
Classification of Neurological Gait Disorders Using
Multi-task Feature Learning

Ioannis Papavasileiou∗, WenlongZhang†, Song Han∗, Xin Wang∗, Jinbo Bi∗, Nancy Byl‡ and Masayoshi Tomizuka§
∗Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269

†The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ 85212
‡Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA 94158

§Department of Mechanical Engineering, University of California, Berkeley, CA 94720
e-mails: (ioannis.papavasileiou; song.han;xin.wang; jinbo.bi)@uconn.edu;

Wenlong.Zhang@asu.edu; BylN@ptrehab.ucsf.edu; tomizuka@me.berkeley.edu

Abstract—As our population ages, neurological impairments
and degeneration of the musculoskeletal system yield gait ab-
normalities, which can significantly reduce quality of life. Gait
rehabilitative therapy has been widely adopted to help these
patients retrain central nervous system physiology to maximize
community participation and independence. To further improve
the rehabilitative therapy provided to the patients, more objective
methods need to be used and rely less on the subjective judgment
of the therapist and patient. In this paper, an algorithmic
framework is proposed to provide classification of gait disor-
ders caused by two common neurological diseases, stroke and
Parkinson’s Disease (PD), from ground contact force (GCF)
data. An advanced machine learning method, multi-task feature
learning (MTFL), is used to jointly train classification models of
subject’s gait in three classes, post-stroke, PD and healthy gait.
Gait features that can capture gait patterns related to mobility,
balance, strength and gait phases are used as features for the
classification. Out of all the features used, the MTFL models
capture the more important ones per disease and help provide
better objective assessment and therapy progress tracking. To
evaluate the proposed methodology we use data from a human
participant study, including five PD patients, three post-stroke
patients, and three healthy subjects. Despite the diversity of
abnormalities caused from each disease, the evaluation shows that
the proposed approach can successfully distinguish post-stroke
and PD gait from healthy gait and post-stroke from PD gait, with
Area Under the Curve (AUC) score of at least 0.96. Moreover,
the methodology helps in important gait feature selection which
may help in better understanding the key characteristics that
distinguish abnormal gaits and help in the target design of
treatment.

I. INTRODUCTION

Aging is an unprecedented, pervasive, profound and en-
during process for humanity, and currently a global phe-
nomenon [1]. One major challenge associated with aging is the
degenerative conditions of the neuromusculoskeletal system
(e.g. osteoporosis, arthritis, Alzheimer’s disease [2], stroke [3],
and Parkinson’s disease [4]). Any dysfunction of the central
nervous system, spinal cord, peripheral nerves or muscles can
result in an abnormal gait [5]. At the age of 60, 85% of
people have a normal gait, but at the age of 85 or older this
proportion drops to 18% [6]. As a result, an increasing number
of people suffer from walking difficulties, and the demand for
gait rehabilitative therapy has been increasing rapidly.

In the current practice, gait rehabilitative therapy is provided
by therapists who manually stimulate patients’ reflexes and
rotate their lower limbs to retrain their central nervous systems
with the correct gait patterns. This approach is not only
physically demanding for both patients and therapists, but
also expensive and time-consuming. Moreover, in the clinic,
assessment of gait abnormalities is based on timed tests, visual
observations by therapists, retrospective qualitative evaluations
of video tapes, and specific physical tests, e.g., strength,
range of motion, balance, gait speed, and endurance. As a
result, most times gait assessment is based on the subjective
judgment of the therapist. More objective methods are desired
to quantify the gait assessment and progress evaluation of
the rehabilitative training, reducing the chances of biased
assessment by the therapists and providing better, targeted
treatment to the patients.

Significant research efforts have been made to provide
more objective gait assessment. Different sensory devices have
been employed for gait analysis and impairment diagnosis.
For instance, encoders, inertial sensors, camera-based motion
capture systems have been employed for kinematic analysis
of human motion [7], [8]; force sensors [9], [10] and elec-
tromyography (EMG) sensors [11] have been widely used to
study the ground contact forces (GCFs) and muscle activities
during walking; electroencephalography (EEG) sensors have
been employed to analyze brain signals [12], [13] and better
understand neurological mechanisms of walking. Advanced
signal processing and data analytic methods have been applied
on data recorded from such sensor platforms [14], [15], [16],
[17], [18], [19]. These sensor technologies along with smart
classification tools could be used to detect or prognose various
disorders that are related to everyone’s gait. Additionally,
disease monitoring and therapy progress tracking can be easily
achieved with the described sensor technologies, since access
to gait data is going to be cheap and pervasive, highly reflective
of daily life, which is hard to get in the clinic under constrained
and highly unnatural circumstances [6].

To better quantify abnormal gait, important sensing features
need to be identified to characterize a gait disorder. Towards
this goal, extensive research efforts have been reported to use



machine learning algorithms for gait classification and clus-
tering, to identify such parameters and automate gait disorder
diagnosis. For example, post-stroke patients usually experience
a very diverse set of gait abnormalities, most common of
which is the hemiplegic gait [5]. For this reason, researchers
have applied cluster analysis to identify subgroups of patients
with similar sensing features who experience similar gait
abnormalities [17], [18], [19]. Likewise, other research efforts
focus on classifying abnormal gaits between healthy subjects
and Parkinson’s disease (PD) patients [15], [16], [20]. Through
feature selection methods, important gait parameters can be
identified that distinguish abnormalities from normal gait, thus
helping the target design of treatment and the evaluation of
therapy progress [21]. Additionally, such tools can improve the
valuable clinical management of the patients, ease communi-
cation between clinicians [21] and optimize subject selection
for human participant studies [22]. Consequently, they reduce
the cost of physical therapy and improve the quality of life for
patients. Especially, patients living in remote areas can benefit
from an enhanced tele-medicine system with these quantitative
tools, without necessitating complex apparatus [21].

Due to the lack of such a complete diagnostic tool for gait
disorder diagnosis, we propose an integrative framework in
this paper to automatically classify gait disorders from two
common neurological diseases, stroke and PD, and distinguish
agnormal gait caused by these two diseases from halthy gait.
To the best of our knowledge, there is no such quantitative gait
diagnostic system for these two diseases. Classifying gait into
groups caused by these two major neurological diseases can
lead the way to providing diagnostic tools for specific gait
disorders caused by these two neurological diseases, which
is much needed for assisting objective gait assessment in the
clinic and rehabilitation therapy centers. Our integrative frame-
work includes a pair of smart shoes as the sensory device to
capture the GCF data and a pipeline of data analytic algorithms
for feature extraction from gait patterns and classification. Gait
features are extracted from the sensory data and are used to
describe gait, including features for mobility, balance, strength
and gait phases.

Because there is relatedness in the gait disorders resulted
from the two neurological diseases, multi-task machine learn-
ing strategies can be more feasible to identify similarities and
differences of gait patterns than classic multi-class classifica-
tion algorithms given multi-class classification methods focus
on modeling only the exclusive (or discriminative) features
of the different gait classes. An advanced multi-task learning
algorithm has been developed and used to jointly create
three classifiers, respectively, for distinguishing stroke-induced
abnormal gait from healthy gait, PD-induced abnormal gait
from healthy gait, and PD-induced gait from stroke-induced
gait. The advantage of our multi-task learning method is that
it can identify features useful for all three classification tasks
as well as those predictive of a specific abnormality.

The remainder of the paper is organized as follows. Section
II reviews the related works in gait quantification and anal-
ysis. Section III briefly presents the sensory device that we

developed to capture the GCF data and section IV discusses
the gait parameters we extracted based on the data. In Section
V, we introduce and examine the multi-task learning approach
and use it to classify gait based on the extracted GCF features.
Evaluation results are given based on the data from a human
participant study and findings are summarized in Section VI.
We conclude the paper and discuss future work in Section VII.

II. RELATED WORKS

Extensive research efforts have been made towards quantita-
tive gait analysis. In this section, we first discuss the literature
studies on improving gait quantification methods for objective
gait parameters extraction. We then present in Section II-B
a summary of on machine learning methods for improving
gait analysis, which includes gait patterns classification and
cluster analysis for finding subgroups of patients who suffer
from the same neurological disease and experience similar gait
abnormalities.

A. Gait quantification

Gait quantification is an important aspect of objective gait
assessment and analysis. It relates to the methods used for
objectively measuring gait parameters, which can be used
to estimate the severity of someone’s gait abnormalities and
compare it with other individuals. In this subsection we discuss
gait quantification with respect to hemiplegic and Parkinsonian
gait, which are the two most popular gait disorders caused by
stroke and PD respectively [5].

Among many gait parameters, symmetry is an important gait
characteristic and is defined as a perfect agreement between
the actions of the lower limbs [23]. It can provide insight
about the control of walking which may be unique from
more conventional measures such as velocity, and may have
a role in guiding the clinician’s treatment decisions [24].
Popular parameters used to calculate symmetry include mo-
bility parameters, like single support ratio and spatiotemporal
parameters like step length [24], [25]. Symmetry indexes (SI)
have also been developed as well, to determine symmetries in
GCF patterns [23], [14].

Balance or walking stability is another important parameter
that needs to be quantified, that can also be used to predict
falls. In [26] multiple balance and stability measures are
proposed using IMU sensors, including RMS acceleration and
jerk (time series of first derivative of acceleration), to represent
the rate of change in acceleration. Jerk scores should be
smaller for healthy people. Other measures reported are sway,
a measure on how much a person leans his/her body, step
and stride regularity and variability [26]. Mobility and gait
phases are also important gait parameters used to quantify gait.
Mobility parameters include general movement characteristics
like cadence, step length, single and double support ratio and
periodicity, which is calculated from acceleration autocorrela-
tion [27], [24]. Gait phases refer to the various states within
one walking cycle, and there are typically eight gait phases
for a healthy subject [28], [29].



Gait quantification can be used to extract gait features which

can be used to perform gait pattern classification. In this paper

we use standard gait parameters for mobility, balance and

strength quantification, that can be easily calculated from GCF

data. In addition, new gait phase parameters are introduced

based on our previous work [28]. In the next subsection we

discuss related works on gait pattern classification and cluster

analysis. In our previous work a wireless human motion mon-

itoring system was designed [30] to supplement gait analysis.

A real-time data-driven gait phase detection algorithm was

developed to capture the gait phases using GCF data [28].

The proposed system can objectively quantify the underlying

gait phases without input from a medical professional. These

two works contribute with some of the gait parameters used

in this paper.

B. Gait pattern classification

Extensive research efforts have been reported to perform

cluster analysis of post-stroke gait patterns, so appropriate

development of targeted treatment can be done. In [17] non-

hierarchical cluster analysis was used to categorize four sub-

groups based on the temporal distance and sagittal plane joint

kinematics. Differences in muscle strength and muscle acti-

vation patterns during walking were identified among groups,

according to the recorded EMG data. Similarly, hierarchical

cluster analysis of gait patterns of post-stroke patients with

equinus deformity of the foot was conducted in [18]. Three

groups of patients were identified, with homogeneous levels

of dysfunction, named: the fast walking group, the slow

walking group and the combined slow walking and knee

hyperextension group. In [22], k-means clustering was used to

group gait patterns in order to optimize participant selection

in a biofeedback pedaling treatment.

Classification of post-stroke gait patterns is another example

of using machine learning methods in gait analysis. In [19]

a large set of gait differences was observed between hemi-

paretic and healthy control subjects at matched speeds, using

kinematic and insole pressure data. In [27] accelerometry data

were used to extract gait parameters from a group of post-

stroke subjects and a control group of healthy subjects. It was

reported that accelerometry gait parameters can discriminate

stroke patients’ gait from the control groups’ gait. Artificial

neural networks (ANN) were used in [31] to classify post-

stroke patient’s gait into three categories based on the type of

foot position on the ground at first contact: forefoot, flatfoot
and heel. The work in [21] intended to develop a new gait

classification method for adult patients with chronic hemipare-

sis, and to validate its discriminatory capacity. They classified

gait in three groups with two subgroups each, that were defined

from clinical knowledge. This classification enables patients to

be grouped on the basis of key abnormalities observed whilst

walking and has the advantage of being able to be used in

clinical routines without necessitating complex apparatus.

Given the remarkable diversity of gait deviations observed

in post-stroke patients, most of the research efforts focus on

studying a limited set of gait abnormalities and thus related
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Fig. 1: An overview of the smart shoe design. A signal processing
unit includes barometric sensors, microcontroller, and Bluetooth chip

gait parameters. For example, in [18] only patients with

reduced knee flexion participated in the study and in [31]

focus was only given to the subject’s foot position on the

ground. Extending those works to support classification of a

broader set of gait disorders is very challenging. The currently

used gait parameters need to support the classification of new

disorders and provide statistical evidence in validating the

differences between groups. Close cooperation with physical

therapists and medical professionals is needed to design and

select appropriate gait parameters.

In this paper, we perform classification of gait patterns in

three classes, healthy, Parkinson’s and post-stroke. To the best

of our knowledge, there is no research work on classification

of gait patterns between these three classes. We employ a

comprehensive set of gait parameters from four different

categories. We use standard gait parameters for mobility, bal-

ance and strength quantification. Additionally, new gait phase

parameters are introduced based on our previous work [28].

These parameters are sent as input features to a classifier. An

advanced classification method, MTFL, is used to distinguish

between the three gait classes. Before we discuss the details of

our algorithmic framework, we present our smart shoe design

for GCF data collection.

III. SMART SHOE DESIGN AND GROUND CONTACT FORCE

(GCF) DATA

In order to better analyze patients’ gaits during walking, we

have developed a pair of smart shoes to measure the GCFs on

both feet [30], [32]. Fig. 1 gives an overview of the shoe

design. Four barometric sensors are employed to measure the

GCFs on the toe, the first and second metatarsophalangeal

(MTP) joint (Meta12), the fourth and fifth metatarsophalangeal

joint (Meta45), and the heel. Silicone tubes are wound into

air bladders to connect barometric sensors with measurement

ranging from 0 to 250 mbar. Each sensor can measure weight

up to 200 lbs with a resolution of 0.2 lbs.

The pressure sensor outputs are read by a microcontroller

through analog input channels and the sensor signals are sent

out using a Bluetooth module. The Bluetooth module can

smoothly and reliably transmit signals within 200 feet to

the receiver, which is enough for normal clinical and daily

use. A 9-volt alkaline battery is used to power the smart

shoes, and it can work consecutively for 90 minutes. The

sampling rate of the smart shoes can go up to 100 Hz with

the Bluetooth module. In this paper the sampling rate used

is 20Hz. Representative raw data from each of the three

classification classes can be seen in Fig. 2. To Wenlong: It



would be great if you could help to briefly describe the
differences in raw data
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(a) GCF data from a healthy
subject
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(b) GCF data from a PD subject
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(c) GCF data from a post-stroke
patient

Fig. 2: Representative raw GCF data from the three classes of gaits,
i.e. healthy subjects, PD and Post-Stroke patients

IV. GAIT FEATURES EXTRACTION

Describing specific human gait disorders accurately is often
a difficult task [6]. Consequently, it is challenging to devise
gait features 1 that can be used to classify gait patterns.
Furthermore, the GCF data collected from the smart shoes
can be noisy, as any wearable sensor data, due to imperfect
sensor dynamics and complexity of human gait. In this section
we present a set of gait features that are used to detect the gait
abnormalities by capturing the key gait characteristics of post-
stroke and PD patients.

In Table I, fourteen gait features are proposed based on
the GCF sensor signals collected from the smart shoes. These
fourteen featues are organized into four categories: mobility,
balance, strength and gait phases. Their details will be dis-
cussed in the following subsections. Among these features,
double support ratio, single support ratio and cadence are
comprehensive features, which require bilateral information.
All the other eleven features are unilateral, as they can be
calculated for each side separately [33].

A. Gait Cycles

We first give an overview of what a gait cycle is, since all
the gait features are extracted once for each gait cycle in a
walking trial. Gait cycle is the time interval between the same
repetitive events of walking. The defined cycle can start at
any moment, but generally begins when one foot contacts the

1In the remainder of this paper we refer to gait parameters, the term used
in most of the literature studies, as gait features to avoid confusion with the
model parameters used in the multi-task learning methods to be presented in
Section V.

Category Gait Features Laterality

Gait Phases

Exp. Num. of Gait Phases Unilateral
Symmetry of Gait Phases Unilateral

Num. of Swing Phases Unilateral
Symmetry of Swing Phases Unilateral

Mobility

Cadence (steps/min) Bilateral
Double Support Ratio Bilateral
Single Support Ratio Bilateral
Stance Phase Ratio Unilateral

Balance

Max. Force Difference
between Meta12 and 45 Unilateral

Min. Force Difference
between Meta12 and 45 Unilateral

Strength Max. Force of Heel Strike Unilateral
Max. Force of Toe Off Unilateral

TABLE I: Proposed twelve gait features in four categories
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Fig. 3: An overview of a gait cycle and the gait features

ground. If it starts with the right foot contacting the ground,
the cycle ends when the right foot makes contact again. Fig. 3
gives an overview of such a gait cycle, where two gait cycles
are shown at the lower two horizontal solid lines. The gait
cycle can be broadly divided into two phases: stance phase
and swing phase [5]. These two phases can then be further
divided into sub-phases within the gait cycle, as shown at the
top part of Fig 3. In general, the stance phase takes around 60%
of the gait cycle [5] and can be divided into double support
and single support. In double support, both feet are in contact
with the ground, while in single support only one foot is in
contact with the ground. Double and single support ratio refer
to the portion of time whithin a gait cycle someone spends
in double or single support respectively. The swing phase is
described when the limb is not weight bearing and represents
around 40% of a single gait cycle [5]. These percentages can
change with the walking speed, as with higher speeds double
support ratio in the gait cycle tends to be reduced. In fig. 3
the lower depicted cycle starts with right foot initial contact,
which leads to the stance phase, while the other starts with
left pre-swing phase which leads to swing phase. Indicative
percentages are shown to indicate the different phases within
the cycle.

In Fig. 3 different categories of gait features are shown for
different categories, like mobility, balance, strength and gait
phases. In the subsection IV-B we discuss how gait phases are
extracted and what gait phase related features are used in this
work for gait disorder diagnosis. In subsection IV-D and IV-E
we discuss other features we use related to mobility, balance
and strength.



B. Gait Phase Detection

Gait phase refers to various states within one walking
cycle, and there are typically eight gait phases for a healthy
subject (as shown at the top of Fig. 3): initial contact, loading
response (or pre-swing), mid-stance, terminal stance (or initial
contact), pre-swing, initial swing (not shown in Fig. 3), mid-
swing, and terminal swing [30], [32]. Pathological gait can
be unpredictable and complex, thus some gait phases might
be missing and the time allocation of gait phases might also
be different from a normal gait. This abnormal gait phase
allocation provides a powerful tool for abnormal gait detection.

In the current work we use our previous work on gait phase
detection which utilizes parallel particle filters to estimate a
posterior distribution of gait phases from the observed GCF
data [28]. Our non-parametric Bayesian approach estimates
the unknown number of gait phases that can be best described
from the GCF data. We chose Dirichlet for the gait phase
prior probabilities and Gaussian and inverse Wishart for the
parameters of the infinite Gaussian mixture model (IGMM)
that represents the mixture of gait phases. The model is
estimated by sampling and the popular chinese restaurant
process (CRP) is used for this purpose. In the rest of this
subsection we describe the process of identifying swing and
stance phases from the extracted gait phases.

Although it is straightforward to find healthy gait’s swing
phase (Fig. 3), the swing phase detection in pathological gait
can be challenging. There are several reasons why this can
be the case. First of all, the way smart shoes are worn can
affect the raw GCF sensor signals. Tight shoe laces will change
the raw values recorded by the barometric sensor, leading to
different absolute values even for the same person in different
sessions. Additionally, the stochastic nature of the sampling,
which is used to estimate the distribution of gait phases [28],
can sometimes introduce new gait phases, which are not
eventually represented in the GCF data. Finally, pathological
gait can be so complex that sometimes new gait phases are
explored from the particle filter algorithm. Notice that the gait
phase detection algorithm is not supervised, so the detected
gait phases do not have any labels. Apart from that, various
conditions of neural or muscular impairments, like foot-drop,
can cause fore-foot dragging on the ground [5]. In such cases
new gait phases are likely to be discovered which should be
identified as swing phases, as gait cycles will be otherwise
affected and thus many more parameters.

For all these reasons it is critical to identify which of the
discovered gait phases are corresponding to swing phase. We
need this information as many gait features to be discussed
later, including double support ratio and single support ratio,
need to be evaluated in only swing or stance phases. For gait
phases related to foot-drop, where the affected foot is not
completely in the air, we still consider them as swing phases,
as we don’t want to have the other gait features affected.

As we described earlier, healthy gait swing phase ratio
(portion of time spent on swing phase) is typically around
40% [5] of the gait cycle, as shown in Fig. 3. This may change

depending on the speed of walking. Pathological gait can have
smaller swing phase ratio, as the patient is walking slowly.
Also, in the swing phase, GCF measurements will take very
small positive values (or zero), as pressure from the body is
not present in that limb. Using these two properties we identify
the swing phases from all discovered gait phases according to
the following steps:

We first calculate the average euclidean distance for all
the observations in each gait phase from 0, by taking its 2-
norm. We then sort the gait phases in increasing order based
on their norms. We create a new swing phase, and add the
observations in the sorted gait phase list one by one until the
total number of observations represented from the new swing
phase is more than 10% of all the observations. The 10%
threshold is empirically chosen and gives the desired swing
phase ratio in our dataset. The number of swing phases that
were merged to one is kept as it is used as a gait phase feature.
All of the gait phase features extracted from the gait phases
are described in the following subsection.

C. Gait Phase Features

The gait phase features are calculated from the gait phases
that are extracted by our gait phase detection algorithm (see
Section IV-B and for more details, please refer to [28]). The
expected number of gait phases can be calculated from the
particles and their weights returned from the particle filter
algorithm as K̄ =

∑N
i=1 wiKi, where Ki is the number of

gait phases detected from particle i and wi is its weight. K̄ is
a measure of the complexity of the human gait. Compared with
the eight standard gait phases of a healthy subject, pathological
gait is unpredictable and it may have a different number of
gait phases. For example, post-stroke patients with affected
neurological system may experience foot-drop. This usually
increases the stance phase with circumduction to allow toe
clearance [5], which can lead to toe dragging on the ground,
leading to the gait phase detection algorithm detecting multiple
swing phases. The number of swing phases is another gait
parameter and can be found as described in the previous
section.

The symmetry of gait phases (swing phases) is used as a
measure to quantify how evenly the proportion of time spent in
each gait phase is in a gait cycle (swing). We chose to include
this new type of symmetry measure as it can be easily applied
on the gait phases that were extracted from our Dirichlet
process mixture model [28], given the fact that number of
gait phases is not known a-priori for each subject. This single
gait parameter can estimate the symmetry for any number of
gait phases detected. It is based on the cosine similarity, as
described in the following formula:

cos(θ) =
g · uT

||g|| · ||u||
(1)

where θ is the angle between g and u, with g,u ∈ NK and
K is the number of gait phases (swing phases) found. g is a
vector of size K, where each element in g counts the number
of observations belonging each gait phase (swing phase) within



a gait cycle and u is a vector of size K with all its elements
equal to 1. If the number of observations belonging in each
gait phase are not evenly distributed and thus there are gait
phases with very few observations, the angle between vector
g and u will be higher resulting in lower symmetry. On the
other hand, if the number of observations belonging in one
gait phase are always more than normal it would lower the
symmetry. This could indicate some abnormality, which can
be easily captured by this parameter.

D. Mobility Features

We select four features in the mobility category, double
and single support ratios and stance phase ratio. Cadence is
measured in steps per minute and it is calculated by taking
the total number of gait cycles in one trial devided by the
length of the trial in minutes, it is then multiplied by two to
acount for both feet steps. The double support ratio refers to
the proportion of time in a gait cycle that both feet are in the
stance phase to support the subject, whereas the single support
ratio refers to the proportion of time in a gait cycle that only
one foot touches the ground while the other is in the swing
phase. Stance phase ratio refers to the proportion of time in
a gait cycle that one foot is in the stance phase. All these
features are summarized in Fig. 3.

E. Balance and Strength Features

We select two features in the balance and strength categories
each. In the balance category, the maximum and minimum
force differences between the medial (Meta12, Fig. 1) and
lateral (Meta45, Fig. 1) sides of the forefoot in a gait cycle
can be calculated as

max
i⊆I

FM12(i)− FM45(i), (2)

min
i⊆I

FM12(i)− FM45(i). (3)

These features can evaluate the capability of maintaining
balance. The I refers to the set of indices i that belong to
a gait cycle. Strength is quantified using the maximum force
on the heel during heel strike and on the toe during toe off.
All balance and strength features are normalized by the body
weight to make them comparable among different subjects.

V. MULTI-TASK FEATURE LEARNING FOR GAIT
DISORDER DIAGNOSIS

Based on the extracted gait features, we diagnose gait
disorders by constructing classifiers as functions of these
features. In this work, we use an advanced multi-task feature
learning (MTFL) classification method [34] to build three
classifiers to discriminate gait observations of PD patients,
and stroke patients, respectively, from those of healthy adults
as well as between the gaits of PD and stroke patients. The
selected learning strategies can be more feasible to identify
similarities and differences of gait patterns than classic multi-
class classification algorithms given multi-class classification
methods focus on modeling only the exclusive (or discrim-
inative) features of the different gait classes. Moreover, the

methodology helps in important gait feature selection which
may help in better understanding the key characteristics that
distinguish abnormal geits and help in the target design of
treatment.

MTL is a methodology that can improve the generalization
of multiple related classification tasks by exploiting the task
relationships, especially when the training set for some or
all the tasks is limited. Related tasks are learned in a joint
manner where the knowledge learned from one task may
benefit learning for other tasks. For example, in gait disorder
diagnosis the task of deciding if an observation, represented
by a vector of gait features, is recorded from a PD patient or
healthy subject, may help in diagnosing if another observation
is recorded from a post-stroke patient or a healthy subject.
MTL has been shown theoretically and empirically to be more
effective than learning tasks individually [34]. A widely-used
basic assumption is that the related tasks may share a common
representation in the feature space, which is investigated by
multi-task feature learning (MTFL).

We revisit two of our recently developed MTFL methods
that both rely on a multiplicative decomposition of the model
parameters used for each task, and hence are referred to as
Multiplicative MTFL (MMTFL). Both methods are related
to the widely used block-wise joint regularization MTFL
method [35], but bring out a significant advantage over it
in terms of selecting relevant features for classification. The
new methods can simultaneously select features that are useful
across multiple tasks and the features that might be only
discriminative for a specific classification task.

Given T classification tasks in total, let (Xt ∈ R`t×d,yt ∈
R`t) be the sample set for the t-th task, where Xt is a matrix
containing rows of examples and columns of gait features,
yt is a column vector containing the corresponding labels for
each example, `t is the sample size of task t, and d is the
number of features. We focus on creating linear classifiers
yt = sign(Xtαt) where αt is the vector of model parameters
to be determined. We then define a model parameter matrix
A where each column contains a task’s parameter vector αt,
and thus each row of this matrix corresponds to a gait feature,
i.e., the weights for a gait feature used for each of the T
tasks, which we denote as αj , and j = 1, · · · , d. We choose
a loss function L(αt,Xt,yt) which typically measures the
discrepancy between the prediction Xtαt and the observation
yt for task t. In a classification task, the loss function is
commonly a logistic regression loss.

The widely used block-wise joint regularization MTFL
method solves the following optimization problem for the best
α:

min
αt

T∑
t=1

L(αt,Xt,yt) + λΩ(A), t = 1, · · · , T, (4)

where Ω(A) is a block-wise regularizer, often called the
`1,p matrix norm, that computes

∑d
j=1 ||αj ||p. The common

choice of p is 1, 2 or ∞. Minimizing this `1,p regularizer
can shrink an entire row of A to zero, thus eliminating



or selecting features for all tasks. The hyperparameter λ is
used to play the trade-off between the loss function and
the regularizer. However, the major limitation of the joint
regularization MTFL method is that it either selects a feature
for all tasks, or eliminates it from all tasks, which can be
unnecessarily restrictive. In practice, several tasks may share
features but some features may only be useful for a specific
task. Hence we introduce the following multiplicative MTFL
that addresses this issue.

A family of MMTFL methods can be derived by factorizing
αt = c � βt, where � computes a vector whose j-th
component equals the product of cj and βj

t , and in other
words, ajt = cjβ

t
j . The vector c is applied across tasks,

indicating whether certain features are useful to any of the
tasks, and βt is only relevant to task t. We relax the indicator
vector c (i.e., a binary vector) into a non-negative c so the
optimization problem can be tractable. If cj = 0, then the j-th
feature will not be used by any of the models. If cj > 0, then a
specific βj

t = 0 can still rule out the j-th feature from the t-th
task. We minimize a regularized loss function with separate
regularizers for c and βt as follows for the best models:

min
βt,c≥0

T∑
t=1

L(c,βt,Xt,yt) + γ1
T∑

t=1
||βt||pp + γ2||c||kk,

(5)
where ||βt||pp =

∑d
j=1 |βt

j |p and ||c||kk =
∑d

j=1(cj)
k, which

are the `p-norm of βt to the power of p and the `k-norm of c
to the power of k if p and k are positive integers. The tuning
parameters γ1, and γ2 are used to balance the empirical loss
and regularizers. According to the different choices of p and
k, we can have different levels of sparsity for c and βt.

The method MMTFL(2,1) refers to the case when p = 2
and k = 1 in Eq.(5) and solves a problem as follows:

min
βt,c≥0

T∑
t=1

L(c,βt,Xt,yt) + γ1
T∑

t=1
||βt||22 + γ2||c||1,

(6)
It is widely known that the `2-norm is not a sparsity-inducing
norm, meaning that minimizing it will lead to a vector of many
small entries that are however not exactly zero. Nevertheless,
the `1-norm is a sparsity-inducing norm which creates a vector
of many entries that are exactly zero. In Eq.(6), c is regularized
by a sparsity-inducing norm, hence tending to eliminate many
features from across all of the tasks. This formulation is more
suitable for capturing the feature sharing pattern such that
there exists a large subset of irrelevant features across tasks,
requiring a sparse c, but different tasks share a significant
amount of features from the selected feature pool as indicated
by c, thus requiring a non-sparse βt.

The method MMTFL(1,2) is on the opposite direction when
p = 1 and k = 2 in Eq.(5), and solves the following problem:

min
βt,c≥0

T∑
t=1

L(c,βt,Xt,yt) + γ1
T∑

t=1
||βt||1 + γ2||c||22.

(7)
Eq.(7) is suitable to capture a feature sharing pattern where
none or only a small portion of the features can be removed

because each may be useful for some tasks, thus requiring a
non-sparse c. However, different tasks share a small amount
of these features, thus requiring a sparse βt. In this case, the
`1-norm is applied to βt where the `2-norm is applied to c.

Since it is difficult to prove any relationship between gait
features and actual gait problems; we hypothesize that these
methods can help us identify the important gait features to
recognize abnormal gaits due to the neurological diseases from
otherwise healthy gaits, and may further locate features to dis-
criminate between stroke-induced gaits and PD-induced gaits.
To validate this hypothesis, in our performance evaluation, we
compare the two methods against early MMTFL methods that
are most comparable to the proposed methods and two baseline
methods - single task learning (STL) methods that either use
the `2-norm or the `1-norm to regularize individual αt, which
we referred to as STL-ridge and STL-lasso.

VI. PERFORMANCE EVALUATION

We designed two sets of experiments to evaluate the ef-
fectiveness of proposed methods. In the first set of experi-
ments, we examined the classification Area Under the Curve
(AUC) performance of the models created by different MTFL
methods. In the second set of experiments we studied the
importance of each proposed gait feature and their relevance
to each classification task. In the following, we first describe
our human participant study design and then present the
experiment details.

A. Clinical Study Design

[To Wenlong: Do we need to rename this section and any
references inside to human participant study?]
In order to evaluate the performance of the proposed algo-
rithms, we collected GCF data using the developed smart shoes
from healthy subjects without known walking problems and
PD and post-stroke patients. Experiments with healthy subjects
were conducted in the Mechanical Systems Control Laboratory
at the University of California, Berkeley. The clinical study
with patients was conducted in the William J. Rutter Center
at the University of California, San Francisco (UCSF). The
Committee on Human Research (CHR) at UCSF reviewed and
approved this study. The original purpose of the clinical study
was to examine whether patients could use visual feedback to
direct their rehabilitation training and how was the training
performance compared to traditional rehabilitation training
directed by a physical therapist only. We use these datasets
to evaluate the algorithm developed in this paper. Detailed
experimental design and statistical analysis of the clinical
outcomes are available in [36], [30].

To collect data for this work, the subjects were asked to
walk multiple trials on a flat ground for at least 50 consecutive
steps in their normal walking speeds. The data collected from
five PD patients, three post-stroke patients, and three healthy
subjects are used to test our methodology. The average ages for
each of the groups are 69.2, 53 and 23 years old respectively.
Representative raw data from each of the three groups are
shown in Fig. 2. Gait features are extracted for each gait cycle



and average results are taken for each trial. This generates a
dataset of 180 observations with 21 features each.

B. Classification of Gait Disorders

To classify among stroke, PD and healthy gaits we designed
and evaluated 3 classification tasks: healthy vs stroke gait,
healthy vs Parkinson’s gait and stroke vs Parkinson’s gait.
We compared our two new formulations MMTFL{2,1} and
MMTFL{1,2} with other two standard MMTFL methods.
They are summarized as follows:

• MMTFL{2,1}: formulation (6)
• MMTFL{1,2}: formulation (7)
• MMTFL{1,1}: formulation (5) with p = k = 1
• MMTFL{2,2}: formulation (5) with p = k = 2

In addition, two single task learning (STL) approaches
were implemented as baselines and compared with the MTFL
algorithms. They can be formulated as folows:

min
αt

∑
i

||yit −Xi
tαt||+ λΩ(at), t = 1, · · · , T, (8)

With Xi
t and yit the i-th example and example label for task

t, αt the parameter vector for task t, λ the hyperparameter
used to play the trade-off between the least squares loss
and the regularizer and Ω the selected regularizer. They are
summarized as follows:

• STL lasso: with ||at||1 as the regularizer
• STL ridge: with ||at||22 as the regularizer
Before we run the experiments we used a tuning process

to find appropriate values for the hyperparameters, γ1 and
γ2. Grid search with three-fold cross validation (CV) was
performed to select a proper hyperparameter value in the range
from 10−3 to 103. In all the experiments, hyperparameters
were fixed to the values that yielded the best performance in
the CV.

In the first set of experiments, we partitioned the 180 obser-
vations into a training dataset and a testing dataset according
to a given partition ratio, which was set to be 16%, 20%,
25%, 33% or 50%, respectively in each experiment. For each
partition ratio, 10-fold CV was performed and average results
were reported. The classification performance was measured
using AUC, which measures the total area under the receiver
operating characteristic (ROC) curves. Table II summarizes
the results. We can observe from the results that MTFL
methods always outperform STL methods. Specifically, with
the smallest training set of 16%, the MMTFL{2,1} method
has the best improvement over the STL methods. When the
training partition ratio was increased the AUC performance of
all the methods improved consistently. When it reached 50%,
STL or MTFL methods achieved their highest AUC scores,
respectively. The advantage of MTFL methods in smaller
training set ratios is explained because they can learn the tasks
jointly and not exclusivelly, which is typically done in STL
methods. On the other hand, along with the increase of training
dataset percentage, more training examples were provided to
the classifiers, making the classification easier and thus STL

methods performed closer to MTFL when the partition rate
increases.

Following that, we tested how well the classification gen-
eralizes when a new subject’s gait was tested against a
model built by gaits of other patients and healthy subjects.
Specifically, the same classification tasks were performed with
the same classification methods, but the testing data were from
a single subject and all the data from the rest of subjects
were used to train the corresponding model. We repeated
this for each individual patient and healthy subject and the
performance results are summarized in Table II, where average
AUC is reported across all tasks and per task separately. PD,
ST and H refer to the gait from PD patients, post-stroke
patients and healthy subjects, respectively.

As can be observed from Table II, MTFL methods per-
formed better than STL methods consistently. We also observe
that there were some easier tasks (e.g., stroke vs healthy),
where STL AUC scores were almost as good as MTFL ones,
and some more challenging tasks (e.g., PD vs healthy), where
STL AUC scores were worse compared to any other task.

To further study how the two new MTFL formulations
perform on each task we report the confusion matrices of all
the three tasks for MMTFL{1,2} and MMTFL{2,1} in Table
III and IV respectively. Each row in the matrix corresponds
to what gait was tested, while a column corresponds to what
gait class the algorithm predicted. Between these two new
formulations, MMTFL{1,2} performed better with PD, as out
of the 83 PD gaits that were tested MMTFL{1,2} predicted
5 of them to be healthy gaits, i.e. false negatives, compared
to 11 healthy gaits that were predicted by MMTFL{2,1}.
MMTFL{2,1} performed better with stroke, as out of the 31
PD gaits that were tested MMTFL{2,1} predicted 3 of them
to be healthy gaits, compared to 11 healthy gaits that were
predicted by MMTFL{1,2}. Overall, MMTFL{2,1} performed
better, as it also achieved beter false positive rates. Specifically
MMTFL{2,1} predicted only 2 PD gaits out of 64 healthy
gaits and 3 stroke giats out of the 83 PD gaits, compared
to 5 and 7 predicted by MMTFL{1,2} in the same tasks
respectivelly.

The last set of experiments aimed to report the prediction
results per patient, in order to give complete information of the
performance of each subject’s gait. Table V summarizes the
per patient confusion matrices generated from MMTFL{2,1}
for the three classification tasks. The first column indicates
each subject’s disease or healthy condition and their identi-
fication numbers (ID) are given in the second column. The
last two columns give number of times a trial was predicted
to be PD, stroke or healthy subjects. The summation of these
two numbers in each row corresponds to the total number
of trials that were recorded for each subject. From the table
we observe that stroke patient 4 was almost always predicted
either healthy subject or PD patient, which means that her gait
patterns were much different from other post-stroke patients.
This patient was a 33 year old female with minor stroke,
which explains the similarity of her gait to a healthy, when
compared to other older stroke patients. This wrong prediction



Random Partition Testing a new subject
Method 16% 20% 25% 33% 50% All tasks PD vs H ST vs H ST vs PD

MMTFL{2,2} 0.93±0.03 0.97±0.02 0.97±0.01 0.98±0.01 0.99±0.01 0.949 0.880 0.994 0.967
MMTFL{1,1} 0.94±0.04 0.96±0.02 0.98±0.01 0.98±0.01 0.99±0.01 0.979 0.982 0.993 0.960
MMTFL{2,1} 0.95±0.03 0.97±0.02 0.98±0.01 0.98±0.01 0.99±0.01 0.978 0.960 0.994 0.979
MMTFL{1,2} 0.93±0.04 0.96±0.03 0.98±0.01 0.98±0.01 0.99±0.01 0.975 0.983 0.983 0.967

STL ridge 0.90±0.03 0.94±0.03 0.95±0.02 0.97±0.01 0.98±0.01 0.916 0.831 0.971 0.940
STL lasso 0.92±0.03 0.96±0.02 0.97±0.02 0.98±0.01 0.99±0.00 0.944 0.893 0.977 0.961

TABLE II: AUC performance of different methodologies
PD Healthy

PD 78 5
Healthy 5 59

Stroke Healthy
Stroke 20 11

Healthy 0 64

Stroke PD
Stroke 25 6

PD 7 76

TABLE III: Confusion Matrices of MMTFL{1,2} for the 3 tasks, true labels in rows, predicted in columns

PD Healthy
PD 72 11

Healthy 2 62

Stroke Healthy
Stroke 28 3

Healthy 0 64

Stroke PD
Stroke 24 7

PD 3 80

TABLE IV: Confusion Matrices of MMTFL{2,1} for the 3 tasks, true labels in rows, predicted in columns
Subject Predicted

Disease ID PD Healthy
PD 1 16 0
PD 2 11 6
PD 3 13 5
PD 5 19 0
PD 6 13 0

Healthy 7 1 22
Healthy 8 1 21
Healthy 9 0 19

Subject Predicted
Disease ID Stroke Healthy
Stroke 4 4 3
Stroke 10 8 0
Stroke 11 16 0

Healthy 7 0 23
Healthy 8 0 22
Healthy 9 0 19

Subject Predicted
Disease ID Stroke PD

PD 1 0 16
PD 2 0 17
PD 3 1 17
PD 5 2 17
PD 6 0 13

Stroke 4 1 6
Stroke 10 7 1
Stroke 11 16 0

TABLE V: Confusion Matrices of MMTFL{2,1} for the 3 tasks per patient

may also be related to the limited number of stroke paitents
that participated in this study.

Given that MMTFL{2,1} performs best in general, the
tested data seem to follow the assumption under which
MMTFL{2,1} was designed. Specifically, across all three tasks
there exists a large subset of irrelevant sensing features, requir-
ing a sparce c, but different tasks share a significant amount
of features from the selected fetature pool as indicated by c.
In other words, there are some specific sensing features that
help identify the neurological disorders. In the next subsection
we are going to present the selected features for each method
used in this paper.

C. Identification of Important Gait Features

Important gait features identified from gait disorder clas-
sification may help better understand the key characteristics
that distinguish abnormal gait paterns among different gait
disorders and healthy gait. They may also help the target
design of treatment and evaluation of rehabilitative progress.
In this subsection we present the important gait features that
were identified by the used methods in our experiments, for
each of the three classification tasks that were evaluated in
subsection VI-B. With the important gait features we can
understand which of the proposed gait features are more
important to classify GCF data in stroke, PD or healthy classes.
As described in section V for the MMTFL methods, we have
αt = c�βt. The c vector is used across all tasks, indicating
if a feature is useful for any of the tasks, and vector βt is
only for task t. Vector αt is the vector of model parameters
for task t. In Fig. 4 we plot all vectors c for each MMTFL
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Fig. 4: Feature selection vector c from all MMTFL methods

model as progress bars to show the importance of each feature.
In Fig. 5, 6, 7 we plot the learned task parameter vectors
αt for each MMTFL and STL method for each of the three
classification tasks.

Based on the general characteristics of Hemiplegic gait,
most commonly seen in stroke, and Parkinsonian gait [5] we
have the following observations:

• The most important feautre is the maximum force at
the right toe and the second most selected feature is
maximum force at the left heel. These two are strength in-
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Fig. 5: Task parameter vector αt in the PD vs. healthy gait
classification task.

dicators during toe off and heel strike gait phases. Patients
with neurological related diseases, like stroke and PD,
may experience weak muscle strength [5]. Circumduction
of the affected leg in stroke can also produce different
toe contact force signatures. Additionally, slow walking
which is characteristic of both stroke and PD gait can
have reduced force levels at the toe during push-off.

• Minimum force difference between medial and lateral
sides of the metatarsophalangeal joints at the forefoot (see
Sec. IV-E) at the left foot is another important feature,
which is an indicator of balance. Rigidity, meaning stiff
or inflexible muscles, is one of the main symptoms of
PD, alongside tremor and slowness of movement. There
is usually little or no arm swing to help in balancing the
individual [5]. PD patients usually have reduced balance
and the algorithm has identified this as an important
feature.

• Cadence and double support ratio are mobility gait pa-
rameters and they are also important in distinguishing
healthy vs pathological gait. As discussed before a com-
mon characteristic of stroke and PD subjects is their slow
walking. This in turn affects the double support ratio.
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Fig. 6: Task parameter vector αt in the Stroke vs. healthy gait
classification task.

• Symmetry of swing phases is found to be another impor-
tant factor to distinguish pathological gaits. As discussed
before, this parameter captures how evenly the swing
gait phases are represented in the subject’s gait. Circum-
duction of the affected leg can introduce additional gait
phases and thus uneven representation of the detected
swing phases.

All the rest features are not important and discarded by most
of the models, except MMTFL{2,2}, which shows reduced
sparsity. These findings are consistent with the literature about
the characteristics of PD and stroke patient’s gait [5].

VII. CONCLUSION

In this work, we presented the design of an algorithmic
framework for gait disorder diagnosis to advance smart gait
rehabilitation. Gait features were developed for different cat-
egories including mobility, balance, strength and gait phases.
MTFL, an advanced classification method, was used to train
the different classification tasks that can classify subject’s gait.
Data from Parkinson’s and stroke patients, along with healthy
subjects were used to evaluate the proposed methods.
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Fig. 7: Task parameter vector αt in the Stroke vs. PD gait
classification task.

The proposed gait features successfully captured the under-
lying properties of each disease. MTFL was able to construct
accurate classifiers based on the given gait parameters to
distinguish abnormal gaits. Also it selected the most impor-
tant gait parameters for this classification task, ignoring the
rest. Selected features captured consistent characteristics of
each disease with previous studies. This study demonstrated
the potential to automate gait analysis of multiple common
gait disorders which can benefit the medical professionals
and patients with improved and targeted treatment plans for
rehabilitation.

As future work, we intend to provide more advanced gait
disorder diagnosis tools for more complex gait disorders that
are difficult for the clinicians to detect and assist their assess-
ment process in the clinic, evaluate these analytic methods and
systems with properly designed clinical studies and design new
methods for rehabilitation progress evaluation.
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