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Abstract

We present a “multipatch” infrastructure for the numerical simulation of fluid problems in which subregions
require different grid scales, different grid geometries, different physical equations, or different reference frames.
Its key element is a sophisticated client-router—server framework for efficiently linking processors supporting
different regions (“patches”) that must exchange boundary data. This infrastructure may be used with a wide
variety of fluid dynamics codes; the only requirement is that their primary dependent variables be the same in all
patches, e.g., fluid mass density, internal energy density, and velocity. Its structure can accommodate either
Newtonian or relativistic dynamics. The overhead imposed by this system is both problem and computer cluster
architecture dependent. Compared to a conventional simulation using the same number of cells and processors
employed on a problem not requiring multipatch methods, the cell update per processor rate decreases by an
amount that can range from negligible to a factor of a few; however, even in these problems, the infrastructure can
permit substantial decreases in the total number of cell updates required.
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1. Introduction

1.1. Importance of Multiphysics/Multiscale/Multiframe
Capability

Many important physical processes involve heterogeneous
systems in which the nature of the matter in different regions
exhibits strong contrasts. The material may vary in its
characteristic internal length or timescales, or in its local
geometric symmetry. There may even be contrasts in which the
physical mechanisms of importance differ between regions: for
example, chemical reactions or self-gravity may be significant
in some, but not all, locations. These regions may also move
with respect to one another, perhaps changing shape as they do.
When the regions have relative motion, the fact that the physics
is often most concisely described in a system’s mean rest frame
means that no single rest frame is appropriate for the entire
problem. At the same time, interactions between these regions
may nonetheless demand simulation methods allowing data
from one region to inform the behavior of another.

Problems exhibiting strong contrasts in length or timescales
are called “multiscale problems.” We will also use this term to
include contrasts in grid symmetry. In multiscale problems,
numerical methods work best with different grid systems in
different regions, perhaps contrasting in resolution, perhaps in
symmetry, e.g., polar versus Cartesian. Those involving
disparities in mechanisms are called “multiphysics problems.”
In these problems, one must solve entirely different equations:
those of magnetohydrodynamics (MHD) rather than those of
hydrodynamics, or with or without transport processes such as
viscosity or diffusion. We dub problems with internal frame
shifts “multiframe problems.” For these, it would be desirable
to translate the equations from one frame to another in different
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portions of the calculation. Astrophysics is rich in problems to
which at least one, and sometimes all, of these labels apply, and
therefore at least one, and sometimes all, of the difficulties,
both technical and conceptual, that they pose.

To illustrate their significance, consider a few examples. The
topic that initially motivated our work is the mechanics of
accretion around a binary system. For us, the partners in the
binary are supermassive black holes (see, e.g., Schnittman
2013), but little about this problem changes whether the binary
comprises a pair of protostars (e.g., as imaged and analyzed by
Mayama et al. 2010) or a pair of black holes. In this situation,
there are widely disparate scales because the structure of the
circumbinary disk varies on the scale a of the orbital
separation, whereas most of the accretion power emerges at
the inner edges of the disks orbiting around the individual
masses (often called “mini disks™), which could be a great deal
smaller. In addition, throughout these disks, even to define the
saturation level of the MHD turbulence supplying the accretion
torques requires treatment of length scales that are small
compared to disk scale heights, which could be considerably
smaller than the radial scale. There are also differences in the
symmetry of well-designed local grids. Because angular
momentum transport in accretion disks is slow compared to
the orbital time, it is very important that there be little
numerical momentum diffusion; this fact demands a grid
mimicking the symmetry of their nearly circular flow (see, e.g.,
Sorathia et al. 2013). However, such a grid would be polar and
centered on the binary center of mass for the circumbinary disk,
whereas for each mini disk, it would be polar and centered on
the object whose gravity is most important for that disk. A
single Cartesian grid for the entire system would likely produce
an intolerable level of numerical diffusion. This binary
accretion problem is also one that demands multiple reference
frames for much the same reason it requires multiple subgrids
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with different symmetries. The physics of the circumbinary
flow is easiest to grasp in the center-of-mass frame, which is
that of the individual mini disks in the frame of each member of
the binary. Thus, one would like to be able to divide this
calculation into at least three different zones, each with its own
grid and reference frame.

Another example may be found in the tidal disruption of
stars by supermassive black holes, which has become a subject
of great interest in recent years as numerous examples have
been found (in both optical/UV, e.g., Gezari et al. 2009 and
Arcavi et al. 2014, and in X-rays: Auchettl et al. 2017). This is
a multiscale problem because it is necessary both to resolve the
dynamics within the star as it is broken apart and to follow
the fluid dynamics of the debris as it gradually accretes onto the
black hole. Measured in terms of gravitational radii r, defined
relative to the mass M of the black hole (r, = GM / c?),

main-sequence stars are ~ Mg lrg in diameter, where Mg is the
black hole in units of 10° M,,. Thus, to follow their breakup
requires cells <0.1My lrg in size. On the other hand, the debris

orbits have semimajor axes ~103Mg v 3rg, so that the fluid
motion after stellar breakup takes place on a much larger scale.
Nonetheless, despite this dramatic scale contrast, the breakup
of the star is inextricably tied to the much larger-scale debris
motion. It is also a multiphysics problem because stellar self-
gravity, not surprisingly, is of the essence so long as the star
stays in one piece, but after its matter is spread sufficiently
widely, it becomes inconsequential. It is also a multiframe
problem because the mechanics of a nearly hydrostatic star are
definitely best viewed in the star’s frame where the fluid
velocities are small, whereas the mechanics of an accretion
flow are far more easily understood in the black hole frame. Its
multiframe nature also creates a contrast in grid symmetry
because coherent stars are most naturally treated in a spherical
coordinate system whose origin is the center of the star,
whereas flow around a black hole is best described in a
cylindrical or spherical coordinate system whose origin is the
center of the black hole. Thus, this problem, too, involves all of
these categories of complication. In fact, we have chosen it as
the subject of our first test problem for our new infrastructure.
We will quote a few technical results from this test problem
here; a full analysis will be published separately.

1.2. State of the Art and Its Limitations

The desirability of overcoming these challenges has not gone
entirely unnoticed by the computational community, and a
number of partial solutions have been developed. Adaptive
mesh refinement (AMR) methods can dynamically adjust
spatial resolution to follow local length scales (Berger &
Oliger 1984; Berger & Colella 1989); a closely related scheme,
overlapping moving grids, can be used to follow a coherent
region with a distinct spatial scale or symmetry. MultiProgram/
MultiData (MPMD) methods (Barney 2017) offer a convenient
way to evolve different regions according to the different
mechanisms acting in them.” We will call these separate

" In practical terms, users run multiple—possibly different—executables,
each producing a different data product and all sharing the same Message
Passing Interface (MPI) “MPI_COMM_WORLD” communicator. Typical, i.e.,
single-program, parallelized calculations are launched using the same
executable on all processors. Since some codes (e.g., HARM3D)
set algorithmic choices (e.g., coordinate system type) at compile time, MPMD
allows users of such codes to run different algorithms on different sets of
processors and still allow all of the processors to communicate with each other.
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regions “patches,” hence the name “multipatch” for our general
approach. Because each patch is run by an independent
program under MPMD, their only interaction is through the
exchange of boundary conditions.

For some of these methods, professionally supported
implementations are available. Chombo, for example, is a
particularly well-developed AMR package (Adams et al. 2014).
It permits the use of two different methods to divide up regions
into separate grids, embedded boundaries, and mapped multi-
blocks. There are also relativistic versions of these fixed
multiblock methods (Schnetter et al. 2014; Clough et al. 2015).
General relativistic hydrodynamics has been treated (Blakely
et al. 2015) using the techniques of Overture (Brown et al.
1997), which offers users the option of moving overlapping
grids. In this approach, a composite grid is formed in order to
bridge two contrasting overlapping grids, with data from
each interpolated onto the composite grid (Chesshire &
Henshaw 1990). Numerical relativity calculations can use
multiblock infrastructure with AMR, but all dependent
variables must be defined in terms of a global Cartesian tensor
basis (Pollney et al. 2017). Similarly, there are numerous
MPMD systems permitting the computation of different
physics in different parts of a global system. These range in
their applications from linking multiscale fluid simulation to
molecular dynamics (Nie et al. 2006) to modeling blood flow
through the brain (Grinberg et al. 2013).

Another approach to solving the problems of multiple scales,
but not multiple physics, is the use of moving unstructured
grids (e.g., the codes AREPO, Springel 2010, and TESS,
Duffell & MacFadyen 2011). Schemes like these very flexibly
place resolution where it is required for the hydrodynamics. It
has also recently become possible to extend them from
hydrodynamics to magnetohydrodynamics (Duffell 2016;
Mocz et al. 2016). They do not, however, naturally retain the
virtues of conforming to natural symmetries of the problem
(e.g., suppressing numerical diffusion by aligning cell axes
with the fluid velocity), nor do they readily permit the use of
contrasting physics in different regions. With significant effort,
it is possible to avoid the first drawback (Duffell 2016), but a
new solution must be created for each new problem.

Despite the real successes of all these different schemes,
there remain significant barriers to their employment in many
kinds of problems. Multiblocks must fit smoothly against one
another in a fixed configuration, while embedded boundaries
require Cartesian grids. Neither of these allows the relative
motion of the cell blocks. Most importantly, none of the
methods introduced so far achieves the simplification and
efficiency gains that arise from following the physics of
moving regions in their own reference frames.

The advantages of working in the most suitable reference
frame can be substantial. Consider, for example, a hydro-
dynamics problem in which structure A, containing only
motions subsonic relative to its own center of mass and varying
on short length scales, moves supersonically within a larger
background fluid B with longer gradient scales. If such a
problem were treated with a moving grid scheme, the time step
within region A would be severely limited by its supersonic
velocity and its small cell sizes; transformation to the moving
frame could reduce the number of time steps required by a large
factor. Numerical accuracy would also be substantially
improved as there would be no need to perform numerous
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close subtractions of velocities in order to find the relative
velocities between cells.

Analogous advantages can stem from equation simplifica-
tion. Suppose, for example, that in the moving region there is a
diffusive transport process that is unimportant in the back-
ground. Treating this transport process in the moving frame
eliminates what would otherwise be a large, unnecessary,
advective flux. If the velocity contrast between the regions
approaches the relativistic level, treating everything in the
background frame introduces serious conceptual problems:
because classical diffusion causes instantaneous transmission
of information (Morse & Feshbach 1953; Narayan 1992), such
problems cannot be formulated covariantly. Transformation to
a frame in which local motions are slow permits a clean use of
the local Newtonian limit in which diffusive transport is
mathematically consistent.

The limitations of existing methods severely crimp the study
of many interesting problems, including the two we mentioned
as motivating our work, the dynamics of accretion flow in
binary systems and tidal disruptions. In the former case, none
of the existing systems supports the optimal grid geometries, a
pair of small spherical grids moving with respect to a larger
(and coarser) spherical grid whose origin (the system’s center
of mass) is stationary. Instead, one would be forced to cover a
large region with small cells, none of them aligned with fluid
motions and therefore incurring large numerical diffusion.
Likewise, in none of them does one gain the advantage in
numerical accuracy afforded by working in a locally co-moving
reference frame. It is also difficult in this framework to avoid
much of the simulation being burdened by a very small time
step relevant in only a subregion. Simulations have been
attempted, but they have been either restricted to 2D (Bowen
et al. 2017; Ryan & MacFadyen 2017) or, if 3D, limited to very
short duration (Bowen et al. 2018). The restrictions are even
more severe for the tidal disruption problem. A number of
simulations have been carried out whose grid origins follow the
center of mass of the star (Cheng & Evans 2013; Guillochon &
Ramirez-Ruiz 2013; Cheng & Bogdanovi¢ 2014; Guillochon
et al. 2014), but they cannot continue to follow the career of the
tidal debris during the much longer time that it orbits the black
hole because their high-resolution grids are extremely ineffi-
cient for that problem. It is also important to compute the star’s
self-gravity while it survives and before its tidal debris
disperses, but then turn it off afterward for efficiency, yet no
existing system provides the flexibility to ignore the regions
where self-gravity is unimportant. These two astrophysical
problems demonstrate the need for greater flexibility, but it is
easy to imagine many other problems for which current
methods are inadequate.

1.3. Our Innovation

The system we present here, which we call PATCHWORK,
is designed to eliminate the limitations due to the use of a
single reference frame for all patches while also maximizing
the ability to simultaneously deal with issues of multiple scales,
multiple grid symmetries, and multiple varieties of local
physics. Exploiting the flexibility of the MPMD approach, it
utilizes well-defined coordinate transformations informed by
relativistic methods (but not restricted to relativistic problems)
to simulate heterogeneous systems in which regions requiring
independent treatment are regarded as independent processes
operating in independent reference frames. Each patch has its
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own grid, with its own resolution scale and symmetry; among
the many benefits offered by independent local coordinate
systems, patches give an easy solution to the problems raised
by coordinate singularities (e.g., at the origin of a polar
system). Each patch also solves its own equations, whatever is
necessary to do the job in that region.

The relationships between these frames are defined by
coordinate transformations with the ability to eliminate local
mean velocities, so as to reap the benefits just described, while
retaining a common overall time so that the entire simulation
can advance together. This approach creates an important
simplification—the same coordinate transformation that relates
the array index space to spatial coordinates can also be used to
eliminate bulk velocities. This single coordinate transformation
also applies to the metric with respect to the coordinates. In
addition, provided that the physical quantities entering into the
boundary conditions are scalars, vectors, or rank-2 tensors,
their transformation from the coordinate system of one region
to that of another is well defined and straightforward. In this
way, the free use of arbitrarily curvilinear and arbitrarily
discretized coordinates can be combined with the virtues of
treating the local physics in its most natural reference frame.

However, in order for the patches to exchange boundary
conditions at simultaneous times, the time coordinate in all of
the patches must be the same. In relativistic terms, this means
that the coordinate transformations relating patches with
relative motion are not Lorentz transformations; as a result,
the reference frames of moving patches are in general non-
inertial. This policy may be somewhat unfamiliar, but because
the equations of physics can all be written in completely
covariant fashion, their form under this sort of transformation is
well defined.

Our version of the multipatch system also offers several
additional features. Because the patches interact only through
boundary condition exchange, they can have independent time
steps; because long time-step patches need many fewer updates
to traverse the same physical time, when parallelized, those
patches can be assigned many more cells per processor to
achieve better load balancing. In addition, patches can be added
or removed from time to time as conditions change and
different demands arise.

To mitigate the complexity and overhead created by
interpatch communications when the computation is paralle-
lized, we have created a client-router—server system that
efficiently links the correct processors in each patch to their
boundary condition partners in other patches.

Lastly, our package is structured as a “wrapper” to fit around
a user-supplied hydrodynamic or magnetohydrodynamic simu-
lation code. The only requirements placed upon these codes are
that they should have fixed grids and their primary dependent
variables (the ones whose boundary conditions are exchanged
between patches) are all the same. In intrinsically conservative
codes (e.g., HARM3D, our test code), boundary conditions are
generally fixed through the “primitive variables” (density,
velocity, internal energy) because the Riemann problem is
defined in terms of them. Other algorithms may lead to other
choices, and PATCHWORK should accommodate them. Here,
we illustrate its performance only through HARM3D.

1.4. Outline of the Paper

In Section 2, we set out the principal features of our method.
This presentation begins with an overview (Section 2.1) in
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which we define what we mean by a “patch” and describe how
different patches are related to one another. The next subsection
discusses the principal operation of the multipatch system, the
boundary condition exchange between neighboring patches.
Following that, in Section 2.3, we detail how boundary data are
interpolated from one patch’s grid to another’s. Section 2.4
briefly discusses how users can add new patches and remove
old ones. Then, Section 2.5 presents the method’s core: the
client-router—server architecture we created so that, in a
parallelized environment, a processor in one patch is linked
to the correct partner in a different patch in order to exchange
boundary data. The final subsection, Section 2.6, explains how
different patches can advance with different time steps yet
remain synchronized. We lay out in the Appendix an overview
of how these operations are organized into discrete routines and
fluid codes can, with a small number of additional lines of
code, be made compatible with the PATCHWORK system.

Section 3 presents a variety of tests of our multipatch
implementation. In its first subsection, we demonstrate that a
shock can pass smoothly from one patch to another without
alteration. In the second, we show that even when patch
symmetries contrast strongly, a blast wave can travel from one
to the other and remain close to the Sedov—Taylor similarity
solution. In the third, we examine the degree to which
interpolation of data from one patch to another may lead to
departures from rigorous conservation of mass, momentum,
and energy, and discuss how such departures can be kept small.

Section 4 discusses computational efficiency by presenting
benchmarking tests and scaling data for the overhead imposed
by the multipatch system.

The last section summarizes the paper.

2. Method

We have designed our multipatch software to be compatible
with any numerical simulation code in which the computational
domain is discretized into a fixed set of discrete grid cells and
the primary dependent variables, the ones exchanged between
patches as boundary conditions, are the same in every patch. It
also requires the geometric factors relevant to the operators of
vector calculus to be defined in terms of metric elements; this is
done as a matter of course in relativistic codes, but it is also a
feature of a number of contemporary Newtonian codes such as
Athena++ and the most recent version of Zeus (Sorathia et al.
2013; White et al. 2016). For development and testing
purposes, we have used it with the finite volume general
relativistic hydrodynamics code HARM3D (Noble et al. 2009)
running in every patch. In the near future, we plan to port it to
other codes to demonstrate its flexibility. We expect that,
subject to the stipulation about variable consistency, it will be
possible for different codes to run in different patches.

2.1. Overview

PATCHWORK’s structure is based on the concept of
“patches.” A patch is a region of space defined by the user.
Locations within it are described by its particular coordinate
system and discretized according to its own particular grid. The
time evolution of its fluid’s physical properties is governed by a
particular set of equations, always including the Euler fluid
equations, but potentially extensible to the Navier—Stokes
equations or the MHD equations, and potentially supplemen-
table by chemical or nuclear reaction networks, a Poisson
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solver for self-gravity, or other sorts of equations. Evolving an
individual patch is the responsibility of an individual process
within the MPMD environment. Although it is possible to run
the simulation as a single program, using one program for each
patch keeps the code simple and conceptually clear. As a result,
the method is intrinsically parallelized: there must be at least
one processor for each patch.

PATCHWORK coordinates a number of different individual
patch processes through the incorporation of several specific
routines into the fluid simulation code chosen by the user.
Some are problem independent, but others are problem specific
and therefore need to be written by the user. The most
important functions of the PATCHWORK routines are to
define the trajectory of each patch in terms of the “background
coordinates” (see below for definition), calculate the coordinate
transformation matrices necessary to translate physical quan-
tities and locations between each patch and the background
coordinates, control boundary condition exchange between
different patches while maintaining “situational awareness”
about which portions of a patch’s boundary adjoin other
patches and which are on the edge of the physical problem
volume, and synchronize the time steps in the different patches.
In addition, there are several other optional multipatch-specific
routines that will be described later.

A system of “background coordinates” underlies the entire
region being simulated. The locations and boundaries of all the
patches are defined in terms of this system. It is always
Cartesian, and its time coordinate is the universal time for all of
the patches’ coordinate systems. Its purpose is both to serve as
a reference for positions and to serve as a “common language”
for all patches to describe the locations of exchanged data.

Individual patches can have any shape or size, provided only
that they fit within the background coordinate grid. They can be
stationary relative to the background coordinates or move.
Their internal coordinate systems and grids are entirely
independent of all other patches’ spatial coordinate systems
and grids. It is convenient in many problems to divide the
patches into two categories, “global” and “local.” Frequently,
one patch provides the great majority of boundary condition
data for the other patches and occupies all or a large part of the
problem volume. When that is the case, that patch is deemed
“global,” and its reference frame is tied to the frame of the
background coordinates. Its internal spatial coordinate system,
however, can still be defined independently of the background
coordinates. Although it is often convenient to have a global
patch, it is not a requirement of the system. Any patch not
designated as “global” is considered to be “local.”

When two or more patches overlap in their spatial coverage,
only one of them governs the dynamics within the overlap
volume. We then speak of the “active patch” updating the
properties of the “uncovered cells” and the “inactive patch”
containing the “covered cells.” If one patch is a local patch and
the other is a global patch, the local patch is always the active
one. If two or more local patches overlap, the user designates
the hierarchy of activity in advance. As covered cells approach
the patch boundary of the active patch, they become ghost cells
for other cells in their patch that are already uncovered. At that
point, they are filled by interpolation from the active patch cells
covering them.

One spacetime is specified for the entire problem volume
with a metric defined on the background coordinates. This
spacetime can be described in any of the patches by means of
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the appropriate coordinate transformation from the background
system to the patch coordinate system. In some instances, the
fluid mass in one or more of the patches may be important to
gravity throughout the problem volume. The best way to
account for this contribution to gravity depends on circum-
stances. Relativistic velocities or strong gravity demands
solution of the Einstein field equations. Because these
equations, like the hydrodynamics equations, are hyperbolic,
they can also be solved within the multipatch framework. On
the other hand, if the fluid moves more slowly and the
gravitational field is weak, the Poisson equation, which is
elliptic, is appropriate. This case requires the global patch
physics repertoire to include Newtonian self-gravity, and the
density distribution from any local patch with significant mass
must be interpolated to the global grid, although possibly with
crude resolution.

Physical consistency likewise demands that all patches are
updated according to the same time coordinate and must reach
a given value of this time coordinate together. Such
synchronization is achieved automatically if all advance with
the same time step. However, as we discuss below
(Section 2.6), this is not necessary. If some patches can be
evolved stably and accurately with a longer time step than
others, it is necessary only for the patches to all be
synchronized after one time step of the patch with the longest
step. Note that because there is a single time coordinate for all
patches, the coordinate transformations between them are not
Lorentz transformations unless the relative velocity between
the two patches being linked is zero and both patches are
inertial.

In the course of each update, patches bordering on one
another must exchange boundary condition data. Accomplish-
ing this step is the core of our system.

2.2. Boundary Condition Exchange between Patches

Within any particular patch, we distinguish three types of
boundary zones for individual processors. Ghost zones covered
by other processors in the patch are in the first category. The
second category comprises ghost zones lying on the physical
boundary of the problem. The third category, those ghost zones
covered by processors assigned to other patches, is of greatest
interest to the multipatch scheme.

The first two can be handled by the standard devices found
in existing fluid codes. Here we describe how the boundary
information is obtained for ghost zones in the third category.
We begin by displaying an example so that readers can easily
visualize the issues involved (Figure 1). In this figure, the
fluid’s internal energy density is represented by color contours,
and grid cells are delineated by black lines. We have chosen to
follow the fluid mechanics in this example by means of two
patches, a finely resolved Cartesian local patch and a more
coarsely resolved polar global patch whose radial grid is
logarithmically spaced. In the upper panel of the figure, the
physical boundary of the Cartesian patch is shown by the inner
white box; the area covered by its “ghost zones,” the cells
needed to establish boundary conditions for the physical
region, lies between the two white boxes. The lower panel
shows the converse situation: the jagged white contour shows
the boundary of territory in the global patch not covered by
physical cells of the local patch; the cells between that jagged
contour and the white cells are where the global patch needs
boundary data.
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Figure 1. Snapshot of the internal energy density (color contours) and grid
cells in a 3D blast wave simulation. (Upper panel) White squares show the
physical boundary (inner) and numerical boundary (outer) of the local patch.
Where the local and global patches overlap, only the local grid is shown.
(Lower panel) Like the upper panel, but where the patches overlap, only the
global grid is shown. The colored cells inside the jagged loop are filled with
data interpolated from the local patch to the global patch. The white cells inside
the jagged loop are unused when the patches are in this configuration because
the local patch updates the physics in their volume. The physical (inner) and
numerical (outer) boundaries of the local patch are shown as thin white lines for
reference.

The first step is to discover which processors in which
patches have the information. To minimize interpatch commu-
nication time, we organize this process to avoid exchanging
unused data. Because this procedure is almost independent of
whether the patch needing boundary data is a global or a local
patch, for this part of the discussion, we call them “patch A”
and “patch B.” We begin by labeling all the zones in patch A
(here this happens to be the global patch) with an integer array,
illustrated in Figure 2. The values in this “flag array” denote
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Figure 2. The “flags” assigned to the global grid cells for the same snapshot
shown in Figure 1. Red and blue indicate the inner and outer ghost zones (for
the global patch), respectively. White cells are ordinary cells in the global patch
interior; gray labels global cells covered by the local patch and ignored. The
thin gray squares show the physical (inner) and numerical (outer) boundaries of
the local patch.

whether a zone is a ghost zone, and if so, what type of ghost
zone. This array must be updated at each time step if any of the
relevant patches move (at each synchronization time step in
the case of heterogeneous time steps; Section 2.6). In the figure,
the white zones are in the interior of patch A and have nothing
to do with boundary conditions. Gray zones are the zones
in patch A completely covered by patch B; they, too, are
irrelevant to boundary conditions.® A zone in the global patch
is considered to be covered by the local patch if its center falls
within the local patch’s physical region. The red and blue zones
are the covered cells in patch A that act as ghost cells for the
uncovered cells in patch A. The red cells directly touch
uncovered patch A cells. Fluxes across their inner (in a
topological sense) faces are used in the updates of the
uncovered cells they touch. Blue zones are the outer layer of
ghost cells needed for the updates of the uncovered cells in
patch A; in HARM3D, the ghost-cell zone is three cells wide,
so the blue cells are either the second or third ghost cell from
the last uncovered patch A cell along at least one dimension.
They are used in the internal reconstruction by which cell-
center values of fluid quantities are extrapolated to the face
touching the physical boundary. As long as the number of
ghost cells is adjusted appropriately, any reconstruction method
should in principle work with PATCHWORK. In the tests
presented here, we used piecewise parabolic reconstruction
(Colella & Woodward 1984) with an MC (monotonized
central-differenced) slope limiter.

It is important to note that this system is thoroughly agnostic
about many of the possible choices made in different codes.
Because the coordinates at which the boundary data are needed
are determined by the fluid code operating in the requesting
patch, it does not matter whether that code defines the variables

8 1f patch A were a local patch, it would have gray zones only if patch B were

another local patch and patch B took priority over patch A; we have not yet
implemented “local-local” boundary data exchange, but plan to do so soon.
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at cell centers or at the centers of cell faces or anywhere else; it
knows the locations at which it needs the information, and it is
the job of the responding code (which may be an entirely
different one) simply to interpolate its data, no matter how
defined in terms of location within cells, to the proper point.
The system is even capable of accommodating codes with
different numbers of ghost cells. HARM3D, for example,
requires three layers of ghost cells, but PATCHWORK
contains a parameter that can be set to whatever number of
layers the user’s code needs.

Once patch A determines the locations of its ghost zones’
centers, a list of the background coordinates for these locations
is sent to all other potential patch B’s along with a request for
interpolated values of the fluid variables at the coordinate
locations. Patch B interpolates within its grid in order to find
the values at the locations desired by patch A. It then
transforms the data from its coordinate system to the
background coordinate system, using the coordinate transfor-
mation Jacobian linking patch B to the background system.
Only then are the boundary data transmitted back to patch A,
which transforms it from the background system to its own
coordinates. This procedure enables every patch to deal with
the incoming coordinate list independently without knowing
anything about other patches. Doing things this way is
especially important when patch B moves.

Note that if patch A is the global patch, the first step is done
differently. At initialization, the local patches are informed of
the cell locations at which the global patch dependent variable
data are defined. Because the local patches know their own
positions in terms of background coordinates, they can
determine on their own what data the global patch needs. This
alternate procedure has the virtue of diminishing interpatch data
transmission.

2.3. Interpolation

Although remarked on only briefly in the preceding
subsection, there are a number of subtleties to data interpola-
tion, and multiple mechanisms may be used. In the current
version of our system, we use a comparatively simple method,
but this could readily be upgraded to something more
sophisticated for problems requiring it.

In principle, an arbitrary number of zones could be used to
support interpolation to a single point. However, it is generally
best for the interpolation stencil to extend away from the point
by a number of zones that is no more than the number of ghost-
zone layers (usually two to three), so that the stencil does not
extend into another processor’s domain.

For our current method, we employ trilinear interpolation.
We locate the grid corner closest to the interpolation point and
define the stencil in 3D to be the centers of all eight cells
touching that corner. This method works quite well when the
dimensions of the cells in patch A and patch B are comparable
(see Section 3.3), but can lead to errors when they are not. In
some sense, this is unsurprising: if there is structure on the
finest scale supported by one of the patches, it cannot be well-
represented by a much coarser grid in the other. However, the
trouble can also move in the opposite direction because the
eight cells in the finer grid nearest the interpolation point may
together cover only a small part of the volume of the ghost zone
in question if its grid is much coarser. Sometimes errors of this
latter variety can be substantially reduced by replacing the
values in the inner layer of ghost cells with a wider average
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over nearby cells. Such an operation effectively magnifies the
volume of the finer-scale grid contributing to the coarser-grid
ghost cells.

Without special methods, interpolation does not necessarily
conserve quantities. To achieve strict mass (or momentum or
energy) conservation in our data interpolation could require
identifying all cells that fall within the ghost cell and summing
their contributions. If the ghost-cell boundaries cut obliquely
(or even worse, in a curve) across some of the interpolation
cells, one would need to adjust their volumes accordingly.
Although this is possible if both global and local patches are in
Cartesian coordinates, it becomes a nontrivial mathematical
problem once any of the patches are in curvilinear coordinates.
In Section 3.3, we test quantitatively how closely our
interpolation method comes to conserving mass and
momentum.

2.4. Adding and Removing Patches

Stationary or moving patches can be added or removed
throughout the simulation anywhere within the physical
problem volume. This is done using the flag array for the
ghost zones discussed in Section 2.2. Although these flags are
most often used to signal the need for data interpolation from
overlapping patches, they can also be used to signal the need to
interpolate data for other reasons as well—such as removing or
introducing a new patch. To remove a local patch, one
temporarily changes the flags on all the zones in the global
patch covered by the local patch to “ghost zones” so that all of
them are filled with interpolated data provided by the local
patch. Once these zones are filled with data, one changes the
flags back to their normal state. To add a local patch, one
creates a new patch process, and to define its initial condition
sets all its cell flags to indicate they are ghost zones. Just as in
the patch removal operation, these cells are then filled with the
data they need, and the flags can be reset to normal as soon as
that is done. However, the simulation must be stopped
immediately after a patch removal or immediately prior to a
patch addition because either one demands a new domain
decomposition for processor assignment.

In principle, patches could be added or removed while
running. To do so, however, requires having a clear criterion
for when to make the change, a specific plan for the
reallocation of processors because MPMD does not permit
any change in the total number of processors while running,
and synchronization of the resumption of fluid updates between
all processors and patches. For the time being, we have not
implemented such a scheme.

2.5. Parallelization and Interpatch Communication

One of the most difficult tasks in developing a multipatch
code is its parallelization. It requires a sophisticated infra-
structure combining two levels of data communication. In one
level, boundary data exchange within a patch, a single
executable exchanges information between its multiple pro-
cessors exactly in the way made familiar by non-multipatch
parallelized methods. In the other level, boundary data
exchange between patches, it is necessary to enable effective
data communication when the pairing of processors with
overlapping boundaries evolves dynamically, and two inde-
pendent executables, both running within the MPMD environ-
ment, must be coordinated.
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To describe how we achieve this, we first define a notation.
We label each CPU in a simulation by C’;, where i is a patch ID
and j denotes the local CPU rank within that patch. We set the
patch ID of the global patch to i = 0 and that of local patches
toi=1,2,...,N — 1, where N is the total number of patches
in the simulation, including the global patch. The index j runs
from O to n; — 1, where n; is the number of CPUs used for
patch i.

Consider a CPU at the edge of a patch, designated C'. This
CPU possesses boundary zones that need to be filled with
interpolated values. It needs to know which CPUs C¥; in other
patches handle cells lying under these zones (there could be
multiple values of j satisfying this criterion, and sometimes
multiple values of k). It must also contact them to request
interpolation values. The partner CPUs C*, on the other hand,
need to know in advance that other CPUs may be contacting
them. Because these relationships constantly change if the
patches move relative to one another, this information must
somehow be updated dynamically, even though the patches
may have differing time steps.

To solve this problem, we construct a client-router—server
system, setting up interpatch communication relationships that
can persist throughout the simulation. In its simplest form, one
CPU in each patch is chosen to serve as the router, its liaison
with all the other patches. Then, when client CPU C'; needs
information from beyond the boundary of patch i, it transforms
the coordinates of the cell centers in question to background
coordinates and broadcasts that list to processors C¥,,, where
the r, processor in patch k is the designated router for that
patch. The router processor in the kth patch then transforms the
list from background coordinates to patch k coordinates. If all
of the cell centers on the list lie outside patch k, the router
replies accordingly. On the other hand, if some of them are
inside patch k, the router processor determines which of the
other processors working on patch k£ have responsibility for
those cells and distributes the request to those processors.
These processors, the servers, interpolate their data to the
correct positions, transform the results to background coordi-
nates, and return the results to the router. Finally, the router
transmits the information back to the client, CPU C! j-

This communication scheme is conceptually simple and easy
to code. However, if only a single CPU is given router duties
for an entire patch, the communication load is shared very
unevenly and the great majority of processors sit idle while
waiting for the routers to finish their work. To divide the
workload more evenly, we regard all processors as potential
routers for their patch and redefine the client-router relation-
ship uniquely for each individual CPU (see Figure 3). These
relationships are defined at the beginning of the simulation and
remain unchanged unless patches are added or removed. For
example, one may decide that C'( always contacts C% for any
information regarding patch 0, C'; always contacts C°, and so
on. The function of the router is unchanged; it still determines
which, if any, of the processors on its patch holds the
information requested and acts as the go-between connecting
clients and servers.

Although the varying numbers of processors per patch make
an exactly even division of labor impossible, a simple
assignment scheme can spread it in a reasonably even-handed
manner. If C/' requires information regarding patch p,, it
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Figure 3. Schematic view of client-router—server relations for the multiple-
router scheme. White, blue, and green patches represent the global patch
(patch 0), local patch 1, and local patch 2, respectively. Example clients,
routers, and servers are marked with C’s, R’s, and S’s, respectively. Data
requests are shown by red arrows, data returned by blue arrows. The local
patches reside inside the global patch, but they are placed outside the global
patch and enlarged for visualization of the information exchange system. The
squares in the patches represent CPU domains, not grid cells. In a possible
instance of data exchange, a client CPU in a local patch, C'y (upper left in
patch 1), sends its list of ghost zones to its designated router in the global patch,
CY% (upper left in patch 0). C% then communicates with the appropriate server
CPUs on its patch to collect the requested data and returns the data to its client.
Simultaneously, CPU C'; also requests data from the global patch, working
with its global patch router C 05, which in turn collects the information from the
relevant server CPUs and transmits it back to the client. Even while these two
patch 1 CPUs communicate with their partners in the global patch, it is possible
for a CPU in the global patch, for example, C° s (lower right in patch 0), to be a
client, requesting data from other patches such as patch 2; in this case, the
router is C2.

contacts

router — p, (CPy) = CP2mog Ny

Note that CPUs on patch p, could have 0 or multiple clients on
patch p, depending on their index, n,, and n,,.

2.6. Heterogeneous Time Steps

One of the common problems in simulating multiscale
systems with grid-based hydrodynamics codes is that the time
step of the entire computational domain is limited to a small
value by a few regions with small grid cells and high
characteristic fluid velocity. As a result, the remainder of the
simulation, where the intrinsic timescales can be much larger,
is required to integrate with unnecessarily short time steps,
leading to a large computational cost. However, the multipatch
method, in which different regions are updated by independent
processes, allows each patch to have its own time step while
nonetheless evolving the system in a fashion synchronized
across all patches. We call this mode of operation ‘“hetero-
geneous time steps”, in contrast to the simpler “homogeneous
time-step” mode in which all patches are forced to have the
same time step.

Heterogeneous time steps can be managed with great
flexibility. The only restriction placed on the time steps in
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different patches is that the update times should all be
synchronized at intervals equal to the longest of the time
steps, AT = max(Az), where, as before, k is an index
labeling the different patches. To optimize computational
resource use, before initiating a run, the user adjusts the number
of CPUs assigned to each patch so that the wall-clock time to
advance by a time AT is approximately the same for all
patches.

In practice, the coordination works as follows. At the nth
synchronization time #;Y"°, the different patches exchange
boundary condition data. They then also exchange information
about their time steps so that they can determine which is the
longest and in which patch it is found (call that patch K). If all
of the other patches receive their boundary data either from
patch K or the problem boundary, the next synchronization
time is set to be 7,7 = 7,”" + AT.If AT'is a factor Q; (>1 by
definition) larger than the time step At; in some other patch /,
patch [ performs ~[Q;] updates, where [x] is the greatest integer
<x, while patch K works to advance to 7,%"7. When patch /
reaches a time ¢/ such that 7’7 — ¢/ < Ar, Ag is reset to

1’1 — ' to achieve synchronization. Patches that have arrived
at 7,°"} before the rest of the patches wait until all have reached
it. When that has been achieved, the cycle is repeated. Because,
by definition, conditions in patch K change by at most a modest
amount over a time AT, it is unnecessary for the other patches
to receive boundary condition information from it during their
individual time steps within the interval AT. However, when
there are more than two patches, it is possible that some patches
may require boundary data from other patches whose time steps
are shorter than A7. When that occurs, that pair must exchange
boundary data at times determined by the longer of their two
time steps. Note that processors within the same patch trade
boundary data in the usual way at each of that patch’s internal
time steps.

If all of the patches are solving the same equations, optimal
load balancing can be achieved when patch K can be identified
with reasonable reliability in advance, and the ratios Q; can
similarly be estimated. If those criteria are met, all that is
necessary is to assign processors in patch / a number of cells
N; =~ Ng /Q,. Depending on system architecture, this simple
load-balancing method may be constrained by the total memory
available to processors supporting large numbers of cells.

In some situations, the Q, might be essentially fixed
throughout the simulation. For example, this would be the
case in a simulation of gas dynamics in an isotropic
gravitational potential in which the patches are nested spherical
shells. In such a situation, the time step for each shell would
always be ~[(N;x) Q(Fmin.x) /27r]*1 , where Ny is the number
of azimuthal cells in patch &, Q(r) is the orbital frequency as a
function of radius, and fpi,  is the smallest radius in patch k. In
such a case, load balancing could be achieved fairly reliably
and would need no adjustment during the simulation.

More often, however, the Q; may vary as functions of time.
Because the MPMD environment does not permit the dynamic
reassignment of processors from one program to another, when
this condition obtains perfect load balancing through the adroit
assignment of processors to patches will nearly always be an
unreachable goal. Nonetheless, as we show in Section 4, even
approximate load balancing by combining an appropriately
chosen number of processors per cell in each patch with
heterogeneous time steps can lead to significant gains in
computational efficiency relative to homogeneous time-step
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operation. These gains can be sustained even if the ratios Q,
change significantly through the simulation if the user
periodically stops the simulation and restarts with an adjusted
choice in numbers of processors per patch.

3. Physics Tests

In this section, we showcase the performance quality of the
multipatch method. The tests appropriate to this system are
different from those useful to verify fluid codes because the
multipatch infrastructure does not directly update fluid
quantities; rather, it transfers results from one region to an
adjacent one. Consequently, the focus of our tests is PATCH-
WORK’s ability to bridge patches without undermining the
quality of the underlying code’s solution of the fluid problem.

That the issue is enforcing consistency between patches
rather than the quality of the solution within individual
patches explains why we do not present special tests of the
method’s multiphysics capability. Nearly all examples of local
physics (e.g., viscosity, different equations of state) affect
the way the fluid state variables (mass density, internal energy
density, velocity/momentum density) behave, but do not
change which variables are transmitted from patch to patch.
Consequently, if our system works for a homogeneous physics
example, it works just as well for a multiphysics example. Even
if the magnetic field is important to the physics in one patch but
not others, it must be the case that for some reason (e.g., high
resistivity) magnetic fields weaken greatly near the borders of
that single patch. There is then no need to transfer magnetic
field data to the other patches because it is not relevant to them.

First we demonstrate that it accurately reproduces the
analytic solutions to two classic hydrodynamic simulation test
cases even when critical features of these solutions pass
through patch boundaries, and the grid symmetries and
resolutions of the patches differ sharply. We then explore
how well non-conservative interpolation maintains conserva-
tion of mass, momentum, and energy, and identify the
conditions in which it does not.

3.1. Sod Shock Tube

In this test, we demonstrate that patch boundaries create no
significant artifacts when shocks and rarefaction waves travel
from one patch to another. For this test, we created a square
planar problem volume in which, following the Sod prescrip-
tion (Sod 1978), the fluid is initially at rest everywhere, but
there is a sharp pressure and density discontinuity at a specific
value of x within the volume. There is no initial variation as a
function of y. Within this volume, we placed a local patch and
gave it a constant velocity so that it moves diagonally in the xy
direction. We performed four runs to demonstrate the code’s
performance in a variety of coordinate system configurations.
In all, the background spacetime is taken to be Minkowski.

In three of these, the coordinates for both the global and local
patches are Cartesian, while the fourth uses Cartesian
coordinates for the global patch and cylindrical for the local
patch. All Cartesian—Cartesian configurations have aligned
local and global grids, and in all three, the global patch cells are
eight times the size of the local patch cells. Because the
cylindrical-Cartesian test is designed to explore sensitivity to
grid symmetry contrast rather than grid-scale contrast, the
uniform cylindrical grid of the local patch has cells comparable
in size to the Cartesian cells of the global patch.
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In two of the Cartesian—Cartesian tests, the local patch
moves slowly relative to the global patch; in one of these tests,
the local patch is placed so that the shock passes through it,
while in the other the local patch is placed where the rarefaction
wave runs across it. In the third Cartesian—Cartesian test, the
discontinuity runs through the global patch at the start, but the
local patch travels rapidly enough to run through the rarefaction
wave, the contact discontinuity, and the shock, and then
emerge on the far side. The problem solved in the cylindrical—
Cartesian test is similar to the third Cartesian—Cartesian test in
that the discontinuity starts within the local patch, while the
local cylindrical patch moves at the slower velocity used in the
first two Cartesian—Cartesian tests.

Because HARMS3D is framed in terms of relativistic
dynamics, it is convenient to choose ¢ as the unit of speed.
Given arbitrary code-units of length £, and mass density py, the
unit of time is ¢y and the unit of pressure is pyc2. To ensure
Newtonian flow (Hawley et al. 1984), it suffices to make p/p
< 1 when measured in code-units. We also chose an adiabatic
index v = 1.4.

Our problem volume was 40 code-units on a side. For the
Cartesian—Cartesian tests, there were 4007 cells in the global
patch, each with dimension 0.1 x 0.1. The three Cartesian
local patches had side lengths of 8 and were cut into 6407 cells
of dimension 0.0125 x 0.0125, so that each cell was 1/8 the
size (per dimension) of those in the global patch. For the
cylindrical-Cartesian test, the global patch had 8007 cells, each
0.05 x 0.05, while the local patch’s cylindrical grid consisted
of 240 uniform cells over 2 < r < 8 in cylindrical radius and
1000 uniform cells over the full azimuthal extent. The
cylindrical local patch requires a cutout at its center so as to
avoid the coordinate singularity at the origin associated with
polar coordinates. In this cylindrical grid, the largest azimuthal
cell size was approximately equal to the global patch’s cell size
while the radial cell width was half the global patch’s cell size.

For the initial state, the gas was divided into left (L) and right
(R) states, with density and pressure p; = 1.0 X 10°, p, = 1.0
and pgp = 1.25 % 104, pr = 0.1. The sound speed was there-
fore ~3—4 x 107 on both sides, clearly subrelativistic. Zero-
gradient boundary conditions were used for the problem
exterior. In the “shocked slow patch” test, the state divide
was placed at x = —6, while it was located at x = 0O for the
cylindrical-Cartesian case, at x = 7 for the “fast patch” run,
and at x = 6 for the “rarefaction slow patch” case. The local
patch’s origin initially coincided with the point (—15, 15) in the
fast patch simulation, while all other Sod tests began with the
local patch centered at the point (0, 10). When the patch moved
slowly, its velocity was V = 1073(% — ¥)/+/2; i.e., it traveled
subsonically and considerably slower than the shock front.
When the local patch moved fast, its velocity was
V=5x102% — ¥)/+2, ie., it traveled supersonically
and ~6.2x faster in the X direction than the shock front.

The results of all four cases can be compared with exact
analytic solutions (Laney 1998). In Figure 4, we show data
from the “shocked slow patch” run. At ¢t =900 (the left
column), the shock has just entered the local patch; at t = 1600
(middle column), both the shock and the contact discontinuity
run through the local patch; at + = 3000 (right column), the
shock has exited the local patch, but the contact discontinuity
remains within it. In all stages, the multipatch solution closely
follows the exact analytic solution. The only noticeable
departure is a slight smoothing of the contact discontinuity,
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Figure 4. Shock tube test problem for the Cartesian—Cartesian “shocked slow patch” case, observed at three times, r = 900 (left), # = 1600 (middle), and t = 3000
(right). Note that the horizontal axis scales are different for all three times in order to highlight different segments of the problem. Each column of three panels shows
1D cuts in density p, pressure p, and velocity v, as functions of x at y = 10. Data from the global patch are shown with small green dots, data from the local patch with
large cyan dots, and data from the analytic solution are shown with a black line.

visible in the density plot at + = 1600, due to the fact that the
discontinuity formed in the coarser global patch. Although
almost invisible in these plots, it is also worth pointing out an
obvious consequence of the multipatch approach: the shock
wave is always only two or three cells thick and is therefore
considerably sharper in physical space where it runs through
the local patch. We note that where the global and local patches
overlap, the global patch values plotted are those interpolated
from local patch values even though the values may not be
used in the global patch’s evolution; all other global patch

10

values shown are those resulting from the global patch’s update
procedure.

The second test, the “rarefaction slow” case, is shown in
Figure 5. In all three snapshots, part, but not all, of the
rarefaction wave is contained in the local patch. Where the
multipatch formalism has affected the results, agreement with
the analytic solution is essentially perfect; the only departures
are a very slight rounding of the trailing edge of the rarefaction
wave apparent at the earlier times when the local patch has
never been anywhere near this edge. These departures are the
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Figure 5. Shock tube test problem for the Cartesian—Cartesian “rarefaction slow patch” case, observed at the same three times as in Figure 4, r = 900 (left), t = 1600
(middle), and r = 3000 (right). Again, the horizontal axis scales are different for all three times in order to highlight different segments of the problem, and each
column of three panels shows 1D cuts in density p, pressure p, and velocity v, as functions of x at y = 10. Symbols are also as in Figure 4.

same size as those seen when using a single patch at the global
patch’s resolution.

The third Cartesian—Cartesian run tests whether super-
sonically moving local patches create any special problems.
The results of this test are shown in Figure 6. As can be seen,
small errors are induced in the fluid velocity between the shock
front and the rarefaction wave. However, these are not due to
any property of the multipatch method: similar errors are
produced in conventional monopatch calculations whenever the
Mach number of the reference frame’s velocity relative to the
shock velocity is significant. We have compared the errors seen

in this multipatch test to those seen in a simulation of an
identical problem in which only the global patch is present, i.e.,
a conventional monopatch run, but with the gas initially given a
bulk uniform velocity. In this comparison run, the errors
are ~2%. The errors in the multipatch test are, depending
on the location, generally smaller than, but in a few places
comparable to, those in the monopatch run. We have also
repeated the multipatch test illustrated in Figure 6 with a less
extreme local patch velocity, an X velocity relative to the shock
front only 2x the shock speed rather than 6.2. The errors in this
test are also typically smaller than, but in a few places
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Figure 6. Shock tube test problem for the Cartesian—Cartesian “fast patch” case, observed at three times, t = 575 (left), 1 = 675 (middle), and r = 900 (right). Again,
the horizontal axis scales are different for all three times in order to highlight different segments of the problem, and each column of three panels shows 1D cuts in
density p, pressure p, and velocity v, as functions of x at y = 3. Symbols are also as in Figure 4.

comparable to, those in the figure. We therefore expect at most
modest-amplitude errors when high-contrast local patches pass
at high Mach numbers through shocks, and considerably
smaller errors when the relative speed is small, as would often
be a desirable choice. Indeed, one of the advantages of the
multipatch method is the flexibility it offers to choose preferred
reference frames in different portions of the problem.

In our last Sod test case, the cylindrical-Cartesian run, the
shock traverses a different sequence of patches as a function of
the y-coordinate. For instance, the shock wave traveling along
y = 10 from x = 0 starts in the global patch, then enters the

12

local patch through its inner radial boundary, and ultimately
exits the local patch’s outer radial boundary as it re-enters the
global patch. Along other constant-y trajectories, the waves
may start in the local patch and emerge in the global patch or
always reside in the global patch.

This test’s results are illustrated quantitatively in Figure 7.
Unlike the situation in the first three tests, the local patch’s grid
here no longer conforms to the symmetry of the initial data. We
show 2D contours of the three fluid quantities from the run to
demonstrate how well PATCHWORK maintains the problem’s
linear symmetry despite the cylindrical local patch. While the
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Figure 7. Shock tube test problem in which the local patch used cylindrical coordinates and the global patch used Cartesian coordinates, observed at = 2500. The
rest-mass density (p, top row), pressure (p, middle row), and x-component of the velocity (v,, bottom row) are shown. Their full 2D contours (right column) are shown
next to slices (left column) taken along y = 8.23, where departures from the exact solution are the largest. In the 2D plots, the local patch data (outlined in dark long
dashes) are shown on top of the global patch data, and the location of the slices is displayed (light, short dashes). The line plots use the same conventions used in

Figure 4.

rarefaction and postshock states show no signs of y-asymmetry,
we do find minor artifacts at the contact discontinuity (at x ~ 8 in
the images) in p and v,. These artifacts are so small that they are
difficult to see except in the line plot of v,. The artifacts in p take
the form of a one- or two-cell displacement of the contact
discontinuity. They originate from the two points where the
newly formed contact discontinuity intersects the local patch’s
inner boundary and then travel with the contact discontinuity.
The artifact in v, also begins when the contact discontinuity
crosses the local patch’s inner boundary and similarly travels with
the contact discontinuity. It, however, takes the form of a ~5%
error in v, along a half-circle “echo” of the patch boundary. The
amplitude of the artifacts decreases with finer grids. Also, the
artifacts are not cylindrically symmetric on the local patch
because they are advected with the x-oriented velocity of the
solution while the local patch moves diagonally in the x—y plane.
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3.2. Sedov-Taylor Blast Wave

The purpose of this test was to show the performance of the
multipatch when at least one of the patches has a grid whose
symmetry is a poor match to the natural symmetry of the
problem and to demonstrate that crossing a patch boundary
separating regions of different grid symmetry introduces no ill
effects. To that end, we study a Sedov-Taylor 3D spherical
blast wave (Sedov 1959) with a central local patch using
Cartesian coordinates and a global patch using spherical
coordinates. As a standard of comparison, we also contrast a
monopatch simulation with entirely Cartesian coordinates.
Although the Cartesian grids are poor matches to the spherical
symmetry of the physical problem, they do have the virtue of
eliminating the coordinate singularity at the origin created by
spherical coordinates.
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A blast wave is formed when a large amount of energy E is
deposited in a small region. If the ambient gas is motionless, a
spherical shock wave travels rapidly outward. Once the mass
swept up by the shock exceeds the mass originally located in
the small energy-deposition region, the shock front’s radial
position as a function of time is given by

1/5
e
p

ey

until E£/R? is small enough to be comparable with the ambient
pressure. Here, p is the initial (uniform) density of external gas,
and £ is a dimensionless number ~1.

To simulate this, we follow Fryxell et al. (2000) and divide
the initial state into two regions. As in the Sod shock tube
problem, we choose the unit of velocity to be ¢, but use
arbitrary code-units for length and mass. In terms of these units,
region 1 is a small sphere of radius ér = 25. Its initial pressure
p = (y — DE/@nbér’) = 1 for adiabatic index v (again =
1.4), while its density p, = 1073, Region 2 is everything
outside r = ér. Here, the initial pressure p, = 107!° and initial
density p, = p;. The dimensionless coefficient of Equation (1)
is a function of v; for v =14, it is 1.175 (Ostriker &
McKee 1988).

For the monopatch, the computational domain is a cube of
dimension 2500 having Nyono = 4003 equal-volume cubical
zones with side length 6.25. We perform two multipatch
simulations in order to illustrate its dependence on grid-scale
contrast. In both, the local patch is a cube of side length 600
centered on the origin with 120° equal-volume cubical cells of
side length 5, similar to the Cartesian cell size in the monopatch
simulation. Likewise, in both simulations, the global patch is a
sphere of radius 1000 described in spherical coordinates, but
with two cutouts: a sphere of radius 290 surrounding the origin
and a bi-cone of half-opening angle 7/10 surrounding the polar
axis. The two multipatch simulations differ in global patch
resolution. In the “low-contrast” case, the angular grid is
uniform, with 120 cells in polar angle 6 and 320 cells in
azimuthal angle ¢, but the radial grid has 80 logarithmically
spaced cells. In this case, the radial cell size in the global patch
at the patch boundary (r ~ 300—400) is similar to the local
patch cell size. In the “high-contrast” case, the cell counts in all
three dimensions are a factor of 4 smaller, so that radial cells at
the patch boundary are separated by ~33, roughly a factor of 4
larger than local patch cells.

We portray how well the multipatch simulations do, relative
to both the analytic solution and the monopatch simulation, in
Figure 8, which again shows the situation at three different
times. At the earliest time, the shock front is entirely within the
local patch, while it is a short distance outside the local patch in
the middle time, and far outside the local patch at the last time.
At the earliest time, the data for the Cartesian local patch and
the Cartesian monopatch are, not surprisingly, nearly identical;
the entire global patch remains in the initial state at this time.
Interestingly, the shock at this time is at a slightly larger radius
than predicted by the analytic solution in both the monopatch
and the multipatch simulations.

At the middle time, the local patch and monopatch still
closely agree, but the shock region is located in the global
patch. As is clear from the curve showing the analytic solution,
when the shock has left the local patch, a grid scale <10 is a
prerequisite for describing the density and pressure profiles.
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The low-contrast multipatch case therefore does reasonably
well, slightly outperforming the monopatch; where the high-
contrast multipatch case samples the profile, it is in general in
good agreement with both the monopatch and low-contrast
multipatch data, but its sampling is too sparse to resolve the
actual profile. This pattern persists to late times: monopatch and
low-contrast multipatch behave very similarly to one another;
high-contrast multipatch points are placed too sparsely to
resolve the profiles, and their error levels are a bit greater than
for the other two simulations.

Our conclusion from this comparison is that the multipatch
method performs very similarly to a monopatch method. The
poorer performance of the high-contrast case is due entirely to
its overly coarse grid, a failing that would have very much the
same effect if this grid had been used in a conventional
monopatch simulation.

Results from an absolute test may be seen in Figure 9. Here
we show how well the high-contrast multipatch simulation is
able to support the intrinsic spherical symmetry of the physical
problem. When the shock still lies within the Cartesian local
patch (left panel), its outline is very nearly circular, but there
are small departures from perfect azimuthal symmetry due to
the underlying Cartesian grid. When the shock lies partly in the
spherical global patch and partly in the Cartesian local patch
(middle panel), the shock is almost perfectly azimuthally
symmetric in the global patch, but where it passes through the
local patch, it retains the same level of small-scale noise as at
the earlier time. At late times, when the shock is entirely within
the global patch, it shows a very high degree of azimuthal
symmetry. Thus, in these tests, the multipatch system induces
no departures from the true geometric symmetry; such small
errors as exist are due entirely to the symmetry of the grid.

3.3. Interpatch Conservation

As remarked earlier, our interpolation scheme is not strictly
conservative, even though many hydrodynamics codes that can
be used in concert with our multipatch method are. That
contrast makes it worthwhile to examine how large an error
may be induced by non-conservative interpolation, and how
that error depends on the interaction between problem character
and details of multipatch implementation.

In principle, this error could depend on many variables. To
simplify the discussion and focus on what we believe is the
principal issue, we study an idealized problem, one in which
matter flows from a patch in which it has acquired an order-
unity amplitude fine-scale structure into a more coarsely
resolved patch. The parameter that appears to affect conserva-
tion errors the most is the ratio between the length scale of the
structure and the resolution scale of the coarser patch.

To illustrate this dependence, we construct a 3D system in
which the problem volume extends from x = —30 to x = 450
in Cartesian coordinates, but which in the transverse directions
(v and z) spans only the range [—20, +20]. The local patch is
stationary and occupies the region —30 < x < 0 in global
coordinates. Both patches have uniform cubical grids that are
parallel to each other, but the cell sizes of the global patch (5)
are 10x that of the local patch (0.5).

At t = 0, all of the fluid is traveling at V, = 0.1 in the x-
direction, but its density and pressure differ sharply across the
line x = 410, located a short distance into the global patch
from the local patch boundary. To the left of that line,
pp =1+ sin’(w,y) and p, = 107'2p, (as in the previous
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Figure 8. Sedov-Taylor 3D spherical blast wave at three different times (t = 4 x
multipatch data from two different simulations (red circles for the “low-contrast” cas
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T

104, 5 x 104, 2 x 10°). Monopatch data (green squares) are contrasted with
e, a global patch with resolution similar to the monopatch, blue squares for a

simulation whose global patch has a resolution 4 x coarser). The analytic solution is represented by a black line. Each column of three panels shows 1D radial cuts in

density p, pressure p, and radial velocity v,.

tests, c=1 in our units), while on the right p, = 1071¢ and
pr = 10725, The sharp pressure contrast induces a flow from
left to right in the frame of the bulk flow. Because the sound
speed on the left is so small (~107%), even in 1000 time units
the high-pressure gas expands only a very slight distance to the
right in the moving frame of the fluid. Thus, the density and
pressure modulation across the patch boundary at x = 0 is
essentially constant throughout the run of the test.
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The frequencies w, = nw, are chosen as multiples of the
spatial Nyquist frequency of the global grid resolution,
w, = 7/Ax; this definition also ensures that the total mass in
the entire computational domain is the same for each w,. The
case illustrated in Figure 10 is for n = 0.7; as can be seen, the
coarse grid drastically smooths the modulation.

Outflow boundary conditions are enforced at x = 50 while
reflecting boundary conditions are applied at all other physical
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Figure 9. Density in the equatorial plane of the spherical coordinates for the “high-contrast” multipatch simulation of a Sedov-Taylor 3D spherical blast wave. The

three panels correspond to the same three times shown in Figure 8.

Time=0

Figure 10. Density (color scale) in the initial condition for a conservation test
with n = 0.7. Global patch grid lines are given in both patches for reference;
local patch grid lines are shown only in the local patch.

boundaries. In the absence of numerical error, these boundary
conditions (and the extremely low value of pp in the initial
state) guarantee that the total mass, energy, and momentum on
the grid remain constant until the front arrives at the far-right
edge at t = 400.

In Figure 11, we show the ratio AM (¢) /Mpow(<1t) between
the change in total mass and the amount of mass that has
flowed across the patch boundary up to that time for initial
density modulations with frequencies w, = {0, 0.01, 1.0, 2.0,
2.6} X w,. As is appropriate to the steady-state flow we are
studying, the fractional error is independent of time for all
cases. Also not surprisingly, when n < 1, so that the global
grid resolves the modulation well, the error is small: <10~ for
n =0.01, when there is almost no modulation, and
~1.5 x 107* for n = 0.1. Once n > 1, when the global grid
can no longer support the modulation, the pattern changes. The
error for n = 2.6 is larger than for n < 1, but still tolerable
(~1.5 x 107%). However, the error for both n = 1 and n = 2
is uncomfortably large: ~0.3. These two values of n are special
cases: the modulation is resonant with the global grid pattern,
so the error in the mass flow depends strongly on the phase of
the modulation at cell centers, which is the same for all global
cells. The value for n = 2.6 should therefore be more
characteristic of generic modulations.
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Figure 11. Change in total mass AM(r) relative to the time-integrated mass
flow across the patch boundary Mp,,, (<t) for initial conditions defined by
frequency w,: n = 0.01 (blue), n = 0.1 (green), n = 1 (red), n = 2 (cyan), and
n = 2.6 (magenta).

We have also examined the fractional conservation errors for
x-momentum and internal energy, but we do not present them
explicitly because the figures are virtually indistinguishable
from those shown in Figure 11. That they should be so similar
is to be expected because they are interpolated by identical
procedures.

In addition, we have performed simulations of the same
problem with a different global patch, one with polar
coordinates. In this case, we are testing the robustness of
conservation properties with respect to change of grid
symmetry, rather than with respect to change of grid resolution.
For this reason, the local patch and initial condition structure
are identical to those of the previous conservation test, but the
global patch is given a cylindrical grid (see Figure 12). The
origin of the cylindrical coordinates is placed at (x, y) =
(20, 0); its radial cells have width 0.5 and its azimuthal cells
have width 0.025 radians so that both cell dimensions near the
patch boundary match those of the local patch. The global grid
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Figure 12. Initial condition for density in a conservation test with a Cartesian
local patch and a cylindrical global patch. Here n = 1.

frequency w, for this test is defined so that it is equivalent to the
one used in the first set of tests, i.e., wy = 7/(10AXoca). The
polar grid near the patch boundary should therefore be able to
support modulations with values of n similar to those used
before. On the other hand, even though the azimuthal cell size
becomes even finer near the global patch origin, the mismatch
between polar cell shapes and the rectangular modulation
induces larger errors closer to the global patch origin (also
shown in Figure 12).

The results (seen in Figure 13) are, nonetheless, comparable
to those from the Cartesian—Cartesian tests. For all n < 2, the
fractional error is ~2 x 107>, again almost independent of
time. Unlike the Cartesian—Cartesian case, however, the polar
grid eliminates the possibility of resonant response for integer
n. With a polar global grid, the error for n = 2.6 rises over
time; we believe that this increase is due to the mismatch
between the flow properties and the global grid geometry, a
mismatch exacerbated by higher-modulation wavenumbers. If
so, it is not a product of errors created as information is
transferred across the patch boundary, but rather one intrinsic to
the inappropriate symmetry of the polar grid. The evidence for
this supposition is that if we define the total mass on the grid as

M:j:j;dxfdyfdzp,

we find that the fractional error grows as x, increases toward
x = 20, the x-coordinate of the polar grid origin. The values
shown in Figure 12 are for x4 = 18. Again, just as for the
Cartesian—Cartesian case, the error numbers for momentum and
energy are virtually identical to those for mass.

In more realistic problems, we have found that dynamical
effects can enlarge these errors, and in some cases positive
feedback loops can develop. However, the driving factor
appears to be similar: the inability of a coarse grid to support
variations occurring on length scales too small for it to resolve.
Devices to curb this sort of interpolation error are problem
dependent. For example, in our tidal disruption test run
(mentioned at the end of Section 1.1), we found that smoothing
the hydrodynamic variables over the three ghost cells at the
interpatch boundary successfully damped a growing departure

2
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Figure 13. Change in total mass AM(r) relative to the time-integrated mass
flow across the patch boundary M, (<t) for initial conditions defined by
frequency w,: n = 0.01 (blue), n = 0.1 (green), n = 1 (red), n = 2 (cyan), and
n = 2.6 (magenta).

from mass conservation, holding the error in total mass to <1%
over a time in which the star shed 95% of its mass.

4. Computational Efficiency and Parallelization Scaling

Lastly, we present data on computational efficiency and
parallelization scaling. When discussing these issues in the
context of ordinary monopatch operation, the principal
questions generally have to do with the fundamental efficiency
of the computational algorithm and the ratio between time
spent exchanging boundary condition information and comput-
ing updates. The former sets the basic scale in terms of zone
cycles per processor per unit time; the latter is determined by
the additional cost incurred by interprocessor communication.
When a hydrodynamics code parallelizes well, the fraction of
total processor-hours devoted to communication is nearly
independent of the total number of processors. Thus, to gauge
how much overhead is created by multipatch operation and
how efficiently the multipatch system makes use of paralleliza-
tion, we must contrast multipatch benchmarks with monopatch
benchmarks treating the same physics problem and do so as a
function of total number of processors. In addition, we will
explore how much our heterogeneous time-step option
improves efficiency by contrasting its performance with
matched homogeneous time-step runs.

However, all these tests can at best be indicative rather than
definitive. Even in monopatch operation, hydrodynamic code
speeds can be problem dependent, and there is every reason to
expect that multipatch methods will, if anything, add new
ways for code performance to be sensitive to the nature of
the specific problem. For example, in multipatch problems the
amount of computation required to perform a single zone
cycle can depend on how much effort is necessary to compute
coordinate transformations, a quantity that can easily differ
substantially from one physical situation to another. If the
patches solve different equations, the number of operations per
zone cycle can change even more drastically. Because we
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expect a significant contrast in overhead between cases in
which the local patches move or are stationary, we will
specifically examine that variety of problem dependence.

To finesse these complexities as best we can, we focus on a
single simple test problem: evolving a hydrostatic gas in the
absence of any external forces. The background spacetime is
therefore Minkowski, and in the initial condition there is
uniform density, pressure, and entropy. The fluid’s adiabatic
index is v = 5/3.

The problem volume is a 3D cube treated with two patches, a
global patch and a local patch. Both use Cartesian coordinates
with uniformly spaced grids. The local patch is a cube with side
length 1/8 the global patch’s side length, but has a grid scale
that is also 1/8 the global patch’s; the two patches therefore
have the same number of cells. These choices produce a time-
step ratio Az, /Af; = 8. These will be studied with two different
numbers of zones per processor, n = 20° and n = 40°. Each
simulation is run for a fixed time duration, chosen to be just
long enough that initialization time is negligible. Zero-gradient
boundary conditions are used for the global patch; the local
patch never encounters the problem boundary. All cases were
performed on the same platform (Texas Advanced Computing
Center, Sandy Bridge nodes on Stampede).

In our first set of benchmarks, we consider the case of a
stationary local patch and a single time step for both patches.
The results (obtained from STDLIB C “time()”) are shown in
the two left-hand panels of Figure 14. In this set, we assign the
same number of processors to each patch; that means both
patches have the same number of cells per processor. When the
number of cells per processor is relatively large, multipatch
operations create a very modest overhead: the ratio of cycle-
update speed for multipatch to monopatch with 40* cells per
processor is ~0.75. On the other hand, with fewer cells per
processor (20%), the ratio is closer to ~0.4.

Another view of the stationary patch computational
efficiency may be seen in the lower-left panel of Figure 14,
showing the ratio of time spent in communication relative to
the total computational time. Here we define “communication”
as any operations involving boundary condition exchange
between processors. Examples of communication specific to
multipatch operation include determination of client—server
relations, transmission of ghost-cell coordinates, and interpola-
tion of data to those coordinates. A fourth category of
communication, data transmission from server to client, occurs
in any sort of parallelized simulation. “Total time” is defined as
all time spent on communication plus time spent on computing
hydrodynamic updates; it does not include time spent on
ancillary activities such as initialization or writing output. In
terms of this measure, we find that for stationary patches the
fraction of total time spent in communication is ~2Xx-3X as
great as for monopatch runs with the same number of cells per
processor. This extra time can be largely attributed to the
interpolation step because communication time in monopatch
runs is due only to MPI data transmission, whereas in
multipatch operations it also includes interpolation and
client-router—server data exchange.

In the second set of comparisons (right panels of Figure 14),
we examine what happens when the local patch moves. In this
case, the contrast in zone-update rate is larger and is also a
stronger function of the number of processors per patch. As
before, larger numbers of cells per processor yield greater
efficiency. With 40> cells per processor, the update rate for the
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multipatch is ~0.7 x the monopatch rate for 512 processors per
patch, but declines to ~0.5x for 1728 processors per patch.
The corresponding figures for 20* cells per processor are 0.6
and 0.2x the monopatch rate. The fraction of time spent in
communication is consistently 5x-6x larger in moving
patches than for the corresponding monopatch case, nearly
independent of the number of processors per patch.

The overhead and scaling behavior of moving patches differs
from that of stationary patches because, in addition to data
interpolation, it is also necessary to determine client—server
relationships at each time step and to transmit fresh ghost-cell
coordinate lists. These additional tasks both increase the total
overhead and make parallelization scaling poorer. The under-
lying reason is that as the number of processors per patch
grows, more processors must be queried to determine the
correct set of client—server connections. The relative load this
imposes is larger when the number of cells per processor is
smaller because, just like all other boundary data considera-
tions, it is sensitive to the processor domain’s surface /volume
ratio.

We close this part of the discussion by making an important
remark regarding the interpretation of these benchmarking
results. Although we expect the qualitative trends to be robust,
their quantitative character is sensitive both to the specific
problem and to the specific architecture of the computing
system used. Different problems (and different algorithms
applied to the same problem) can have different numbers of
arithmetic operations per cell update, while different cluster
architectures can give different rates of interprocessor data
transmission. Because part of the multipatch overhead depends
on additional data transmission, the relative speeds for these
two sorts of processes can alter the multipatch/monopatch
comparison at a quantitative level. As we discuss below
(Section 5), technical improvements in the implementation of
the multipatch method can also lead to quantitative changes in
efficiency.

Next, we compare the computational expense for a multi-
patch program running with and without the heterogeneous
time-step algorithm at a fixed total number of zones in each
patch N. The time-step ratio between the two patches is
Aty /Ay ~ 8. For ideal load balancing with a heterogeneous
time step, the global patch should therefore have eight times as
many zones per processor as the local patch. In Figure 15, we
show how the number of processor-hours required to reach a
fixed physical time depends on the number of zones per patch
for both a homogeneous and a heterogeneous time step. As one
might expect, both scale very closely to linearly with the
number of zones per patch, but the heterogeneous time step
requires a number of processor-hours 2x—-3x smaller than the
homogeneous time-step operation.

Note that the gains achieved by using heterogeneous time
steps appear in a way quite distinct from typical gains in
efficiency. They do not lead to any increase in zone cycles per
processor per second; instead, they lead to a decrease in the
total number of zone cycles required to accomplish the
simulation. In this way, their effect resembles the use of non-
uniform spatial grid cells, a device leading to economies in the
total number of zones computed by concentrating them where
they are most needed, rather than a conventional increase in
computing efficiency.
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Figure 14. Computational efficiency as a function of numbers of processors per patch and for different numbers of cells per processor. Monopatch method data are
plotted with open symbols, multipatch with filled symbols. Runs with 20* cells per processor are shown with black circles, runs with 40° cells per processor with red
squares. Left (right) panels show multipatch simulations with a stationary (moving) patch. Top panels: processing speed in zone cycles per processor per second.
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Figure 15. Computational expense of a multipatch simulation with a
homogeneous (blue circles) and heterogeneous (orange x’s) time step for a
given total number of zones per patch N.
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5. Conclusions

We have presented the essential methods underlying our
implementation of a new multipatch infrastructure, PATCH-
WORK, designed to support multiscale, multiphysics, and
multireference frame fluid simulations. This method offers a
number of advantages for the numerical study of complex fluid
problems involving subregions with contrasting properties.
Each patch can have its own coordinate system and spatial grid,
differing in geometry and resolution from all of the other
patches (one of the many ways this can be useful is that if the
coordinate system preferable for a part of the problem contains
coordinate singularities, they can be covered with a new patch).
If different regions demand contrasting time steps, the
independence of the processes evolving the patches permits
them to have separately determined time steps, potentially
saving significant amounts of computing. Although the method
assumes that a fluid exists throughout the problem volume, if
different auxiliary processes are important in different regions
(e.g., chemical reaction networks or self-gravity), their patches
can treat those processes without burdening the other regions.
Lastly, but possibly most importantly, substructures within the
problem may have differing preferred reference frames; these,
too, can be accommodated easily.
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The patches are linked to one another solely through
boundary condition exchange. Contrasting grid systems are
reconciled through interpolation; contrasting grid geometries
and reference frames are reconciled through coordinate
transformations and ensuring that all transformed physical
quantities are well-defined scalars, vectors, or tensors.

Parallelization is essential to modern large-scale computing.
Arranging the exchange of boundary condition information
between the correct processors can be a complex problem in a
multipatch system when the patches move relative to one another.
We have constructed a solution to this problem—a client—router—
server framework—that updates these connections efficiently.
When the patches are stationary relative to one another, the
connections need to be identified only once, so the overhead due
to multipatch operations is fairly small, especially for larger
numbers of cells per processor. When they move, the overhead is
more significant and scales with the number of processors per
patch, producing a reduction in the cell-update rate of about a
factor of ~1.4 for 512 processors per patch or a factor of ~2 for
1728 processors per patch when using 40> cells per processor.
We note, however, that these comparisons assume that mono-
patch and multipatch approaches use the same total number of
cells; because a multipatch operation permits tuning the grid to
match local requirements, in practice multipatch simulations may
use a much smaller total number of cells than would be required
for a monopatch simulation of the same problem—if a
monopatch simulation could deal with the problem at all.

Many extant fluid codes are automatically consistent with
this infrastructure. Its sole substantive stipulation is that the
dependent variables involved in boundary data exchange
should be consistent in all patches. Although we were
motivated to build this system by relativistic problems and
our transformation methods are familiar because of their
frequent application to relativistic dynamics, in fact they really
stem from more general considerations of differential geome-
try; they therefore apply to any context in which scalars,
vectors, and tensors can be defined.

PATCHWORK may be refined and extended, both in terms of
its computational efficiency and the span of physical problems on
which it can be used. Communication between local patches (as
opposed to only local-global communication) can substantially
extend the dynamic range of length scales treated. The amount of
time spent on interpolation and interpatch data transmission can
be reduced by minimizing the number of arrays transferred or by
eliminating unnecessary steps in the coordinate transformations.
Moving from an MPMD environment to one in which a single
program employs task-based parallelization will permit dynami-
cal processor reassignment, amplifying the economies in the total
zone cycles that accrue from the use of heterogeneous time steps.
Task-based parallelization may also improve interpolation
efficiency because, for any single time step, only a fraction of
the processors assigned to an individual patch are involved in
interpatch data exchange. Another improvement will be to add
interpolation options that, over a broader range of circumstances,
more nearly conserve quantities that should be conserved, such as
mass and momentum. Given suitable patch resolution, our
current default method does not create significant errors, but it
would be valuable to create new schemes, more nearly
conservative, that would permit greater freedom in resolution
choices. Similarly, some special devices will be necessary to
extend our multipatch method to MHD problems in a way that
preserves a divergence-free magnetic field. We are currently
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developing algorithms to achieve this and hope to report on them
in the not-too-distant future.
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Appendix

Implementation of the PATCHWORK system is accom-
plished through a set of functions enabling an existing grid-
based hydrodynamics code to run multipatch simulations. The
main tasks of these additional functions may be organized
according to three categories: setting up data infrastructure,
performing boundary condition exchange between patches, and
a number of other utilities specific to multipatch operation (e.g.,
managing heterogeneous time steps).

In addition to grouping the multipatch routines in terms of
function, it is also convenient to group the changes necessary to
convert a conventional hydrodynamics code in terms of user
control and responsibility. Here, too, there are three categories:
“permanent” routines, user-supplied routines, and selected
additional function calls. The routines we designate as
“permanent” are those that remain fixed in character,
independent of the application. These routines

1. initialize PATCHWORK’s data infrastructure,

2. carry out interpatch boundary data exchanges including
interpolation and vector transformation,

3. restart the simulation when a patch has been added or
removed (Section 2.4),

4. move patches, and

5. coordinate time steps, making allowances when neces-
sary for heterogeneous time steps (Section 2.6).

Several routines must be supplied by users because they are
specific to the problem. Their calling sequences must have a
specified form, but their contents are up to the user. They

1. specify the geometric character of the patch and the
transformation linking its coordinate system to the
background coordinates,

2. create initial condition data (note that it is the user’s
responsibility to ensure that initial data near patch
boundaries are consistent with initial data in adjacent
patches),
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3. implement additional physics (when needed), and
4. initialize the configuration and motion of the patch.

Lastly, we made our best effort to minimize modifications to
the underlying fluid code by implementing the PATCHWORK
system as a wrapper. For example, the hydrodynamics part of
the code is almost never touched. However, a few modifica-
tions must be made.

The great majority of these have to do with introducing
MPMD features in MPI communication-related routines. In
particular, it is necessary to redefine the term “global.” In
conventional parallelized codes, “global” denotes the entire
problem volume and includes all processors associated with the
run. However, in multipatch operation, it is necessary to
distinguish the entire volume of a patch from the entire volume
of the problem. Making this distinction means that the global
MPI communicator in the underlying fluid code must be
redesignated “local” so that it refers only to the processors
associated with an individual patch. In addition, there are often
a number of variables and functions with both “local” and
“global” versions; all of these need to be renamed (in a way
chosen by the user) to distinguish truly local (in the domain of
an individual processor) from patch-global (throughout a single
patch’s volume) to problem-global (covering the entire
problem volume).

There are also a number of places where the fluid code must
call one of the PATCHWORK routines, sometimes one of the
permanent routines, sometimes one of the user-supplied
routines. Their purpose is to

1. initialize PATCHWORK infrastructure,

2. move the patch to its next location (when necessary, this
is done at the end of each time step), and

3. construct patch boundary data (this happens at the
initialization, restart, and end of each time step).

In addition, if optional features are used (e.g., adding/
removing patches or heterogeneous time steps), the user must
likewise insert calls for them at appropriate places.

To close, we note that the output from each patch can be
handled by whatever means the fluid code for that patch uses.
If, however, the user wishes to merge the data sets, it is up to
the user to write the software to accomplish it; the way such
merges are done is very problem specific.
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