
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

NVQuery: Efficient Query Processing in
Non-Volatile Memory

Mohsen Imani, Student Member, IEEE, Saransh Gupta, Student Member, IEEE,
Sahil Sharma, and Tajana Rosing, Fellow, IEEE

Abstract—Today’s computing systems use huge amount of
energy and time to process basic queries in database. A large
part of it is spent in data movement between the memory
and processing cores, owing to the limited cache capacity and
memory bandwidth of traditional computers. In this paper, we
propose a non-volatile memory-based query accelerator, called
NVQuery, which performs several basic query functions in
memory including aggregation, prediction, bit-wise operations,
join operations, as well as exact and nearest distance search
queries. NVQuery is implemented on a content addressable
memory (CAM) and exploits the analog characteristic of non-
volatile memory in order to enable in-memory processing. To
implement nearest distance search in memory, we introduce a
novel bitline driving scheme to give weights to the indices of the
bits during the search operation. To further improve the energy
efficiency, our design supports configurable approximation by
adaptively putting memory blocks under voltage overscaling. Our
experimental evaluation shows that, NVQuery can provide 49.3×
performance speedup and 32.9× energy savings as compared to
running the same query on traditional processor. Approximation
improves the energy-delay product of NVQuery by 7.3×, while
providing acceptable accuracy. In addition, NVQuery can achieve
30.1× energy-delay product improvement as compared to the
state-of-the-art query accelerators.

Index Terms—Query processing, Non-volatile memory, In-
memory computing, Content addressable memory

I. INTRODUCTION

Data management systems (DMS) are the standard tools
for collecting and serving large amounts of information for
web applications and end users. Over the past decade, data
generation has grown exponentially due the diversity of col-
lection sources [1]–[3]. In addition, organizations collect large
amounts of information for decision making and business
analytics [4]–[6]. In the majority of scenarios, the execution
time of DMS queries tends to increase linearly and sometimes
exponentially as more records are stored in a single server
instance. This has been one of the main challenges of DMS
and its caused by the the hardware and software co-design
limitations [7].

Several efforts have been made to accelerate computation
by paralleling operations on a co-processor or GPUs [8]–
[14]. However, in most cases data movement has been a
bottleneck due to the fact that large amounts of information
tend to reside in memory. In most Structured Query Language

M.Imani, S. Gupta, S. Sharma and T. Rosing are with the department
of computer science and engineering, University of California San Diego, La
Jolla, CA, 92093.
E-mail:{moimani, sgupta, sas110, tajana}@ucsd.edu

(SQL) accelerator studies, this data overhead is not taken into
account and as a consequence their results do not show a
valuable improvement over general designs [15]. On the other
hand, software have been developed to adapt to the nature of
particular tasks. In the case of interactive data analysis, the
focus is often less on exactness of the result and more on
timeliness or responsiveness, which gives us the opportunity
to approximate the result within a margin of error [7]. Data
movement is the main bottleneck of current computing systems
wherein the size of data increases over the cache capacity of
the processing core [16]. Limited memory bandwidth makes
the condition worse as data is delayed each time the main
memory is accessed.

Near data computing and processing in-memory (PIM)
are two efficient techniques which reduce the cost of data
movement [17]–[23]. Near-data computing puts the computing
units close to the main memory, in order to avoid data move-
ment cost in computation [24], [25]. Although this technique
improves the computation efficiency, it has some challenges
including: (i) cost of large CMOS-based computing unit and
(ii) cost of integrating the memory and logic in a single
chip. The introduction of non-volatile memories has made
it possible to process data in the memory itself [26]–[32],
resulting in the concept of PIM [17], [19], [33]. Resistive RAM
(ReRAM) is one such memory, which enjoys the benefit of low
energy, high switching speeds, high density, and scalability.
PIM processes data within memory, eliminating the need for
integration between large processing cores and the memory.
However, the existing PIM techniques support only simple
functions like bit-wise or search operations [34], [35]. Not only
it is too cumbersome to break down a simple query function
like search into a series of bit-wise computations but it also
minimizes the benefits of using PIM.

This paper implements an efficient PIM-based query pro-
cessor which supports a wide range of query functions. We
propose a novel non-volatile, memory-based query processing
accelerator, called NVQuery. NVQuery supports wide range of
query functionalities including aggregation functions, predic-
tion functions, bit-wise operations, addition, joins, exact and
nearest distance search operation. The configurable crossbar
memory structure of our design supports these functionali-
ties inside the memory. It exploits the analog characteristic
of non-volatile memory to also enable the nearest distance
search capability. The exact search mode enables NVQuery
to realize join operations. Our experimental evaluation shows
that, NVQuery can provide 49.3× performance speedup and
32.9× energy savings as compared to running the same

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

query on traditional processor. Approximation improves the
energy-delay product of NVQuery by 7.3×, while providing
acceptable accuracy. In addition, NVQuery can achieve 30.1×
energy-delay product improvement as compared to the state-
of-the-art query accelerators.

II. RELATED WORK

A. Query Processing

Several efforts have been made in order to accelerate DMS
querying by using specialized hardware [8], [36]–[38]. GPUs
in particular have been used to parallelize the ’SELECT’
SQL queries with results that range from 20x to 70x speed
up [8]. However, they do not take into consideration the
data movement overhead of these tasks and assume only the
computation cost. It has been demonstrated that the bandwidth
and cache capacity of GPU devices are the main bottlenecks
of database computations. For instance, work in [36] examines
multiple GPU systems and acknowledges that unless the full
working set of data can fit into the memory on a GPU, PCI
Express bus will be a bottleneck.

As a consequence, researchers have worked on optimizing
the data movement through memory. In the areas of dis-
tributed computation, Al-Kiswany et al. describe StoreGPU,
a distributed storage system that uses pinned, non-pageable
memory on the host system to reduce the impact of data
transfer [39]. Gelado et al. in [40] introduce an asymmetric
distributed shared memory that defines two types of memory
updates which determine when to move data on and off the
GPU. These optimization efforts only focus on conventional
memory technologies. The computation still occurs on com-
puting units. A query service by Google called, BigQuery is
capable of searching through petabytes of data [41]. The la-
tency is minimized by paralleling queries over multiple servers
and columnar storage of data over multiple memories or
memory banks. However, this distribution of queries and data
results in huge energy requirements. Also, it does not support
data manipulation queries and has large latency overhead for
updating data.

On the other hand, the work in [42] uses analog character-
istic of non-volatile memory and analog to digital converter
(ADC) to enable query processing in-memory. However, prior
work showed that ADC are taking large portion of memory
energy and area [19]. Also, it utilizes multi-level memristors
which are highly unreliable and restrict the size of numbers
that can be stored in each memory cell. Each attribute in the
paper is a 32-bit integer, which is practically not feasible with
the type of RRAM device used.

Our paper adds support for a wide range of functions to
extend the capabilities of NVQuery. We further introduce
approximation techniques to improve the performance and
energy efficiency of NVQuery.

B. SQL Optimization

Approximating the results of SQL query can be used to
reduce the required waiting time by producing results within
acceptable error bounds. The most famous querying frame-
work based on approximation is sampling-based approximate

querying (SAQ) [43], [44], where the computation is per-
formed over a small random subset of the data. The error in
the estimate is specified using a confidence interval or error
bars. However, SAQ ignores the tails of the data that cannot
help with complex queries. Poti et al. [7] proposes determin-
istic approximate querying (DAQ) schemes that formalize a
deterministic approach to approximate the results by taking
advantage of the bit value representations. Their approach
reads the table records, starting from the most significant bit,
one by one and adjust deterministic error bounds with respect
to the bits not seen yet. DAQ evaluations estimates less than
1% error with a speedup of 6x for SQL predicate queries and
2-4x for aggregation.

SQL supports many operations to make the processing
of queries easier. Out of these, join is considered to be
one of the most important operation. Join splits data into
tables, saving memory space by removing the redundancy
associated with one monolithic table. Thus, it is one of the
most basic operation, with considerable cost because of the
sheer amount of data being read from storage. The efficiency
of join operation is one of the most fundamental concepts of
relational databases. Recent years have seen many papers that
deal with the worst case scenario speedup for joins [45], [46].
Innovative techniques for different distributed systems [4], [47]
show the need to improve the efficiency of join operation in
databases.

Software based optimization for joins using dynamic and
greedy algorithms have looked into SMP based multi-joins
[48]. While this tackles the problem by building an analytical
model, it does not optimize the core join operation for the gen-
eral use case. Join optimizations for MapReduce environment
give promising results for some cases of big data joins [49],
[50]. It tries to reduce the communication, but still suffers from
the lack of core join optimization. NVQuery can potentially be
used to optimize and accelerate all such methods as it works
directly in memory.

III. NVQUERY ACCELERATOR

Fig. 1 shows the general architecture of the proposed
NVQuery. The proposed NVQuery integrates with DRAM and
enables the main processor to accelerate query processing.
NVQuery can also be used as a secondary storage to improve
the effective DRAM capacity. NVQuery consists of N banks,
where each has k memory blocks. Each memory block can be
configured as memory or query accelerator.

Our design is a heterogeneous architecture, where the NV-
Query co-operates with main processor in order to find the
query result. In NVQuery, each memory block returns a result
of the query, independent from other blocks. Therefore, to
find the result of a query from the whole data set, the main
processor receives output response of each memory block
(a total of N × k values instead of the entire data). Finally,
it processes data to find the result of query over the entire
data set. In this way, the load on memory bandwidth due to
query processing and its related costs are significantly reduced.
Table I lists different configurations that NVQuery can take
including: nearest search, search, and memory. For each of

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

Fig. 1. Proposed NVQuery architecture with N banks and k×N blocks. The right part details the crossbar implementation of memory banks along with the
supporting control logic.

TABLE I
NVQUERY SUPPORTED CONFIGURATIONS

Configuration Example Functions CAM Input CAM SA Memory SA Comment

Nearest Search
MIN Least Nearest NA L: Least possible value
MAX Greatest Nearest NA G: Greatest possible value

TOP K IQ (FIFO) Nearest NA Requires k iterations
Search Exact Search IQ (FIFO) Exact NA IQ: Input query

Memory
Bitwise NA NA AND/OR CAM input: Bitline driver
Memory NA NA MEM CAM input: Bitline driver
Addition NA NA MAJ CAM input: Bitline driver

TABLE II
NVQUERY SUPPORTED FUNCTIONALITY

Notation Functions

Aggregation F(SI)→ SO MIN, MAX, Average, Count

Bit-wise Operations F(SI)→ SO AND, OR, XOR (Combination of AND, OR)

Addition F(SI)→ SO In-memory addition

Comparison = ≤ ≥ Bit-wise and value-wise comparison

Predict p Exist, Search condition, Top, Like, Group, Between
Join ./, ./,./ , ./ . . . Inner, Left, Right, Outer, Semi joins

the configurations, we show the status of different memory
peripherals for some example functions. In this section, we
describe the functions supported by our proposed non-volatile
query processor, NVQuery. Table II lists the NVQuery support
functionalities. NVQuery supports a large number of essential
functions including aggregation (MIN, MAX, Average, SUM,
and Count), boolean functions (such as AND, OR), addition,
comparison (equality or non-equality), and different types
of Join. In addition, NVQuery can also process prediction
functions such as Exist, Search Condition, Like,
Group, Between, and Top in memory.

We map all query functionalities explained in Table I to
NVQuery which can work in three main configurations: (i)
look-up table (LUT) with capability of exact search, (ii)
nearest distance search, and (iii) memory. We propose a new
memory architecture which can process data locally without
reading it. In each of these configurations, our design shown

in Fig. 1 processes query operations without approximating
the result. In the following subsections, we explain how each
query operation can be supported in memory.

A. Exact Search
The most common operation in many query processors is

looking up for a set of data which matches with input query.
A typical search query involves a brute-force search through
a LUT till the data is located. This is usually implemented in
one of the two ways, (i) word-by-word search and (ii) bit-by-
bit search. A word-by-word search looks through every stored
word in the LUT sequentially and finds a match. In the worst
case, it involves processing each and every element present in
the LUT. The bit-by-bit search scans through one bit (but same
index) for multiple words at a time. The first iteration analyses
a particular bit index of every word in the LUT, looking for
a match with the corresponding entry in the input query. The
following iterations are performed only on the words filtered
by previous iterations. This approach does not analyze all the
elements since the size of candidate pool decreases after each
iteration. The exact search operation supports the following
functions in NVQuery:
Exist: It is used to test the existence of some specific

data in the LUT. The exact search can be directly used to
implement this function.
Count: It is used to get the number of rows that match

a certain criteria. The Count output can be obtained by

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

counting the number of hits for an exact search query. Our
design adds a counter block to NVQuery in order to support
this query.
Like: It is used to find the existence of a specific data

or pattern of data in the rows. It involves searching for
occurrence at (i) a particular position and (ii) any position. The
first case can be easily implemented using the exact search
mode in the same way as the Exist function. The second
case requires repeated use of exact search mode for all the
occurrence patterns possible. This comes with an inherent
latency overhead due to multiple serial exact searches.
Group by: It is used to group the rows on the basis of one

or more columns. The grouping is usually based on the output
of some operation applied to the data in the column. Multiple
serial exact searches are used to find the rows belonging to
different groups.

B. Nearest Distance Search
NVQuery can be configured to perform the closest distance

search operation inside the memory. The bit-by-bit search
described above can be used to implement this functionality.
Here, the nearest data is the one which remains selected for
the maximum number of iterations. Our design exploits this
functionality to support aggregation functions like MIN and
MAX and prediction functions like Top k. Running these
queries on traditional core has a time complexity of O(logn).
However, our hardware can find MIN, MAX queries in a single
cycle and Top k in k cycles.
MIN: This query runs on a set of stored data to find the

minimum value. To perform this query in LUT, NVQuery
block adopts the nearest distance search configuration and
searches for the data which has the closest distance to the
minimum possible value. In case of unsigned numbers, our
design searches for an entry which has the closest distance to
zero. In the case of signed values, this number is the largest
possible negative number (single one followed by a chain of
zeros, i.e., 1000...0).
MAX: To find the data with the maximum value, we search

for the entry which has the least distance from the largest
positive number. For unsigned values, the largest value is a
chain of ones (1111...1), while in the case of signed numbers,
this value is represented by a zero followed by a chain of ones
(0111...1).
Top k: To search for k values closest to the input data,

we perform the nearest distance search for k iterations. After
each iteration, our design deactivates the selected word and
repeats the nearest distance search on the remaining words.
This approach gives a set of k nearest values arranged in the
order of their proximity to the input. Our design also supports
bit-wise/value-wise comparison by searching for the exact and
nearest values.
Between: This operator takes in two inputs, the lower

and upper limits, and outputs those values from the stored
data which are equal to or between these limits. Traditional
implementations of this function involve a lot of computational
overhead, comparing each value with the limits. The nearest
distance search proposed above enables efficient implemen-
tation of this operator. Instead of finding the values nearest

to the upper and lower limits, we find the values nearest to
the midpoint of the total range. Then the values are sorted
as explained in Section IV-B. NVQuery compares the values
with the input limits and selects the entries which lie between
them. Instead of naively searching through the data, NVQuery
uses binary search to find the corner cases and reduce the
computational overhead.

C. Join

NVQuery supports different types of joins namely, inner,
left, and right joins. Our implementation is similar
to in-memory hash joins, but more efficient due to NVM-based
PIM. Ideal implementation of join would involve fetching
the data from memory to the core and searching through
the involved tables. Although, optimizations like hash join
reduce the amount of data to be transferred yet the cost of
data movement is a lot. NVQuery reduces this overhead by
reducing searching for keys inside the memory itself. The
exact search discussed earlier is used to implement joins.

Equi joins involve searching for exact match of the join key
through the tables. Exact search mode can be easily extended
to implement different kinds of equi joins, enabling the records
that are needed for the final join computation. Memory read
bus along the columns of a table is used to read the desired
columns of the rows with matching data. The read data is
copied to the memory location pertaining to the final join
output. Limited 4K row capacity forces the implementation
to break the table into multiple 4K slices or blocks, this does
not affect the computational complexity of the implementation
and the impact on execution time is also minimal. A choice
between a block or slice is made based on the query and size
of the input.

NVQuery is flexible enough to cater to any combination of
columns to implement different types of joins like inner, left,
and right joins. Multi joins are implemented by saving the
temporary result of two table joins and iteratively applying
joins to that.

Different SQL implementations use a combination of
nested loop, merge and hash joins. Execution complex-
ity of these methods vary based on availability of in-
dex on the join property. The worst case complexities
are O(NM),O(MlogN +NlogM) and O(N +M) respectively,
where N,M are the table sizes. NVQuery’s worst case execu-
tion complexity is equivalent to hash joins, though it does not
require explicit hashing of the join key like hash joins do.

D. Bit-wise Operations and Addition

A traditional processor implements bit-wise logic operations
in the main core. The operands are fetched from the main
memory and brought through the memory hierarchy all the
way up to the core. The core then performs the required
computations. On the other hand, our design implements these
operations in the memory, avoiding the need to transfer data
from memory. For executing these operations, NVQuery is
set into memory configuration and the output is obtained
from memory SA. This operation can support the following
queries: AND, OR, XOR and Average. Our design supports

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

Buffer

Sense A
m

plifier

MLs

TCAM
Cell

TCAM
Cell

TCAM
Cell

TCAM
Cell

TCAM
Cell

TCAM
Cell

TCAM
Cell

TCAM
Cell

TCAM
Cell

R
ow

 D
river

Detector

ML
EnLi

N

EnLi+1
N

ClK

CAM SA

ML
EnLi

N+1
EnLi+1

N+1

ClK

Detector

Row Driver

Memory SA
R>1

RMEM

En

AND

R>0
OR

MEM

R>2
MAJ

MEM
OR

AND
MAJ

Exact

Sense Amplifier

Detector

Detector

Fig. 2. Circuit level implementation of CAM SA, Memory SA, and Row Driver.

average query by using a counter and sending the data to main
processor.

IV. HARDWARE SUPPORT

This section describes the hardware implementation of
NVQuery and the way in which it supports the functions
described in Section III. NVQuery is designed using a crossbar
non-volatile memory architecture. The crossbar is configured
in such a way that a set of two storage elements in the
crossbar corresponds to one bit data. Data 0 is stored as
{RHIGH RLOW}, while 1 is stored as {RLOW RHIGH}. However,
our architecture does not use any access transistors for these
elements, hence it is called 0T-2R. Implementations like 2T-
2R require access transistors. This makes the design unsuitable
for a crossbar memory, reducing the area density benefit of
non-volatile memories. Moreover, the presence of transistors
introduces non-linearity to the system. On the other hand, 0T-
2R doesn’t need access transistors and can be implemented on
a conventional crossbar memory, making it more area efficient.

As shown in Fig. 1, the crossbar memory in NVQuery is
supported by peripheral components. The controller receives
the input query and generates the appropriate control signals.
It is also responsible for collecting the output of the block
and forwarding it for further processing. The multiplexer
managed by the controller, selects the input which drives
the bitlines of the crossbar memory. This input can either
be the input query (in case of search operations) or greatest
positive value (corresponding to MAX) or least representable
value (corresponding to MIN). The column driver drives the
bitlines of the crossbar. It not only applies the execution
voltages for different operations but also maps the input
query to the required bitline voltage levels. Row driver is
responsible for charging the wordlines (also called match-
lines due to the nature of operations). It is also responsible
for selecting/activating different words (rows) in the memory.
It also provides a limited set of voltage options essential to
the working of crossbar. The crossbar is equipped with sense
amplifiers (SAs) on both the wordlines (CAM SA) and the

bitlines (memory SA). Fig. 2 shows these SAs. The CAM SAs
are responsible for detecting charging and discharging behav-
ior of wordlines. The nMOS-capacitor circuit acts as a latch.
The inverter-diode-NOR circuit deactivates the wordlines as
soon as the first edge is detected or the sampling signal for
Exact is set. As a result, the latch is set only for the wordlines
which discharge before this deactivation. The memory SAs are
buffers with special resistors to support bit-wise and memory
operations as described in Section IV-C. We next discuss how
NVQuery enables different functions discussed in Section III.

A. Exact Search

To implement the LUTs discussed in Section III-A, NV-
Query uses content addressable memory (CAM) configuration
of crossbar. Fig. 2 shows the structure of non-volatile crossbar
CAM, capable of searching for stored data which exactly
matches the input query. During search operation, all the
match-lines (MLs) pre-charge to Vdd . The input buffer (column
driver) distributes the query point to all CAM rows using
vertical bitline. Any cell with the same stored data as input
query discharges the ML. The sense amplifier, connected to
the horizontal ML, determines the equality of the input and
stored data by sampling the ML voltage [51].

Consider a data set which contains the name, age, height,
and income of people in different companies. The query
SELECT F(income) FROM COMPANY1 is an example of
SQL query. For this query, a query processor first selects
all people in the list which are working for the COMPANY1.
Then it applies another query function, F, on the income
of all selected people. NVQuery eliminates the need for
multiple sequential searches. It can perform a single step
search by activating the bitlines corresponding to COMPANY1
and income simultaneously. The output of the query is given
by the rows with fastest discharging MLs. This not only
saves time by eliminating multiple searches but also the power
involved in repeated charging and discharging of MLs. Each
memory block/LUT returns an output to the controller. Finally,

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

01

0 0.8V

01

0.8V 0

I3 I3 01

0 0.4V

01

0.4V 0

I2 I2 01

0 0.2V

01

0.2V 0

I1 I1 01

0 0.1V

01

0.1V 0

I0 I0

Fig. 3. NVQuery in nearest distance search configuration.

Fig. 4. Timing characteristic of CAM block in nearest distance search
configurations.

the output data from each block is processed by the main
processor which evaluates the final query result.

B. Nearest Distance Search

CAM has been extensively used to implement search op-
erations. Different versions of CAM implementations (e.g.
TCAM) on different types of hardware (crossbar, 2T-2R, 3T-
1R, etc.) have been active topics of research recently. However,
majority of the previous work revolves around exact and near-
est hamming distance search operations. Hamming distance is
a good criterion when considering hyper-dimensional vectors
where the index of a bit does not matter. Only the face value
of a bit and the total number of mismatches between the stored
data and the input query are considered. Such a comparison
is not practical for many real life applications where a query
to the processor is dependent on the binary weighted values
of the stored data.

To support such queries, some researchers have proposed
the division of a memory block into stages [52]. In such an
architecture, the first m most significant bits of data are stored
in the first stage, the next m significant bits in the second stage
and so on. Then, a search is performed sequentially, starting
from the first stage. The output of a stage selects the rows to
be activated in the following stage. This increases the weight
of the initial stages with respect to the later stages. However,
the m bits in a stage are treated as having the same binary
weight. This leads to inaccurate results in many cases. In this
work, we address this issue by introducing a new method to
assign binary weights to the bits within a stage.

For a search in conventional CAM, the match-lines (MLs)
are pre-charged to Vdd and then bitlines are driven with Vdd

or 0 depending upon the input query. The MLs of rows
with more number of matches discharge earlier. The line to
discharge first is the one with minimum mismatch with the
input query. To give binary weight to the bits, we modify
the bitline driving voltage. Suppose a stage contains m bits
(m−1 : 0). The bitlines which were earlier driven with Vdd and
now driven with a voltage Vi =Vdd/2(m−1−i) where i denotes
the index of a bit in the stage. Fig. 3 shows CAM in nearest
search configuration for a stage size of 4 bits. As shown in
Fig. 4, a match in the most significant bit results in faster
ML discharging current than lower indices. We exploit this
difference and design a CAM which can find the binary value
nearest to the input query.

The different discharging currents also allow us to sort
the data, with the nearest data discharging first. This sorting
is easy for a smaller number of records. However, as the
number of records increase, it becomes difficult to differentiate
data depending upon the discharging currents. In such a case,
nearest search is implemented in groups with limited rows
selected at a time.

Now, as the number of bits increases, the bitline voltage Vi
becomes very small. We limit the minimum available voltage
source output to 100mV . Moreover, the maximum voltage
that can be applied is limited by the threshold voltage of
the non-volatile elements. This ensures that the data in the
memory is preserved. This upper bound is set to 1.8V . Hence,
the allowable voltage levels include 0.1V,0.2V,0.4V,0.8V and
1.6V , restricting the stage size to 5 bits. In this work, we split
the CAM into multiple stages of 4-bits each for simplicity and
then search for the nearest distance row in a serial manner,
starting with the stage containing the most significant bits.

C. Bit-wise Operation and Addition
Although a search based CAM can accelerate several func-

tionalities in NVQuery, it cannot support a major part of
queries such as addition, average, and all bit-wise operations.
In order to make NVQuery a general design for query pro-
cessing accelerator, we modify the sense amplifiers in the
vertical bitlines to support bit-wise operations. Fig. 2 shows the
sense amplifier in a single NVQuery bitline to support bit-wise
operations. In this mode, each block works as memory instead
of CAM, where one of the vertical bitlines in each CAM cell
is activated. The tail of the shared bit-line is connected to
a sense amplifier. Since our design supports AND and OR
functions, the sense amplifier has two main parts: one for AND
operation and a simple sense amplifier to support OR. These
circuits work on the basis of the leakage current through the
vertical bitline. When several rows in memory are active, each
row leaks current through vertical bitlines depending upon the
resistance value. If the stored bit is 1 (low resistance), this
current is large, while in the case of 0, leakage is significantly
small. The goal of OR operation is to identify the presence
of at least one high (1) bit in all activated rows. Therefore,
we use a sense resistor, R>0, such that in the case of at least
single high bit, it turns the output signal to one. However, for
AND operation the goal is to find a case such that at least
one input is not 1. In that case, the AND circuitry uses an
appropriate sense resistance.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

TABLE III
APPROXIMATION IN 16-BIT ADDITION

Approximated Bits 4 8 12 14 16
Error (%) 0.006 0.098 1.56 6.25 25

Energy (pJ) 3.52 2.41 1.3 0.75 0.197
Latency (ns) 182 133 84.7 60.5 36.3

Interestingly, prior work shows that crossbar memory can
further support addition within the memory [53], [54]. This
approach breaks down an operation into a series of NOR
operations. The logic family used in the paper executes NOR
in crossbar memory with a latency of just 1 cycle. This
functionality is supported by NVQuery due to its regular
structure (unlike CAMs with access transistors), enabling it
to perform data computations within memory. In the case
when approximate results are acceptable, the sense amplifier
at the bitlines can be used to improve the performance of
NVQuery. The truth table for 1-bit full adder shows that the
sum bit (S) can be obtained by inversion of the carry bit (C) in
75% of the cases. The sense amplifier calculates C (majority)
in one step by simply using an appropriate sense resistance.
S is obtained by inverting C. This introduces a worst case
error of 25%. However, this error is reduced significantly by
approximating only some LSBs depending upon the level of
accuracy desired. The MSBs are calculated accurately using
the techniques described in [53]. Table III shows the error
corresponding to different number of approximated bits for
an 8-bit addition. By calculating the carry bit correctly, the
proposed approximation approach limits the effect of an error
to one bit and does not propagate it.

Addition is extended to implement average function. The
output of successive additions is sent to the processor, where
the average is obtained by bit-shifting or simple division.

V. APPROXIMATION IN NVQUERY

In most cases, a query does not require a unique or com-
pletely precise answer. Instead, it requires a fast result with
good enough accuracy. Approximate computing is an effective
way of improving the energy and performance by trading some
accuracy. Much of the prior work seeks to exploit this fact
in order to build faster and more energy efficient systems
which are capable of responding to our needs with just good
enough quality of response [52], [55], [56]. However, most of
the existing techniques provide less energy or performance
efficiency due to considerable data movement and lack of
configurable accuracy.

NVQuery can work in both exact and approximate mode.
Approximate mode provides the advantage of better metrics,
both in terms of latency and power consumption. However,
this comes at the cost of loss in accuracy. Here, we investigate
two ways of approximation: (i) bit trimming and (ii) voltage
scaling.

A. Bit Trimming

One common way to apply approximation in query search
is trimming or neglecting bits. Our design neglects few least

TABLE IV
NVQUERY APPROXIMATION AT DIFFERENT SUPPLY VOLTAGES

Voltage 1V 0.87V 0.8V 0.74V 0.7V 0.67V
Errors bits 0 1 2 3 4 5

Norm. Energy 1 0.68 0.39 0.22 0.17 0.11

significant bits of input data in order to accelerate the query
functionality. For other bits, NVQuery performs the search
serially on the blocks, starting from the most significant bits.
The level of approximation is tuned by determining the number
of neglected blocks. The upper and lower computation bounds
are defined by the number of cut bits. For each input in query,
the lower bound is defined by all trimmed bits being zero
while the upper bound by all trimmed bits being one.

LV < V <UV

UV − LV = 2K−1

Where V is the exact value of V , and LV and UV are the
lower and upper bounds respectively when the last k bits are
trimmed. Therefore, our design guarantees that the NVQuery
error rate on aggregation functions, (Minimum, Maximum,
Average, Mean, etc.) is

ErrorQuery < 2M−K−1

where M is the total number of bits.
For a 5-bit CAM stage with a nominal Vdd of 1.6V ,

Vi = {0.1V,0.2V, 0.4V,0.8V,1.6V} for i = {0,1,2,3,4}. This
leads to an effective difference of {1.5V,1.4V,1.2V,0.8V,0V}
between ML and the bitline. If the lower bits in a block
are approximated to have the same weight, then the required
number of voltage levels can be reduced. However, the voltage
levels for the non-approximated bits should be chosen such
that

Vi =

{
(k+1)×0.1V, i = k
2×Vi, i > k

(1)

where k is the number of approximated bits. This ensures that
the effective weight of the approximated bits is at least 1 LSB
(0.1V) less than the first accurate significant bit. For example,
if the lower 2 bits are approximated to have the same weight,
then the required voltages are {0.1V,0.1V,0.3V,0.6V,1.2V}.
This further reduces the required Vdd for ML, reducing the
total energy requirement of the computation.

B. Voltage Scaling

In NVQuery, approximation is done by applying voltage
overscaling (VoS) on selective CAM blocks [14]. While CAM
works without any error with nominal Vdd , lower supply
voltages increase the possibility of error on CAM matching
and memory functionality. Table IV lists the possible errors for
each CAM block at different supply voltages. For instance, a
6-bit CAM block at 870mV supply voltage can match the input
query with stored data with a single bit mismatch. Similarly,
at 800mV and 740mV, the CAM block can search for data
with 2-bit and 3-bit Hamming distance respectively from the
input key.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

Fig. 5. Energy consumption and performance of running join operations with different table sizes on traditional cores and the proposed NVQuery.

Our design puts the blocks in different approximation levels
based on their impact on approximation. For instance, if the
ith block is configured with h-bit error, the i−1th block needs
to have h/2-bit error. Generally, when the goal is to allow K
bit error, we can estimate the error distance of each bit as
follows:

h = K/(1+1/2+1/4+ ... +1/2N)

Comparing these two ways of applying approximation shows
that voltage overscaling can provide much higher advantage
as compared to bit ignoring. In bit ignoring, the energy saving
and speedup limits to a few bits which we neglected processing
them. For example, in 6-bit CAM, trimming 2-bit, will give
us 2/6 = 33% energy savings.

VI. EXPERIMENTAL RESULTS

A. Experimental setup

For detailed evaluation of the proposed NVQuery, we
run circuit-level simulations in HSPICE with 45nm TSMC
technology. We use VTEAM [57] model of memristors with
ION/IOFF ratio of 103 for non-volatile memory crossbar
design. We develop software-based cycle-accurate simulator
(based on C++) which emulates the functionality of the
designed NVQuery. This allows us to speed up the simulation
time significantly and verify the proposed design with diverse
practical data sets. The simulator has accurate models of the
hardware, e.g., time and power extracted from the circuit-level
simulation to evaluate the efficiency of the proposed design.
We compare NVQuery performance and energy efficiency with
state-of-the-art query processing approaches running on the
same technology node. We evaluate two popular approaches,
sampling-based approximate querying (SAQ) [44] and deter-
ministic approximate querying (DAQ) [7] on Intel i7 7600
CPU with 8GB memory. For measurement of the processor

power, we use Hioki 3334 power meter. We use a dataset
consisting a table of Census of 10 million tuples using 32-
bit unsigned integers to compare the efficiency of different
techniques. This data is popularly used to model popula-
tions of various types ranging from cities and organizations
to word frequencies in natural language corpora. The SQL
server contains a single table with one 10GB column of
randomly generated records. In the rest of the paper, power
and performance results have been reported for 1000 queries
from aggregation and prediction functions over five randomly
generated datasets. Join operation uses a different dataset, as
the previously described dataset is not ideal for join based
operations (need more than one column for join). Dataset
includes 6 columned tables, randomly populated. Size of the
table ranges from 22 to 217. The upper limit on the size is
a function of the maximum datasheet size in MS Excel (220)
and realistic join compute times.

B. NVQuery Efficiency

Here we highlight the advantage that NVQuery can provide
in computing each query function. Table V compares the
energy savings and performance speedup of running different
queries on proposed NVQuery as compared to a digital ASIC
design. Each energy is reported when 10 queries run on 1k
dataset. The selected dataset is small so that the reported val-
ues compare the computation energy without data movement
cost. The digital system is designed using System Verilog in
45nm ASIC flow. The result shows that NVQuery improves
the computation cost of all queries significantly. Specifically,
queries such as MAX, MIN and/or TOP k can be processed
in a single cycle, instead of processing in O(n) or O(logn)
time. Our evaluation shows that our design can provide 11.8×
energy improvement and 26.85× performance speedup on av-
erage compared to digital approach for nearest distance search-
based queries. Similarly, our design can achieve on average

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

10G8G6G4G2G1G
10

0

10
1

10
2

10
3

10
4

Data Set Size

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

NVQuery

CPU Intel i7 7600

10G8G6G4G2G1G
10

0

10
1

10
2

10
3

Data Set Size

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

NVQuery

CPU Intel i7 7600

Fig. 6. Energy consumption and performance of query processing running
on traditional core and the proposed NVQuery.

TABLE V
ENERGY CONSUMPTION AND PERFORMANCE SPEEDUP OF QUERIES IN

NVQUERY NORMALIZED TO DIGITAL DESIGN OVER 1K DATA

Nearest search Search Memory

Queries
MAX/
MIN Top 1

Search/
Count

Addition/
Average Bit-wise

Energy Improv. 9.5× 14.1× 13× 5.8× 46.7×
Speedup 24.2× 29.5× 92.1× 0.9× 122.6×

13.7× and 92.1× (5.8× and 0.9×) energy savings and perfor-
mance speedup over exact search (memory functionalities, e.g.
addition). NVQuery is also efficient in executing different join
operations. For a small table with 22 rows, NVQuery provides
2.3x speedup and 5.9x energy savings on average as compared
to conventional systems. However, the performance and energy
efficiency of NVQuery increases with table size. For example,
for a table with 215 rows, NVQuery provides speedup and
energy efficiency improvement of 21x and 83x respectively.
Although, the performance of in-memory addition is less than
that of digital-based design, but considering the cost of data
movement, it makes sense to process data locally in-memory.
In large size query processing, the data movement dominates
the computation cost, which motivates us to perform in-
memory computations to avoid data movement issue.

C. NVQuery & Dataset Size

While running real dataset, the main advantage of NVQuery
comes from addressing the data movement issue. Fig. 6 shows
the average energy consumption and performance of running
query processing on traditional core and NVQuery when the
data set size changes from 1GB to 10GB. Our evaluation
shows that the NVQuery has an advantage in processing
the nearest distance search and related functions such as
MIN, MAX or Top queries. However, to see the average
NVQuery improvement, we generate the same number of

queries running on the dataset. Our evaluation shows that
increasing the data size significantly increases the energy and
execution time of traditional cores. However, this increment
is minor in NVQuery as it can locally process the data. As
our result in Table V shows, NVQuery not only avoids the
overhead of data movement, but also provides much cheaper
computation than traditional cores. This difference is more
prominent when the size of the dataset passes 8GB, which is
the available main memory size in our tested platform. In such
case, the traditional cores require to bring data up from the
hard disk, which significantly slows down the computation.
Comparing the energy and performance of NVQuery for 10G
data shows that, our design can achieve 34.7× energy savings
and 49.3× performance speedup as compared to traditional
processor running the same query tasks.

D. NVQuery Approximation
Fig. 7 shows the energy, performance and energy-delay

product, when NVQuery has been approximated using bit
trimming and voltage scaling. The x-axis in the graph shows
the number of relaxed bits. In addition, the red line in EDP
graph shows the average relative error of query processing
at different levels of approximation. Although the latency
remains constant in the case of approximation by voltage
scaling, it can achieve much higher efficiency than bit trim-
ming. Our evaluation shows that NVQuery approximation
using bit trimming and voltage scaling can provide 490.7× and
507.9× EDP improvement as compared to NVQuery in exact
mode while ensuring less than 0.2% average relative error.
The efficiency of the voltage scaling approximation becomes
more significant in deep approximation. For instance, while
accepting 2% error, approximation by voltage scaling can
achieve 45.0× and 17.6× energy savings and speedup (807×
EDP improvement).

We also compare the efficiency of the proposed NV-
Query with the state-of-the-art approximate query accelerators
SAQ [44] and DAQ [7] using 8G dataset size. The NVQuery
and DAQ approximation is defined based on the number of
blocks under voltage overscaling and the number of least
significant bits neglected respectively. In SAQ the error rate
is determined based on the requested error bound. Table VI
shows the energy-delay product (EDP) improvement of the
different query accelerators as compared to traditional CPU
core when the level of approximation changes from 0% to
10%. For each error rate, we select those configurations of
SAQ and DAQ which result in the best EDP improvement.
As Table VI shows, increasing the number of relaxed bits
improves the energy consumption of our design. Our experi-
mental evaluation shows that, NVQuery can achieve 105.0×
and 26.2× EDP improvement as compared to SAQ and DAQ
designs in exact mode. The main advantage of NVQuery
comes from addressing data movement issue. The NVQuery
can provide higher efficiency when it works in approximate
mode, since our memory-based design put a larger portion
of memory under voltage overscaling in order to achieve the
same error rate as DAQ design. In other words, when DAQ
neglects m-bits for accelerating query processing, our memory-
based design can get the same accuracy by putting larger

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

TABLE VI
ENERGY-DELAY PRODUCT IMPROVEMENT OF SAQ, DAQ AND PROPOSED NVQUERY

Query Accelerators 0% 1% 2% 4% 6% 8% 10%

SAQ [44] Error bound 0% 1.5% 3.1% 5.2% 7.4% 8.5% 10.9%
EDP Improv. 4.1× 6.7× 8.3× 11.8× 17.2× 24.4× 39.8×

DAQ [7] trimmed bits 0-bit 1-bit 2-bit 4-bit 6-bit 7-bit 9-bit
EDP Improv. 16.4× 24.2× 36.9× 52.1× 69.2× 85.5× 104.5×

NVQuery Relaxed bits 0-bit 2-bit 4-bit 6-bit 8-bit 11-bit 15-bit
EDP Improv. 431× 505× 807× 1,515× 2,288× 2,587× 3,154×

Exact 2−bit 4−bit 6−bit 8−bit 10−bit
0

50

100

150

Approximation Level

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

Exact 2−bit 4−bit 6−bit 8−bit 10−bit
0

5

10

15

20

Approximation Level

E
x
e
c
u

ti
o

n
 T

im
e
 (

S
e
c
o

n
d

)

Exact 2−bit 4−bit 6−bit 8−bit 10−bit
0

500

1000

1500

2000

2500

3000

Approximation Level

E
n

e
rg

y
−

D
e
la

y
 P

ro
d

u
c
t

(J
.S

)

0

3

6

9

12

15

18

E
rr

o
r

(%
)

Fig. 7. Energy consumption and performance of the NVQuery at different approximation levels.

Search

2.1%

C
o

u
n

te
r

 0

.3
%

Bitwise

1.5%

Controller &

Reg 1.2%

Fig. 8. Area overhead as compared to conventional crossbar memory

portion of memory blocks under voltage overscaling (shown
in Table V for 4-bit stage size). Our evaluation shows that in
approximate mode, NVQuery can achieve 79.2× and 30.1×
EDP improvement as compared to SAQ and DAQ respectively,
while providing similar error rate.

E. Area Overhead

NVQuery has both memory and query processing func-
tionalities. We added peripheral circuitry to crossbar mem-
ory to support nearest distance exact search operation, bit-
wise/addition operations, counter and controller. Fig. 8 shows
that proposed NVQuery has up to 5.1% area overhead com-
pared to the conventional crossbar. The search circuitry takes
2.1% extra area. Counter and bit-wise circuits add 0.3% and
1.5% area overhead to design. Finally, the controller and
registers take the rest 1.2% area overhead.

VII. CONCLUSION

In this paper we propose a novel memory architecture
which can accelerate query processing inside the memory.

NVQuery supports a large range of query functionalities inside
the memory. Our design exploits the analog characteristic of
the non-volatile memory to design a configurable memory
architecture which can look for exact or nearest distance
values. Our result shows that NVQuery not only improves the
cost of each query processing, but also completely addresses
the data movement issue by locally processing the data in
memory. To further improve the energy efficiency, our design
NVQuery supports configurable approximation by adaptively
putting memory under voltage overscaling. Our experimental
evaluation shows that, in comparison with the state-of-the-
art query accelerators, NVQuery in exact (approximate) mode
can achieve 26.2× (30.1×) energy-delay product improvement
while providing similar accuracy.

VIII. ACKNOWLEDGMENT

This work was supported in part by CRISP, one of six
centers in JUMP, an SRC program sponsored by DARPA and
NSF grants #1730158 and #1527034, and Jacobs School of
Engineering UCSD Powell Fellowship.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks
and Applications, vol. 19, no. 2, pp. 171–209, 2014.

[3] F. Imani, B. Yao, R. Chen, P. Rao, and H. Yang, “Factal pattern
recognition of image profiles for manufacturing process monitoring
and control,” in International Manufacturing Science and Engineering
Conference, p. 1, ASME, 2018.

[4] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence and
analytics: From big data to big impact.,” MIS quarterly, vol. 36, no. 4,
2012.

[5] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in big data systems: A cross-industry study of mapreduce workloads,”
Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 1802–1813,
2012.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

[6] B. Yao et al., “Multifractal analysis of image profiles for the charac-
terization and detection of defects in additive manufacturing,” Journal
of Manufacturing Science and Engineering, vol. 140, no. 3, p. 031014,
2018.

[7] N. Potti and J. M. Patel, “Daq: a new paradigm for approximate
query processing,” Proceedings of the VLDB Endowment, vol. 8, no. 9,
pp. 898–909, 2015.

[8] P. Bakkum and K. Skadron, “Accelerating sql database operations on a
gpu with cuda,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, pp. 94–103, ACM, 2010.

[9] S. Breß and G. Saake, “Why it is time for a hype: A hybrid query
processing engine for efficient gpu coprocessing in dbms,” Proceedings
of the VLDB Endowment, vol. 6, no. 12, pp. 1398–1403, 2013.

[10] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “Looknn:
Neural network with no multiplication,” in 2017 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 1775–1780,
IEEE, 2017.

[11] M. Imani, D. Peroni, and T. Rosing, “Cfpu: Configurable floating
point multiplier for energy-efficient computing,” in Design Automation
Conference (DAC), 2017 54th ACM/EDAC/IEEE, pp. 1–6, IEEE, 2017.

[12] M. Imani, Y. Kim, A. Rahimi, and T. Rosing, “Acam: Approximate
computing based on adaptive associative memory with online learning.,”
in ISLPED, pp. 162–167, 2016.

[13] M. Imani, P. Mercati, and T. Rosing, “Remam: low energy resistive
multi-stage associative memory for energy efficient computing,” in
Quality Electronic Design (ISQED), 2016 17th International Symposium
on, pp. 101–106, IEEE, 2016.

[14] M. Imani, A. Rahimi, P. Mercati, and T. Rosing, “Multi-stage tunable
approximate search in resistive associative memory,” IEEE Transactions
on Multi-Scale Computing Systems, 2017.

[15] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate
cpu vs. gpu performance without the answer,” in Performance Analysis
of Systems and Software (ISPASS), 2011 IEEE International Symposium
on, pp. 134–144, IEEE, 2011.

[16] J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J. Tatemura, N. Poly-
zotis, and M. J. Carey, “Miso: souping up big data query processing
with a multistore system,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pp. 1591–1602, ACM,
2014.

[17] X. Yin et al., “Exploiting ferroelectric fets for low-power non-volatile
logic-in-memory circuits,” in ICCAD, pp. 1–8, IEEE, 2016.

[18] J. Sim et al., “Lupis : Latch-up based ultra efficient processing in-
memory system,” in International Symposium on Quality Electronic
Design (ISQED), pp. 1–6, IEEE, 2018.

[19] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 14–26, IEEE Press, 2016.

[20] S. H. Pugsley, J. Jestes, R. Balasubramonian, V. Srinivasan, A. Buyukto-
sunoglu, A. Davis, and F. Li, “Comparing implementations of near-data
computing with in-memory mapreduce workloads,” IEEE Micro, vol. 34,
no. 4, pp. 44–52, 2014.

[21] M. Imani, Y. Kim, and T. Rosing, “Nngine: Ultra-efficient nearest
neighbor accelerator based on in-memory computing,” in International
Conference on Rebooting Computing (ICRC), IEEE, 2016.

[22] Y. Kim et al., “Orchard: Visual object recognition accelerator based
on approximate in-memory processing,” in Computer-Aided Design
(ICCAD), 2017 IEEE/ACM International Conference on, pp. 25–32,
IEEE, 2017.

[23] M. Imani, S. Gupta, A. Arredondo, and T. Rosing, “Efficient query
processing in crossbar memory,” in Low Power Electronics and Design
(ISLPED, 2017 IEEE/ACM International Symposium on, pp. 1–6, IEEE,
2017.

[24] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-data processing: Insights from a micro-
46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, 2014.

[25] M. Imani, S. Gupta, and T. Rosing, “Genpim: Generalized processing in-
memory to accelerate data intensive applications,” in Design Automation
and Test in Europe Conference (DATE), pp. 1–6, IEEE/ACM, 2018.

[26] M. Saremi, S. Rajabi, H. J. Barnaby, and M. N. Kozicki, “The effects
of process variation on the parametric model of the static impedance
behavior of programmable metallization cell (pmc),” MRS Online Pro-
ceedings Library Archive, vol. 1692, 2014.

[27] S. N. Mozaffari, S. Tragoudas, and T. Haniotakis, “More efficient
testing of metal-oxide memristor-based memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2017.

[28] S. Salehi and R. F. DeMara, “Process variation immune and energy
aware sense amplifiers for resistive non-volatile memories,” in Circuits
and Systems (ISCAS), 2017 IEEE International Symposium on, pp. 1–4,
IEEE, 2017.

[29] M. Saremi, “A physical-based simulation for the dynamic behavior of
photodoping mechanism in chalcogenide materials used in the lateral
programmable metallization cells,” Solid State Ionics, vol. 290, pp. 1–5,
2016.

[30] B. Pourshirazi and Z. Zhu, “Refree: A refresh-free hybrid dram/pcm
main memory system,” in Parallel and Distributed Processing Sympo-
sium, 2016 IEEE International, pp. 566–575, IEEE, 2016.

[31] M. K. Tavana, A. K. Ziabari, and D. Kaeli, “Live together or die alone:
Block cooperation to extend lifetime of resistive memories,” in 2017
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1098–1103, IEEE, 2017.

[32] S. Salehi, N. Khoshavi, and R. F. Demara, “Mitigating process variability
for non-volatile cache resilience and yield,” IEEE Transactions on
Emerging Topics in Computing, 2018.

[33] C. Liu, Q. Yang, C. Zhang, H. Jiang, Q. Wu, and H. H. Li, “A memristor-
based neuromorphic engine with a current sensing scheme for artificial
neural network applications,” in Design Automation Conference (ASP-
DAC), 2017 22nd Asia and South Pacific, pp. 647–652, IEEE, 2017.

[34] M. Imani, Y. Kim, and T. Rosing, “Mpim: Multi-purpose in-memory
processing using configurable resistive memory,” in Design Automation
Conference (ASP-DAC), 2017 22nd Asia and South Pacific, pp. 757–763,
IEEE, 2017.

[35] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring
hyperdimensional associative memory,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on, pp. 445–
456, IEEE, 2017.

[36] D. Schaa and D. Kaeli, “Exploring the multiple-gpu design space,” in
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE Interna-
tional Symposium on, pp. 1–12, IEEE, 2009.

[37] B. Sukhwani, M. Thoennes, H. Min, P. Dube, B. Brezzo, S. Asaad,
and D. Dillenberger, “A hardware/software approach for database query
acceleration with fpgas,” International Journal of Parallel Programming,
vol. 43, no. 6, pp. 1129–1159, 2015.

[38] C. Dennl, D. Ziener, and J. Teich, “Acceleration of sql restrictions and
aggregations through fpga-based dynamic partial reconfiguration,” in
Field-Programmable Custom Computing Machines (FCCM), 2013 IEEE
21st Annual International Symposium on, pp. 25–28, IEEE, 2013.

[39] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ripeanu,
“Storegpu: exploiting graphics processing units to accelerate distributed
storage systems,” in Proceedings of the 17th international symposium
on High performance distributed computing, pp. 165–174, ACM, 2008.

[40] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-m. W.
Hwu, “An asymmetric distributed shared memory model for hetero-
geneous parallel systems,” in ACM SIGARCH Computer Architecture
News, vol. 38, pp. 347–358, ACM, 2010.

[41] J. Tigani and S. Naidu, Google BigQuery Analytics. John Wiley & Sons,
2014.

[42] Y. Sun, Y. Wang, and H. Yang, “Energy-efficient sql query exploiting
rram-based process-in-memory structure,” in Non-Volatile Memory Sys-
tems and Applications Symposium (NVMSA), 2017 IEEE 6th, pp. 1–6,
IEEE, 2017.

[43] S. Acharya, P. B. Gibbons, and V. Poosala, “Aqua: A fast decision
support systems using approximate query answers,” in Proceedings of
the 25th International Conference on Very Large Data Bases, pp. 754–
757, Morgan Kaufmann Publishers Inc., 1999.

[44] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“Blinkdb: queries with bounded errors and bounded response times on
very large data,” in Proceedings of the 8th ACM European Conference
on Computer Systems, pp. 29–42, ACM, 2013.

[45] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra, “Worst-case optimal join algo-
rithms:[extended abstract],” in Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGAI symposium on Principles of Database Systems, pp. 37–
48, ACM, 2012.

[46] T. L. Veldhuizen, “Leapfrog triejoin: A simple, worst-case optimal join
algorithm,” 2012.

[47] N. Bruno, Y. Kwon, and M.-C. Wu, “Advanced join strategies for large-
scale distributed computation,” Proceedings of the VLDB Endowment,
vol. 7, no. 13, pp. 1484–1495, 2014.

[48] E. J. Shekita, H. C. Young, and K.-L. Tan, “Multi-join optimization for
symmetric multiprocessors,” in VLDB, vol. 93, pp. 479–492, 1993.

[49] F. N. Afrati and J. D. Ullman, “Optimizing joins in a map-reduce
environment,” in Proceedings of the 13th International Conference on
Extending Database Technology, pp. 99–110, ACM, 2010.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2819080, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

[50] M. Zhou, R. Zhang, D. Zeng, W. Qian, and A. Zhou, “Join optimization
in the mapreduce environment for column-wise data store,” in Semantics
Knowledge and Grid (SKG), 2010 Sixth International Conference on,
pp. 97–104, IEEE, 2010.

[51] X. Yin et al., “Design and benchmarking of ferroelectric fet based tcam,”
in DATE, pp. 1444–1449, IEEE, 2017.

[52] M. Imani, D. Peroni, A. Rahimi, and T. Rosing, “Resistive cam ac-
celeration for tunable approximate computing,” IEEE Transactions on
Emerging Topics in Computing, 2016.

[53] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided logic (magic),” IEEE
Transactions on Nanotechnology, vol. 15, no. 4, pp. 635–650, 2016.

[54] M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient processing in-
memory for data intensive applications,” in Proceedings of the 54th
Annual Design Automation Conference 2017, p. 6, ACM, 2017.

[55] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“Impact: imprecise adders for low-power approximate computing,” in
Proceedings of the 17th IEEE/ACM international symposium on Low-
power electronics and design, pp. 409–414, IEEE Press, 2011.

[56] M. Imani, S. Patil, and T. S. Rosing, “Masc: Ultra-low energy multiple-
access single-charge tcam for approximate computing,” in Proceedings
of the 2016 Conference on Design, Automation & Test in Europe,
pp. 373–378, EDA Consortium, 2016.

[57] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam:
A general model for voltage-controlled memristors,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 786–790,
2015.

Mohsen Imani received his M.S. and BCs degrees
from the School of Electrical and Computer Engi-
neering at the University of Tehran in March 2014
and September 2011 respectively. From September
2014, he is a Ph.D. student in the Department of
Computer Science and Engineering at the Univer-
sity of California San Diego, CA, USA. He is a
project leader at System Energy Efficient Laboratory
(SeeLab) where he is mentoring several graduate
and undergraduate students on different computer
engineering projects from circuit to system level. Mr.

Imani research focuses on computer architecture, machine learning and brain-
inspired computing.

Saransh Gupta is pursuing a Masters degree in
Electrical and Computer Engineering from Uni-
versity of California, San Diego. He is a mem-
ber of System Energy Efficiency Laboratory (SEE-
Lab), where he is working on alternate computing
paradigms. He received his B.E. in Electrical and
Electronics Engineering from Birla Institute of Tech-
nology Science, Pilani - K.K. Birla Goa Campus in
2016. His research interests include application of
non-volatile memories, computer architecture, and
electronic circuits with an emphasis on processing

in-memory.

Sahil Sharma received his MS in Computer Science
from University of California at San Diego in 2017,
and B.Tech in Computer Science and Engineering
from Indian Institute of Technology, Kharagpur in
2014. His research interests include computer archi-
tecture, operating and embedded systems. He was a
member of the System Energy Efficient Laboratory
(SEELAB), University of California at San Diego.

Tajana Simunic Rosing is a Professor, a holder
of the Fratamico Endowed Chair, and a director
of System Energy Efficiency Lab at UCSD. She
is currently heading the effort in SmartCities as a
part of DARPA and industry funded TerraSwarm
center. During 2009-2012 she led the energy efficient
datacenters theme as a part of the MuSyC center. Her
research interests are energy efficient computing,
embedded and distributed systems. Prior to this she
was a full time researcher at HP Labs while being
leading research part-time at Stanford University.

She finished her PhD in 2001 at Stanford University, concurrently with
finishing her Masters in En-gineering Management. Her PhD topic was
Dynamic Management of Power Consumption. Prior to pursuing the PhD,
she worked as a Senior Design Engineer at Altera Corporation.

