38.fa hg38_allmRNA.fa 

 

Step 6: Download ID conversion files from UCSC table browser 

 

clade: Mammal genome: Human assembly: Dec. 2013 (GRCh38/hg38) 

group: Genes and Gene Predictions track: RefSeq Genes 

table: refGene 

https://genome.ucsc.edu/cgi-bin/hgTables
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/
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region: genome 

output format: selected fields from primary and related tables  

output file: refseq2gs.txt 

file type returned: plain text  

 

Click get output -> Under Select Fields from hg38.refGene, Only select 

name and name2 -> output is saved as refseq2gs.txt 

 

Step 7: Download gene family information from HGNC database  

     at http://www.genenames.org/ (Optional/Recommended) 

 

Click Downloads -> Custom Downloads -> Under Curated by the HGNC, only 

select RefSeq IDs and Gene Family ID -> Uncheck all boxes under 

Downloaded from external sources -> submit -> save output as 

geneFamily.txt 

 

Step 8: Run ChimeRScope builder. E.g., output library directory is  

     ./GF_lib/homo_sapiens. It creates hg38_mRNA_k17.ids,  

     hg38_mRNA_k17.loc, and hg38_mRNA_k17.lib after it is done.  

 

  java -jar ChimeRScope.jar Builder \ 

    -i hg38_allmRNA.fa \ 

   -k 17 \ 

   -id refseq2gs.txt \ 

   -o ./GF_lib/homo_sapiens/hg38_mRNA_k17 

 

Final step: Compile files 

 

Link other files to the library directory with the same prefix 

 

  ln -s hg38_allmRNA.fa ./GF_lib/homo_sapiens/hg38_mRNA_k17.fa 

  ln -s geneFamily.txt ./GF_lib/homo_sapiens/hg38_mRNA_k17.gf 

 

http://www.genenames.org/
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Under ./GF_lib/homo_sapiens/, it should contain 5 files with the 

same prefix. They are,  

 

  hg38_mRNA_k17.fa 

  hg38_mRNA_k17.gf 

  hg38_mRNA_k17.ids 

  hg38_mRNA_k17.lib 

  hg38_mRNA_k17.loc 

 

The preparation of the reference files for ChimeRScope is a one-time operation that usually 

takes less than one hour with 40GB memory. We also provide pre-compiled files for the users on 

the ChimeRScope homepage at 

https://github.com/ChimeRScope/ChimeRScope/wiki/ChimeRScopeManual.  

 

1.2. Limitations and future directions 

ChimeRScope aims to identify biologically significant fusion genes. We defined that fusion 

genes involving non-coding RNAs are less likely to produce functional fusion proteins or 

maintain their intended regulatory functions. Besides, tests on simulated datasets show that GF-

libraries created from total RNAs can introduce more false positive fusion genes. Therefore, we 

recommend that the GF-library should be constructed only from mRNAs sequences for best 

prediction results. In RefSeq sequence database, the RefSeq IDs for mRNAs (start with “NM_”) 

and non-coding RNAs (start with “NR_”) are easily distinguishable. Comparatively, the transcript 

IDs for coding RNAs and non-coding RNAs in EnsEMBL database all start with “ENSG”. For 

ChimeRScope GF-libraries, we prefer to use RefSeq sequences because it is easier to extract all 

the mRNA sequences from RefSeq annotation. Another reason for the preference on RefSeq 

annotation is that, RefSeq is a collection of non-redundant, curated RNA models, whereas 

https://github.com/ChimeRScope/ChimeRScope/wiki/ChimeRScopeManual
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EnsEMBL database includes RNA sequences from different sources like GENCODE [69], CDDS 

database [70], automatically-annotated pseudogenes, and non-coding RNAs. The redundant 

sequences and predicted RNAs in EnsEMBL can introduce more false fusion genes (Chapter 4 

BC_CL result). Moreover, the number of coding genes in EnsEMBL (~56,000) is more than 

twice as that for the RefSeq database (~25,000). In this case, the memory cost using the 

EnsEMBL reference database will be doubled. Considering all the points described above, the 

current version of ChimeRScope only supports the use of RefSeq annotations.  

The choice of the gene annotation database can hinder some users from using ChimeRScope. 

However, we still believe that fusion gene prediction should be based on more conserved mRNA 

database like RefSeq for the best prediction results. We are not planning to offer direct support 

for EnsEMBL sequences. However, we will modify the code in the future release of 

ChimeRScope so that EnsEMBL sequences can also be used without causing any technical issues.  

 

 

2. Prediction performance 

2.1. Summary 

In sequence comparison analysis, alignment-based methods will perform better than 

alignment-free methods if the target sequences are similar. Most of alignment-based fusion gene 

prediction methods identify fusion gene candidates by aligning RNA-Seq short reads against the 

normal reference genome. In cancer research, RNA-Seq reads are sequenced from cancer 

genome/transcriptome, where the genomes are high perturbed compared to normal ones. 

Comparing reads derived from cancer genome against normal reference genome will prevent 

alignment-based methods from getting reliable alignment results, especially for the highly 

perturbed regions where fusion events occur.  
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As we discussed earlier, ChimeRScope is less likely to be affected by genetic variations. 

Similarly, ChimeRScope is also tolerant to sequencing errors. Therefore, ChimeRScope does not 

take the sequencing quality scores into consideration. We believe that, the decrease of the 

sequencing quality near 3’ of the reads (often observed in Illumina RNA-Seq data) will have little 

impact to the prediction results because only a few of k-mers will be affected. Removing reads 

with overall low quality scores (e.g., average score of all bases lower than 30) is not required for 

ChimeRScope because such reads are more likely to occur near repetitive regions and polymer 

regions. k-mers generated from these regions will have low or zero weightage scores. 

Nevertheless, low quality reads are often excluded after the quality control step, because it is a 

part of the standard NGS data analysis pipeline.  

The core algorithm used in ChimeRScope is an alignment-free algorithm based on k-mers to 

represent the gene fingerprints. The comparison results on both simulated datasets and cancer 

RNA-Seq datasets all suggested the better performance of ChimeRScope against other popular 

methods. Moreover, results on the simulated datasets show that ChimeRScope consistently 

performs better than other methods in datasets with different length and coverage depth, 

suggesting the unique advantage of ChimeRScope over other alignment-based methods.   

 

 

2.2. Limitations and future directions 

For analysis on real RNA-Seq datasets, we recommend users to manually perform a BLAST 

search of the fusion sequences against the NCBI non-coding sequence database collections. This 

is because the non-coding RNA sequences are not included in the GF-library. Occasionally, some 

of the expressed non-coding RNAs are transcribed from coding exons of two different mRNAs. 

Reads sequenced from this type of non-coding RNAs can exhibit fusion patterns for the 
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corresponding mRNAs. For instance, the fusion gene reported in the original SOAPfuse paper, 

GATSL1-GTF2I, can be aligned to several non-coding RNAs (NR_002206.3 and NR_003580.2). 

ChimeRScope also found a similar fusion gene named GATSL2-GTF2I in the breast cancer 

samples. This class of fusion genes should be excluded in the downstream analysis because they 

should not be considered as cancer specific chimeras.  

This manual filtering step can be tedious for projects with hundreds of samples. Here we present 

several alternatives to minimize the need of this extra step. (1) Incorporate a BLAST database 

into ChimeRScope suite. Tools such as SOAPfuse have built-in BLAST databases. However, 

several drawbacks are apparent. Firstly, it takes longer time to install and configure the database. 

Some of the key scripts for BLAST also require root privilege and only a server administrator can 

install it. Moreover, as a heuristic method, BLAST sometimes can also fail to filter out certain FP 

fusion genes (e.g., false positives with highly repetitive sequences near the fusion junction). 

Because we designed ChimeRScope suite as a clean, platform-independent package with 

minimum database dependencies, we did not incorporate BLAST database into the ChimeRScope 

package. (2) Updating the list of known false positives. ChimeRScope is very sensitive to 

sequences with fusion patterns, no matter they are true fusion events or not. A false positive 

fusion gene can be introduced from non-coding genes that can be mapped to two different genes 

separately, or known germline insertions in a gene where the inserted sequences show 

homologies to other genes, or other unannotated transcripts with similar fusion patterns, all of 

which are recurrently shown across different samples (including normal samples). ChimeRScope 

constantly classify these “normal” transcripts into false positives. These false positives can be 

manually filtered out in the last filtering step but it requires extra work. Alternatively, we can 

constantly update the list of the false positives that we already know from the previous analysis 

results. If a false positive fusion gene is reported in the new samples, it is automatically classified 

as a false positive in the final output and we will also provide the reason why this fusion is a false 
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positive. In summary, we plan to choose the latter option to facilitate the use of ChimeRScope 

because the results can be more accurate without incorporating the BLAST databases.  

ChimeRScope does not allow any mismatches when comparing the fingerprint sequences, 

which might be the main reason why some of the true fusion genes in the tested datasets were not 

predicted by this method. The regular approach for allowing one mismatch when comparing k-

mers can increase the processing time of each k-mer for a maximum of 3k times and may also 

increase false positives. Hashing algorithm called SimHash [71, 72] might be useful to solve this 

computational issue. SimHash is an efficient algorithm that can be used to find similar 

fingerprints within a certain Hamming distance. It creates similar hash values for strings with 

similar sequences. We plan to explore the applicability of using SimHash in the future releases of 

ChimeRScope (ChimeRScope currently uses HashMap) for fusion gene detection.   

ChimeRScope achieves better prediction accuracies overall when compared to other popular 

tools. However, there is still room for improvement. For example, FPs caused by large insertions 

(mentioned in the previous paragraph) can be filtered out by alignment-based methods with 

adjusted scoring matrices that allow gapped alignment. Currently, the alignment module of 

ChimeRScope (Examiner) only uses a fixed substitution matrix for targeted alignment (Chapter 4, 

subsection 2.1), which rarely allows the identification of long insertions (>50bp). To improve, we 

can test different substitution matrices and output the best alignment results for each targeted 

alignment so that this class of FPs will be automatically recognized.  

The current version of ChimeRScope can only report fusion sequences near the fusion 

junctions in a range that is limited to the read length and the insert size of the paired-end reads. 

One obvious limitation is that ChimeRScope is not capable of accurately predicting the complete 

fusion gene sequences because reads covering regions other than the fusion junctions will not be 

analyzed. Ultimately, it will be less accurate for ChimeRScope to predict the functional impact of 

the fusion event (e.g., predict if a frameshift is involved so that the fusion protein might not be 
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translated or the functional domains might be changed). To overcome this limitation, we can 

extract the consensus nucleotide sequences for each fusion partner from the Sequence AlignMent 

Files (SAM or Binary SAM files, generated by aligners like TopHat) and combine them with the 

predicted fusion junction sequences.  

Another improvement that might be used to increase the overall prediction accuracies rather 

than directly fix any limitations is to adopt machine learning, particularly Artificial Neural 

Network (ANN) [73] or evolutionary algorithms [74]. Information such as the expression levels 

of each fusion partner, sequencing quality scores, mutations near the fusion junctions, and known 

structural variations can be transformed as vectors and they might be directly associated with the 

confidence level of the fusion genes. We can download cancer cell lines RNA-Seq datasets and 

construct training and testing datasets using all the experimentally validated fusion genes found in 

these cancer cell lines. Therefore, all the fixed parameters used in the current version of 

ChimeRScope can be optimized automatically for each predicted fusion gene, which eventually, 

should lead to higher sensitivities and lower false discovery rate.   

 

3. Epilogue 

The current version of ChimeRScope has shown superior performance on a variety of tested 

datasets. We will regularly update ChimeRScope to fix bugs and improve the accuracy. We are 

maintaining the ChimeRScope wiki page at https://github.com/ChimeRScope/ChimeRScope/wiki 

to keep track of the version changes, updates and FAQs. We will also create ChimeRScope 

mailing lists to provide support for the ChimeRScope user community. 

  

https://github.com/ChimeRScope/ChimeRScope/wiki
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