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Abstract. DAG models are statistical models satisfying a collection of con-

ditional independence relations encoded by the nonedges of a directed acyclic
graph (DAG) G. Such models are used to model complex cause-effect sys-

tems across a variety of research fields. From observational data alone, a DAG

model G is only recoverable up to Markov equivalence. Combinatorially, two
DAGs are Markov equivalent if and only if they have the same underlying

undirected graph (i.e. skeleton) and the same set of the induced subDAGs

i → j ← k, known as immoralities. Hence it is of interest to study the num-
ber and size of Markov equivalence classes (MECs). In a recent paper, the

authors introduced a pair of generating functions that enumerate the number

of MECs on a fixed skeleton by number of immoralities and by class size, and
they studied the complexity of computing these functions. In this paper, we

lay the foundation for studying these generating functions by analyzing their
structure for trees and other closely related graphs. We describe these poly-

nomials for some important families of graphs including paths, stars, cycles,

spider graphs, caterpillars, and complete binary trees. In doing so, we recover
important connections to independence polynomials, and extend some classi-

cal identities that hold for Fibonacci numbers. We also provide tight lower

and upper bounds for the number and size of MECs on any tree. Finally, we
use computational methods to show that the number and distribution of high

degree nodes in a triangle-free graph dictates the number and size of MECs.

1. Introduction

A graphical model based on a directed acyclic graph (DAG), known as a DAG
model or Bayesian network, is a type of statistical model used to model complex
cause-and-effect systems. DAG models are popular in numerous areas of research
including computational biology, epidemiology, environmental management, and
sociology [1, 17, 35, 40, 43]. Given a DAG G := ([p], A) with nodes [p] = {1, . . . , p}
and arrows i → j ∈ A, the DAG model associates to each node i ∈ [p] of G a
random variable Xi. The collection of non-arrows of G encode those conditional
independence (CI) relations typical of cause-effect relationships:

Xi ⊥⊥ Xnd(i)\ pa(i) | Xpa(i),

where nd(i) and pa(i) respectively denote the nondesendents and parents of the
node i in G. A probability distribution P is said to satisfy the Markov assumption
with respect to G if it entails these CI relations, and the DAG model associated
to G is the complete set of all such joint probability distributions. The global
consequences of the Markov assumption in terms of CI relations can be captured
via the combinatorics of the DAG G with a notion of directed separation called
d-separation [14, Chapter 3]. Unfortunately, multiple DAGs can encode the same
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set of CI relations. Such DAGs are said to be Markov equivalent, and the complete
collection of DAGs encoding the same set of CI relations as G is called the Markov
equivalence class (MEC) of G. Verma and Pearl show in [49] that a MEC is combi-
natorially determined by the underlying undirected graph G (or skeleton) of G and
the placement of immoralities, i.e. induced subgraphs of the form i→ j ← k.

From observational data, the underlying DAG G of a DAG model can only be
determined up to Markov equivalence. It is therefore of interest to gain a combina-
torial understanding of MECs, in particular their number and sizes. The literature
on the MEC enumeration problem can be summarized via the following three per-
spectives: (1) count the number of MECs on all DAGs on p nodes [20], (2) count the
number of MECs of a given size [19, 45, 50], or (3) determine the size of a specific
MEC [22, 23]. In [20], the authors approach perspective (1) computationally and
compute the number of MECs for all DAGs on p ≤ 10 nodes. In [19, 45, 50], the
authors provide partial results for perspective (2) using inclusion-exclusion formu-
lae that work nicely for small MECs sizes. Then in [22, 23], the authors explore
efficient techniques for computing the size of a fixed MEC via algorithms that ma-
nipulate v-rooted and core subgraphs of chordal graphs. Recently, [39] addresses
this question from a new perspective by introducing a pair of generating functions
that enumerate the number of MECs on a fixed skeleton G = (V,E) by number
of immoralities in each class and by class size. Their results reveal connections to
graphical enumeration problems that are well-studied from the perspective of com-
binatorial optimization. A main goal of this paper is make explicit these connections
and use them to study the generating functions of [39] for sparse graphs.

Throughout, we use curly letters for DAGs, such as G, and script letters for the
corresponding undirected graph (i.e. skeleton), such as G. In addition, we use A to
denote a collection of arrows and E to denote a collection of undirected edges. The
first generating function is the graph polynomial

M(G;x) :=
∑
k≥0

mk(G)xk,

where mk(G) denotes the number of MECs with skeleton G that contain precisely
k immoralities. The degree of M(G;x), denoted m(G), is called the immorality
number of G, and it counts the maximum number of immoralities possible in an
MEC with skeleton G. The second generating function is the arithmetic function

S(G;x) :=
∑
k≥0

sk(G)

kx
,

where sk(G) denotes the number of MECs with skeleton G that have size k. We
let M(G) := M(G; 1) = S(G; 0) denote the total number of MECs with skeleton
G. In [39], the authors showed that computing a DAG with m(G) immoralities is
an NP-hard problem, and that S(G;x) is a complete graph isomorphism invariant
for all connected graphs on p ≤ 10 nodes. Otherwise, very little is known about
the structure of these generating functions.

In this paper, we lay the foundation for the study of the graph polynomial
M(G;x) by providing a detailed analysis of its properties for trees (and their closely
related graphs). Within this context, we draw explicit connections between prop-
erties of M(G;x) and the independence polynomial of G; i.e. the graph polynomial
I(G;x) :=

∑
k≥0 αk(G)xk, where αk(G) denotes the number of pairwise disjoint

k-subsets of vertices (independent sets) of G.
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The remainder of this paper is structured as follows: In Section 2 we compute
M(G;x) and S(G;x) for some fundamental examples, including paths, cycles, and
stars. We find that M(G;x) coincides with an independence polynomial for paths
and cycles, therein providing connections to Fibonacci numbers and Fibonacci-
like sequences. Paths and stars give tight bounds on the number of independence
sets in a tree [37]. We show in Section 3 that they also provide tight upper and
lower bounds for the number and sizes of MECs on a tree. In Section 4 we then use
M(G;x) for stars and paths to compute M(G;x) and M(G) for families of trees that
are significant in both mathematical and statistical settings. The graphs analyzed
include spider graphs, caterpillar graphs, and complete binary trees. In the case of
spider graphs, the resulting formulae yield generalizations of classic identities known
for Fibonacci numbers, and reveal a multivariate extension of M(G;x) exhibiting
nice combinatorial properties that can be recursively computed for any tree. In
Section 5, we use computational methods to examine properties of M(G;x) and
M(G) for the more general family of triangle-free graphs. The results of [39] and
those of Sections 2, 3, and 4 exhibit an underlying relationship between the number
and size of MECs and the number of cycles and high degree nodes in the graph.
Using a program first described in [39], we study this connection by examining data
collected on MECs for all connected graphs on p ≤ 10 nodes. We compare class size
and the number of MECs per skeleton to skeletal features including average degree,
maximum degree, clustering coefficient, and the ratio of number of immoralities
in the MEC to the number of induced 3-paths in the skeleton. Unlike S(G;x),
the polynomial M(G;x) is not a complete graph isomorphism invariant over all
connected graphs on p ≤ 10 nodes. However, using this program, we observe that
it is such an invariant when restricted to triangle-free graphs.

2. Some First Examples

In this section, we compute the generating functions M(G;x) and S(G;x) for
paths, cycles, stars, and bistars. We show that M(G;x) are independence polyno-
mials for all paths and cycles. Similarly, we show that for the star graphs M(G;x)
has nonzero coefficients given by the binomial coefficients, which are precisely the
coefficients of its corresponding independence polynomial. These examples are fun-
damental to the theory developed in Sections 3 and 4, in which we bound the
number and size of MECs on trees and compute M(G;x) for more general families
of graphs using paths and stars.

Recall that the p-path is the (undirected) graph Ip := ([p], E) for which E :=
{{i, i + 1} : i ∈ [n − 1]}, and the p-cycle is the (undirected) graph Cp := ([p], E)
for which E := {{i, i + 1} : i ∈ [n − 1]} ∪ {{1, n}}. We also define the graph
Gp(q1, q2, . . . , qp) to be the undirected graph given by attaching qi leaves to node
i of the p-path Ip. The p-star is the graph G1(p) and the p, q-bistar is the graph
G2(p, q). The center node of G1(p) is its unique node of degree p.

2.1. Paths and cycles. We introduce two well-studied combinatorial sequences,
and their associated polynomial filtrations that will play a fundamental role in the
formulae computed in this section as well as in Sections 3 and 4. Recall that the
pth Fibonacci number Fp is defined by the recursion

F0 := 1 F1 := 1, and Fp := Fp−1 + Fp−2 for p ≥ 2.
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The pth Fibonacci polynomial is defined by

Fp(x) :=

b p2 c∑
k=0

(
p− k
k

)
xk,

and it has the properties that Fp(1) = Fp for all p ≥ 1 and Fp(x) = Fp−1(x) +
xFp−2(x) for all p ≥ 2. Analogously, the pth Lucas number Lp is given by the
Fibonacci-like recursion

L0 := 2 L1 := 1, and Lp := Lp−1 + Lp−2 for p ≥ 2.

The pth Lucas polynomial is given by

L0(x) := 2 L1(x) := 1, and Lp(x) := Lp−1(x) + xLp−2(x) for p ≥ 2.

It is a well-known that the independence polynomial of the p-path is equal to
the (p+ 1)st Fibonacci polynomial and the independence polynomial of the p-cycle
is given by the pth Lucas polynomial; i.e.

I(Ip;x) = Fp(x) and I(Cp;x) = Lp(x).

With these facts in hand we prove the following theorem.

Theorem 2.1. For the path Ip and the cycle Cp on p nodes we have that

M(Ip;x) = Fp−1(x) and M(Cp : x) = Lp(x)− 1.

In particular, the number of MECs on Ip and Cp, respectively, is

M(Ip) = Fp−1 and M(Cp) = Lp − 1,

and the maximum number of immoralities is

m(Ip+2) = m(Cp) =
⌊p

2

⌋
.

Proof. The result follows from a simple combinatorial bijection. Since paths and
cycles are the graphs with the property that the degree of any vertex is at most
two, then the possible locations of immoralities are exactly the degree two nodes.
That is, the unique head node j in an immorality i → j ← k must be a degree
two node. In the path Ip, this corresponds to all p − 2 non-leaf vertices, and for
the cycle Cp this is all the vertices of the graph. Notice then that no two adjacent
degree two nodes can simultaneously be the unique head node of an immorality,
since this would require one arrow to be bidirected. Thus, a viable placement of
immoralities corresponds to a choice of any subset of degree two nodes that are
mutually non-adjacent, i.e. that form an independent set.

Conversely, given any independent set in Ip, a DAG can be constructed by placing
the head node of an immorality at each element of the set and directing all other
arrows in one direction. Similarly, this works for any nonempty independent set in
Cp. (Notice that any MEC on the cycle must have at least one immorality since all
DAGs have at least one sink node.) The resulting formulas are then

M(Ip;x) = I(Ip−2;x) = Fp−1(x) and M(Cp : x) = I(Cp;x)− 1 = Lp(x)− 1,

which completes the proof. �

We now compute the generating functions S(Ip;x) and S(Cp;x). The desired
formulae follow naturally from the description of the placement of immoralities
given in Theorem 2.1.



COUNTING MARKOV EQUIVALENCE CLASSES FOR DAG MODELS ON TREES 5

Theorem 2.2. The number s`(Ip) of MECs of size ` with skeleton Ip is the number
of compositions c1 + · · ·+ ck+1 = p− k of p− k into k + 1 parts that satisfy

` =
k+1∏
i=1

ci

as k varies from 0, 1 . . . , bp2c.
Proof. Let G be a DAG with skeleton Ip. We denote the Markov equivalence class of
G by [G]. By the proof of Theorem 2.1, we know that the immorality placements in
[G] correspond to the nodes in an independent k-subset I ⊂ [p] on the subpath Ip−2
of Ip induced by the non-leaf nodes of Ip. The induced graph of the complement
of I is a forest of k + 1 paths. Since each member of [G] is a DAG with skeleton
Ip that has no immoralities on these k+ 1 paths, then each path contains a unique
sink. Each independent k-subset yields a distinct forest of k + 1 paths on [p]\I,
which corresponds to a unique partition of p− k into k + 1 parts. The formula for
s`(Ip) is then given by considering all such possible placements of sinks on each
path in the forests over all independent sets. �

A similar argument using integer partitions allows us to compute the number of
MECs of size ` on the p-cycle.

Theorem 2.3. The number of MECs of size ` in the p-cycle is

s`(Cp) =

b p
2 c∑

k=1

∑
m∈ P[p−2k+1,k,p−k],

`=
∏k

i=1 i
mi

p

k

(
k

m1, . . . ,mp−2k+1

)
,

where P[j, k, n] denotes the partitions of n with k parts with largest part at most j.

Proof. Since Cp is a graph in which every node is degree 2, then each MEC of Cp
containing k immoralities corresponds to an independent k-subset of [p], and the
subgraph of Cp given by deleting this k-subset consists of k disjoint paths. The
size of this MEC is then the product of the lengths of these paths. So we need only
count the number of such subgraphs for which this product equals `.

To count these objects, consider that each subgraph of Cp given by deleting an
independent k-subset of Cp forms a partition of the p − k remaining vertices into
k parts with maximum possible part size being p − 2k + 1. Such a partition is
represented by

〈1m1 , 2m2 , . . . , (p− 2k + 1)mp−2k+1〉 ∈ P[p− 2k + 1, k, p− k],

where m1, . . . ,mp−2k+1 ≥ 0 and
∑
imi = k. Each such partition corresponds to

an unlabeled forest consisting of mi i-paths, and the number of subgraphs of Cp
isomorphic to this forest is

p

k

(
k

m1, . . . ,mp−2k+1

)
.

The claim follows since the size of each corresponding MEC is
∏k
i=1 i

mi . �

Remark 2.1. It is a well-known result that the coefficient of xk in the (p − 1)st

Fibonacci polynomial is the binomial coefficient
(
p−k−1
k

)
, and that this is also the

number of compositions of p− k into k + 1 parts. The former result says that the
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Figure 1. The pth diagonal of each triangle is the coefficient
vector of Fp(x) and Lp(x), respectively.

(p − 1)st Fibonacci polynomial has coefficients given by the (p − 1)st diagonal of
Pascal’s triangle, and so the latter result gives a compositional interpretation of
the corresponding entry in Pascal’s Triangle; see Figure 1 (left). In this section,

we saw that this compositional interpretation of
(
p−k−1
k

)
results in the proof of

Theorem 2.2.
Analogously, the pth diagonal of a second triangle, called Lucas’ triangle in [7],

corresponds to the coefficients of the pth Lucas polynomial. This triangle is depicted
on the right in Figure 1. Thus, the proof of Theorem 2.3 results in a combinatorial
interpretation of the entries of this triangle via partitions. In particular, the entry
of the Lucas triangle corresponding to the kth coefficient of Lp(x) is

[xk].Lp(x) =
∑

m∈P[p−2k+1,k,p−k]

p

k

(
k

m1, . . . ,mp−2k+1

)
.

Moreover, the binomial recursion on the triangle implies that these coefficients
satisfy the identity

[xk].Lp(x) = [xk−1].Lp−2 + [xk].Lp−1.

To the best of the authors’ knowledge, such a partition identity is new to the
combinatorial literature.

2.2. Stars and bistars. We now study the star and bistar graphs, G1(p) and
G2(p, q). An example of a star and a bistar is given in Figure 2. The number of

G1(p) ' K1,p G2(p, q)

1 2

Figure 2. On the left is a star and on the right is a bistar.
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MECs on stars and their sizes will play an important role in Sections 3 and 4.

Theorem 2.4. The MECs on the p-star G1(p) have the polynomial generating
function

M(G1(p);x) = 1 +
∑
k≥2

(
p

k

)
x(k

2).

In particular,

M(G) = 2p − p.
Moreover, the corresponding class sizes are

s1(G1(p)) = 2p − p+ 1 and sp+1(G1(p)) = 1.

Proof. Any immorality i→ j ← k in a DAG on G1(P ) must have the unique head
node j being the center node of G1(P ), and the tail nodes i and k must be leaves
of G1(p). It follows that each MEC on G1(p) having at least one immorality is
given by selecting any k-subset of the p leaves for k ≥ 2 to be directed towards the
center node and then directing all other edges outwards. Each such k-subset yields
a unique MEC of size one containing

(
k
2

)
immoralities. The final MEC is the class

containing no immoralities. This class consists of all DAGs on G1(p) with a unique
source node, and there are p+ 1 such DAGs. �

The formulas in Theorem 2.4 allow us to obtain similar formulas for bistars. For
convenience, we let

Pm :=
m∑
k=1

(
m

k

)
x(k+1

2 ).

It will also be helpful to label edges that have specified roles in certain MECs. The
green edges (also labeled with �) indicate that these edges cannot be involved in
any immorality. The red arrows (also labeled with ∗) indicate a fixed immorality
in the partially directed graph, and the blue arrows (also labeled with ◦) represent
fixed arrows that are not in immoralities.

Theorem 2.5. The MECs on the bistar G2(p, q) have the polynomial generating
function

M(G2(p, q);x) = M(G1(p);x)Pq+M(G1(q);x)Pp+M(G1(p);x)+M(G1(q);x)−1.

In particular,

M(G1(p, q)) = 2p+q+1 − p2q − q2p − 1.

Moreover, the corresponding class sizes are

s1(G2(p, q)) = 2p+q+1 − p2q − q2p − 2p − 2q,

sp+1(G2(p, q)) = 2q − 1, sq+1(G2(p, q)) = 2p − 1, and sp+q+2(G2(p, q)) = 1.

Proof. To count the MECs on the bistar G2(p, q) we consider three separate cases
defined in terms of the edge {1, 2}. These three cases are:

(1) The edge {1, 2} is in an immorality with at least one of the p leaves attached
to node 1.

(2) The edge {1, 2} is in an immorality with at least one of the q leaves attached
to node 2.

(3) The edge {1, 2} is not in an immorality.
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∗
∗

∗ ∗ ◦ ◦
◦
◦

◦

Case (1)

1 2

Case (2)

1 2

Case (3)

1 2

Figure 3. The three cases of the proof of Theorem 2.5.

The three cases are depicted in Figure 3. In the first case, at least one of the p leaves
attached to node 1 must be in an immorality with the edge {1, 2}, and the q leaves
attached to node 2 can display any pattern of immoralities of the star G1(q). This
yields M(G1(q);x)Pp MECs as counted by their number of immoralities. Similarly,
case two yields M(G1(p);x)Pq. In the third case, in order for the edge {1, 2} to
not appear in any immorality, we need that all edges at the head of {1, 2} point
towards the leaves. This yields M(G1(p);x) + M(G1(q);x) − 1 MECs as counted
by their number of immoralities. Thus,

M(G2(p, q);x) = M(G1(p);x)Pq+M(G1(q);x)Pp+M(G1(p);x)+M(G1(q);x)−1,

and evaluating this polynomial at 1 yields

M(G1(p, q)) = 2p+q+1 − p2q − q2p − 1.

Finally, to count the classes by size we again filter by the three cases (1), (2),
and (3). In the first case, there are 2p − 1 ways for the edge {1, 2} to be in an
immorality with any of the p leaves at node 1, and there are 2q−q possible patterns
of immoralities that can occur among the q leaves at node 2. One of these 2q − q
patterns has class size q+1 (the class with no immoralities), and all others have size
one. Thus, case (1) yields 2p− 1 classes of size q+ 1 and (2q− q− 1)(2p− 1) classes
of size 1. Similarly, case (2) yields 2q−1 classes of size p+1 and (2p−p−1)(2p−1)
classes of size 1. In case (3), if both sets of leaves contain no immoralities, then we
get a single class of size p + q + 2. If the p leaves at node 1 contain at least one
immorality, then all leaves at node 2 must be directed away from node 2, yielding
2p − p− 1 classes of size 1. Similarly, if the q leaves at node 2 contain at least one
immorality, then we get another 2q − q− 1 classes of size one. Summing over these
cases yields the desired formulae. �

3. Bounding the Size and Number of MECs on Trees

We begin this section by deriving upper and lower bounds on the number of
MECs for trees on p nodes. We show that these bounds are achieved by the (p−1)-
star G1(p−1) and the p-path Ip, respectively. This result parallels the classic result
of [37], which states that the number of independent sets in a tree on p nodes is
bounded by the number of independent sets in G1(p− 1) and Ip, respectively.

Theorem 3.1. Let Tp be a tree on p nodes. Then

Fp−1 = M(Ip) ≤M(Tp) ≤M(G1(p− 1)) = 2p−1 − p+ 1.

Proof. We first prove the upper bound on M(Tp). Since Tp is a tree, it has precisely
p−1 edges, and so there are 2p−1 edge orientations on Tp. Of these 2p−1 orientations,
the p orientations given by selecting a unique source node in Tp all belong to the
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same MEC. So there are at most 2p−1 − p+ 1 MECs for Tp. By Theorem 2.4, this
bound is achieved by the (p− 1)-star G1(p− 1).

To prove the lower bound, we use a simple inductive argument. Notice first
that the bound is true when p ≤ 5. Now recall that every tree on p nodes can be
constructed in one of two ways: (1) attaching a leaf to a degree 1 node of a tree on
p − 1 nodes, or (2) attaching a leaf to a node of Tp−1 that is a neighbor of a leaf.
Thus, given a tree Tp−1 on p− 1 nodes, it suffices to show that when we construct
Tp from Tp−1 via (1) or (2), the number of MECs increases by at least Fp−3.

In case (1), we attach a leaf node v to a leaf u of Tp−1, whose only neighbor in
Tp−1 is some node w. The MECs on Tp then come in two types: either the edge
{v, u} is not in an immorality or it is in the immorality v → u ← w. The number
of classes in the first case is M(Tp−1) and the number of classes in the second case
is M(Tp−1\u). So by the inductive hypothesis we have that

M(Tp) ≥M(Tp−1) +M(Tp−1\u) ≥ Fp−2 + Fp−3 = Fp−1.

In case (2), the leaf node v is attached to some node u of Tp−1 that has at least one
leaf w in Tp−1. The MECs on Tp contain two disjoint types of classes: classes in
which the edge {v, u} is not in an immorality and classes containing the immorality
v → u ← w. Similar to the previous case, it then follows from the inductive
hypothesis that

M(Tp) ≥M(Tp−1) +M(Tp−1\w) ≥ Fp−2 + Fp−3 = Fp−1,

which completes the proof. �

We now derive bounds on the size of the MEC for a fixed DAG Tp on the
underlying undirected graph Tp. These bounds will be computed in terms of the

structure of the essential graph T̂p of the MEC [Tp]. Recall that the essential graph

of an MEC [G] is a partially directed graph Ĝ := ([p], E,A), where the collection of

arrows A in Ĝ are the arrows that point in the same direction for every member of
the class, and the undirected edges E represent the arrows that change orientation

to distinguish between members of the class; see [3]. The chain components of Ĝ are
its undirected connected components, and its essential components are its directed
connected components.

To see why it is reasonable to work with the essential graph to derive such bounds,
consider the analysis of the MEC sizes for stars and bistars given in Theorems 2.4
and 2.5. In order to derive the possible sizes of these MECs, we implicitly counted
all possible orientations of the undirected edges in the essential graph of each class.
Since understanding the possible orientations of these edges is equivalent to knowing
the size of the class, we will bound the size of the MEC of Tp in terms of the number

and size of the chain components of T̂p. We will see that the computed bounds are
tight, and that stars play an important role in achieving these bounds. We refer
the reader to [3] for the basics relating to essential graphs.

In the following, we assume that the essential graph T̂p has chain components
τ1, τ2, . . . , τ` for ` > 0. We also assume that each τi is nontrivial ; i.e. it has at least

two vertices. We let G(T̂p) denote the directed subforest of the essential graph T̂p
consisting of all directed edges of T̂p, and we let ε1, ε2, . . . , εm denote its connected
components.
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Lemma 3.2. Let Tp be a directed tree on p nodes and T̂p the corresponding essen-

tial graph. If T̂p has chain components τ1, τ2, . . . , τ`, then the size of the Markov
equivalence class [Tp] is

#[Tp] =
∏̀
i=1

|V (τi)|.

Proof. Each element of [Tp] corresponds to one of the ways to direct the components
τ1, . . . , τ`, each of which is a tree. Suppose we directed τi so that it has two source
nodes s1 and s2. Then along the unique path between s1 and s2 in the directed τi,

there must lie an immorality that is not present in T̂p. Thus, the only admissible
directions of the components τi have no more than one source node. Since every
DAG has at least one source node, the number of admissible directions of each τi is
precisely the number of ways to pick the unique source node of τi. This is precisely
the number of vertices in τi, thereby completing the proof. �

Theorem 3.3. Let Tp be a directed tree on p nodes and T̂p the corresponding

essential graph. Suppose that T̂p has ` > 0 chain components τ1, τ2, . . . , τ` and that

the directed subforest G(T̂p) of T̂p has m ≥ 0 connected components ε1, ε2, . . . , εm.
Then

2` ≤ #[Tp] ≤
(
p−m
`

)`
.

Proof. Notice first that the lower bound is immediate from Lemma 3.2 and the
assumption that each τi is nontrivial. So it only remains to verify the proposed
upper bound.

Let `i denote the number of chain components that are adjacent to εi for all
i ∈ [m]. Since the chain components τ1, . . . , τ` are all disjoint, it follows that

1 + `i ≤ |V (εi)|
for all i ∈ [m]. Therefore, a lower bound on the size of the number of nodes in the

directed subforest G(T̂p) is given by

m+
m∑
i=1

`i ≤ |V (G(T̂p))|.

A closed form for the sum
∑m
i=1 `i is recovered as follows. Consider a complete

bipartite graph K`,m whose vertices are partitioned into two blocks A and B where
|A| = ` and |B| = m. The possible ways to assemble the components τ1, . . . , τ` and
ε1, . . . , εm into an essential tree are in bijection with the spanning trees of K`,m.
For any such spanning tree T of K`,m, each edge of T has exactly one vertex in
each of A and B. Thus,

m∑
i=1

`i =
∑
v∈A

degT (v) =
∑
v∈B

degT (v).

Since T is a tree, it follows that
m∑
i=1

`i =

∑
v∈A degT (v) +

∑
v∈B degT (v)

2
= `+m− 1. (1)

Therefore,

2m+ `− 1 ≤ |V (G(T̂p))|.
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Moreover, since Tp has p vertices, and each edge of a spanning tree of K`,m cor-

responds to exactly one of the vertices shared by G(T̂p) and the chain components
τ1, . . . , τ`, then we have that

∑̀
j=1

|V (τj)| = p+m+ `− 1− |V (G(T̂p))|. (2)

Now by Lemma 3.2 and the arithmetic-geometric mean inequality, we have

#[Tp] =
∏̀
j=1

|V (τj)| ≤
(∑`

j=1 |V (τj)|
`

)`
.

Thus, by applying equation 2, we conclude that

#[Tp] ≤
(
p+m+ `− 1− |V (G(T̂p))|

`

)`
≤
(
p+m+ `− 1− (2m+ `− 1)

`

)`
,

and so #[Tp] ≤ ((p−m)/`)`, which completes the proof. �

We now examine the tightness of the bounds in Theorem 3.3 by considering some
special cases. Notice first that the lower bound is tight exactly when each chain

component is a single edge. The upper bound is tight exactly when |V (G(T̂p))| =

2m+ `− 1 and each chain component has exactly p−m
` vertices.

Corollary 3.4. Suppose G(T̂p) has precisely one connected component, i.e., G(T̂p)
is a directed tree. Then

2` ≤ #[Tp] ≤
(
p− 1

`

)`
,

and every directed tree Tp for which the upper bound is tight has the same subtree

G(T̂p), namely G1(`) with all edges directed inwards.

Proof. The statement of the bounds is immediate from Theorem 3.3. So we only
need to verify the claim on the tightness of the upper bound. It follows from the
more general bounds described above, that the upper bound is tight exactly when

|V (G(T̂p))| = ` + 1 and each chain component has exactly p−1
` vertices. Since the

chain components τ1, . . . , τ` are all distinct and G(T̂p) is a directed tree with `+ 1

vertices, then each τj is adjacent to exactly one of the ` vertices of G(T̂p), and there

remains only one vertex to connect these ` vertices. Therefore, the skeleton of G(T̂p)
is the star G1(k+ 1). Moreover, since all essential edges in T̂p are exactly the edges

of G(T̂p), then all edges of G(T̂p) must be directed inwards towards the center node.
An example of a graph for which this upper bound is tight is presented on the left
in Figure 4. �

Corollary 3.5. Suppose T̂p has precisely one chain component τ1. Then

m ≤ #[Tp] ≤ p− 2m,

and both bounds are tight when τ1 = G1(m− 1).



12 ADITYANARAYANAN RADHAKRISHNAN, LIAM SOLUS, AND CAROLINE UHLER

Figure 4. Graphs for which the bounds in Corollary 3.5 are
tight when m = 1 (left) and when k = 1 (right).

Proof. By Lemma 3.2 we know that #[Tp] = |V (τ1)|; so the bounds presented
here are bounds on the size of the vertex set of the chain component τ1. Since

the connected components ε1, . . . , εm of G(T̂p) are all disjoint, we know that τ1
contains at least m vertices. On the other hand, since each εi contains at least
one immorality and attaches to τ1 at precisely one node, then each εi contains at
least two nodes that are not also nodes of τi. A graph for which the bounds are
simultaneously tight is depicted on the right in Figure 4. Notice that the chain
component τ1 is G1(m− 1). �

Corollary 3.4 and Corollary 3.5 suggest the important role of the maximum
degree of a graph for the size of MECs. This is further supported and discussed via
the results in the next section and the simulations in Section 5.2.

4. Classic Families of Trees

In this section, we study some classic families of trees that arise naturally in both,
applied and theoretical contexts. Namely, we will study the graph polynomials
M(G;x) for spider graphs, caterpillar graphs, and complete binary trees. A spider
graph (or star-like tree) is any tree containing precisely one node with degree greater
than two, a caterpillar graph is any tree for which deleting all leaves results in a path,
and a complete binary tree is a tree for which every nonleaf node (except for possibly
a root node) has precisely three neighbors. Caterpillars and complete binary trees
play important roles for modeling events in time, as for example in phylogenetics.
Caterpillars and spiders also provide large families of supporting examples for long-
standing conjectures about well-studied generating functions associated to trees.
Alavi, Maldi, Schwenk, and Erdös conjectured that the independence polynomial
of every tree is unimodal [2], and Stanley conjectured that the chromatic symmetric
function is a complete graph isomorphism invariant for trees [44]. In [27, 28] and
[32] the authors, respectively, verify that these conjectures hold for caterpillars and
(some) spiders. We show in the following that these important families of graphs
also yield nice properties for the generating polynomial M(G;x).

In Section 4.1 we provide a formula for M(G;x) for spider graphs that generalizes
our formula for stars and paths given in Section 2. Using these formulae we compute
expressions for M(G) that extend classical identities of the Fibonacci numbers. The
methods for computing M(G;x) for spiders generalizes to a multivariate formula for
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M(G;x) for arbitrary trees with interesting combinatorial structure, which will also
be described. In Section 4.2 we recursively compute M(G;x) for the caterpillars.
Using this recursive formula, we observe that these polynomials are all unimodal
and estimate the expected number of immoralities in a randomly selected MEC
on a caterpillar. Finally, in Section 4.3 we compute the number of MECs for a
complete binary tree, and study the rate at which this value increases.

4.1. Spiders. We call the unique node of degree more than two in a spider its
center node. A spider G on n nodes with center node of degree k corresponds to a
partition λ = (λ1, . . . , λk) of n − 1 into k parts. Following the standard notation,
we assume λ1 ≥ λ2 ≥ · · · ≥ λk > 0. Here, λi denotes the number of vertices on the
ith leg of G; i.e., the ith maximal connected subgraph of G in which every vertex
has degree at most two. Conversely, given a partition λ of n − 1 into k parts, we
write Gλ for the corresponding spider graph.

In the following, we label the vertices of Gλ such that p0 denotes the center node
and pij , for 1 ≤ i ≤ k and 1 ≤ j ≤ λi, denotes the jth node from p0 along the ith

leg of Gλ. For a subset S ⊂ [k], define the following polynomial:

L(S;x) :=

(∏
i∈S

M(Iλi−1;x)

) ∏
i∈[k]\S

M(Iλi
;x)

 .

We then have the following formula for the generating polynomial M(Gλ;x).

Theorem 4.1. Let Gλ denote the spider on n nodes with center node of degree k
and partition λ of n− 1 into k parts. If λ has ` parts of size one, then

M(Gλ;x) =
k−∑̀
j=0

 ∑
S∈([k−`]

j )

L(S;x)

xjM(G1(k − j);x).

Proof. To arrive at this formula, simply notice that all possible placements of im-
moralities can be computed as follows: First choose a subset of the k − ` nodes
{pij : λi > 1, i ∈ [k]} at which to place immoralities. Call this set S. Since the
nodes in {pij : λi > 1, i ∈ [k]}\S are not immoralities then all remaining immoral-
ities are either at the center node p0, which are counted by M(G1(k − |S|);x), or
they are further down the legs of the spider, which are counted by L(S;x). �

The general formula in Theorem 4.1 specializes to M(G1(p − 1);x) when λ =
(1, 1, . . . , 1) is the partition of p − 1 into p − 1 parts; i.e., when Gλ = G1(p − 1).
Similarly, for k = 2, it reduces to M(Ip;x). It also yields a nice formula for the
number of MECs on the spiders with λ = (m,m, . . . ,m) a partition of mk into k
parts.

Corollary 4.2. For k > 1 and m ≥ 1, the spider Gλ on mk+1 nodes with partition
λ = (m,m, . . . ,m) of mk into k parts has

M(Gλ) = F km+1 − kFm−1F k−1m .

Proof. For m = 1 we have that Gλ = G1(k), and the above formula reduces to
2k − k = M(G1(k)). For k > 1, we simplify the formula given in Theorem 4.1 to

M(Gλ;x) =
k∑
j=0

(
k

j

)
(xM(Im−1;x))jM(Im;x)k−jM(G1(k − j);x).
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Evaluating at x = 1 yields

M(Gλ) =
k∑
j=0

(
k

j

)
F jm−2F

k−j
m−1(2k−j − (k − j)),

=
k∑
j=0

(
k

j

)
F jm−2(2Fm−1)k−j −

k∑
j=0

(
k

j

)
(k − j)F jm−2(Fm−1)k−j ,

= (Fm−2 + 2Fm−1)k−j − kFm−1(Fm−2 + Fm−1)k−1,

= F km+1 − kFm−1F k−1m ,

which completes the proof. �

Remark 4.1. In the special case of Corollary 4.2 for which k = 2 we have that
Gλ = I2m+1, and so M(Gλ) = F2m by Theorem 2.1. In Corollary 4.2, we see that
the formula for M(Gλ) given by Theorem 4.1 is computing the Fibonacci number
F2m via a classic identity discovered by Lucas in 1876 (see for instance [26]):

F2m = F 2
m+1 − 2Fm−1Fm = F 2

m + F 2
m−1.

Notice that the same expression does not hold for the generating polynomials:

M(Gλ;x) 6= M(Im+2;x)k − kM(Im;x)M(Im+1;x)k−1.

This is because M(G1(p);x) = 1 +
∑
k≥2

(
p
k

)
x(k

2) as opposed to 1 +
∑
k≥2

(
p
k

)
xk.

However, when the formula for M(Gλ;x) used in the proof of Corollary 4.2 is
evaluated at x = 1, the exponents in the formula for M(G1(p);x) become irrelevant.
For instance, in the case when λ = (2, 2), we have that

M(Gλ;x) = x2 + 3x+ 1, but

M(Im+2;x)k − kM(Im;x)M(Im+1;x)k−1 = 4x2 + 2x− 1.

However, evaluating both polynomials at x = 1 results in the Fibonacci number
F4 = 5, as predicted by Corollary 4.2.

We end this section with a remark and example illustrating the more general con-
sequences of the techniques used in the computation of M(Gλ;x) in Theorem 4.1.

Remark 4.2. It is natural to ask if the recursive approach used to prove Theorem 4.1
generalizes to arbitrary trees. In particular, it would be nice if for any tree T , the
polynomial M(T ;x) can be expressed as

M(T ;x) =
∑

α=(α2,...,αn−1)∈Zn−2
≥0

cαs
α, (3)

where si := M(G1(i);x) for i = 2, . . . , n − 1, sα := sα2
2 sα3

3 · · · s
αn−1

n−1 , and the cα
are polynomials in x with nonnegative integer coefficients. On the one hand, there
exists an (albeit cumbersome) recursion for computing M(T ;x) that generalizes
the one used in Theorem 4.1. On the other hand, this recursion will not yield an
expression of the form in equation (3) unless it has at most one node with degree
more than two. Instead, if we take

ap :=
∑
k≥2

(
p− 1

k

)
x(k

2) and bp :=
∑
k≥2

(
p− 1

k − 1

)
x(k

2),
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Figure 5. The tree for Example 4.1.

then we can express M(T ;x) as

M(T ;x) =
∑

α=(α1,α2,α3)∈Zn−2
≥0
×Zn−2

≥0
×Zn−2

≥0

cαs
α1aα2bα3 , (4)

where aα and bα are defined analogously to sα, and the cα are polynomials in x
with nonnegative integer coefficients. The algorithm resulting in the expression for
M(T ;x) given in equation (4) is the intuitive generalization of Theorem 4.1. Since
it is technical to formalize, we here only illustrate it with Example 4.1.

Example 4.1. Consider the tree T on 12 nodes depicted in Figure 5. We follow the
same approach for counting MECs in T that we used to count the MECs in Gλ in
Theorem 4.1. That is, we select a center node, choose a collection of immoralities at
its nonleaf neighbors, and count the possible classes containing these immoralities.
Thinking of node 0 as the analogous vertex to the center node of a spider, we notice
that it has precisely one nonleaf neighbor, namely node 1. The MECs on T with
node 1 in an immorality are counted by xs25. Now consider those MECs on T for
which 1 is not in an immorality. Analogous to the proof of Theorem 4.1, we must
consider the MECs on the 6-star with center node 0 and leaves 1, 8, 9, 10, 11, and
12. Notice b6 enumerates the MECs on this 6-star that use the arrow 0 ← 1, and
a6 + 1 enumerates those MECs not using this arrow. For those enumerated by b6,
we then count the number of MECs on the induced subtree T ′ with vertex set [7].
This gives b6M(T ′;x).

For the MECs enumerated by a6 + 1, we must consider more carefully the struc-
ture of immoralities on T ′. The constant 1 counts the choice of no immoralities on
the 6-star, and this yields 1M(T ′;x) MECs on T . On the other hand, a6 counts
those classes on the 6-star with at least one immorality using the arrow 0 ← 1. For
these, we take node 2 as the center node of T ′, which has precisely one non-leaf
neighbor, node 3. The ways in which node 3 can be in an immorality are counted
by b5. If node 3 is not in an immorality, then either 2 is in an immorality or there
are no immoralities on T ′. This yields a6(1 + b5 +xs4). Using the same techniques,
we compute that M(T ′;x) = s2s4 + b5. Combining these formulae yields

M(T ;x) = xs25 + s2s4 + s2s4b6 + b5 + b5b6 + xs4a6 + a6 + a6b5.

In general, this iterative process of picking a center node for a tree T , choosing
immorality placements for its nonleaf neighbors, and then enumerating the resulting
possible MECs based on these choices results in an expression of the form given
by equation (4). The monomial sα1aα2bα3 enumerates the possible placements of
immoralities at the chosen sequence of center nodes and the coefficient polynomial
cα is enumerating the ways to fix immoralities at their nonleaf neighbors to allow
for these placements. �
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W1 W2 W3 W4 W5 W6 W7

Figure 6. The first few caterpillar graphs.

Theorem 4.1 demonstrates that for some trees the expression for M(T ;x) given
by the algorithmic approach described in Example 4.1 can have nice coefficient
polynomials cα. It is important to notice that the expression of M(T ;x) given
in equation (4) is dependent of the initial choice of center node. However, as
exhibited by Theorem 4.1, a well-chosen initial center node and number of iterations
of this decomposition can yield nice combinatorial expressions for M(T ;x) of the
form (3) and/or (4). For example, if T is the spider graph, one iteration of this
decomposition initialized at the spider’s center yields coefficient polynomials cα
that are products of Fibonacci polynomials, and when all legs are the same length,
they are therefore real-rooted, log-concave, and unimodal. It would be interesting
to know whether other families of trees yield coefficient polynomials cα with nice
combinatorial properties. Moreover, it is unclear if for every tree T the polynomial
M(T ;x) admits an expression as in equation (3).

4.2. Caterpillars. We denote the caterpillar graph Wp as

Wp :=

{
G p

2
(1, 1, . . . , 1) if p is even,

G p+1
2

(1, 1, . . . , 1, 0) if p is odd.

The first few caterpillar graphs are depicted in Figure 6. Since the caterpillar
graphs are closely related to paths, we would expect that a similar recursive ap-
proach also works for counting the number of MECs on Wp. Indeed, with the
following theorem, we provide a recursive formula for M(Wp;x).

Theorem 4.3. Let Wp := M(Wp;x) for p ≥ 1. These generating polynomials
satisfy the recursion with initial conditions

W1 = 1, W2 = 1, W3 = 1 + x, W4 = 1 + 2x,

and for p ≥ 5

Wp =

{
Wp−1 + xWp−2 for p odd,

(x+ 2)Wp−2 + (x3 − x2 + x− 2)Wp−3 + (x2 + 1)Wp−4 for p even.

Proof. Notice first that when p is even, we can simply apply the Fibonacci recursion

M(G p
2
(1, 1, . . . , 1);x) = M(G p

2
(1, 1, . . . , 0)) + xM(G p

2−1(1, 1, . . . , 1);x).

The recursion is based on whether or not the final edge is contained within an
immorality.

Now let p = 2k + 1 be odd. We first show that

Wp = Wp−1 + (x3 + x)Wp−3 + xWp−2 − x2
b p

2 c∑
j=2

Wp−2j−1.
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Figure 7. The four cases for the recursion on the caterpillar graph
for p odd.

This recursion can be detected by considering the ways in which the final edge can
or cannot be in an immorality. That is, either it is not in an immorality, or it is in
an immorality with some nonempty subset of edges adjacent to it, as depicted in
Figure 7. Collectively, cases (1), (2), and (3) yield

Wp−1 + (x3 + x)Wp−3

MECs. On the other hand, case (4) yields xWp−2 minus some over-counted cases.
The over-counted cases correspond to exactly when the first immorality to the right
of the one depicted in case (4) points towards the right, as depicted in Figure 8.
Each such case would naturally force one more unspecified immorality. Thus, the
total number of MECs counted by case (4) is

xWp−2 − x2
b p

2 c∑
j=2

Wp−2j−1.

Since p− 1 is even, we may apply the Fibonacci recursion to Wp−1 to obtain

Wp − (x+ 1)Wp−2 = (x3 + 2x)Wp−3 − x2
b p

2 c∑
j=2

Wp−2j−1.

We then consider the difference between Wp−(x+1)Wp−2 and Wp−2−(x+1)Wp−4,
and repeatedly apply the Fibonacci recursion to the even terms. The result is

Wp − (x+ 2)Wp−2 = (x3 + x− 1)Wp−4 + (x3 − x2 + x− 2)(Wp−3 −Wp−4).

This simplifies to

Wp = (x+ 2)Wp−2 + (x3 − x2 + x− 2)Wp−3 + (x2 + 1)Wp−4,

thereby completing the proof. �

The first few polynomials M(Wp;x) for 1 ≤ p ≤ 14, and the number of MECs
on Wp, are displayed in Table 1. These polynomials all appear to be unimodal.

∗
∗

!

∗
∗ ∗

∗

!

!

!

∗
∗

Figure 8. The over-counted cases of case (4) in the caterpillar
recursion for p odd.



18 ADITYANARAYANAN RADHAKRISHNAN, LIAM SOLUS, AND CAROLINE UHLER

M(Wp) M(Wp;x)
1 1
1 1
2 x+ 1
3 2x+ 1
7 x3 + x2 + 4x+ 1
10 x3 + 3x2 + 5x+ 1
22 3x4 + 3x3 + 8x2 + 7x+ 1
32 4x4 + 6x3 + 13x2 + 8x+ 1
70 x6 + 6x5 + 13x4 + 16x3 + 23x2 + 10x+ 1
102 x6 + 10x5 + 19x4 + 29x3 + 31x2 + 11x+ 1
222 5x7 + 13x6 + 39x5 + 46x4 + 59x3 + 46x2 + 13x+ 1
324 6x7 + 23x6 + 58x5 + 75x4 + 90x3 + 57x2 + 14x+ 1
704 x9 + 15x8 + 39x7 + 97x6 + 147x5 + 158x4 + 153x3 + 77x2 + 16x+ 1
1028 x9 + 21x8 + 62x7 + 155x6 + 222x5 + 248x4 + 210x3 + 91x2 + 17x+ 1

Table 1. The number of MECs of Wp for 1 ≤ p ≤ 14, and the
associated polynomial generating functions M(Wp;x).

Using the recursion in Theorem 4.3 we can estimate that the immorality number
of Wp is m(Wp) =

⌊
p
2

⌋
+
⌊
p
4

⌋
, and that the expected number of immoralities in a

randomly chosen MEC on Wp approaches
⌊
m(Wp)

2

⌋
. As an immediate corollary to

Theorem 4.3, we get a recursion for the number of MECs M(Wp).

Corollary 4.4. The number of MECs for the caterpillar graph Wp is given by the
recursion

M(W1) = 1, M(W2) = 1, M(W3) = 2, M(W4) = 3,

and for p ≥ 5

M(Wp) =

{
M(Wp−1) +M(Wp−2) if p is even,

3M(Wp−2) +M(Wp−4)−M(Wp−5) if p is odd.

4.3. Complete Binary Trees. In the following, we let Tk denote the complete
binary tree containing 2k−1 nodes and Ak denote the additive tree constructed by
adding one leaf to the root node of Tk. These two trees are depicted in Figure 9
for k = 3.

We will now use a series of recursions to enumerate the number of MECs on Tk
and Ak. We will then show that the ratio M(Ak)

M(Tk)
< 4, which means that adding

Figure 9. The complete binary tree T3 is depicted on the left and
the additive tree A3 is depicted on the right.
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Figure 10. From left-to-right, the graphs X3, Y3, and Z3.

an edge to the root of a complete binary tree increases the number of MECs by at
most a factor of 4. In practice, we observed that the factor is around 2 for large k.

Before providing a recursion for M(Tk) and M(Ak), we introduce three new
graph structures Xk, Yk, and Zk in order to help simplify our recursions. Similar
to Section 2.2, in the following it will be helpful to label edges that have specified
roles in certain MECs. The green edges (also labeled with �) indicate that these
edges cannot be involved in any immorality. The red arrows (also labeled with ∗)
indicate a fixed immorality in the partially directed graph, and the blue arrows
(also labeled with ◦) represent fixed arrows that are not in immoralities.

(1) Let Xk denote the partially directed tree whose skeleton is Ak and for which
there is exactly one immorality at the child of the root (note that the root
of Ak has degree 1).

(2) Let Yk denote the number of MECs on a complete binary tree with 2k − 1
nodes such that the root’s edges are not involved in any immoralities.

(3) Let Zk denote the number of MECs on an additive tree with 2k nodes such
that there are edges directed from the root r to its child c and from c to
each of its children.

The graphs X3, Y3, and Z3 are depicted from left-to-right in Figure 10. Now we
have the following series of recursions for the graphs listed above.

Theorem 4.5. The following recursions hold for the partially directed graphs Tk,
Ak, Xk, Yk, and Zk:

(a) M(Tk) = M(Ak−1)2 +M(Yk) with M(T1) = 1,
(b) M(Ak) = M(Tk) + 2M(Xk) +M(Tk−1)2 with M(A1) = 1,

(c) M(Xk) = M(Tk−1)
√
M(Zk) with M(X1) = 1,

(d) M(Yk) = 2M(Zk−1)M(Tk−1)−M(Zk−1)2 with Y1 = 1, and
(e) M(Zk) = (2M(Xk−1) +M(Tk−2)2 +M(Zk−1))2 with Z1 = Z2 = 1.

We first prove statements (e), (c), (d) in this order and then use them to prove
statements (b) and (a).

Proof of statement (e). We prove this by analyzing the cases on the left subgraph
of Zk and consider possible immoralities at node s in Figure 11.

(1) If node s has exactly one immorality (as in the leftmost figure), then this
substructure contributes exactly M(Xk−1) MECs. By symmetry, there are
two ways in which node s can have exactly one immorality, which means
these cases contribute 2M (Xk−1) MECs.

(2) If node s has three immoralities (as in the center figure), then this sub-
structure contributes exactly M(Tk−2)2 MECs as we may treat nodes u, v
as roots of complete binary trees Tk−2.



20 ADITYANARAYANAN RADHAKRISHNAN, LIAM SOLUS, AND CAROLINE UHLER

�

⇤ �

⇤

�

⇤ �

⇤ ⇤

�

� �

� �

Case 1 Case 2 Case 3

s s s

u v

Figure 11.

(3) If node s has no immoralities (as in the rightmost figure), then this substruc-
ture contributes exactly M(Zk−1) MECs as we may treat the left subgraph
as the graph Zk−1.

Finally, as we have just considered the cases on the left subgraph of Zk and as the
immoralities on the right subgraph of Zk are independent of the immoralities on
the left subgraph, we square the number of MECs on the left subgraph to conclude
that M(Zk) = (2M(Xk−1) +M(Tk−2)2 +M(Zk−1))2.

Proof of statement (c). Suppose we label two nodes p and q in Xk as in Fig-
ure 12. By treating node p as the root of the complete binary tree, and by
treating node q as node s in the proof of statement (e), we directly have that

M(Xk) = M(Tk−1)
√
M(Zk).

Proof of statement (d). We will prove the desired recursion by considering the
equivalence classes for which the edges ea and eb in Figure 13 are directed towards
the root or away from the root.

(1) Suppose that edge ea is directed away from the root, then edge eb can
always be directed so that it is not in an immorality at the root’s right
child. Thus we can consider the root’s right child to be the root of the
complete binary tree Tk−1. Now since there cannot be an immorality at
the root’s left child, the left subgraph of the root can be treated as the root
of the subgraph Zk−1. This case thus gives us M(Zk−1)M(Tk−1) MECs.

(2) Suppose that edge eb is now directed away from the root, then this case
is symmetric to the case above and so there are again M(Zk−1)M(Tk−1)
MECs formed.

(3) In the above cases we have double-counted the cases where the edges ea
and eb are both directed away from the root. Thus we must subtract the

∗

∗ ◦
p q

Figure 12.
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Figure 13.

number of MECs formed in this case. However, in this case the left and right
subgraphs from the root both represent Zk−1. Thus, there are M(Zk−1)2

MECs in this case.

Hence we have that M(Yk) = 2M(Zk−1)M(Tk−1)−M(Zk−1)2.

Proof of statement (b). To prove recursion (b), we will consider the three possi-
ble cases of immoralities that can occur at the child c of the root as depicted in
Figure 14.

(1) In the leftmost figure, if there is no immorality formed by the edge from
the root to c, then c can be treated as the root of the complete binary tree
Tk. This case contributes M(Tk) MECs.

(2) In the center figure, if there is exactly one immorality formed by the edge
from the root to s, then the root can be treated as the root of the tree Xk.
This case contributes 2M (Xk) MECs, as there are two ways in which the
edge from the root to c can be in exactly one immorality.

(3) In the rightmost figure, if there are three immoralities formed by the edge
from the root to c, then the children of c can be treated as roots of complete
binary trees Tk−1. This case contributes M(Tk−1)2 MECs.

Thus, summing over the three cases we have that M(Ak) = M(Tk) + 2M(Xk) +
M(Tk−1)2.

Proof of statement (a). We can consider the following four cases depicted in Fig-
ure 15 based on the immoralities formed by the root’s edges ea and eb.

(1) If the edges ea and eb form an immorality at the root, then the root’s
children p and q can be treated as roots of complete binary trees Tk−1.
This case contributes M(Tk−1)2 MECs.

(2) If the edge ea forms at least one immorality at p but edge eb is not in any
immoralities, then edge q can be treated as the root of a complete binary
tree Tk−1. Now p can have exactly one immorality, in which case the left

! ∗

∗ ◦

∗

∗ ∗

Case 1 Case 2 Case 3

c c c

Figure 14.
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subgraph of the root is the structure Xk−1 or p can have three immoralities,
in which case the children of p can each be treated as the root of a complete
binary tree Tk−2. Now by symmetry we may consider immoralities formed
by the edge eb as well, which will double the number of MECs formed.
Thus, there are 2M(Tk−1)[2M(Xk−1) +M(Tk−1)2] MECs.

(3) If the edges ea and eb form immoralities at p and q, then by following the
reasoning in the previous case, there are 2M (Xk−1) + M(Tk−2)2 MECs
formed.

(4) If the edges ea and eb form no immoralities, then the remaining graph is
simply the structure Yk. This case contributes M(Yk) MECs.

Summing over the different cases we have that

M(Tk) = M(Tk−1)2 + 2M(Tk−1)[2M(Xk−1) +M(Tk−1)2] + 2M(Xk−1)

+M(Tk−2)2 +M(Yk),

= [M(Tk−1) + 2M(Xk−1) +M(Tk−2)2]2 +M(Yk),

= M(Ak−1)2 +M(Yk).

This completes the proof of Theorem 4.5. �
Now that we have recursions for Tk and Ak, we can establish a bound on the

number of MECs given by adding an edge to the root of Tk to produce Ak. In order
to do this, we will use the following lemma.

Lemma 4.6. For the partially directed graphs Tk and Zk we have that

M(Zk) < M(Tk).

Proof. If we omit the root and its edge from the graph Zk, then we see that every
MEC formed in Zk can also be formed in Tk. Further, since the MEC in Tk with
an immorality at the root cannot appear in Zk, we have a strict inequality. Hence,
we have that M(Zk) < M(Tk). �

Now we show that adding an edge to the root of Tk increases the number of
MECs by at most 4.

Theorem 4.7. The number of MECs on Ak and Tk satisfy

1 <
M(Ak)

M(Tk)
< 4.

Proof. First we let Rk = M(Ak)
M(Tk)

and Sk−1 = M(Tk)
M(Tk−1)2

. By equation (b) of Theo-

rem 4.5 we know that

M(Ak) = M(Tk) + 2M(Xk) +M(Tk−1)2,
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and hence by equation (c) of Theorem 4.5

Rk = 1 +
2M(Xk)

M(Tk)
+
M(Tk−1)2

M(Tk)
,

= 1 +
2M(Tk−1)

√
M(Zk)

M(Tk)
+
M(Tk−1)2

M(Tk)
.

Thus, it follows by Lemma 4.6 that

Rk < 1 +
2√
Sk−1

+
1

Sk−1

and hence

Rk <

(
1 +

1√
Sk−1

)2

<

(
1 +

1√
1

)2

,

which completes the proof. �

5. Beyond Trees: Observations for Triangle Free Graphs

We end this paper with an analysis of the natural generalization of trees, the
triangle-free graphs. As we will see, much of the intuition for the distribution of
immoralities and number of MECs on trees carries over into the more general con-
text of triangle-free graphs. However explicitly computing the generating functions
M(G;x) and S(G;x) becomes increasingly difficult. In Section 5.1, we illustrate the
increasing level of difficulty in computing these generating functions for triangle-
free, non-tree, graphs by computing M(G;x) and S(G;x) for the complete bipartite
graph K2,p. In Section 5.2, we then take a computational approach to this problem,
and we study the number and size of MECs relative to properties of the skeleton.
Using data collected by a program described in [39], we examine the number and
size of MECs on all connected graphs for p ≤ 10 nodes and all triangle-free graphs
for p ≤ 12 nodes. We compare the number of MECs and their sizes to skeletal
properties including average degree, maximum degree, clustering coefficient, and
the ratio of the number of immoralities in the MEC to the number of induced 3-
paths in the skeleton. For triangle-free graphs, we see that much of the intuition
captured by the results of the previous sections extend into this setting. In partic-
ular, the number and distribution of high degree nodes in a triangle-free skeleton
plays a key role in the number and sizes of MECs. Finally, unlike S(G;x), we
can see using graphs on few nodes that the polynomial M(G;x) is not a complete
graph isomorphism invariant for connected graphs on p nodes. For instance, the
two graphs on four nodes in Figure 16 both have M(G;x) = 1 + 2x + x2. How-
ever, using this program, we verify that M(G;x) is a complete graph isomorphism

Figure 16. Two graphs with the same polynomials M(G : x).
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invariant for all triangle-free connected graphs on p ≤ 10 nodes. That is, M(G;x)
is distinct for each triangle-free connected graph on p nodes for p ≤ 10.

5.1. The bipartite graph K2,p: a triangle-free, non-tree example. We now
give explicit formulae for the number and sizes of the MECs on the complete bi-
partite graph K2,p. For convenience, we consider the vertex set of K2,p to be two
distinguished nodes {a, b} together with the remaining p nodes, labeled by [p], which
are collectively referred to as the spine of K2,p. This labeling of K2,p is depicted on
the left in Figure 17. It is easy to see that the maximum number of immoralities
is given by orienting the edges such that all edge heads are at the nodes a and b.
This results in m(K2,p) = 2

(
p
2

)
. Next, we compute a closed-form formula for the

number of MECs for K2,p.

Theorem 5.1. The number of MECs with skeleton K2,p is

M(K2,p) =

p∑
k=0

(
p

k

)(
2p−k − 1 + 2k − k

)
− p2p−1.

Proof. To arrive at the desired formula, we divide the problem into three cases:

(a) The number of immoralities at node b is
(
p
2

)
.

(b) The number of immoralities at node b is strictly between 0 and
(
p
2

)
.

(c) There are no immoralities at node b.

Notice that cases (a) and (b) have a natural interpretation via the indegree at node
b of the essential graph of the corresponding MECs. If the indegree at b is two or
more, all edges adjacent to b are essential, and the number of immoralities at node
b is given by its indegree. Thus, we can rephrase cases (a) and (b) as follows:

(a) The indegree of node b in the essential graph of the MEC is p.
(b) The indegree of node b in the essential graph of the MEC is 1 < k < p.

In case (a), the MEC is determined exactly by the MEC on the star with center node
a and p edges. One can easily check (this was also proven as part of Theorem 2.4)
that this yields 2p − p MECs.

Case (b) is more subtle. First, assume that the indegree at node b is 1 < k < p,
and the arrows with head b have the tails {1, 2, . . . k} ⊂ [p]. Then the remaining
arrows adjacent to b are all directed outwards with heads {k + 1, . . . , p}. Notice
that no immoralities can happen at nodes [k] along the spine, but some may occur
at the nodes [p]\[k]. If there are no such immoralities, then node a has indegree p,
otherwise the essential graph would contain a directed 4-cycle. Similarly, if, without
loss of generality, we denote the nodes in [p]\[k] that are the heads of immoralities
by {k+1, k+2, . . . , k+s} for 0 ≤ s < p−k, then the nodes k+s+1, . . . , p are tails
of the arrows adjacent to node a. Thus, if the number of immoralities with heads in
[p]\[k] is 0 ≤ s < p− k, then the immoralities with heads at node a are completely
determined. Therefore, each s-subset of [p]\[k] yields a single MEC. Figure 17
depicts an example of one such choice of immoralities. We start by selecting the
arrows to form immoralities at node b which forces the remaining arrows at b to
point towards the spine. We then select some of these to form immoralities at the
spine, and this forces the remaining arrows to be directed inwards towards a.

However, if s = p − k, the star induced by nodes {a, 1, 2, . . . , k} determines the
MECs. This yields 2k − k classes (see again Theorem 2.4). In total, for case (b)
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Figure 17. The graph K2,p is depicted on the left, and one of the
essential graphs counted in the proof of Theorem 5.1 is depicted
on the right.

the number of MECs is
p−1∑
k=2

(
p

k

)(
2p−k − 1 + 2k − k

)
.

In case (c), we consider the case when there are no immoralities at node b, and
we count via placement of immoralities along the spine. There are 2p ways to place
immoralities along the spine, one for each subset of [p]. Suppose the immoralities
along the spine have the heads {1, 2, . . . , k} for k < p− 1 (the cases k = p− 1 and
k = p are considered separately). Then the remaining immoralities can happen at
node a. However, if there is an immorality with head at node a then all other arrows
adjacent to a are essential, some of which may point towards the spine with heads in
the set [p]\[k]. Since there are no immoralities with head in the set [p]\[k], then any
such outward pointing arrow is part of a directed path from a to b. However, since
there are no immoralities at node b, there can be at most one such directed path.
The presence of any such directed path forces a directed 4-cycle since k < p − 1.
Therefore, for k < p − 1 the nodes {k + 1, . . . , p} must be tails of arrows oriented
towards node a, thereby yielding only a single MEC. Since k = p and k = p−1 also
yield only a single MEC, case (c) yields a total of 2p classes. Combing the total
number of MECs counted for each of these cases yields the desired formula. �

Using the case-by-case analysis from the proof of Theorem 5.1 we can count the
number of MECs with skeleton K2,p of each possible size. Similarly, one can also
recover the statistics mk(K2,p) from this proof. However, to avoid overwhelming
the reader with formulae, we omit the expressions for mk(K2,p).

Corollary 5.2. The possible sizes of a MEC with skeleton K2,p and the number of
classes having each size is as follows:

Class size Number of Classes

1 2 +
∑p−1
k=2

(
p
k

)
2p−k

2 2 +
(
p
2

)
3 ≤ k ≤ p− 1 1 +

(
p
2

)
p 2
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Figure 18. Clustering coefficient as compared to log average class
size and the average number of MECs for connected graphs with
p ≤ 10 nodes and 25 edges.

Proof. Recall the case analysis from the proof of Theorem 5.1. In case (a) all MECs
are size 1 except for one which is size p. This yields 2p − p − 1 classes of size one
and one class of size p. In case (b), all MECs have size 1, unless s = p − k and
there are no immoralities at node a, in which case the class size is k. This yields(
p
k

)
classes of size k for 1 < k < p, and

p−1∑
k=2

(
p

2

)(
2p−k − 1

)
classes of size 1. In case (c), all MECs have size p − k for 0 ≤ k < p − 1. When
k = p− 1, we get a single class of size 2, and when k = p we get one more class of
size 1. The total number of MECs of size 1 is then

(2p − p− 1) + 1 +

p−1∑
k=2

(
p

k

)(
2p−k − 1

)
= (2p − p− 1) + 1 +

p−1∑
k=2

(
p

k

)
2p−k −

p−1∑
k=2

(
p

k

)
,

= 2p + 2 +

p−1∑
k=2

(
p

k

)
2p−k −

p∑
k=0

(
p

k

)
,

= 2 +

p−1∑
k=2

(
p

k

)
2p−k.

The other formulae are quickly realized from the above arguments. �
5.2. Skeletal structure in relation to the number and size of MECs. We
now take a computational approach to analyzing the number and size of MECs on
triangle-free graphs with respect to their skeletal structure. The data analyzed here
was collected using the program described in [39], and this program can be found
at https://github.com/aradha/mec_generation_tool. The results of [39], and
those provided in the previous sections of this paper, indicate that the number and
distribution of high degree nodes in a triangle-free graph dictate the size and number
of MECs allowable on the skeleton. In this section, we parse these observations in
terms of the data collected via our computer program.

Recall that the (global) clustering coefficient of a graph G is defined as the ratio
of the number of triangles in G to the number of connected triples of vertices in G.

https://github.com/aradha/mec_generation_tool
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Figure 19. Average degree versus log average class size and av-
erage number of MECs for all graphs and triangle-free graphs on
10 nodes.

The clustering coefficient serves as a measure of how much the nodes in G cluster
together. Figure 18 presents two plots: one compares the clustering coefficient to
the log average class size and the other compares it to the average number of MECs.
This data is taken over all connected graphs on p ≤ 10 nodes with 25 edges (to
achieve a large number of MECs). As we can see, the average class size grows as
the clustering coefficient increases. This is to be expected, since an increase in the
number of triangles within the DAG should correspond to an increase in the size
of the chain components of the essential graph. On the other hand, the average
number of MECs decreases with respect to the clustering coefficient, which is to
be expected given that the class sizes are increasing. This decrease in the average
number of MECs empirically captures the intuition that having many triangles in
a graph results in fewer induced 3-paths, which represent the possible choices for
distinct MECs with the same skeleton.

Figure 19 presents a pair of plots, the first of which compares the average degree
of the underlying skeleton of the DAG to the log average class size of the associated
MEC. The second plot compares the average degree of the skeleton to the average
number of MECs it supports. Both plots present one curve for all connected graphs
and a second curve for triangle-free graphs on 10 nodes. For connected graphs on
10 nodes the left-most plot shows a strict increase in the log average MEC class
size as the average degree of the nodes in the underlying skeleton increases. This is
to be expected since graphs with a higher average degree are more likely to contain
larger chain components. On the other hand, the average class size for triangle-free
graphs increases for average degree up until approximately 2.0, and then shows a
steady decrease for larger average degree. Since the average degree of a tree on p
nodes is 2 − 2

p , this suggests that the largest MECs amongst triangle-free graphs

have skeleta being trees. As such, the bounds developed in Section 3 of this paper
can be, heuristically, thought to apply more generally to all triangle-free graphs.

The right-most plot in Figure 19 describes the relationship between average
degree and the average number of MECs for all connected graphs and triangle-free
graphs on 10 nodes. We see from this that in the setting of all connected graphs, the
skeleta with the largest average number of MECs appear to have average degree
7, whereas in the triangle-free setting, the higher the average degree the more
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Figure 20. Maximum degree versus log average class size and
average number of MECs for all graphs and triangle-free graphs
on 10 nodes.

equivalence classes the skeleta can support. This supports the intuition that the
more high degree nodes there are in a triangle-free graph, the more equivalence
classes the graph can support.

The left-most plot in Figure 20 depicts the relationship between the maximum
degree of a node in a skeleton and the average class size on the skeleton for all
connected graphs and for triangle-free graphs on 10 nodes. For all graphs, the rela-
tionship appears to be almost linear beginning with maximum degree 5, suggesting
that average class size grows linearly with the maximum degree of the underlying
skeleton. This growth in class size is due to the introduction of many triangles
as the maximum degree grows. On the other hand, in the triangle-free setting we
actually see a decrease in average class size as the maximum degree grows, which
empirically reinforces this intuition.

The right-most plot in Figure 20 records the relationship between the maximum
degree of a node in a skeleton and the average number of MECs supported by that
skeleton for all connected graphs and triangle-free graphs on at most 10 nodes.
For all graphs, we see that the average number of MECs grows with the maximum
degree of the graphs, and this growth is approximately exponential. In the triangle-
free setting, the average number of MECs appears to be unimodal, but would be
increasing if we considered also all graphs on p > 10. For triangle-free graphs
there is only one graph with maximum degree 9, namely the star G1(9), where the
number of MECs is 29 − 9. For connected graphs the average number of MECs is
pushed up by those cases consisting of a complete bipartite graph where in addition
one node is connected to all other nodes.

The final plot of interest is in Figure 21, and it shows the relationship between
MEC size and the ratio of the number of immoralities in the MEC to the number of
induced 3-paths in the skeleton for all connected graphs and triangle-free graphs on
10 nodes. That is, it shows the relationship between the class size and how many
of the potential immoralities presented by the skeleton are used by the class. It
is interesting to note that, in the triangle-free setting, as the class size grows, this
ratio appears to approach 0.3, suggesting that most large MECs use about a third
of the possible immoralities in triangle-free graphs. In the connected graph setting,
as the class size grows, we see a steady decrease in the value of this ratio. This
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Figure 21. Class size versus the ratio of the number of immoral-
ities to the number of induced 3-paths in all MECs on 10 nodes.

supports the intuition that a larger class size corresponds to an essential graph with
large chain components and few immoralities.
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