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Abstract

Eccentric disks arise in such astrophysical contexts as tidal disruption events, but it is unknown whether the
magnetorotational instability (MRI), which powers accretion in circular disks, operates in eccentric disks as well.
We examine the linear evolution of unstratified, incompressible MRI in an eccentric disk orbiting a point mass. We
consider vertical modes of wavenumber k on a background flow with uniform eccentricity e and vertical Alfvén
speed v5 along an orbit with mean motion n. We find two mode families, one with dominant magnetic components,
the other with dominant velocity components. The former is unstable at (1 — e)*f? < 3, where f = kw /n, and
the latter at ¢ > 0.8. For f> < 3, MRI behaves much like in circular disks, but the growth per orbit declines slowly
with increasing e; for f~ 2> 3, modes grow by parametric amplification, which is resonant for 0 < e < 1. MRI
growth and the attendant angular momentum and energy transport happen chiefly near pericenter, where orbital

shear dominates magnetic tension.
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1. Introduction

The magnetorotational instability (MRI) is a powerful
instability in weakly magnetized, differentially rotating circular
disks (Balbus & Hawley 1991; Hawley & Balbus 1991). The
instability is most easily visualized by considering a disk
threaded by a vertical magnetic field with a small radial kink.
Orbital shear pulls the kink out toroidally, creating a correlation
between the horizontal components of the magnetic field
perturbation, as well as between those of the velocity
perturbation. The resulting Reynolds and Maxwell stresses
transport angular momentum outward; gas at smaller radii
therefore moves inward, while gas at larger radii moves
outward. This stretches the initial kink further and allows the
instability to grow exponentially. The fact that MRI grows as
fast as the orbital timescale guarantees its role as the
mechanism by which ionized disks accrete.

Disks can nevertheless be eccentric. Secular gravitational
interaction in eccentric binaries bestows forced eccentricity
upon circumbinary and circumobject disks (e.g., Murray &
Dermott 2000). Tidal forces in circular binaries couple to
circumobject disks through the 3:1 mean-motion resonance and
allow small but finite free eccentricity to grow exponentially
(Lubow 1991). Viscous overstability (Kato 1978) amplifies
small-scale eccentric perturbations in isolated disks (e.g.,
Lyubarskij et al. 1994; Ogilvie 2001). Lastly, stars passing
too close to supermassive black holes (SMBHs; e.g., Rees
1988) or planets grazing their host stars can be tidally
disrupted, and the bound debris can form an eccentric disk
directly (e.g., Guillochon et al. 2014; Shiokawa et al. 2015;
Bonnerot et al. 2016; Hayasaki et al. 2016).

Shocks transfer angular momentum within the bound debris
of tidal disruption events (TDEs) around SMBHs, particularly
during the early stages of the event (Evans & Kochanek 1989;
Kochanek 1994; Guillochon & Ramirez-Ruiz 2013; Shiokawa
et al. 2015). But since the condition of ideal magnetohydro-
dynamics (MHD) requires little ionization (Blaes &

Balbus 1994; Gammie 1996), MRI is also likely active;
angular momentum transport by MHD stresses may then control
how the debris evolves. Svirski et al. (2017) showed that near-
apocenter parts of the orbit dominate angular momentum
transport, while near-pericenter parts dominate energy dissipa-
tion. They also argued that over an orbit, the debris preferentially
loses angular momentum rather than energy, so it quickly
plunges into the SMBH without radiating much, in agreement
with observations. However, the effectiveness of angular
momentum transport by MHD stresses depends on how fast
MRI grows, and no one has yet considered how MRI growth in
eccentric disks might be different from that in circular disks.

This article describes our first step toward understanding how
MRI behaves in an eccentric disk orbiting a point mass. We
study the linear evolution of unstratified and incompressible
(Boussinesq) MRI; we call this eccentric MRI, in contrast to
circular MR, its counterpart in circular disks. Both kinds of MRI
feed off orbital shear; because orbital shear is radial and time-
independent in circular disks but oblique and time-varying in
eccentric disks, we expect eccentric MRI to differ in nature from
circular MRI. It is not apparent whether eccentric MRI grows
exponentially like circular MRI, and how the growth rates of
circular and eccentric MRI compare. More interestingly,
variation of orbital conditions along the orbit can destabilize
inertial and gravity modes in thin hydrodynamic disks through
parametric resonance (Papaloizou 2005); a similar mechanism
may destabilize their magnetized counterparts in MHD disks.

We present the linearized equations of eccentric MRI and
our method for solving them in Section 2. We map out the
growth per orbit of eccentric MRI as a function of eccentricity
and perturbation wavenumber in Section 3.1, describe
qualitatively the time evolution of unstable modes in
Section 3.3, and compute the angular momentum and energy
fluxes due to these modes in Section 3.4. We interpret our
results with a toy model in Section 4 and discuss their
astrophysical importance in Section 5.



THE ASTROPHYSICAL JOURNAL, 856:12 (13pp), 2018 March 20

2. Methods
2.1. Orbital and Shearing-box Coordinate Systems

Our analysis is based on the framework laid out by Ogilvie
(2001) and Ogilvie & Barker (2014). Ogilvie (2001) introduced
the orbital coordinate system (\, ¢), illustrated in the top half of
Figure 1. A constant-A contour is an ellipse with semilatus
rectum A and one focus at the origin, and ¢ is the azimuth; the
ellipses must vary slowly in orientation and eccentricity over A
so they do not intersect (Ogilvie & Barker 2014). The coordinate
system can be extended by adding a vertical coordinate z
perpendicular to the plane of ellipses. Using standard methods of
Riemannian differential geometry, Ogilvie & Barker (2014)
wrote down the components of the ideal MHD equations for
adiabatic gas in this nonorthogonal coordinate system.

Because particles in the midplane orbit a point mass at the
origin along ellipses defining the orbital coordinate system, the
orbital coordinate system provides a foundation for extending
the shearing box to eccentric disks. To do so, Ogilvie & Barker
(2014) chose some reference particle (Ao, 6(f), 0) and
defined a nonorthogonal, shearing-box coordinate system
& n, Q)= (A — Xy, ¢ — 0(2), 2) such that £&/)\y, n, and (/A
are ~¢€, where € < 1 is the disk aspect ratio. The reference
particle and the shearing-box coordinate basis, as well as
another basis to be defined in Section 2.3, are shown in
Figure 1. Ogilvie & Barker (2014) obtained the velocity
perturbation in the shearing box by subtracting from the gas
velocity in the inertial frame the velocity of particles following
coordinate ellipses, assuming that the velocity perturbation is
~¢€ times the particle velocity. Finally, they subtracted the
contribution due to orbital motion from the time derivative.
This procedure gave them their Equations (83), (84), (86),
and (C4)—(C10); these equations are MHD equations which are
nonlinear in the velocity perturbation and we derive
Equation (1) below from them. We are interested in how the
perturbation at the same (), ¢) as the reference particle evolves;
thus, we can drop the subscript from \g without ambiguity.

2.2. Linearized MHD Equations in Shearing-box Coordinate
Basis

Henceforth, we adopt the orbital coordinate system defined by
aligned ellipses of constant eccentricity e. We can convince
ourselves that the velocity field defined by particles orbiting the
point mass along coordinate ellipses is divergence-free by writing
it out explicitly, but we can also see intuitively why this is so: at
pericenter, orbits are closer together, but particles move faster.

Because a divergence-free velocity field is incompressible,
one solution of the MHD equations in the midplane is that
density is a function of A only, pressure is uniform, magnetic
field is vertical and uniform, and gas travels along coordinate
ellipses. We choose this solution as the unperturbed background.
We consider the particular case where the background density is
uniform and, as applies near the midplane, vertical gravity can be
ignored; the latter condition means we are looking at the
perturbation at fixed ¢ above the reference particle.

We specialize the MHD equations of Ogilvie & Barker
(2014) according to these assumptions. Because we are
considering the perturbation at the same (\, ¢) as the reference
particle, we elide terms proportional to £ and 7 in their
Equation (84). Because our background is uniform and we
ignore vertical stratification, we discard background spatial
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gradients and vertical gravity from all their equations. Because
the background flow is divergence-free, we set its divergence
A to zero in their Equations (83), (86), and (C7)—(C9). We
retain only terms that are first order in perturbed quantities, and
we replace (O, 0,, o) by (ike, Aik,, ike).

To arrive at our form of the linearized MHD equations, we
choose a magnetic field unit that absorbs a factor of (47)1/2.
We let p, ¢, and B be the background density, adiabatic
sound speed, and vertical magnetic field, respectively, and v*
be the contravariant components of the velocity perturbation
in the shearing-box coordinate basis. We also denote by u the
perturbed logarithmic density times ¢ and by w* the magnetic
field perturbation divided by p2 The linearized MHD
equations are then

0 —If; —if; —zf(g 0O 0 O
"‘5 F3 0 A 0 1'(‘“ 0 FY “{
v . v
y A7 F; B C 0 0 lf<'" Fg‘ W
=== o 0 0 0 0 O v |,
am wé . ~m wé
0 lfC 0 0 0O 0 O
A 0 0 if ™ 0 D E O A
wo e wt
0 —i {m —if;y" 0 0O 0 O
(1)

and the solenoidal condition for the magnetic field reads
i we 4+ I Ow) + ifcmwc =0. )

The time variable in Equation (1) is the mean anomaly M
of the reference particle measured from the pericenter, related
to the mean motion n by M = nt; in other words, M/(27)
equals time in units of orbital periods. The background Alfvén
speed is vy = B/ p'/?; from this, we derive the Alfvén parameter
f;“ = kyva /'n, which compares the frequencies of MHD waves

and mean orbital motion. The acoustic parameter f: = kycs,/n
does the same for sound waves. The other matrix elements are

AM) = —2T},Q,/\ = 20G, (3)
B(M) = —A(Q + 2I5,Q) = —%Q, 4)
C(M) = —(Qy + 2T, Q) = —20H, (5)
D(M) = A0y = —30, (6)
EM) = Q, = —20H, (7)
and
PR (M) = —(gMife™ + Mg if ™), ®)
FEMM) = =™ + Ng™if ™. ©)
Here

QM) = n=\(do/dt) = (1 — 27 3/2(1 + ecosf)?, (10)
(M) = n10\(nf) = %Q/A, an
Qy(M) = 9,0 = —20H, (12)
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Figure 1. Top: coordinate curves of one realization of the orbital coordinate
system where constant-A\ contours have the same orientation and eccentricity
e = 0.8. The thick contour is the orbit of a reference particle; the perturbation
at the reference particle evolves according to Equations (1), (15), (18), and (23)
as the reference particle orbits a point mass at the origin. The normalized
shearing-box and cylindrical coordinate bases, respectively (€3, é;) and
(é4. €), at the present azimuth of the reference particle are displayed in the
corner. Bottom: line segments used to demonstrate why TI: = T;\“
(Section 3.4).

and

GWM)=1/(1 + ecosb), (13)

HM) = esinf/(1 + ecosb), (14)

with O(M) being the true anomaly of the reference particle.
Expressions for the inverse metric g** and the Christoffel symbol
of the second kind T, are found in Equations (B13)~(B19) of
Ogilvie & Barker (2014). Since the matrix elements are either
constant or M-dependent with period 27 regardless of e, choosing
M as the time variable means that our results are independent of
the semimajor axis of the reference particle. In the circular limit,
A is the centrifugal force, B relates to the Coriolis force, D
encodes orbital shear, and (€2, G, H) = (1, 1, 0).

Circular MRI originates from the destabilization of slow
magnetosonic waves in differentially rotating disks (Balbus &
Hawley 1998). Since these waves are virtually incompressible,
we, like Balbus & Hawley (1991), are motivated to look first
for similarly incompressible perturbations in eccentric MRI.
Orbital shear creates nonzero horizontal components of the
velocity perturbation, so an incompressible perturbation must
have a vertical wavevector, that is, ccecS.

The adoption of a vertical wavevector means ke, k,, and w¢
all vanish. The incompressible limit is characterized by
Q, me < f:; when the wavevector is vertical, it is equivalent
to setting # and v° to zero. Under these two assumptions,
Equation (2) is automatically satisfied, while Equation (1)
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simplifies significantly to

vE 0 A if O)( ¢
d | v _ B C O if || awn (15)
M| wé if 00 Of we|f

N 0 if D E)\aw"

where k = k¢ and f = fcm for brevity, and we assume without
loss of generality that f > 0. The perturbation consists of the
two-dimensional velocity sector (v, Av") and the two-
dimensional magnetic sector (w¢, \w") in velocity units. The
matrix in Equation (15) splits into

0AO0O 00 0
BCOO 00 0 i
000o0|lTlir oo of (16)
0 0DE 0 if 00

The first term is parameterized only by e and the second term
only by f; therefore, the behavior of eccentric MRI can be fully
understood by studying Equation (15) for all (e, f). The first
term is time-dependent and describes how orbital variation
excites oscillation within each sector. The second term is time-
independent and describes how the background magnetic field
couples the two sectors and creates magnetic oscillation. Both
oscillations are themselves stable, but their coupling may give
rise to instability: for e = 0, instability takes the form of
circular MRI (Balbus & Hawley 1991); for e > 0, instability
results from an extension of circular MRI to eccentric disks
(Section 3.1) or the parametric interaction between velocity and
magnetic sectors (Section 4.2).

2.3. Linearized MHD Equations in a Cylindrical Coordinate
Basis

We define a cylindrical coordinate system (R, ¢, z) confocal
with the orbital coordinate system, and we equip each point
with the cylindrical coordinate basis alongside the shearing-box
coordinate basis, as in Figure 1. The coordinate systems are
related by (R, ¢) = (AG, ¢), so contravariant components

transform as
vRY 1 H\( v¢
(va)_G(o 1)(»77)’ an

and similarly for (w$ Aw”). Useful properties of cylindrical
components are exposed when we convert Equation (15) to the
cylindrical coordinate basis using Equation (17),

oR i oo if 0 R
d R _ | W 0 if || Rvv (18)
aMm | wk if 0 W Wal| wk [
Rw? 0 if Wy Wi \Rw?
where
Vi o) _ 1o H (1 — )G+ 3
=0 19
(V« V4) 2 (—1 H (1
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and

(V1 Vz)(O —1) B (0 —1)(Wl Wz) —La ey,
Vi ,J\1 O 1 0/)\W; W, 2
(20)

If f= 0, the velocity and magnetic sectors decouple, and
(", Rv¥) evolves independently of (wR, Rw¥). If f=0,
Equation (18) admits solutions of the form

R, Rv?, wi, Rw?) = (¢Pn, o, igia, —igi), (2D

where 1, (M) and »(M) are complex-valued functions and g is
a root of

g —g =30 — e, (22)

The correctness of this solution is evident upon substituting
Equations (20)-(22) into Equation (18). Equation (18) can
therefore be recast into the equivalent form

i(vR): v szé’](vR) (23)
am \Rv¥® i+fe Vi J\Rv)

Since the right-hand side of Equation (22) is positive, its two
roots satisfy g > 1 and —1 < g < 0, respectively. Two roots
beget two solution families: positive-g solutions have magnetic
components that are stronger than velocity components, while
negative-g solutions have the opposite situation. The Maxwell
stress is stronger than the Reynolds stress when g > 0, and it is
the other way around when g < 0. Increasing e or decreasing
f causes |g| to move further away from unity, enhancing the
contrast between velocity and magnetic components for both
families. Because g can be readily inferred from (e, f) and the
solution family, we shall report only the time evolution
of (vR, Rv¥).

2.4. Floquet Theory

Equations (1), (15), (18), and (23) of eccentric MRI and
Equation (34) of the toy model to be introduced in Section 4.1
all have the form

® _ Ax), (24)
dt

where x (¢) is a vector and A(z) is a periodic matrix with period
T. For eccentric MRI, T is the orbital period. We cannot derive
a dispersion relation from this equation, so we turn to the
theory of Floquet (1883).

Consider the complex-valued equation

ax =AMX®), (25)
dt

where X (¢) is a matrix. A matrix-valued function F (¢) is called
a fundamental matrix if F(z) is a solution of Equation (25) and
det F (1) = 0 for all . We can convince ourselves that F(¢)C,
where C is a constant matrix, is a fundamental matrix if and
only if detC = 0. In addition, F (t 4+ T) is also a fundamental
matrix.

The fundamental matrix G (¢) satisfying G (0) = 1 is called
the principal fundamental matrix. Now G(f+ 7) and
G (t)G(T) are both fundamental matrices with the same value
att = 0; thus, G(r + T) = G ()G (T) by the uniqueness of the
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solution. In other words, the monodromy matrix G(T)
advances G (7) by a period.

Complex matrices, barring some exceptions such as
nilpotent matrices, are diagonalizable. Hence, we set G(T) =
EDE~', where E = (e}, e, ...) is the matrix of column
eigenvectors and D = diag(ay, oy, ...) is the diagonal matrix
of eigenvalues, also called Floquet multipliers. Consider the
fundamental matrix

M) = G(E; (26)

clearly, M (0) = E and M (T) = ED. This means that if x;(r)
is the jth column of M (z), then x;(¢) solves Equation (24),
x;(0) = ¢, and x;(T) = oye;.

Our task in solving Equation (24) therefore reduces to
finding G(T') by numerically integrating Equation (25) over
one period with the identity matrix as the initial condition and
then computing the eigenvalues and eigenvectors of G (7).
Each eigenvector ¢; produces one mode x;j(r) of the full
solution. Note that ¢; and x;(#) are defined up to proportionality.

If we let P(r) = M (¢t)exp((—¢/T)InD), where expand In
are matrix exponentiation and logarithm, respectively, then

Pt +T)=M(+ T)D 'exp((—t/T)InD)
=G({)G(T)ED 'exp((—t/T)InD)
=G(t)Eexp((—t/T)InD)
=P(®). 27

Thus, we can write a mode as
_ YT
x(1) = o/ Tp, (1), (28)

where p; (7) is periodic with period 7. If A(7) in Equations (24)
and (25) is constant, then P (¢) is also constant, so all modes are
either exponential or sinusoidal, and their respective growth
rates or oscillation frequencies are given by the diagonal of
InD/T. Note that x;(¢) is periodic if and only if q; is a root of
unity or p; (1) is constant.

A mode x;(7) is stable if |oy] < 1 and unstable if |o;] > 1.
The stability of Equation (24) depends only on the mode with
the largest |o|; we call this mode the most unstable mode and
let the growth per period of Equation (24) be v = max; In|cy].

Since any fundamental matrix F(¢) is a solution of
Equation (25), we have d(In det F) /dt = trA(t); in particular,

T
Qi - = detG(T) = exp f di trA(v). (29)
0
If the integral vanishes, ovjay -+ =1, s0 v > 0.

2.5. Application of Floquet Theory to Eccentric MRI

The special nature of the 2 x 2 matrix A(f) in
Equations (23) and (34) leads to additional useful properties.
Since A(z) is real, G(T') and its trace, a; + «,, are both real;
since A() is traceless, Equation (29) yields aya, = 1. Thus,
either |oy| = |ap| = 1, which gives two stable modes; or oy
and o, are both real, which gives one stable mode and one
unstable mode.

Consider the latter case. If oy, ap > 0, then both modes are
sign-preserving in the sense that each component of x;(7)
retains the same sign after a period; conversely, if oy, a, < 0,
then the two modes are sign-reversing because each component
of x;(r) flips sign. Moreover, Equation (26) implies
M(T) = G(T)E, the jth column of which is aje; = G(T)e;.
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If G(T) is diagonal, then E is the identity matrix, and the
components of e; are real. If G(T) is not diagonal, then the real
matrix G (T") mixes the two components of ¢; to give ¢; times a
real scalar «; this can only be so if the components share the
same complex phase. We can therefore take x;(0) = ¢; to be
real without loss of generality; Equations (23) and (34) then
compel x;() to be real for all 7.

The results in the previous paragraphs have important
implications for eccentric MRI. Equations (15) and (18) have
four modes each, dividing into pairs of two: a pair from solving
Equation (23) with g > 0 and another pair from solving the
same equation with g < 0 (Section 2.3). Here we showed that
each pair comprises either two stable modes or one stable mode
and one unstable mode; thus, eccentric MRI can have at most
two unstable modes, one for each sign of g. Furthermore, while
we can choose (v, Rv?) in Equation (23) to be real at all times,
Equation (21) simultaneously makes (w®, Rw¥) imaginary, so
the mode is restricted to the velocity sector. Since the
perturbation is oe*¢ (Section 2.2), selecting a different
complex phase means observing at a different height above
the reference particle. If the velocity sector is real and the
magnetic sector imaginary at some ¢, then the velocity sector is
imaginary and the magnetic sector real at { + %jwk“ for any
odd integer j.

3. Eccentric MRI
3.1. Growth per Orbit of the Most Unstable Modes

Equations (15), (18), and (23) are numerically integrated
over one orbit, and the growth per orbit v of eccentric MRI is
given by the eigenvalue of the monodromy matrix with the
greatest complex magnitude (Section 2.4). The left panel of
Figure 2 displays ~ as a function of (e, f); unstable regions are
where v > 0. Circular disks correspond to e = 0; in agreement
with Balbus & Hawley (1991), we find MRI if 0 < f2 < 3, that
is, if the background magnetic field is weak and the
wavenumber is small, and stability otherwise.

The behavior for arbitrary (e, f) is more complicated. Bands
and horns are, respectively, unstable regions found by solving
Equation (23) with positive and negative values of g that satisfy
Equation (22); bands further divide into the classical band and
parametric bands.

The classical band is the extension of the unstable region of
circular MRI to e > 0. It contains positive-g unstable modes,
whose magnetic components are larger than their velocity
components (Section 2.3). Growth is fastest at (e, f) =
(0. 3V/15). with 7 = 2. The width of the classical band, as
measured in the f-direction, and its y at fixed f both fall by a
factor of ~2 from e =0 to e = 1. This is because these
modes grow with the help of constant orbital shear just as in
circular MRI, but when e is large, orbital shear, encapsulated
by AQ, and €, is small during the long time spent near
apocenter.

Parametric bands contain positive-g unstable modes not
included in the classical band; like classical-band modes, the
magnetic components of these modes are larger than their
velocity components (Section 2.3). Parametric bands appear as
banana-shaped unstable regions above the classical band that
are, loosely speaking, elongated in the e-direction and stacked
in the f-direction. Overall, v in parametric bands is about half
the largest ~ for circular MRI; more precisely, bandwidth and
7 both increase with e at fixed f up to a broad maximum, then
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Figure 2. Plot of « for eccentric MRI as a function of eccentricity e and Alfvén
parameter f. Here ¢” > 1 is the absolute value of the amplification of the most
unstable mode per orbit (Section 2.4), hence the colored regions are unstable;
blue indicates sign-preserving regions and red indicates sign-reversing regions
(Section 2.5). Dots mark six (e, f) chosen for closer examination (Sections 3.3
and 3.4). Left panel: the classical band is the lowermost horizontal unstable
region, parametric bands are the horizontal unstable regions above it, and horns
are the unstable regions peeking out between adjacent parametric bands, as
highlighted by the inset (Section 3.1). Parametric bands sharply narrow as
e — 0, becoming points at ¢ = 0; the points, marked by gray triangles, fall at
values of f for which stable circular band modes complete integer or half-
integer numbers of oscillations per orbit (Section 4.2). The dotted curve
(1 — e)’f? = 3 is the threshold between the mostly stable regime to the left
and the mostly unstable regime to the right (Section 4.2). Right panel: cutout of
the left panel at ¢ > 0.8, showing only horns (Section 3.1). Gray triangles mark
the points at e = 0 to which horns taper (Section 4.2).

decrease slowly toward e = 1, while 7y decreases slightly with
increasing f at fixed e. Parametric bands are spaced at f-steps of
%%, with adjacent parametric bands separated by a narrow but
finite gap for all e, and they alternate between sign-preserving
and sign-reversing in the f-direction (Section 2.5). The regular
spacing of parametric bands, their clean separation from one
another, and their narrowing toward e = 0 all suggest an origin
related to parametric resonance (Section 4.2).

Horns contain negative-g unstable modes, whose velocity
components are larger than their magnetic components
(Section 2.3). The right panel of Figure 2 depicts horns in
isolation. Their width and v both increase with e, attaining
noticeable width only at e = 0.8; they are also regularly spaced
in f. Because horns have smaller +y than bands, they are mostly
buried underneath bands in the left panel, which portrays only
the most unstable modes of Equations (15) and (18); however,
horns do emerge between bands when bandgaps widen at
e 2 0.95. At such high e, horns have -y approximately half that
of bands, so horn modes can be as important as band modes in
stirring MHD turbulence.

The largest vy at any given e > 0 is generally a factor of a
few smaller than that at e = 0. However, the largest f that
permits instability rises rapidly with e from the circular-limit
value of /3, so the f-range over which MRI operates is
substantially wider at e > 0. Horns also tend to fill in bandgaps
at e 2 0.95, making more values of f susceptible to MRI at
high e.
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While there is no exponential growth at band and horn edges
because v = 0 there by definition, growth in general may still
occur (Appendix A).

3.2. Limiting Behavior of Modes

The division of eccentric MRI modes into band and horn
modes has physical significance, which is most easily
appreciated in the e = 0 and f = O limits.

The e = 0 limit reproduces circular MRI; these circular
modes follow the dispersion relation (e.g., Balbus & Hawley
1991)

@m? =+ 37 (42 +5)". (30)

The upper sign yields (w/n)* < 0 if and only if 0 < f* < 3,
while the lower sign has (w/n)?> > 1 for all £ Since the
0 < f* < 3 part of the f-axis in Figure 2 is covered only by the
classical band, we associate the upper and lower signs with
bands and horns, respectively. Band modes with f> > 3 and
all horn modes are stable at e = 0; these stable circular modes
are destabilized by orbital variation through parametric
resonance at 0 < e < 1, producing parametric bands and
horns, respectively (Section 4.2).

The f = 0 limit is trickier. Equation (23) does not apply, so
we cannot classify modes as band or horn. Moreover,
Equations (15) and (18) have nondiagonalizable monodromy
matrices, leaving us with just the three modes given in
Appendix A. All three modes are stable because the magnetic
and velocity sectors decouple (Section 2.3) and the two sectors
are individually stable (Section 2.2). The first two modes have
vanishing (w®, Aw") and periodic (v¢, Av"); hence, we identify
them as epicycles, or inertial modes with vertical wavevectors.
The third mode has vanishing (v¢, Av"), corresponding to the
situation where a gas packet is displaced along the orbit
without any change in velocity. We call this neutrally stable
mode a sliding mode, and it is analogous to the azimuthal
displacements in circular disks discussed by Balbus & Hawley
(1991). The magnetic field perturbation of this mode is frozen
into the background flow, and Aw” varies periodically in
proportion to the orbital speed.

Although inertial and sliding modes are, strictly speaking,
neither band nor horn, we can associate them with band and horn
modes at f > 0 by studying how these latter modes behave as
f — 0. We find that the two band modes merge to the sliding
mode, whereas the two horn modes tend independently toward
the two inertial modes. Just as azimuthal displacements in
circular disks are readily destabilized by orbital shear in the
presence of a weak magnetic field (Balbus & Hawley 1991),
the sliding mode is destabilized at 0 < f < 1 to produce the
classical band. Horn modes are more closely related to epicycles,
which are stable in Keplerian disks (e.g., Rayleigh 1917);
consequently, horn modes are not destabilized at 0 < f < 1 and
are destabilized to any appreciable extent only at e = 0.8.

3.3. Time Evolution of Unstable Modes

When e > 0, the matrices in Equations (1), (15), (18),
and (23) are time-dependent; hence, unstable modes do not
grow at a steady exponential rate, nor do their components bear
a constant ratio. Instead, components vary at different paces in
the course of an orbit in such a way that they are all multiplied
by a common factor after a complete orbit, as guaranteed by
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Equation (28). It is therefore instructive to examine in detail
how unstable modes evolve within a single orbit.

To accentuate the difference between bands and horns, we
pick six (e, f) from where they do not overlap, that is, where
precisely one mode is unstable (Section 2.5); our selection is
indicated by dots in Figure 2. The six unstable modes include
a circular band mode, a classical-band mode, two modes from
adjacent parametric bands, and two modes from adjacent
horns. To determine the time dependence of each mode, we
numerically integrate Equation (23) over an orbit with the
pericenter value of the mode as the initial condition; Figure 3
plots the resulting trajectory of two components (vX, Rv#) of the
mode. We choose the complex phase of the perturbation such
that (vR, Rv¥) is always real (Section 2.5); this is done purely for
ease of visualization and has no physical significance.
Equation (21) takes us from (v*, Rv?) to (w’, Rw?), which in
this case is purely imaginary. For sign-preserving modes
(Section 2.5), the trajectory of the subsequent orbit traces out
the same shape magnified by a factor of ¢” > 1. For sign-
reversing modes, the magnification is —e” < —1; that is, the
trajectory is enlarged and inverted with respect to the origin.

For the circular band mode at (e, f) = (0, 1) in the top left
panel, the mode grows exponentially, the trajectory is straight,
and the same growth rate applies to all components of the
perturbation. For the classical-band mode at (e, f) = (0.5, 1) in
the top right panel, however, orbital variation bends the
trajectory away from a straight line; this is symptomatic of the
uneven growth of different components within an orbit and is a
generic feature of MRI growth in eccentric disks.

For the parametric-band modes at (e, f) = (0.5, 2.5) and
(e, f) = (0.5, 3) in the center panels, the middle part of each
trajectory, traversed while the gas travels out to the apocenter
and back, loops counterclockwise around the origin; the mode
does not grow along the loop, as evidenced by the confinement
of (v R)2 + (Rv “’")2 to a finite range. The ends, corresponding to
pericenter passage, deviate from the loop; the deviation is
outward whenever the mode grows and inward whenever the
mode decays. Although most growth takes place near
pericenter, (VR)> + (Rv¥)?> does not necessarily increase
monotonically throughout pericenter passage. For the f = 2.5
mode, the trajectory makes 5 turns around the origin; for the
f =3 mode, the trajectory goes around twice. As we discuss
below, this winding number is always integer or half-integer.

For the horn modes at (e, f) = (0.99, 0.85) and (e, f) =
(0.99, 1.35) in the bottom panels, the trajectories are
qualitatively the same as those of parametric-band modes,
except that the apocentric loop is clockwise and + is generally
smaller.

Taking appropriate limits in Equation (23) yields physical
insight about the apocentric loop. Near apocenter, the diagonal
elements of the matrix in Equation (23) are small because
H ~ 0. If, additionally,

W —f) (Vs +f3) <0, €1))

Equation (23) describes stable oscillation in which R, Rv¥)
loosely traces out an ellipse of horizontal-to-vertical axis ratio
[~ (Vs — fg)/ (V5 + fg)]'/2; note that V, > 0 and V5 < 0. Horn
modes always satisfy Equation (31) because their g < 0
(Section 2.3); for them, magnetic tension and orbital forces
drive oscillation together. Band modes are harder to handle
because Equation (31) is true only for parts of the orbit; for
mathematical expedience, we consider Equation (31) only at
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Figure 3. Pericenter-to-pericenter trajectory of (v¥, Rv¥) of the most unstable
mode of eccentric MRI for the six (e, f) indicated by dots in Figure 2. Band and
horn modes have g > 0 and g < 0, respectively (Section 2.3). Trajectories are
marked every tenth of an orbital period with a cross. The origin, shown as a
dot, lies on the solid gray line connecting the beginning of a trajectory to its
end; the end is ¢” > | times as distant from the origin as the beginning.

apocenter, trusting that if it holds at apocenter, then the continuity
of (V, — fg)(V5 + fg) over 6 would ensure that it holds over
a finite range around apocenter as well. Band modes have g > 0
(Section 23), thus —Vi=1Q=2(1 — e ¥l — ¢)> <

%(l — 272 = f(g — g~") < fg, where we used Equation (22)
in the fourth step. It follows that Equation (31) is equivalent
to fo > V= %(l — ey l/2 4 %Q; in other words, oscillation
occurs if magnetic tension beats orbital forces. The solution of the
last inequality is f> > %(1 + e)3(2 — e), which includes all
parametric bands and part of the classical band, so modes there
exhibit apocentric loops. Furthermore, Equation (22) yields
[0(fe)/Ofl. = 2g/(1 + g%) > 0; hence, when f is larger,
(V, — fg)(V5 + fg) at apocenter is more negative, Equation (31)
is satisfied over a larger fraction of the orbit around apocenter, and
the trajectory spends more time looping near apocenter and less
time growing near pericenter. This is exactly the trend suggested
by the three modes at e = 0.5 in Figure 3.

The argument in the previous paragraph explains why the
apocentric loop exists and the ends deviate from the apocentric
loop. However, it is not very useful near pericenter. For bands,
the argument is frustrated by the fact that the signs of V, — fg
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and V3 + fg depend on (e, f). For horns, the argument hardly
matters because their unstable modes appear only at ¢ 2> 0.8
(Section 3.1); thus, little time is spent where H ~ 0. Instead, we
advance another argument applicable to the near-pericenter
evolution of modes along the midlines of parametric bands and
horns. Because v reaches a local maximum there, we can
reasonably expect that both ends would be growing, which
simplifies our considerations; the behavior along the midline is
also likely characteristic of the entire parametric band or horn.
Growth of midline modes is concentrated near pericenter
because orbital shear is necessary to draw out magnetic field
perturbations, and orbital shear is the strongest relative to
magnetic tension in that part of the orbit. The time an orbit
spends near pericenter is ~[€2(0 = 0)]"!, and the instantaneous
growth rate is roughly the orbital shear, that is, ~(0 = 0);
their product is therefore always of order unity, which may
explain why v varies weakly with e in Figure 2.

The fact that unstable modes grow by a real factor every
orbit (Section 2.5) means that (vX, Rv¥) at all pericenters must
lie on a line that includes the origin, as in Figure 3. Sign-
preserving modes have integer winding numbers because
(vR, Rv¥) at successive pericenters are on the same side of
the origin; sign-reversing modes have half-integer winding
numbers because (v¥, Rv¥) switches sides every orbit
(Section 2.5). Each band or horn has a single winding number;
we call twice this number its order g. The classical band has
order g = 0. The lowermost parametric band and horn have
orders ¢ = 1 and g = 3, respectively; each band or horn above
is one order higher. The winding number increases with f
because stronger magnetic tension drives faster oscillation
around the apocentric loop.

3.4. Angular Momentum and Energy Transport by Unstable
Modes

Denote the shearing-box and cylindrical coordinate bases by
(é\, é,) and (&g, &,), respectively, and their normalized versions
by (€3, ég,) and (€3, €p); the normalized coordinate bases are
depicted in the top half of Figure 1. Recall that in differential
geometry, a coordinate basis is defined to be tangent to the
coordinate curves; specifically, €, is tangent to curves of
constant ¢ and z, while &g, is tangent to curves of constant ¢ and
z. Since these two sets of curves coincide, we have é, || éx
and é5 = é3.

The @R-component of the Reynolds stress tensor is

T};’ = yRRv¥; the associated angular momentum and energy

fluxes are RT;; and RQT;; , respectively. Figure 4 plots the two
fluxes over an orbit for a circular band mode, a classical-band
mode, a parametric-band mode, and a horn mode. Fluxes in the
subsequent orbit have the same shape, but the overall
normalization is e?” > 1 times greater (Section 2.4). Since
(v, Rv¥) is chosen to be real (Section 2.5), Figure 4 shows
fluxes at ( such that the Reynolds stress is the greatest. The
Maxwell stress reaches its maximum at a different (
(Section 2.5); the Maxwell stress there is g” times the Reynolds
stress here, where |g| > 1 for band modes and |g| < 1 for horn
modes (Section 2.3). R .

The @-momentum flux in the A-direction 7¢ is obtained by
performing a coordinate transformation from cylindrical to
shearing-box on the lower index of T7. Lower indices

transform covariantly as the basis; thus, T/{:’ = Tlf . Intuitively,

:f is the flux of angular momentum through the elliptical,
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Figure 4. Radial angular momentum (left) and energy (right) fluxes due to the
Reynolds stress associated with the most unstable mode of eccentric MRI for
four of the six (e, f) indicated by dots in Figure 2. Band and horn modes have
g > 0and g < 0, respectively (Section 2.3). Perturbations are normalized such
that (v R)z + (Rv *’)2 =1 at M =0. Crosses mark pericenter fluxes at
M/(@x) € {0, 1}; the right cross is at a flux level ¢*” > 1 times the left
cross. The top two rows have logarithmic vertical scales, while the bottom two
rows have linear vertical scales.

constant- A line segment in the bottom half of Figure 1, and T;;D
is the same through the circular, constant-R line segment. The
greater length of the former line segment is made up for by its
obliquity to the latter; hence, the two fluxes are the same.

For the circular band mode at (e, f) = (0, 1) in the first row,
fluxes grow exponentially, yielding straight lines on semi-
logarithmic plots. For the classical-band mode at (e, f) = (0.5, 1)
in the second row, orbital variation bends the trajectory of
R, Rv?) away from exponential growth (Section 3.3), so
fluxes do not increase monotonically. Note that not all
classical-band modes have T;Q,j > 0 throughout the orbit. If e
and f are both large, v¥ switches sign and then switches back
pre-pericenter; if e is large but fis small, Rv* changes sign in
like manner post-pericenter. In either case, T;g < 0 over a
fraction of the orbit.

For the parametric-band mode at (e, f) = (0.5, 3) in the third
row and the horn mode at (e, ) = (0.99, 1.35) in the fourth
row, the trajectory of (v¥, Rv¥) makes a roughly elliptical loop
around the origin near apocenter (Section 3.3); vRRv¥ therefore
oscillates almost sinusoidally over that part of the orbit, and T;ef’
is also more or less sinusoidal considering that R varies slowly
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there. The sign change of T;%’ means that stresses sometimes
move angular momentum and energy outward and sometimes
inward; the sinusoidal nature of T{ near apocenter leads to
strong cancellation between outward and inward fluxes.
Because the modes in Figure 4 have relatively small f,
cancellation may not be very conspicuous; at large f, however,
where the apocentric loop covers more of the orbit and the
winding number is large (Section 3.3), T}'*; goes through many
periods of sinusoidal oscillation near apocenter, so we
anticipate close to complete cancellation. Near pericenter, the
mode grows, and Tl‘g can be larger post-pericenter than pre-
pericenter or the other way around; this asymmetry can create
net transport.

Parametric-band and horn modes fail to grow (Section 3.3),
and Tlg integrates to a vanishing value over the same part of the
orbit, namely, the apocentric loop. The concurrence is
unsurprising. Orbital shear feeds the perturbation by draining
energy from the background flow and converting it to the
kinetic and magnetic energy of the perturbation; in doing so,
orbital shear establishes a positive correlation between v™ and
Rv?, which leads to net outward transport. Along the apocentric
loop, orbital shear is too weak compared to magnetic tension to
do either.

Net transport changes osculating orbital elements across the
disk. When e ~ 1, a small increase in the argument of
pericenter at one edge of the disk and a corresponding decrease
at the other leads to differential apsidal precession and
apocentric stream crossing, as seen in Figure 5. This
phenomenon is distinct from the differential apsidal precession
described by Ogilvie (2001), which requires a radial pressure
gradient.

4. Toy Model

The complexity of Equations (15), (18), and (23) suggests
that we may gain further insight from studying simpler versions
of them, ones stripped down to their essential elements. We
discuss such a toy model in this section.

4.1. Frequency-modulated Oscillator

The physics of eccentric MRI boils down to the interaction
between magnetic and orbital forces: the background magnetic
field controls the oscillation between velocity and magnetic
sectors (Section 2.2), while orbital variation modulates the
strength of this oscillation. We can expose this interaction by
eliminating w* and A\w" from Equation (15),

(v _( 0 A )i vé
aMm\ w7 B+D C+E)gm\ w7
5 L
SN TR
BE-B J AT

where J(M) =f2? + AD 4+ CE — C, and overdot denotes
differentiation with respect to M. This equation reduces to
Equations (106) and (107) of Balbus & Hawley (1998) in the
circular limit. The equation describes a pair of coupled, damped
oscillators; in the circular limit, the natural frequencies of the
two oscillators are f and (f2 — 3)!/2, respectively, but
eccentric orbital motion causes periodic modulation of the
latter natural frequency.



THE ASTROPHYSICAL JOURNAL, 856:12 (13pp), 2018 March 20

02} (e.fiq)=1(0.99,1.35,4)

2

E (g -34,0.70)

2 00

5]

S

4 02 horn
-2.0 -1.5 -1.0 -0.5 0.0

x-coordinate

Figure 5. Schematic illustration of differential apsidal precession due to MHD
stresses. The orbital plane of the blue and orange particles is described by a
Cartesian coordinate system (x, y) whose origin is at the point mass. Stresses
associated with the most unstable mode of eccentric MRI transfer momentum
from the orange particle to the blue at a rate rxT]g é,, (Figure 4); as a result, their
trajectories deviate from the gray Keplerian orbit in opposite senses. These
deviations, assumed to be small, grow by a factor of €>? > 1 per orbit; here
they are exaggerated for clarity.

This observation motivates the study of the toy model

d*x 2

— + w?(l + hcost)x =0 (33)

dr?
as a step toward better understanding eccentric MRI. This
equation governs an oscillator whose frequency is periodically
modulated around w; thus, & and w of the toy model are
respectively analogous to e and f of eccentric MRI. The
equation can be rewritten as

f&(ﬁ) ::(-wz(l-i hcost) é)(;)’ (34)

where X = dx/dt; analyzing this equation with the method
developed in Section 2.4 results in Figure 6.

Figure 6 resembles Figure 2 in multifarious ways. Unstable
regions are organized into bands separated by finite gaps.
Bandwidth rises with h, with the most rapid change around
h = 1. Bands are regularly spaced at w-steps of L and are
alternately sign-preserving and sign-reversing (Section 2.5).
Unstable modes have (x, x) going clockwise around the origin
with winding number %q; here ¢ is the band order, which is one
for the lowermost band and one higher for every band above it.
The striking similarities between the two figures are evidence
that our toy model captures the essential features of the
parametric bands of eccentric MRI, and that what we learn
about the former can provide guidance in understanding the
latter.

The left side of the gth-order band in Figure 6 appears to
pinch off to the point (h, w) = (0, %q). To see whether this is
true, we determine band edges at & <1 by solving
Equation (33) perturbatively (Appendix B), as was previously
done in the context of parametric resonance (e.g., Landau &
Lifshitz 1969). The perturbative and numerical results are in
excellent agreement for g < 5, confirming that bands do stretch
all the way to the w-axis. The width of the gth-order band, to
leading order in A, is just 2739¢%7~'[(g — 1)!]72h9 (Bell 1957);
hence, the figure cannot resolve its extremely thin tip at & < 1
if g > 3. Since bands extend the instability at 0 < 7 < 1 due
to parametric resonance to finite /, they and their counterparts
in eccentric MRI deserve the name “parametric bands.”

Figure 6 divides into the small-amplitude regime at 7 < 1
and the large-amplitude regime at 2 > 1. The small-amplitude
regime is inherently stable because 1 + & cost > 0 throughout

Chan, Krolik, & Piran

1.6 1.2 0.8 0.4 0.0 0.4 0.8 1.2

3.0

2.5

2.0

natural frequency w

1.5

1.0

0.5

0.0 : 5 : : : : :
00 05 1.0 15 20 25 30 35 40

modulation amplitude A

Figure 6. Plot of 7/(hw) for the toy model as a function of amplitude 7 of
frequency modulation and natural frequency w in Equation (33). Here e” > 1is
the absolute value of the amplification of the unstable mode per orbit
(Section 2.4), hence the colored regions are unstable; blue indicates sign-
preserving regions and red indicates sign-reversing regions (Section 2.5). The
dotted line is the threshold between the mostly stable regime to the left and the
mostly unstable regime to the right. Dashed curves mark the edges of unstable
regions computed using perturbative methods (Appendix B).

the period; parametric resonance can be excited only if 2w
closely matches an integer. In contrast, the large-amplitude
regime is inherently unstable because 1 + & cost < 0 over part
of the period, which allows exponential growth for a finite
amount of time.

4.2. Implications for Eccentric MRI

The toy model suggests that parametric bands in eccentric
MRI should be understood as the result of orbital variation
coupling to magnetic oscillation. At small e, weak orbital
variation slightly modulates the frequencies of stable circular
modes (Section 3.2). The physics of eccentric MRI in this
regime is the same as parametric resonance: almost all of the
(e, f)-space at e < 1 and f> >3 is stable, with instability
restricted to ranges around discrete values of f that shrink
rapidly as f increases. This tight constraint on f is because
parametric resonance demands a close frequency match. At
large e, strong orbital variation overwhelms stable circular
modes to the degree that exponential growth is possible over a
part of the orbit near pericenter. This phenomenon can be
viewed as an extension of parametric resonance to large e, but
it is opposite to parametric resonance in terms of the f-range
that is stable; in other words, now almost all of (e, f)-space is
unstable, whereas stability requires a close frequency match.

While there is a visual resemblance only between parametric
bands in Figure 2 and bands in Figure 6, it is easy to infer that
horns are also part of the parametric phenomenon; after all,
they derive from the same Equation (23) with merely a
different g. Parametric behavior in MRI involves a gradually
increasing degree of destabilization of stable circular modes as
e increases from zero, so its defining feature must be that each
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of its unstable regions narrows leftward and collapses to a point
on the f-axis; parametric bands and horns do just that, as we
now show. Band and horn modes in the circular limit obey
Equation (30). Our toy model suggests that parametric
resonance occurs for both bands and horns around w/n = %q
for some integer g > 1; the f-coordinates satisfying this
condition are marked separately for band and horn modes with
gray triangles in Figure 2. Each band and horn clearly
converges toward its respective gray triangle as e — 0. It
turns out that g here equals the ¢ denoting band or horn order in
Section 3.3: the destabilization of a stable circular mode
executing %q oscillations per orbit should produce unstable

modes with the same winding number lq and thus order g.
We can estimate the threshold between the small- and large-
amplitude regimes as follows. If we keep only terms
proportional to d?(\v")/dM?* and \v” in the second row of
Equation (32), we have
d—z(/\v”) +JWWT) =0 (35)
dM?> o
This simplification was used by Balbus & Hawley (1998), and
its validity is justified by its results. Because J is a periodic
function, this equation describes an oscillator with frequency
modulated over M. The properties of the oscillator depend on
how the average or baseline of J compares with its amplitude.
Observe that

3 — 2¢2 Te — 4¢3

J=f? — — cosf
P ooy a_ey
2 _ 4 3
— 56—2600520 & _cos?e. (36)
(1 — &) (1 — &)

We take the baseline of J to be the first two terms on the right-
hand side. Since the coefficients of all powers of cosf are
negative, we approximate the amplitude of J to be the negative
of their sum. In the toy model, the transition from the small- to
the large-amplitude regime happens when the amplitude of the
frequency modulation equals the baseline frequency, that is,
when i = 1. In eccentric MRI, we expect the same transition
when the amplitude of J equals its baseline, that is, when
(1 — e)*f? = 3 — 2e; this is the threshold plotted in Figure 2,
up to a factor of unity. The assumption we made to arrive at
Equation (35) is of course ad hoc, but the fact that it reproduces
the threshold means that the terms discarded from
Equation (32), including drag-like terms and mass-like cross-
terms, do not enter into the essence of eccentric MRI.

The threshold between the mostly stable and mostly
unstable regimes can also be derived using a more physical
argument. MRI grows when orbital shear stretches out
magnetic field perturbations; larger f makes the background
magnetic field stiffer, restricting the region where orbital
shear operates to a smaller fraction of the orbit near
pericenter. Circular MRI grows if f=kwy/n < \/3; by
analogy, eccentric MRI should grow if ki /(n{2) < J3 at
pericenter, that is, if (1 — e)’f? < 3 + 3e. This is very
similar to the criterion just derived.

We close this section with an insight regarding eccentric
MRI that follows from a contrast between our toy model and
the full picture. Eccentric MRI has a classical band at
0<f? < 3, but the toy model does not have a corresponding

10

Chan, Krolik, & Piran

band at 0 < w S L This is because the classical band in
eccentric MRI is the extension of circular MRI to e > 0
(Section 3.1), but no such extension is possible for the toy
model, which is always stable at # = 0. Thus, orbital variation
can drive MRI whether or not the time-averaged orbital shear
can do so.

5. Discussion
5.1. Nonlinear and Saturated Stages of MRI

We have treated only the linear stage of MRI in eccentric
disks, but MHD stresses in real disks depend on how MRI
leads to saturated MHD turbulence, both at what rate and to
what final amplitude.

On the one hand, eccentric MRI has a + that is typically a
sizable fraction of the maximum ~ of circular MRI (Section 3.1);
hence, the number of orbits needed for MRI to go from linear to
saturated in eccentric disks may be only a few times that in
circular disks. Saturation levels may nevertheless be lower due to
the slower linear growth. On the other hand, modes with
% > 3are linearly stable in circular MRI, so energy can reach
those small scales only through the nonlinear, relatively slow
process of turbulent cascade from larger scales, whereas modes
with (1 — e)’f? <3 are linearly unstable in eccentric MRI
(Section 4.2) and grow right from the start. Since saturation
requires a steady state to prevail at all scales, the fact that
smaller-scale modes grow sooner in eccentric disks may help
MRI saturate faster. Saturation levels may likewise be higher.
Whether slower growth or a wider range of unstable
wavenumbers is more important can be determined only by
nonlinear simulations of the saturation process.

We can only speculate on how the saturated stage of MRI
differs in eccentric and circular disks. Self-similar turbulence is
characterized by two wavenumbers: a smaller wavenumber
corresponding to the scale at which turbulence is driven and
kinetic energy is injected and a larger wavenumber corresp-
onding to the scale at which microscopic dissipation converts
kinetic energy to internal energy. The inertial range refers to the
range between these two wavenumbers; the turbulent power
spectrum is a power law in this range. In the linear stage,
eccentric MRI is unstable up to wavenumbers (1 — e)=3/2
times larger than circular MRI (Section 4.2); in the saturated
stage, it is plausible that the driving range reaches similarly
large wavenumbers. However, because small-scale dissipation
is independent of large-scale motion, the inertial range should
always cut off at about the same wavenumber, so we expect the
inertial range at e > 0 to be narrower. For fixed mean motion
and vertically integrated pressure, the rate of energy injection at
e > 0 may be higher, and the power-law index of the inertial
range may be different. It is also possible that band modes with
dominant magnetic components could interact nonlinearly with
horn modes with dominant velocity components (Section 2.3),
leading to quantitative changes in MHD turbulence, especially
when e =~ 1.

5.2. Additional Physics

So far we have considered incompressible eccentric MRI
assuming vertical wavevectors and ignoring vertical gravity;
we interpret its unstable modes either as stable circular modes
destabilized at 0 < e < 1 by orbital variation through
parametric resonance (Section 4.2) or as inertial and sliding
modes destabilized at f > 0 (Section 3.2). If we allow for
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nonvertical wavevectors and vertical gravity, then parametric
resonance in hydrodynamic disks can also destabilize inertial
and gravity modes (Papaloizou 2005). We may therefore
expect MHD disks to generally host destabilized and
magnetically modified inertial, sliding, and gravity modes.

The height of thin eccentric disks responds to the modulation
of vertical gravity along the orbit, and even mildly eccentric
disks can thicken dramatically from pericenter to apocenter
(Ogilvie & Barker 2014). Vertical oscillation has the same
timescale as orbital variation. The two cooperate in hydro-
dynamic disks to destabilize inertial modes through parametric
resonance (Barker & Ogilvie 2014); the same may happen to
the three aforementioned modes in MHD disks.

Vertical oscillation also changes the background density p,
as well as the vertical wavenumber k of a mode advected with
the flow. The resulting modulation of vy = B/p'/? and
f=kw/n means modes may switch between stable and
unstable within an orbit as the disk shuttles between small- and
large-amplitude regimes (Section 4.2). Moreover, stable
circular modes may parametrically resonate with orbital motion
in a different manner because their f is no longer constant.

Lastly, the background flow of eccentric disks may vary in
eccentricity and orientation as a function of semilatus rectum.
Horizontal compression and expansion of the background flow
may alter inertial, sliding, and gravity modes; it also changes p
and thus f of stable circular modes.

5.3. Implication for TDEs

Our work sheds light on the evolution of the bound debris of
TDEs around SMBHs. The debris typically has e = 0.99, so
eccentric MRI can grow for values of f that are
~(1 — e)3/2 > 1000 times greater than in the circular limit
(Section 4.2). With such a broad f-range linearly unstable,
saturation of MRI-driven MHD turbulence may take place in
only a few orbits (Section 5.1), so angular momentum transport
at the rate associated with a saturated state could begin with
relatively little delay.

Our linear formalism tells us how fast MRI amplifies MHD
perturbations, not the magnitude of MHD stresses at saturation.
Improving on the estimates made by Svirski et al. (2017) of
whether angular momentum transport or energy dissipation is
more efficient requires nonlinear calculations. Nevertheless, we
may expect both effects to be weaker near apocenter if the
oscillatory behavior of MHD stresses (Section 3.4) carries over
from the linear to the saturated stage and high-f modes
dominate at saturation.

MHD stresses may also give rise to differential apsidal
precession in the saturated stage, as they do in the linear stage
(Section 3.4). Such precession spreads the range of apsidal
orientation of the debris, perhaps resulting in weak apocentric
shocks. In contrast, general relativistic (GR) bulk apsidal
precession rotates every debris orbit through an angle inversely
proportional to its pericenter distance. For pericenter distances
210 times the gravitational radius, the precession angle is small
enough that stream crossing occurs near apocenter (Dai et al.
2015; Shiokawa et al. 2015); for smaller pericenter distances,
large swings may lead to closer-in stream crossing and strong
shocks. It is unclear whether shocks accompanying MHD and
GR precession enhance or diminish the eccentricity of the
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orbits closest to the SMBH (Bonnerot et al. 2017; Svirski
et al. 2017).

If the eccentricity of the inner parts of the debris rises due to
either angular momentum transport or shocks, they will plunge
directly across the innermost stable circular orbit even though
they have lost little orbital energy to radiation. Detailed
simulations are required to determine under what circumstances
plunging is the likely scenario.

6. Conclusions

We have demonstrated that our intuitions regarding circular
MRI carry over to eccentric MRI. Orbital shear amplifies the
perturbation along those parts of the orbit where it dominates
background magnetic field tension (Section 3.3); when it does,
it correlates the horizontal components of velocity and
magnetic field perturbations, which leads to radial transport
of angular momentum and energy (Section 3.4). If we consider
growth over the entire orbit, the perturbation grows if
(1 — e)*f? <3 (Section 4.2); consequently, MRI may be
relevant in eccentric disks, such as the bound debris of TDEs
(Section 5.3), up to much stronger magnetic fields for a given
sound speed.

What distinguishes eccentric MRI from circular MRI is that
orbital conditions vary with time in the former but not in the
latter. At small e, weak orbital variation interacts with stable
circular modes through parametric resonance; the whole (e, f)-
space is stable except for where orbital motion resonates with
magnetic oscillation. At large e, orbital variation overcomes
magnetic oscillation and enables exponential growth; the whole
(e, f)-space is unstable except at resonance (Section 4.2).

This research was partially supported by NASA/ATP grant
NNX14AB43G, NSF grant AST-1516299, ERC advanced
grant “TReX,” and ISF I-CORE “Origins.” JHK thanks the
Kavli Institute for Theoretical Physics (KITP) for its hospitality
during the initiation of this project and for the support provided
by KITP under NSF grant PHY-1125915.

Appendix A
Eccentric MRI at Band and Horn Edges

Equation (15) can be integrated analytically when f = 0. The
nonvanishing elements of the principal fundamental matrix
G(M) are

e + cost

G (M) = ﬁ, (37)

Gir (M) = TTZ (38)
Gor(M) = — sin 9;11—:_6:)05 0) (39)
Goa (M) = Cose(i IZCOSQ)’ (40)
G (M) — 1, @1
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3esinf(1 + ecos0)

Gp3(M) = 20— o)
1/2
— 3Q{arctan [(1 — e) tan ﬁ] + W[i _ l—|},
1 +e 2 2 2
(42)
and
a2
GMMF{Liﬂgﬁ). 43)
1+ e

We have only three modes because G(27) is nondiagonaliz-
able. The modes happen to be the first, second, and fourth
columns of G (M), and their Floquet multipliers are all unity, in
agreement with v = 0 along the e-axis in Figure 2. The third
column is not a mode because, instead of all components
increasing by the same factor from pericenter to pericenter as in
Equation (28), v¢, A", and w¢ are time-independent, while
Aw’ accrues a constant amount —37(1 + €)/2(1 — e)3/2
every orbit due to orbital shear stretching out radial magnetic
field perturbations. The intriguing result here is that, when
G (2) is nondiagonalizable, a suitably initialized perturbation
can grow despite v = 0, and growth is linear insofar as only
pericenter values are concerned.

This quasilinear growth is quite general. Numerical experi-
mentation reveals that all band and horn edges have
nondiagonalizable G (27) and vanishing +; the f= 0 limit
above is simply the lower edge of the classical band. A
perturbation undergoes quasilinear growth only precisely at an
edge; however, because G (27) varies smoothly over (e, f), the
same perturbation grows by a similar magnitude in the
neighborhood of the edge as well. This means that a
perturbation can grow, at least for a limited time, faster than
what the small near-edge v would indicate.

Appendix B
Parametric Resonance in Toy Model

Suppose the unstable modes of Equation (33) have the form

x(1) = ao(t) + Y aj()cos 3jt + 3 by()sin Jjit.
j=1 j=1

(44)

This ansatz is justified because such modes are either sign-
preserving or sign-reversing (Section 2.5). Clearly,

00

X = Z(aj + jb )cos —jt
=
+ ;( )sin Lit, (45)
X =do+ i(a, + jb;j — jzaj) cos %jt
j=1
+ i(b, — jaj — 1j7b;)sin Sjt. (46)

-
Il
—_
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Table 1
Coefficients in Equation (65)
q By By B3 Bya
1
°
27
256
2 2
4 s s
5 125 1328125
768 8257536
6 27 159651 175093407
140 627200 702464000
7 343 9058973 1520564265367
1536 23592960 3261490790400
3 16 11008 57073664 263023869952
63 19845 68762925 238263535125
9 729 779623947 559841590208961 4562059629450856483359

2560 1009254400 397888454656000 2039226076726558720000

Substituting these into Equation (33) furnishes us with
(iio + u)z(lo + ihwzaz)

+ [dl + by + (w- - Z)a‘ + hw (a; + ag)]cos —t

n [51 g+ (w2 D)oy Tty - bg):lsin Ly
+ [dy + 2by + (W? — Daa + %hwz(Zao + ay)]cost

+ [by — 24 + W — Dby + ghwzbﬂsim

+ Z[aj + jb; + (w — —j )aj + %hwz(aj,z + aHz)]cos %jt
Jj=3

+ Z[iy’, — ja; + (wz _ i )b + —hw (b, bjﬂ)]sin %jt =0.
j=3
47)

All Fourier coefficients must independently vanish. We are
interested in solutions of the form a;(t), b;(¢) o e, hence

(2 + wag + %hwzaz =0, (48)
(s2 +w?— %)a, + sby + thw’(ar + az) =0, (49)
(s2 +ut - })b1 —say— th(by — b =0, (50)
(s> + w? = Day + 2sby + 3hw?Qag + as) =0, (51)
(s> + w? = Dby — 2545 + hw’hy =0, (52)
(S2 —+ w2 — %jz)aj +‘]Sbj + %hwz(aj_z —+ aj+2) = 0,
Jj=3, (53)
and
(s +w? — - )b —Jjsa; + hw (bj—2 + bj12) =0,
j>3. (54)

Consider the case when 7 < 1 and w = %q + ¢, where ¢ is a
positive integer and |¢| < 1. We make the standard assumption
that s and € are of the same order (e.g., Landau &
Lifshitz 1969); to first order of ¢, we have

Agoao + hePaz =0, (55)
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Agaar + s + $hq? (@ + a3) = 0, (56)

Agabi — say — chq? (b — b3) = 0, (57)

Agaay + 2sby + $hg?Qag + as) = 0, (58)

Agaby — 2say + %hq2b4 =0, (59)

Agjaj+ jsby + chg*(aj o + aj12) =0, j>3,  (60)

and

Agjbj — jsa; + chg*(bj 2 + bjy2) = 0,j >3, (61)
where

Ay = o =t (62)

1 . .
2@ = j=a

We determine € at which the oscillator is neutrally stable by setting
s = 0 in the equations and demanding that they have a nontrivial
solution for the now time-independent ¢; and b;. The equation
splits into two independent sets, one involving only g; and the
other involving only b;; hence, there are two solutions for €. For
q = 1, the solution is well known (e.g., Landau & Lifshitz 1969).
For g > 2, the equations are self-consistent if, to leading order,

€~ h, (63)
o b hi=a72 . (j — g) mod2 = 0, (64)
770, (j —q¢)mod2 = 1;

symmetry suggests that we truncate each set of equations at
Jj = 2q. For all g, we solve for € up to the lowest order in /& such
that the two solutions are distinct; this yields (see also Bell 1957)
lg/2] .
e(h) ~ Z Bq’jhzf + 2739g297 (g — 1)!]72h9,
j=1

(65)

where B, ; for the first few ¢ are given in Table 1.
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