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ABSTRACT

In Arabidopsis thaliana, the MOS4-ASSOCIATED COMPLEX (MAC) is required
for defense and development. The evolutionarily conserved, putative RNA
helicase MACY is a component of the Arabidopsis MAC and the human MAC7
homolog, Aquarius, is implicated in pre-mRNA splicing. Here, we show that
mac7-1, a partial loss-of-function mutant in MAC7, and two other MAC subunit
mutants, mac3a mac3b and pri1 pri2 (pleiotropic regulatory locus), exhibit
reduced microRNA (miRNA) levels, indicating that MAC promotes miRNA
biogenesis. The mac7-1 mutant shows reduced primary miRNA (pri-miRNA)
levels without affecting miRNA gene (MIR) promoter activity or the half-life of pri-
miRNA transcripts. As a nuclear protein, MAC7 is not concentrated in dicing

©2017 American Society of Plant Biologists. All Rights Reserved
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bodies, but it affects the localization of HYPONASTIC LEAVES1 (HYL1), a key
protein in pri-miRNA processing, to dicing bodies. Immunoprecipitation of HYL1
retrieved eleven known MAC subunits, including MAC7, indicating association
between HYL1 and MAC. We propose that MAC7 links MIR transcription to pri-
miRNA processing. RNA-seq analysis showed that down-regulated genes in
MAC subunit mutants are mostly involved in plant defense and stimulus
responses, confirming a role of MAC in biotic and abiotic stress responses. We
also discovered global intron retention defects in mutants in three subunits of
MAC, thus linking MAC function to splicing in Arabidopsis.

INTRODUCTION

MicroRNAs (miRNAs) are a class of small RNAs that are approximately 20 to 24
nucleotides in length and act as post-transcriptional regulators of gene
expression in both animals and plants. MiRNAs are processed from hairpin-
containing precursors, primary miRNAs (pri-miRNAs), by RNase Il family
enzymes. A mature miRNA is loaded into an Argonaute protein to form a
silencing complex and guides this silencing complex to target RNAs through
sequence complementarity with target RNAs to result in their degradation or

translational repression (Rogers and Chen, 2013).

The plant miRNA pathway has been intensively studied in the past decade. Early
studies identified key proteins with catalytic activities, including RNA polymerase
[l (Pol Il) that transcribes miRNA genes (MIR) (Xie et al., 2005; Zheng et al.,
2009), DICER-LIKE1 (DCL1), an RNase Il family enzyme excising miRNAs from
stem-loop precursors, HUA ENHANCER1 (HEN1), a methyltransferase
stabilizing miRNAs by 2’-O-methylation (Park et al., 2002; Li et al., 2005; Yu et al.,
2005; Yang et al., 2006b; Yu et al., 2010), and ARGONAUTE 1 (AGO1), the
enzyme mediating miRNA-guided target RNA cleavage (Baumberger and
Baulcombe, 2005; Ji et al., 2011; Carbonell et al., 2012; Arribas-Hernandez et al.,
2016). Many factors that assist in the transcription and processing steps of
miRNA biogenesis have been identified (Rogers and Chen, 2013; Achkar et al.,
2016). Pol ll-mediated MIR transcription requires the transcriptional coactivator
Mediator (Kim et al., 2011) and the transcription factor NEGATIVE ON TATA
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LESS 2 (NOT2) (Wang et al., 2013), and is regulated by CYCLIN-DEPENDENT
KINASES (CDKs) (Hajheidari et al., 2012). In addition, the DNA binding protein
CELL DIVISION CYCLE 5 (CDC5) (Zhang et al., 2013b) and Elongator (Fang et
al., 2015) also regulate MIR transcription by Pol Il.

While interacting with Pol II, NOT2, CDC5 and Elongator also interact with DCL1
and several DCL1-interacting proteins, and probably recruit them to pri-miRNAs
to facilitate their processing (Wang et al., 2013; Zhang et al., 2013b; Fang et al.,
2015). During the processing of miRNA precursors, DCL1 forms a dicing
complex with the dsRNA binding domain protein HYPONASTIC LEAVES1
(HYL1/DRB1), and the zinc finger protein SERRATE (SE) (Han et al., 2004;
Kurihara and Watanabe, 2004; Kurihara et al., 2006; Yang et al., 2006a; Dong et
al., 2008). DCL1 and HYL1 are enriched in subnuclear bodies, referred to as
dicing bodies, which are considered to be sites of miRNA precursor processing
(Han et al., 2004; Fang and Spector, 2007; Song et al., 2007). Many other
proteins also interact with DCL1 directly or indirectly in miRNA biogenesis, such
as Cap-Binding Proteins (CBPs) (Laubinger et al., 2008; Raczynska et al., 2014),
the forkhead-associated domain containing protein DAWDLE (DDL) (Yu et al.,
2008), the G-patch domain containing RNA binding protein TOUGH (TGH) (Ren
et al., 2012), and the WD-40 protein PLEIOTROPIC REGULATORY LOCUS 1
(PRL1) (Zhang et al., 2014). In addition, several proteins act in MiRNA
biogenesis through the regulation of HYL1 phosphorylation, such as C-
TERMINAL DOMAIN PHOSPHATASE-LIKE (CPL) proteins and a K homology
(KH) domain protein REGULATOR OF CBF GENE EXPRESSION 3 (RCF3)
(Manavella et al., 2012; Karlsson et al., 2015). Several other factors, including
two core members of the THO/TREX complex THO2 and EMU (Furumizu et al.,
2010; Francisco-Mangilet et al., 2015), and the RNA binding protein MODIFIER
OF SNC1, 2 (MOS2) (Wu et al., 2013) do not seem to interact with any known

dicing complex components, but still affect miRNA biogenesis.
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Among the known miRNA biogenesis factors, CDC5 and PRL1 belong to the
same complex, the MOS4-associated complex (MAC). MAC is a highly
conserved complex among eukaryotes, with its orthologs known as the
NINETEEN COMPLEX (NTC) or Prp19 complex (Prp19C) in yeast and humans.
The Arabidopsis thaliana MAC, yeast and human NTC/Prp19C all associate with
the spliceosome and are predicted to share conserved functions in splicing in all
three systems (Monaghan et al., 2009; Johnson et al., 2011; Koncz et al., 2012;
Deng et al., 2016). Arabidopsis CDC5 is a MYB-related transcription factor and
PRL1 is a conserved nuclear WD-40 protein. As core components of MAC, they
regulate plant development and immunity through molecular mechanisms that
remain unclear (Nemeth et al., 1998; Lin et al., 2007; Palma et al., 2007). They
both promote miRNA biogenesis but may have distinct molecular functions.
CDC5 binds to MIR promoters and interacts with DCL1 and SE to enhance
miRNA biogenesis (Zhang et al., 2013b), while PRL1 may stabilize pri-miRNAs
through its RNA binding activity and enhance DCL1 activity (Zhang et al., 2014).
Other Arabidopsis MAC subunits include two homologous proteins MAC3A and
MAC3B (MAC3B was shown to have E3 ligase activity in vitro), MAC7/Aquarius
(an RNA helicase), and more than ten other members (Wiborg et al., 2008;
Monaghan et al., 2009; Monaghan et al., 2010; Koncz et al., 2012).

Arabidopsis MAC7 is a putative RNA helicase, which is highly conserved in
eukaryotes. The human MAC7 homolog is the intron-binding protein Aquarius
(IBP160/AQR), which has ATPase and RNA helicase activities. It associates with
the spliceosome and contributes to efficient precursor-mRNA splicing in vitro
(Hirose et al., 2006; De et al., 2015). Recent publications show that EMB-4, the
Caenorhabditis elegans homolog of MAC7, physically interacts with germline
AGOs. It participates in the nuclear RNAiI pathway and maintains the
homeostasis of germline transcriptome in worms (Akay et al., 2017; Tyc et al.,
2017). MAC7 was predicted to be an essential gene for embryo development

(EMB gene) in Arabidopsis based on sequence similarity with EMB genes found
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in other eukaryotes (Tzafrir et al., 2004). However, the molecular function of

MAC7 remains unknown.

In this study, we performed a genetic screen using a miRNA activity reporter line,
the pSUC2:amiR-SUL (amiR-SUL) transgenic line (de Felippes et al., 2011). The
expression of SUCROSE-PROTON SYMPORTER 2 (SUC2) promoter-driven
artificial miRNA targeting the CHLORINA42 (CH42) gene creates a bleached
phenotype along the leaf veins. This bleaching of mesophyll cells caused by the
silencing effects of the artificial miRNA results in an easily scorable phenotype
reflecting miRNA activities in plants (de Felippes et al., 2011). From this screen,
we identified a point mutation in MAC7, mac7-1, as a miRNA activity suppressor
mutant. We showed that MAC7 affects miRNA accumulation through promotion
of pri-miRNA biogenesis in Arabidopsis. We found that in other MAC subunit
mutants, including mac3a mac3b and pri1 prl2 double mutants, miRNA
biogenesis is also compromised, indicating that MAC participates in miRNA
biogenesis as a complex. Consistent with this, HYL1 immunoprecipitation mass
spectrometry analyses revealed that HYL1 associates with MAC in vivo. In
addition, we uncovered global intron retention defects in mac7-1, mac3a mac3b
and prl1 prl2 mutants through RNA-seq analysis. Our molecular characterization
of MAC7 and its associated MAC components revealed their functions in miRNA
biogenesis and pre-mRNA splicing, which could possibly explain their roles in

plant development and stress responses.

RESULTS

A silencing suppressor mutant exhibits pleiotropic phenotypes and
reduced miRNA levels

To identify new players of the miRNA pathway, we performed an ethylmethane
sulfonate (EMS) mutagenesis screen using the amiR-SUL line (de Felippes et al.,
2011). From this screen, we identified a mutant, which we named mac7-1 based
on subsequent characterization (amiR-SUL mac7-1) with a reduced area of

bleaching along the veins, indicating compromised miRNA activity (Figure 1A).



170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

The mutant has pleiotropic phenotypes, such as pointed leaves, reduced root
length, reduced number of lateral roots, smaller plant stature and reduced fertility
(Figure 1B, C and Supplemental Figure 1). We crossed amiR-SUL mac7-1 with
wild type (Col-0) plants to remove the amiR-SUL transgene. We found that the
mac7-1 mutant shows the same range of phenotypes in the Col-0 background as

in the amiR-SUL background (Figure1B, C and Supplemental Figure 1).

Because the mutant shows compromised amiR-SUL activities, we speculated
that reduced miRNA accumulation could be a reason. We performed RNA gel
blot analyses to detect amiR-SUL as well as many endogenous miRNAs. We
found that amiR-SUL, miR156, miR171, miR390 and many other miRNAs
showed reduced accumulation in both inflorescences and seedlings. The
reduction in miRNA abundance was small but reproducible in several biological
replicates (Figure 1D and Supplemental Figure 2). To assess the global influence
of the mutation on small RNAs, we also performed small RNA-seq with Col-0 and
mac7-1 seedlings. We found that 21-nt and 24-nt small RNAs, which represent
the two most abundant small RNA size classes, showed a significant global
reduction in the mac7-1 mutant. miRNAs showed a slight global reduction in the
mac7-1 mutant but the reduction was not statistically significant (Figure 1E and
Supplemental Data set 1). Most miRNAs that were found to show reduced
abundance by RNA gel blotting also had lower levels in mac7-1 in small RNA-
seq, although a few miRNAs did not (e.g. miR156, miR164) (Supplemental
Figure 2C). The minor inconsistency between RNA gel blotting and small RNA-
seq could be caused by technical limitations in small RNA-seq, e.g. bias in RNA
adaptor ligation or PCR amplification. Since small RNA-seq entails more
procedures that are prone to bias, we believe that the RNA gel blotting results

are more accurate.

We examined the expression of CH42 and eight known miRNA target genes in

amiR-SUL and amiR-SUL mac7-1. Opposite to the reduced miRNA accumulation,
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the expression levels of CH42 and seven endogenous miRNA targets were

upregulated in amiR-SUL mac7-1 (Figure 1F).

The reduced bleaching phenotype in amiR-SUL mac7-1 might be attributed to
other factors other than, or in addition to, reduced amiR-SUL activity, e.g.
enhanced transcription of CH42. We performed RT-gPCR and immunoblotting to
examine CH42 mRNA and protein levels, respectively, in Col-0 and mac7-1 to
determine whether an amiR-SUL-independent effect of the mac7-1 mutation was
present. While CH42 mRNA and protein levels were both increased in amiR-SUL
mac7-1 in comparison to amiR-SUL, no difference was found between Col-0 and
mac7-1 (Supplemental Figure 3), indicating that the reduced bleaching
phenotype and elevated CH42 expression in amiR-SUL mac7-1 was most likely

caused by changes in amiR-SUL activity only.

A point mutation in MAC?7 is responsible for the suppression of amiR-SUL-
induced silencing

Through genome re-sequencing of pooled F2 mutants from a backcross between
amiR-SUL mac7-1 and the parental amiR-SUL line, we found a C-to-T nucleotide
transition that changes a conserved glutamic acid to lysine (E1131K) in the open
reading frame (ORF) of At2g38770 (MAC7/EMB2765) (Figure 2A). To determine
whether this mutation was the causal mutation that suppressed amiR-SUL, we
first examined the linkage between the mutation and the visible phenotype. In the
F2 population of the backcross, we identified 84 plants with the mac7-1
phenotype, i.e., reduced vein-centered leaf bleaching. These plants were
genotyped for the C-to-T mutation in MAC?7. All 84 plants were found to be
homozygous for this mutation, and thus the amiR-SUL suppressor phenotype

was linked with this mutation.

Next, to confirm that the causal mutation of the suppressor was in MAC7, we
generated MAC7 promoter driven MAC7-GFP and MAC7-mCherry fusion

constructs, and introduced them into mac7-17 in amiR-SUL and Col-0
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backgrounds. pMAC7:MAC7-GFP or pMAC7:MAC7-mCherry fully complemented
the morphological defects (Figure 2B) and pMAC7:MAC7-mCherry restored the
accumulation of miRNAs of the mutant in both inflorescences and seedlings
(Figure 2C, D). Thus, the causal mutation in the suppressor was in MAC7 and we

named this mutation mac7-1.

To obtain another mac7 allele, we ordered a T-DNA insertion line, SALK 129044
(which we named mac7-2) (Supplemental Figure 4A). Genotyping mac7-2 in the
progeny of a selfed mac7-2/+ plant revealed 2:1 segregation between
heterozygous and wild-type plants (Supplemental Table 1), suggesting that
mac7-2 homozygous plants were embryo lethal. Unlike wild-type siliques that
contained only normal-looking green seeds, siliques from heterozygous (mac7-
2/+) plants had aborted seeds that appeared pale white (Supplemental Figure
4B). An approximate 3:1 ratio between normal seeds and aborted seeds were
found (Supplemental Table 1), which was a strong indication of embryo lethality
of the homozygous mutant. In addition, the viability of pollen from mac7-2/+
plants appeared normal (Supplemental Figure 4C). The above evidence
demonstrated that mac7-2 is a recessive, embryo-lethal mutation. As mac7-1
homozygous plants are viable, this mutation is likely a partial loss-of-function

allele.

The MAC7 gene encodes an RNA helicase conserved from yeast to animals and
plants. The structure of the human MAC7 ortholog, Aquarius, has been
determined (De et al., 2015). Based on homology modeling, we predict that the
plant MAC7 also has a long N-terminal domain composed of armadillo repeats
(ARM), which is crucial for protein—protein interactions, a stalk and a p-barrel
domain, which has an architectural role, a thumb and a pointer domain, which
may participate in interactions with other proteins, and two RecA-like domains
(RecA1 and RecA2), which form a motor module required for ATP hydrolysis,
RNA unwinding and the coupling of these two processes. The mac7-1 mutation

leads to a change of a highly conserved amino acid in the RecA1 domain, which
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very likely affects the core functions of this protein in ATP-binding/hydrolysis and
nucleic acid unwinding (Figure 2A and Supplemental Figure 5) (De et al., 2015;
Ozgur et al., 2015).

MAC7 promotes pri-miRNA levels without affecting MIR promoter activities
or pri-miRNA transcript half-life

To determine the molecular mechanisms of MAC7 in miRNA biogenesis, we
examined the levels of pri-miRNAs. We found that the levels of pri-miRNAs from
many MIR genes were reduced in the mac7-1 mutant (Figure 3A). This reduction
could be attributed to reduced transcription of MIR genes or enhanced pri-miRNA
degradation or processing. We first examined whether mac7-1 affects MIR
promoter activities. We crossed mac7-1 to a miRNA promoter reporter line,
pMIR167a:GUS, in which the transgene was inserted into a single genomic locus.
We then examined GUS activity by staining and GUS transcripts level by real-
time RT-PCR in wild-type and mac7-1 plants, in which the transgene was
homozygous. There was no detectable difference between wild type and mac7-1
in terms of GUS activity or GUS transcripts level, indicating that mac7-1 did not
affect miRNA promoter activities (Figure 3B). We also examined whether the
reduction of amiR-SUL level in mac7-1 was due to reduced SUC2 promoter
activity. If this was the case, we would expect the endogenous SUC2 RNA to be
reduced in abundance in mac7-1. Real-time RT-PCR revealed that SUC2 mRNA
levels did not change significantly in mac7-1, implying that SUC2 promoter
activity was not affected by mac7-1 and the reduction in amiR-SUL levels was
not due to impaired SUC2 promoter activities in the mutant (Supplemental Figure
6A).

Next, we measured the half-lives of pri-miRNAs in amiR-SUL and mac7-1 amiR-
SUL. Seedlings were treated with the transcription inhibitor cordycepin, and
RNAs were isolated at different time points. The levels of pri-amiR-SUL, pri-
miR167a, and pri-miR172a, were determined by real-time RT-PCR. Similar half-

lives were found for these pri-miRNAs in the two genotypes (Figure 3C).
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It is also possible that MAC7 affects miRNA biogenesis indirectly through
affecting the expression of key miRNA biogenesis factors. To test this possibility,
we determined transcript and protein levels of several key miRNA biogenesis
factors [i.e., DCL1, HYL1, SE, AGO1, HEN1 (transcript only)] in amiR-SUL and
amiR-SUL mac7-1. No differences were detected for any of the genes in the two

genotypes (Supplemental Figure 6B, C, D).

MACY7 is a nuclear protein interacting with other MAC components, which
are also required for miRNA biogenesis

To further characterize the molecular functions of the MAC7 protein, we
examined the subcellular localization of fluorescent protein tagged MACTY.
Transgenic plants expressing p35S:YFP-MAC7 or pMAC7:MAC7-GFP exhibited
nuclear GFP signals (Figure 4A), which is consistent with the presence of a
predicted Nuclear Localization Signal (NLS) in MAC7 (Figure 2A). To determine if
MAC?7 localized in dicing bodies, we transiently expressed YFP-MAC7 and
DCL1-YFP in tobacco leaves and compared their expression patterns. While
DCL1-YFP showed weak nucleoplasmic signals and strong dicing body signals,
YFP-MACT7 exhibited dispersed distribution in the nucleoplasm and was absent
from the nucleolus (Supplemental Figure 7A). When YFP-MAC7 was co-
expressed with TagRFP-HYL1, signals from the two proteins overlapped in the
nucleoplasm while only TagRFP-HYL1 was found concentrated in dicing bodies
(Supplemental Figure 7B). Immunoblot analyses confirmed the expression of
GFP- or YFP-tagged MACY in Arabidopsis transgenic lines (Supplemental Figure
7C) and in infiltrated tobacco leaves (Supplemental Figure 7D). These data
suggest that MAC7 does not display the dicing body patterns as DCL1 and HYL1
do. The dispersed nucleoplasmic distribution of MAC7 suggests broader roles

than miRNA biogenesis.

To uncover interacting partners of MAC7 and to determine whether MAC7

interacts with any known miRNA pathway proteins, we immunoprecipitated (IP)
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MAC?7 and performed mass spectrometry (MS) analyses. In one experiment, IP
was performed with Col-0 plants using anti-MAC7 antibodies with pre-immune
IgG as a negative control. In another experiment, IP was performed using
Chromotek-RFP-Trap with a pMAC7:MAC7-mCherry mac7-1 line in which the
transgene rescued the mutant phenotypes; IP was performed using the same
RFP-Trap with Col-0 as a negative control. The two independent experiments
consistently pulled down all major MAC components, demonstrating that MAC7
was part of the MAC (Supplemental Table 2). An overlapping set of proteins was
identified from our MAC7 IP-MS and from published MOS4 IP-MS (Figure 4B and
Supplemental Table 2) (Monaghan et al., 2009). Besides the known MAC
subunits (Monaghan et al., 2009), seven additional proteins were discovered as
potential MAC7-associated proteins (Supplemental Table 2), but the association
between these proteins and MAC7, or whether they also belong to MAC, needs

to be further investigated.

Previous studies showed that the MAC subunits CDC5 and PRL1 promote
miRNA biogenesis (Zhang et al., 2013b; Zhang et al., 2014). To further confirm
the interactions between MAC7 with these two MAC subunits that are also
miRNA  biogenesis factors, we performed Bimolecular Fluorescence
Complementation (BiFC) analysis, and found that MAC7 interacted with CDC5
and also interacted, albeit weakly, with PRL1 (Figure 4C). Similar BiFC studies
did not reveal interactions between MAC7 and HYL1 or DCL1 (Figure 4C).

These results and our work on MACY raise the possibility that MAC plays a role
in miRNA biogenesis, acting as a complex. To test this hypothesis, we examined
whether core subunits of MAC are required for miRNA biogenesis. Arabidopsis
MAC3B is a U-box E3 ubiquitin ligase, and is a core MAC component (Monaghan
et al., 2009). MAC3B has a homolog, MAC3A, which shares 82% identity with
MAC3B at the amino acid level (Monaghan et al., 2009). PRL1 is also a core
member of MAC. It has a homolog PRL2, which is expressed at a much lower

level than PRL1 (Weihmann et al., 2012). Previous studies showed that a pr/1

11
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single mutant has reduced miRNA levels but a mac3b mutant (SALK_050811)
does not (Zhang et al., 2014). Several siRNAs, ta-siRNA255 and miRNA171
were found to show reduced accumulation in the mac3a mac3b (SALK_089300
and SALK_050811) double mutant (Zhang et al., 2013a). Here we examined the
morphological and molecular phenotypes of two double mutants, mac3a mac3b
and prl1 pri2. Similar to other MAC subunit mutants, mac3a mac3b and prl1 pri2
exhibited pleiotropic developmental phenotypes (Figure 5A). RNA gel blot
analyses showed that miR156, miR166, and miR171 all exhibited reduced
accumulation in these double mutants (Figure 5B). We also performed small
RNA-seq with Col-0 and pri1 pri2 seedlings to assess the global changes of
small RNAs in prl1 pri2. Similar to those of mac7-1, 21-nt and 24-nt small RNAs
showed a global reduction in prli1 pri2. Unlike in mac7-1, a significant global
reduction in miRNA levels was also found in prl1 pri2. (Figure 5C and
Supplemental Data Set 1). This is consistent with mac7-1 being a weak allele
representing a partial compromise in MAC function. RT-gPCR analyses revealed
that the levels of pri-miRNAs were also reduced in mac3a mac3b and pri1 pri2
(Figure 5D). Thus, the molecular phenotypes of mac3a mac3b and pri1 pri2

mutants were similar to those of mac7-1.

MAC interacts with HYL1

As CDC5 and PRL1 interact with dicing complex components (Zhang et al.,
2013b; Zhang et al., 2014), it is possible that MAC7, or the entire MAC,
associates with the dicing complex. To explore the interactions between the
dicing complex and MAC, we performed HYL1 IP-MS. In one experiment, IP was
performed with a p35S:HYL1-YFP line and the negative control p35S:YFP
transgenic line and Col-0 using Chromotek-GFP-Trap. In another experiment, IP
was performed with Col-0 and the negative control hy/71-2 using anti-HYL1
antibodies. Eleven MAC subunits, including MAC7, were found in both IP-MS
experiments (Supplemental Table 3), indicating that HYL1 associates with MAC

in vivo.

12
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The interactions between HYL1 and MAC raised the possibility that MAC7 could
be involved in pri-miRNA processing through affecting the dicing body
localization of HYL1. We crossed mac7-1 to a HYL1-YFP transgenic line and
quantified dicing body numbers in wild type and mac7-1. The number of HYL1-
YFP-positive dicing bodies was significantly reduced in mac7-1 compared with
wild type plants (Figure 6A,B), demonstrating that MAC7 is required for the
proper localization of HYL1 in dicing bodies, which might partially explain the

compromised miRNA levels in the mac7-1 mutant.

Down-regulated genes in mac mutants are significantly related to stress
responses

We also explored whether MAC plays a role in RNA metabolism in general. We
performed RNA-seq with Col-0, mac7-1, mac3a mac3b, and prl1 pri2 seedlings
in two biological replicates. Differentially expressed genes (DEGs) were identified
between each mutant and wild type with fold change of 1.5 or more. Among the
three mutants, we identified 2,007 and 2,268 down-regulated (hypo-DEGs) and
up-regulated (hyper-DEGs) genes, respectively. 189 hypo-DEGs and 222 hyper-
DEGs were commonly found among mac7-1, mac3a mac3b and prl1 pri2 (Figure
7 and Supplemental Data Set 2). The overlap of the DEGs among these three
mutants was significant (SuperExactTest, p = 0), indicating that these MAC
components function as a complex and regulate the same group of genes. The
large portion of non-overlapped DEGs indicates that each subunit may also have

its own function independent of MAC.

To understand the biological functions of MAC, we examined the Gene Ontology
terms enriched in the common DEGs (Gene Ontology, 2015). An enrichment of
genes involved in stress responses, including stimulus responses, plant defense
or immune responses was found in the hypo-DEGs. As for the hyper-DEGs, GO
terms in various small molecule biosynthetic and metabolic processes were
enriched (Figure 7 and Supplemental Data Set 3). Many more GO terms related

to stress responses were identified from the hypo-DEGs than the hyper-DEGs,
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implying that MAC tends to activate the expression of stress response genes.
The results are consistent with previous findings showing that mac3a mac3b and
prl1 pri2 double mutants are more susceptible to pathogen infection (Monaghan
et al., 2009; Weihmann et al., 2012). To test whether MAC? is also required for
plant immunity, mac7-1 was infected with Pseudomonas syringae p.v. maculicola
(P.s.m.) strain ES4326 together with Col-0 and pr/71-2. The prl1 mutants are more
susceptible to pathogen infection and therefore served as a positive control
(Weihmann et al., 2012). Pathogen growth was assayed three days after
bacterial inoculation. While P.s.m. ES4326 accumulated to higher levels in prl/1-2
than in wild type, mac7-1 was similar to wild type in terms of bacterial titer
(Supplemental Figure 8A). Perhaps this was due to mac7-1 being a weak allele,
in which the magnitude of downregulation of the hypo-DEGs was small

compared to that in other mac mutants (Supplemental Figure 8B).

MAC subunits affect pre-mRNA splicing

Homologs of MAC in yeast and mammals play a critical role in pre-mRNA
splicing. In Arabidopsis, we lack evidence for a widespread role of MAC in
splicing; only the splicing patterns of several genes, such as SUPPRESSOR OF
NPR1-1 CONSTITUTIVE 1 (SNC1) and RESISTANCE TO PSEUDOMONAS
SYRINGAE4 (RPS4), were shown to be altered in several MAC subunit mutants
(Xu et al., 2012; Zhang et al., 2013a).

Since intron retention is a major form of alternative splicing in Arabidopsis (Ner-
Gaon et al., 2004), we examined whether mac7-1, mac3a mac3b, and prl1 pri2
mutants had global intron retention defects. The ratio of RNA-seq reads mapping
to introns (including 5’/3’ splice sites) and those mapping to exons only was used
as a measure of intron retention (see Methods for details). All annotated
transcripts were considered in sum as long as the read counts passed an
abundance filter. All three mutants exhibited significantly higher levels of intron
retention compared to Col-0 (Wilcoxon test, p < 2.2e-16) (Figure 8A and

Supplemental Data Set 4). Next, using the ratio of intron reads vs. exon reads as
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a measure of intron retention levels, we identified genes with intron retention
defects in each mutant as compared to wild type (see Methods for details). 2819,
1466 and 298 genes were found to have intron retention defects in mac3a mac3b,
prl1 prl2 and mac7-1, respectively (Figure 8B, C and Supplemental Data Set 4).
Significant overlap was found among the genes with intron retention defects in
the three mutants (SuperExactTest, p < 0.05), indicating that MAC works as a
complex in pre-mRNA splicing (Figure 8C). Two examples of intron retention

events in these mutants are shown in Figure 8D.

We next examined whether there was any correlation between splicing defects
and gene expression. We compared the expression levels of genes with intron
retention defects in each mutant vs. wild type. As a reference, all genes that
passed a minimum intron read coverage filter (see Figure 8 legend) were
analyzed. There was no correlation between intron retention defects and the
status of their differential expression in the mac mutants. Like all analyzed genes,
genes with intron retention defects were increased, reduced, or unchanged in
expression levels in each mutant as compared to wild type (Figure 9A and
Supplemental Data Set 5). In addition, we examined intron vs. exon ratios in total
genes, up-regulated genes and down-regulated genes in each mutant. Both up-
regulated and down-regulated genes showed significant intron retention as total
genes (Wilcoxon test, p < 2.2e-16), again indicating that the intron vs. exon ratio
has no correlation with gene expression changes (Figure 9B and Supplemental
Data Set 4).

Given the intron retention defects and miRNA accumulation defects in the mac
mutants, we asked whether intron retention in pri-miRNAs contributed to the
miRNA accumulation defects. Many MIR genes were shown to have introns,
which are spliced out in pri-miRNAs (Laubinger et al., 2008; Zhan et al., 2012;
Zielezinski et al., 2015). We performed RT-PCR with intron-flanking primers to
detect unspliced miRNA precursors, including pri-miR163, pri-miR156, pri-
miR166, pri-miR168, and pri-miR172. Genomic DNA was amplified with the
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same sets of primers to indicate the sizes of intron-containing fragments. No
intron retention was observed in these miRNA precursors in mac7-1

(Supplemental Figure 9).

Thus, intron retention and differential expression of genes (including MIR genes)
are not linked. MAC seems to regulate gene expression and RNA splicing

independently.

DISCUSSION

MACY7 is an evolutionarily conserved protein across eukaryotes, however little is
known about the molecular and biological functions of MAC7 or its orthologs.
The human ortholog Aquarius is an RNA helicase with ATPase activity, and it
binds to introns to assist intron splicing in vitro (Hirose et al., 2006; De et al.,
2015). The C. elegans ortholog EMB-4 was reported to act in the nuclear RNAI
pathway, where it interacts with nuclear AGOs and functions in germline-specific
chromatin remodeling (Checchi and Kelly, 2006; Akay et al., 2017; Tyc et al.,
2017). In Arabidopsis, MACY is involved in plant defense and was predicted to be
an essential gene (Tzafrir et al., 2004; Monaghan et al., 2009). In this study, we
showed that a T-DNA insertion mutant of MAC?7 is indeed embryo lethal, and we
isolated the first viable mac7 mutant, mac7-1, as a miRNA biogenesis-defective
mutant. In this mutant, the artificial miRNA, amiR-SUL, and many endogenous
miRNAs show reduced accumulation. MAC7 was identified as a MAC subunit
through MOS4 IP-MS (Monaghan et al., 2009); our MAC7 IP-MS confirmed this.
Two other MAC subunits, CDC5 and PRL1, were previously shown to promote
miRNA biogenesis (Zhang et al., 2013b; Zhang et al., 2014). In this study, we
showed that MAC3 also has a similar role. Thus, it is likely that MAC as a
complex promotes miRNA biogenesis in general. Based on small RNA-seq
analysis, MAC may promote the biogenesis of not only miRNAs but also siRNAs.
Both 21-nt and 24-nt small RNAs, the two most abundant small RNA size classes

in Arabidopsis, are reduced in mac7-1 and pri1 prl2 mutants. A role of MAC in
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promoting siRNA biogenesis is also supported by previous findings on CDCS5,
MAC3 and PRL1 (Zhang et al., 2013a; Zhang et al., 2013b; Zhang et al., 2014).

How does MAC7 promote miRNA biogenesis? In mac7-1, the reduced
accumulation of miRNAs correlated with reduced levels of pri-miRNAs. Thus,
MAC?7 probably acts in miRNA biogenesis by promoting MIR transcription or pri-
miRNA stability. However, the activity of a promoter driving MIR expression was
not affected in mac7-1, nor was the endogenous SUCZ2 promoter activity. The
half-lives of pri-miRNAs were not affected either. Although we cannot exclude the
possibility that MAC7 promotes pri-miRNA processing into pre- or mature
miRNAs and prevents pri-miRNA decay at the same time and therefore pri-
miRNA half-lives appeared unchanged in the mutant, we prefer to hypothesize
that MAC7 plays a role in transcription elongation and/or maturation of pri-
miRNAs, considering the interactions between Pol Il and MAC subunits CDC5
and PRL1, as well as the functions of yeast NTC in transcription elongation
(Kuraoka et al., 2008; Chanarat and Strasser, 2013; Zhang et al., 2013b; Zhang
et al., 2014). Given the role of MAC7 in pre-mRNA splicing discovered before
and in this study (Xu et al., 2012; Zhang et al., 2013a), we considered the
possibility that MAC7 acts in miRNA biogenesis by promoting the splicing of pri-
miRNAs. However, we did not detect intron retention in several intron-containing
pri-miRNAs in mac7-1, although the mature miRNAs from those pri-miRNAs are
reduced. In addition, MIR genes without any introns (e.g. the pSUC2:amiR-SUL
transgene, MIR159a, and MIR167a) (Szarzynska et al., 2009; de Felippes et al.,
2011) were also affected in mac7-1. Thus, the miRNA biogenesis defects of
mac7-1 could not be attributed to defects in splicing. Intriguingly, we observed
that MAC7 affects HYL1 localization to dicing bodies. Little is known about how
dicing bodies form. MAC7 may recruit the dicing complex to pri-miRNAs through
protein—protein interactions to form dicing bodies. Alternatively, dicing complex
proteins are recruited by pri-miRNAs to dicing bodies, and therefore the reduced
number of dicing bodies in mac7-1 could be a consequence of reduced pri-

miRNA levels in the mutant. We favor the second hypothesis because MAC7
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plays a more general role in transcription and RNA metabolism (such as splicing),
while the dicing complex acts more specifically on miRNA precursors and is

presumably not recruited to other RNAs that MAC7 may also act on.

CDC5 and PRL1 were shown to interact with dicing complex proteins (e.g. DCL1,
SERRATE) in vivo through co-IP or BiFC analyses (Zhang et al., 2013b; Zhang
et al.,, 2014). We did not detect interactions between MAC7 and the dicing
complex through MAC7 IP-MS or BiFC analyses. However, many MAC
components including MAC7 were found in HYL1 IP-MS, which clearly indicates
association between the dicing complex and MAC in vivo. The possible reasons
for the inability of MAC7 to pull down the dicing complex proteins are: 1) The
interaction between MAC7 and the dicing complex is indirect or weak, and
bridged through CDC5 or PRL1; 2) only a small portion of MAC7 proteins
interacts with the dicing complex. The second hypothesis is consistent with
MAC?7 having broader functions beyond miRNA biogenesis. We hypothesize that
most of HYL1 or the dicing complex is associated with MAC, but not the other

way around, which explains the recovery of MAC in HYL1 IP-MS.

MAC has functions beyond miRNA biogenesis in Arabidopsis. In our RNA-seq
analysis, stress response-related GO terms were significantly enriched in down-
regulated genes in three MAC subunit mutants. This is consistent with previous
studies showing that many mac mutants are more susceptible to pathogen
infection (Monaghan et al., 2009; Monaghan et al., 2010; Weihmann et al., 2012;
Xu et al.,, 2012). Although the mac7-1 hypo-DEGs are enriched in defense
related GO terms, the genes show the smallest reduction magnitude compared
to other mac mutants, which could be the reason why mac7-1 is not susceptible
to P. syringae infection as pr/1-2 and mac3a mac3b mutants are (Monaghan et
al., 2009; Weihmann et al., 2012).

It has been suspected that MAC is also involved in splicing in plants, like its

orthologs in human and yeast (Johnson et al., 2011; Koncz et al., 2012). Indeed,
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our RNA-seq analyses uncovered intron retention defects in three MAC subunit
mutants, thus linking MAC with pre-mRNA splicing. However, there were no
significant correlations between intron retention and changes in gene expression.
Genes with intron retention were up-regulated, down-regulated, or unchanged in
the mac mutants. We also did not detect intron retention for intron-containing pri-
miRNAs in mac7-1. It is likely that MAC has separate roles in RNA splicing and
gene expression regulation (including the regulation of MIR genes). Thus, MAC

has broad functions in nuclear RNA metabolism.

We speculate that a common theme of MAC'’s role in nuclear RNA metabolism is
linking RNA processing to transcription (Figure 10). In yeast, the NTC promotes
transcription elongation (Chanarat et al., 2011; Chanarat and Strasser, 2013). In
both yeast and human, NTC or Prp19C associates with spliceosomes in vivo,
although this association may entail NTC subcomplexes in human (Chanarat et
al., 2012; De et al., 2015; Yan et al., 2015). In Arabidopsis, two MAC subunits,
CDC5 and PRL1, have been shown to interact with Pol Il in vivo (Zhang et al.,
2013b; Zhang et al., 2014). IP-MS of an Arabidopsis spliceosome subunit also
pulled down multiple subunits of MAC (Deng et al., 2016). Thus, it is possible that
MAC promotes co-transcriptional splicing through its interactions with both Pol Il
and the spliceosome. Similarly, in miRNA biogenesis, MAC may promote co-
transcriptional pri-miRNA processing through its interactions with both Pol Il and
HYL1.

METHODS

Plant materials and growth conditions

The pSUC2:amiR-SUL transgenic line is a gift from Dr. Detlef Weigel (de
Felippes et al., 2011). mac7-1 is a new allele isolated from our EMS mutagenesis
screen with the pSUC2:amiR-SUL transgenic line. SALK_120944 (mac7-2) is a
T-DNA insertion line obtained from the Arabidopsis Biological Resource Center
(ABRC). The following published transgenic lines or mutants were used:
pPMIR167a:GUS, and pri1-2 (SALK_008466) (Zhang et al., 2013b; Zhang et al.,
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2014); p35S:HYL1-YFP (Qiao et al., 2015); p35S:YFP (Zhang et al., 2014);
mac3a mac3b (mac3a is SALK_089300; mac3b is SALK_050811) and prl1 pri2
(prl1 is SALK _008466; pri2 is SALK _075970) double mutants (Monaghan et al.,
2009; Weihmann et al., 2012).

In pMIR167a:GUS or p35S:HYL1-YFP transgenic lines, the transgene was
confirmed to be homozygous by Basta selection (Phosphinothricin 25mg/L, Gold
Biotechnology) and by examining YFP signals under fluorescence microscopy,
respectively, in multiple individuals. The mac7-1 mutant was crossed into
PMIR167a:GUS or p35S:HYL1-YFP, and F2 plants containing homozygous

transgenes were confirmed in the F3 generation.

Genotyping primers used are listed in Supplemental Table 4. Plants were grown
in a plant growth chamber at 23°C for 16h light (Cool white fluorescent lamps,
25-watt Sylvania 21942 FO25/741/ECO T8 linear tube) and 8 h dark cycles.

Mutagenesis screening and mapping of MAC7

The amiR-SUL mac7-1 M2 mutant was backcrossed with the parental line
pSUC2:amiR-SUL. Genomic DNA was extracted from 100 pooled F2 mutants
and used in library construction. The library was paired-end sequenced on
lllumina’s HiSeq 2000 at ~30x coverage, and the reads were mapped to the TAIR
10 genome using the Burrows-Wheeler Alignment tool (BWA) (Li and Durbin,
2009). SamTools (Li et al., 2009) was used to identify EMS-induced single
nucleotide polymorphisms (SNPs). The SNP calls generated by SamTools were
processed by the Next-Generation EMS mutation mapping (NGM) website tools
(Li et al., 2008). Two candidate mutations with 100% mutation rate were
identified as EMS-typical C:G to T:A transitions that are predicted to cause
nonsynonymous substitutions in the coding region of genes. Because one
candidate mutation was only supported by three reads, we focused on the one in
At2g38770 (MAC7/EMBZ2765), which was supported by 29 reads. A Derived
Cleaved Amplified Polymorphic Sequences (dCAPS) marker was designed to
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genotype this mutation (see Supplemental Table 4 for primers). The PCR
products from wild type can be digested by EcoR1, whereas those from mac7-1
could not. Linkage analysis was performed on 84 individual mutant plants in the
F2 population of the backcross using this dCAPS marker to assess linkage

between the mutation and the mac7-1 mutant phenotype.

DNA constructs and complementation

The MAC7 genomic region without the stop codon was amplified and cloned into
pENTR/D-TOPO (Invitrogen) and then introduced to a modified pEarleyGate 301
vector (Earley et al., 2006) to generate pMAC7:MAC7-mCherry via LR reaction.
The MAC7 genomic region without the stop codon was amplified and cloned into
the pMDC107 gateway vector (Curtis and Grossniklaus, 2003) to generate
pMAC7:MAC7-GFP with the ClonTech In-Fusion HD Cloning Kit. The MAC7
coding region was cloned and then introduced into the pEarleyGate104 vector
(Earley et al., 2006) via pENTR/D-TOPO (Invitrogen) through LR reactions. The
above plasmids were used to transform mac7-1 plants through the
Agrobacterium-mediated floral dip method. Primers used are listed in

Supplemental Table 4.

Small RNA gel blotting, RT-PCR and quantitative RT-PCR

Total RNA from 2 to 3-week old seedlings (aerial part) or inflorescences was
extracted with TRI reagent (Molecular Research Center). RNA gel blotting for
detection of miRNAs was performed as described (Pall and Hamilton, 2008). 10
Mg total RNA from aerial part of seedlings or inflorescences was used in RNA gel
blotting. 5° end **P-labelled antisense DNA oligonucleotides were used to detect

miRNAs. Oligonucleotide probes used are listed in Supplemental Table 4.

To perform RT-PCR, total RNA was first treated with DNase | (Roche) followed
by reverse transcription using RevertAid Reverse Transcriptase (Thermo Fisher
Scientific) with oligo-d(T) primers according to manufacturer’s instructions.

Quantitative RT-PCR was carried out in triplicate using iQ SYBRGreen Supermix
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(BioRad) on the BioRad CFX96 system. Primers used are listed in Supplemental
Table 4.

4

RNA half-life measurements

RNA half-life measurements were performed as described (Lidder et al., 2005)
with minor modifications. 12-day-old Col and mac7-1 whole seedlings were
transferred from Murashige and Skoog medium (PhytoTechnology Lab) agar
plates to 6-well-plates with 1/2 MS medium and incubated overnight. The next
day, cordycepin (Sigma) was added to a final concentration of 0.6 mM and the
seedlings were collected for RNA extraction at 0, 30, 90, and 120 min after
cordycepin addition. RT-qPCR was then performed to determine pri-miRNA

levels. UBQ5 was used as an internal control.

Small RNA-seq library construction and data analysis

To construct small RNA libraries, the aerial parts of 12-day-old Col-0, mac7-1,
and prl1 pri2 seedlings grown on plates were harvested for total RNA extraction.
Two biological replicates were included: plants grown on different plates under
the same conditions were collected at the same time into two separate samples
for RNA extraction and subsequent procedures. To isolate small RNAs from total
RNA, 50 ug of total RNA from each sample was resolved on 15% urea-PAGE gel,
and the 18-30-nt region was excised from the gel. Small RNAs were recovered
by soaking the smashed gel in 0.3 M NaCl overnight, followed by ethanol
precipitation. Small RNA libraries were constructed following instructions from the
NEBNext Multiplex Small RNA Library Prep Set for lllumina (E7300). The
libraries were sequenced on an lllumina Hiseq 2500 at the UC Riverside

Genomics core facility.

Reads from small RNA-seq were first processed to remove the adaptor
sequences by cutadapt (sequence: AGATCGGAA) (Martin, 2011). The reads
were mapped to the TAIR10 genome using ShortStack with default parameters

(Johnson et al., 2016). Normalization was performed by calculating the RPMR
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(reads per million of 45S rRNA reads) value (Li et al., 2016). Only one biological
replicate for Col-0 was included in this analysis since the other Col-0 sample had
very few reads caused by unknown problems in library construction or

sequencing.

RNA-seq library construction and data analysis

Polyadenylated RNA was isolated from total RNA extracted from 12-day-old
seedlings (aerial part) of Col-0, mac7-1, mac3a mac3b, and pri1 prl2 using the
Magnetic mRNA Isolation Kit (New England Biolabs), with two biological
replicates for each genotype. For the biological replicates, plants grown on
different plates under the same conditions were collected at the same time into
two separate samples for RNA extraction and subsequent procedures. RNA-seq
libraries were prepared using NEBNext mRNA Library Prep Reagent Set for
lllumina (New England Biolabs) and sequenced on an lllumina Hiseq 2500
platform to generate high-quality single-end reads of 101bp in length. Data
analysis was performed with the pRNASeqTools pipeline
(https://github.com/grubbybio/RNASeqTools). Firstly, the raw reads were aligned
to the TAIR10 genome using HISAT2 (Kim et al., 2015). Secondly, exonic and
intronic reads were classified and quantified as follows. Reads with five or more
nucleotides overlapping with intronic regions (intronic regions defined in all
isoforms, including splicing donor/acceptor sites) were counted as intronic reads,
and reads that mapped exclusively to exonic regions were counted as exonic
reads. Transcript levels were measured in reads per million total read counts.
Differentially expressed genes were identified using DEseq2 with fold change of
1.5 and p < 0.01 as the parameters (Love et al., 2014). To identify genes that
exhibited significantly higher levels of intron retention compared to Col-0, the
intron/exon ratio was calculated as (11 + 12)/2 over (E1+E2)/2 (I: Intronic reads, E:
Exonic reads, 1: biological replicate 1, 2: biological replicate 2) while applying an
abundance cutoff (raw intronic read number = 2 and exonic read number = 5).
We only considered intron/exon (I/E) ratios between 0 to 1. The genes with intron

retention were identified using DEseq2 based on values of (Imutant/Emutant)/(Ico-o/E
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co-0) and fold changes = 2 and FDR < 0.01 as parameters (Love et al., 2014).
SuperExactTest was employed to access the statistical significance of DEGs or
intron retention gene overlaps among mac7-1, mac3a mac3b and prl1 pri2
(Wang et al., 2015).

Protein sequence alignment

Database searching of MAC7 homologs was performed at National Center for
Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov/). Alignment of protein
sequence was performed with Muscle (Edgar, 2004) and the alignments were
edited with Jalview (Waterhouse et al., 2009).

Antibody generation and immunoblotting

To generate anti-MAC7 antibodies, a 5’ portion of the coding region of MAC7
corresponding to the first 416 amino acids of the protein was amplified (primers
listed in Supplemental Table 4) and inserted into pMCSG7-His-MBP and
pSUMO-His vectors, respectively. The constructs were then transformed into the
E. coli strain BL21 for protein expression. The recombinant proteins were purified
by AKTA fast protein liquid chromatography (GE Healthcare) using the MBP-Trap
or His-Trap column. The purified MBP-tagged protein was used as antigens to
raise polyclonal antibodies in rabbits as described (Peterson et al., 2010). The
anti-serum was affinity-purified using a MAC7-SUMO-His conjugated column.
The purified antibodies were used in immunoblotting and IP-MS experiments.
Similar approach was employed to generate the anti-CH42/SUL antibody. The
full-length CH42 protein fused with SUMO-His tag was expressed and purified to
immunize two rabbits. Affinity purified antibodies were used in immunoblotting

analysis.

Other antibodies used in immunoblotting experiments include anti-GFP (Roche,
Cat. No. 11814460001), anti-AGO1 (Agrisera, AS09 527), anti-HYL1 (Agrisera,
ASO06 136), anti-SERRATE (Agrisera, AS06 136), anti-DCL1 (Agrisera, AS12
2102), and anti-Tubulin (Sigma, T9026).
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Proteomic Analysis

Total proteins from 12-day-old seedlings were extracted and immunoprecipitated
with indicated antibodies. The IP products were resolved in SDS-PAGE. The
antibody bands were removed and the samples were subjected to mass
spectrometry as described (Sleat et al., 2006; Deng et al., 2016). Two biological
replicated were performed, and the identified interacting proteins were those

represented by peptides with high hits from both biological replicates.

Transient expression of fluorescent fusion proteins in tobacco leaf
epidermal cells

The CDS of HYL1 was amplified and cloned into pENTR/D-TOPO (Invitrogen)
and then introduced into the pGWB661 gateway vector (Nakamura et al., 2010)
to generate p35S:TagRFP-HYL1. p35S:DCL1-YFP in the pEG101 vector was
from a published study (Zhang et al., 2013b). The generation of p35S:YFP-MAC7
was described above. Agrobacterium GV3101::mp90 transformed with
p35S:YFP-MAC7, p35S:DCL1-YFP, or p35S:TagRFP-HYL1 was used to infiltrate
tobacco leaves as described (Sparkes et al., 2006). The expression of
fluorescent fusion proteins was observed using a Lecia SP5 confocal laser-

scanning microscope.

BiFC analysis

BiFC analysis was performed as described (Walter et al., 2004). Paired cCFP
and nVenus constructs were co-infiltrated into Nicotiana benthamiana leaves.
After 48 h, YFP signals and chlorophyll auto fluorescence signals were excited at
488 nm and detected by Olympus Fluoview 500 confocal microscopy with a
narrow band pass filter (BA505-525 nm).

Histochemical GUS assay and Alexander’s staining of pollen

GUS staining was performed as described (Kim et al., 2011). Briefly, 12-day-old
seedlings from Col-0 and mac7-1 harboring a homozygous pMIR167a:GUS
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transgene were vacuum infiltrated for 10 min and then incubated in GUS staining
solution at 37°C for several hours until blue color became visible. Tissue clearing

was performed with 70% ethanol for 1 to 2 days before imaging.

Alexander’s staining of pollen was performed as described (Peterson et al.,
2010). The stained pollen grains were observed under a microscope equipped

with a charge-coupled device camera (Olympus).

Accession numbers

Genes referred to in this study correspond to the following Arabidopsis Genome
Initiative locus identifiers: MAC7/EMB2765, AT2G38770; SUL/CHLORINA42,
AT4G18480; MICRORNA156A, AT2G25095; MICRORNA159A, AT1G73687;
MICRORNA163 AT1G66725; MICRORNA166A AT2G46685; MICRORNA167A,
AT3G22886; MICRORNA168A, AT4G19395; MICRORNA171A, AT3G51375;
MICRORNA172A, AT2G28056; MICRORNA390B, AT5G58465;
MICRORNA394B, AT1G76135; MICRORNA3968B, AT5G35407,
MICRORNA397A, AT4G05105; ACTINS, AT1G49240; UBIQUITINS, AT3G62250;
TUBULIN3, AT5G62700; EIF4A1, AT3G13920; IPP2, AT3G02780 ;CDCS5,
AT1G09770; PRL1, AT4G15900; PRL2, AT3G16650; MAC3A, AT1G04510;
MAC3B, AT2G33340 ; HYL1, AT1G09700; DCL1, AT1G01040; SERRATE,
AT2G27100; AGO1, AT1G48410; HEN1, AT4G20910; MYB33 AT5G06100;
SCL6-1IV AT4G00150; SPL10 AT1G27370; MYB65, AT3G11440; ARF17,
AT1G77850; ARF8, AT5G37020; SCL6-11l At3g60630; CUC2 AT5G53950.

Protein sequences of MAC7 homologs in other species correspond to the
following NCBI references: Homo sapiens intron-binding protein aquarius,
NP_055506.1; Mus musculus intron-binding protein aquarius, NP_033832.2;
Danio rerio intron-binding protein aquarius, NP_956758; Drosophila
melanogaster CG31368, NP_996198.2; Caenorhabditis elegans EMB-4,
NP_001256831.1; Schizosaccharomyces pombe Cwf11, NP_595360.1.
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RNA sequencing data are available from NCBI Gene Expression Omnibus (GEO)
under the following reference numbers: Col-0_1, GSM2585832; Col-0_2,
GSM2585833; mac7-1_1, GSM2585834; mac7-1_2, GSM2585835;
mac3amac3b_1, GSM2585836; mac3amac3b_2, GSM2585837; prl1pri2_1,
GSM2585838; pri1pri2_2, GSM2585839; Col-0_1_sRNA GSM2771029; mac7-
1_1_sRNA GSM2771030; mac7-1_2_sRNA GSM2771031, pri1 prli2_1_sRNA
GSM2771032, prl1 pri2_2_sRNA GSM2771033.

Supplemental Data

Supplemental Figure 1. The mac7-1 mutant shows pleiotropic developmental
phenotypes. (Supports Figure 1.)

Supplemental Figure 2. Reduced miRNA accumulation in both seedlings and
inflorescences in the mac7-1 mutant. (Supports Figure 1.)

Supplemental Figure 3. The mac7-1 mutation in the Col-0 background does not
affect CH42 expression at either mRNA or protein levels. (Supports Figure 1.)
Supplemental Figure 4. The MAC7 T-DNA insertion line, mac7-2, is a single-
locus, recessive embryo-lethal mutant. (Supports Figure 2.)

Supplemental Figure 5. Amino acid sequence alignment of Arabidopsis MAC7
orthologs. (Supports Figure 2.)

Supplemental Figure 6. MAC7 does not affect the expression of the
endogenous SUCZ2 gene or key miRNA biogenesis factors. (Supports Figure 3.)
Supplemental Figure 7. MAC7 shows dispersed distribution in the nucleoplasm,
while DCL1 and HYL1 concentrate in dicing bodies in the nuclei. (Supports
Figure 4.)

Supplemental Figure 8. Growth of virulent P.s.m. ES4326 at 0 and 3 days post-
inoculation. (Supports Figure 7.)

Supplemental Figure 9. Intron-containing pri-miRNAs show similar splicing
patterns in Col-0 and mac7-1. (Supports Figure 8 and Figure 9.)

Supplemental Table 1. Phenotypic and genotypic segregation in the progeny of
selfed heterozygous mac7-2 plants. The mac7-2 allele harbors a T-DNA insertion
(SALK _129044).
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Supplemental Table 2. MAC7-associated proteins identified by
immunoprecipitation followed by mass spectrometry.

Supplemental Table 3. HYL1-associated MAC subunits identified by
immunoprecipitation followed by mass spectrometry.

Supplemental Table 4. Oligonucleotide sequences.

Supplemental Data Set 1. Levels of 21-nt small RNAs, 24-nt small RNAs and
miRNAs in Logz(reads per million of 45S rRNA reads) in Col-0, mac7-1, and prl1
pri2 as determined by small RNA-seq.

Supplemental Data Set 2. Differentially expressed genes in mac7-1, mac3a
mac3b, and prl1 prl2 mutants as determined by RNA-seq analysis.
Supplemental Data Set 3. Gene Ontology analysis of overlapped DEGs among
mac7-1, mac3a mac3b, and prl1 prl2 mutants.

Supplemental Data Set 4. Intron/exon ratio in Col-0, mac7-1, mac3a mac3b,
and prl1 prl2. Genes with significantly higher intron/exon ratio as well as
differentially expressed genes in the mutants are shown.

Supplemental Data Set 5. Relative expression levels of genes that passed the
intronic and exonic read counts filter in mac7-1, mac3a mac3b, and prl1 pri2
compared to Col-0, and relative expression levels of genes with intron retention
defects in indicated mutants compared to Col-0.
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FIGURE LEGENDS

Figure 1. A silencing suppressor mutant mac7-1 exhibits pleiotropic
phenotypes and compromised miRNA accumulation.

(A) Differences in vein-centered bleaching in 3- to 4-week-old pSUC2:amiR-SUL
(amiR-SUL) and amiR-SUL mac7-1 seedlings. (B and C) Morphological
phenotypes of amiR-SUL, amiR-SUL mac7-1, Col-0 and mac7-1 plants. Images
of rosettes and roots were taken from 2- to 3-week-old and 1-week old plants,
respectively. (D) RNA gel blotting analysis of miRNAs from amiR-SUL and amiR-
SUL mac7-1 inflorescences. The miRNA signals were quantified and normalized
to those of U6, and values were relative to amiR-SUL (set to 1). Two biological
replicates of inflorescences collected from plants grown separately but under the
same conditions were processed and shown. (E) Global abundance of 21-nt and
24-nt small RNAs and miRNAs in Col-0 and mac7-1 as determined by small
RNA-seq. Small RNA libraries were generated from 12-day-old seedlings
growing on MS plates. The normalization of small RNAs was against 45S rRNA
reads and abundance was expressed as RPMR (reads per million of 45S rRNA
reads), and log, ratios of mac7-1/Col-0 were plotted. Asterisks indicate that the
mean is significantly below 0 (Wilcoxon test, p < 2.2e-16). (F) Determination of
mMiRNA target mRNA levels in amiR-SUL and amiR-SUL mac7-1 using 12-day-
old seedlings by quantitative RT-PCR (RT-gPCR). The housekeeping gene IPP2
was included as a control. Expression levels were normalized to those of
UBIQUITINS (UBQ5) and compared with those in amiR-SUL (set to 1). Error bars
indicate standard deviation from three technical replicates. Asterisks indicate
significant difference between Col-0 and mac7-1 (t-test, p < 0.05).

Figure 2. A point mutation in MAC?7 is responsible for the morphological
and molecular phenotypes in the mac7-1 mutant.

(A) A diagram of the MAC7 protein showing various domains, the predicted
nuclear localization signal (NLS), and the E1131K mutation in the mac7-1 mutant.
A sequence alignment of MAC7 and its orthologs in the region containing the
E1131K mutation in the mac7-1 mutant is also shown. Abbreviations for species
are as follows: Arabidopsis thaliana (A.t.), Homo sapiens (H.s.), Mus musculus
(M.m.), Danio rerio (D.r.), Drosophila melanogaster (D.m.), Caenorhabditis
elegans (C.e.), and Schizosaccharomyces pombe (S.p.). N: N-terminus; ARM:
armadillo domain; RecA: RecA-like domains; C: C-terminus. The point mutation
site is labeled by a triangle. (B) Morphological phenotypes of 3- to 4-week-old
seedlings of the indicated genotypes. pMAC7:MAC7-GFP and pMAC7:MAC7-
mCherry were transformed into amiR-SUL mac7-1 and mac7-1, respectively. (C
and D) RNA gel blotting analysis of miRNAs from Col-0, mac7-1, and the
complementation line mac7-1 pMAC7:MAC7-mCherry using inflorescences (C)
and 12-day-old seedlings (D). The miRNA signals were quantified as described
in Figure 1D. RNA markers (NEB, N2102S) shown in (D) were resolved in the
same gel as miRNAs and probed separately by a DNA probe complementary to
the marker sequences.

Figure 3. MAC7 promotes pri-miRNA production.
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(A) Determination of pri-miRNA levels in amiR-SUL and amiR-SUL mac7-1
inflorescences by RT-gPCR. The housekeeping gene IPP2 was included as a
control. Expression levels were normalized to those of UBQUITINS (UBQ5) and
compared with those in amiR-SUL (set to 1). Error bars indicate standard
deviation from three technical replicates. Asterisks indicate significant difference
between amiR-SUL and amiR-SUL mac7-1 (t-test, p < 0.05). (B) Representative
GUS staining images of pMIR167a:GUS and mac7-1 pMIR167a:GUS seedlings.
The transcript levels of GUS and endogenous pri-miR167a in pMIR167a:GUS
and mac7-1 pMIR167a:GUS seedlings were determined by RT-qPCR.
Expression levels were normalized to those of UBIQUITIN5 (UBQ5) and
compared with those in pMIR167a:GUS (set to 1). Error bars indicate standard
deviation from three technical replicates. Asterisks, t-test p < 0.05. (C) Half-life
measurements for pri-amiR-SUL, pri-miR167a, pri-miR172a and E/IF4A mRNA.
Two-week-old amiR-SUL and amiR-SUL mac7-1 seedlings were treated with 0.6
mM cordycepin and harvested at various time points. RT-qPCR was performed
to determine the levels of various pri-miRNAs and E/IF4A mRNA. UBQ5 served
as an internal control. Values at time O were set to 1. Error bars indicate standard
deviation from three technical replicates. Two biological replicates were
performed and similar results were obtained.

Figure 4. MACY7 is a nuclear protein associated with other MAC subunits.

(A) Subcellular localization of N-terminal (p35S:YFP-MAC7) or C-terminal
(PMAC7:MAC7-GFP) fluorescent protein tagged MAC7 in young leaves of
Arabidopsis transgenic lines. Nuclei were stained with DAPI and pseudo-colored
in cyan. Enlarged nuclei are shown in the insets. (B) MAC subunits identified
from both MAC7 and MOS4 immunoprecipitation followed by mass spectrometry
analysis (IP-MS). (C) BiFC analysis of MAC7 with CDC5, PRL1, HYL1 and DCLA1.
Paired cCFP- and nVenus-fusion proteins were co-infiltrated into tobacco leaves.
The BIiFC signal (YFP) was detected at 48 h after infiltration by confocal
microscopy, and was pseudo-colored in green. Magenta: auto fluorescence of
chlorophyll.

Figure 5. The MAC subunit genes MAC3a, MAC3b, PRL1, and PRL2 also
promote miRNA biogenesis.

(A) Morphological phenotypes of 4 to 5-week old plants of the indicated
genotypes. (B) MiRNA levels in wild type (Col-0) and indicated mutants as
determined by northern blotting. The mIiRNA signals were quantified and
normalized to those of U6, and values were relative to Col-0 (arbitrarily set to 1).
The RNA used in northern blotting was extracted from the aerial parts of 12-day-
old seedlings growing on MS agar plates. (C) Global abundance of 21-nt and 24-
nt small RNAs and miRNAs in Col-0 and prl/1 pri2 as determined by small RNA-
seq. Small RNA libraries were generated from 12-day-old seedlings growing on
MS plates. The normalization of small RNAs was against 45S rRNA reads and
abundance was expressed as RPMR (reads per million of 45S rRNA reads), and
log, ratios of prl1 pri2/Col-0 were plotted. Asterisks indicate that the mean is
significantly below 0 (Wilcoxon test, p < 2.2e-16). (D) Pri-miRNA levels in plants
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of the indicated genotypes as determined by RT-gPCR. The housekeeping gene
IPP2 was included as a control. UBQ5 was used as an internal control and
values in Col-0 were set to 1. Error bars indicate standard deviation from three
technical replicates, and asterisks indicate significant difference between Col-0
and the mutants (t-test, p < 0.05).

Figure 6. MAC7 affects HYL1 subcellular localization.

(A) Images of nuclei in root cells of 7 to 10-day-old seedlings of the indicated
genotypes. Images (2) and (4) show five times enlarged images cropped from (1)
and (3), respectively. Dicing bodies are indicated by triangles. (B) The
percentage of cells containing HYL1-positive dicing bodies in wild type and
mac7-1. The quantification was performed by observing more than 1000 cells
from 27 roots for each genotype. The asterisk indicates significant difference
between the samples (t-test, p < 0.05).

Figure 7. Down-regulated genes in the mac mutants are significantly
related to stress responses, while up-regulated genes are involved in
various biosynthetic and metabolic processes.

(A) GO enrichment analysis of 189 commonly down-regulated genes in mac7-1,
mac3a mac3b and prl1 pri2. The degree of overlap among down-regulated genes
in mac7-1, mac3a mac3b and prl1 pri2 is shown in the Venn diagram. (B) GO
enrichment analysis of 222 commonly up-regulated genes mac7-1, mac3a
mac3b and prl1 prl2. The degree of overlap among up-regulated genes in mac7-
1, mac3a mac3b and prl1 pri2 is shown in the Venn diagram.

Figure 8. MAC subunits affect pre-mRNA splicing.

(A) Box plot of intron/exon ratios in the indicated genotypes. All genes that pass
an abundance filter in expression were included in this analysis. Asterisks
indicate significant difference between the mutant and wild type (Col-0)
(Wilcoxon test, p < 2.2e-16). (B) The intron/exon ratio per gene in Col-0 vs. the
indicated mutants. Black dots represent all genes with raw intronic read number
> 2, exonic read number 2 5, and final intron/exon ratio between 0 to 1. Red dots
represent genes with significantly higher intron/exon ratio relative to wild type
(fold change = 2 and FDR < 0.01). (C) A Venn diagram showing the degree of
overlap among genes with intron retention defects in mac7-1, mac3a mac3b and
prl1 pri2. (D) Examples of genes with intron retention defects. RPKM: Reads Per
Kilobase per Million mapped reads. Two biological replicates for each genotype
are shown. The rectangles mark introns with higher retention in the mutants.

Figure 9. MAC affects pre-mRNA splicing and gene expression
independently.

(A) Volcano plots illustrating fold changes of gene expression levels in the
indicated mutants compared to Col-0. Thresholds for fold change of 1.5 and p <
0.01 are shown in the plots as gray dashed lines. Black dots and red dots
represent the same genes as in Figure 8B. (B) Box plots of intron/exon ratios in
total genes, up-regulated and down-regulated genes in the indicated genotypes.
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Only genes that pass an abundance filter (raw intronic read number = 2 and
exonic read number = 5) were included in this analysis. Asterisks indicate
significant difference between the mutant and wild type (Col-0) (Wilcoxon test, p
< 2.2e-16).

Figure 10. A model for MAC’s functions in miRNA biogenesis and pre-
MRNA processing.

MAC affects miRNA biogenesis through influencing Pol Il transcription and
interacting with the pri-miRNA processing factor HYL1. MAC also plays a role in
pre-mRNA splicing through interactions with the splicecosome. MAC seems to
have separate roles in miRNA biogenesis and RNA splicing but a common theme
appears to be co-transcriptional RNA processing.
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Figure 1. A silencing suppressor mutant mac7-1 exhibits pleiotropic phenotypes and
compromised miRNA accumulation.

(A) Differences in vein-centered bleaching in 3 to 4-week old pSUC2:amiR-SUL (amiR-SUL) and
amiR-SUL mac7-1 seedlings. (B and C) Morphological phenotypes of amiR-SUL, amiR-SUL
mac7-1, Col-0 and mac7-1 plants. Images of rosettes and roots were taken from 2 to 3-week old
and 1-week old plants, respectively. (D) Northern blotting analysis of miRNAs from amiR-SUL
and amiR-SUL mac7-1 inflorescences. The miRNA signals were quantified and normalized to
those of U6, and values were relative to amiR-SUL (arbitrarily set to 1). Two biological replicates
of inflorescences collected from plants grown separately but under the same conditions were
processed and shown. (E) Global abundance of 21-nt and 24-nt small RNAs and miRNAs in Col-
0 and mac7-1 as determined by small RNA-seq. Small RNA libraries were generated from 12-
day-old seedlings growing on MS plates. The normalization of small RNAs was against 45S rRNA
reads and abundance was expressed as RPMR (reads per million of 45S rRNA reads), and log;
ratios of mac7-1/Col-0 were plotted. Asterisks indicate that the mean is significantly below 0
(Wilcoxon test, p < 2.2e-16). (F) Determination of miRNA target mRNA levels in amiR-SUL and
amiR-SUL mac7-1 using 12-day-old seedlings by quantitative RT-PCR (RT-qPCR). The
housekeeping gene IPP2 was included as a control. Expression levels were normalized to those
of UBQUITIN5 (UBQ5) and compared with those in amiR-SUL (set to 1). Error bars indicate
standard deviation from three technical replicates. Asterisks indicate significant difference
between Col-0 and mac7-1 (t-test, p < 0.05).
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Figure 2. A point mutation in MAC?7 is responsible for the morphological and molecular
phenotypes in the mac7-1 mutant.

(A) A diagram of the MACY protein showing various domains, the predicted nuclear localization
signal (NLS), and the E1131K mutation in the mac7-1 mutant. A sequence alignment of MAC7
and its orthologs in the region containing the E1131K mutation in the mac7-1 mutant is also shown.
Abbreviations for species are as follows: Arabidopsis thaliana (A.t.), Homo sapiens (H.s.), Mus
musculus (M.m.), Danio rerio (D.r.), Drosophila melanogaster (D.m.), Caenorhabditis elegans
(C.e.), and Schizosaccharomyces pombe (S.p.). N: N-terminus; ARM: armadillo domain; RecA:
RecA-like domains; C: C-terminus. The point mutation site is labeled by a triangle. (B)
Morphological phenotypes of 3 to 4-week old seedlings of the indicated genotypes.
PMAC7:MAC7-GFP and pMAC7:MAC7-mCherry were transformed into amiR-SUL mac7-1 and
mac7-1, respectively. (C and D) Northern blotting analysis of miRNAs from Col-0, mac7-1, and
the complementation line mac7-1 pMAC7:MAC7-mCherry using inflorescences (C) and 12-day-
old seedlings (D). The miRNA signals were quantified as described in Figure 1D. RNA markers
(NEB, N2102S) shown in (D) were resolved in the same gel as miRNAs and probed separately
by a DNA probe complementary to the marker sequences.



W pMIR167a,GUS

o % 0O mac?-1
. Q PMIR167a:GUS

B amiR-SUL O amiR-SUL maci-1

%
*
I*

*

*
*

(X

A D 3 o &
10 ' 14
m
2 F
3
= 08 o v, 2 X
5 = u, o 1.0
2 o MACT MACT %
5 06 & =8
° 5 508
2 1o V 5
g 04 S L) (& “ Eos
T a " o
« i =
0.2 ’ =04
1 ]
} | «
0 E ; _ L || | - ] . 0.2
o o ) -4 > & @ g 30 P o
FCET L ETEISETLLEEEE - T
S &S FTF S &S S SF Bar = 5mm & &
F & & ¢ & & & & & & & ¢ &
&
c
pri-amiR-SUL pri-miR167a pri-miR172a ElIF4A
12, 14,
124 =
10 2 == ==
1
0.8 ¢ H
0.8
06 ¢
067
04 pp————1 04T 041
0.2 021 021
o' = - - 0! ] 0 . . . 0!
30 90 150 210 270 30 90 150 210 270 30 90 150 210 270 30 90 150 210 270
Time {minutes) Time {minutes) Time (minutes) Time {minutes)

- AMR-SUL — AMiR-SUL mac7-1

Figure 3. MAC7 promotes pri-miRNA production.

(A) Determination of pri-miRNA levels in amiR-SUL and amiR-SUL mac7-1 inflorescences by RT-
gPCR. The housekeeping gene IPP2 was included as a control. Expression levels were
normalized to those of UBQUITINS (UBQ5) and compared with those in amiR-SUL (set to 1).
Error bars indicate standard deviation from three technical replicates. Asterisks indicate significant
difference between amiR-SUL and amiR-SUL mac7-1 (t-test, p < 0.05). (B) Representative GUS
staining images of pMIR167a:GUS and mac7-1 pMIR167a:GUS seedlings. The transcript levels
of GUS and endogenous pri-miR167a in pMIR167a:GUS and mac7-1 pMIR167a:GUS seedlings
were determined by RT-gPCR. Expression levels were normalized to those of UBQUITINS (UBQJ5)
and compared with those in pMIR167a:GUS (set to 1). Error bars indicate standard deviation from
three technical replicates. Asterisks, t-test p < 0.05. (C) Half-life measurements for pri-amiR-SUL,
pri-miR167a, pri-miR172a and EIF4A mRNA. Two-week-old amiR-SUL and amiR-SUL mac7-1
seedlings were treated with 0.6 mM cordycepin and harvested at various time points. RT-gPCR
was performed to determine the levels of various pri-miRNAs and E/IF4A mRNA. UBQ5 served
as an internal control. Values at time 0 were set to 1. Error bars indicate standard deviation from
three technical replicates. Two biological replicates were performed and similar results were
obtained.
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Figure 4. MAC7 is a nuclear protein associated with other MAC subunits.

(A) Subcellular localization of N-terminal (p35S:YFP-MAC?7) or C-terminal (pbMAC7:MAC7-GFP)
fluorescent protein tagged MAC?7 in young leaves of Arabidopsis transgenic lines. Nuclei were
stained with DAPI and pseudo-colored in cyan. Enlarged nuclei are shown in the insets. (B) MAC
subunits identified from both MAC7 and MOS4 immunoprecipitation followed by mass
spectrometry analysis (IP-MS). (C) BiFC analysis of MAC7 with CDC5, PRL1, HYL1 and DCLA1.
Paired cCFP- and nVenus-fusion proteins were co-infiltrated into tobacco leaves. The BiFC signal
(YFP) was detected at 48 h after infiltration by confocal microscopy, and was pseudo-colored in
green. Magenta: auto fluorescence of chlorophyill.
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Figure 5. The MAC subunit genes MAC3a, MAC3b, PRL1, and PRL2 also promote miRNA
biogenesis.

(A) Morphological phenotypes of 4 to 5-week old plants of the indicated genotypes. (B) MiRNA
levels in wild type (Col-0) and indicated mutants as determined by northern blotting. The miRNA
signals were quantified and normalized to those of U6, and values were relative to Col-0
(arbitrarily set to 1). The RNA used in northern blotting was extracted from the aerial parts of 12-
day-old seedlings growing on MS agar plates. (C) Global abundance of 21-nt and 24-nt small
RNAs and miRNAs in Col-0 and pri1 pri2 as determined by small RNA-seq. Small RNA libraries
were generated from 12-day-old seedlings growing on MS plates. The normalization of small
RNAs was against 45S rRNA reads and abundance was expressed as RPMR (reads per million
of 45S rRNA reads), and log; ratios of prl1 pri2/Col-0 were plotted. Asterisks indicate that the
mean is significantly below 0 (Wilcoxon test, p < 2.2e-16). (D) Pri-miRNA levels in plants of the
indicated genotypes as determined by RT-gPCR. The housekeeping gene IPP2 was included as
a control. UBQ5 was used as an internal control and values in Col-0 were set to 1. Error bars
indicate standard deviation from three technical replicates, and asterisks indicate significant
difference between Col-0 and the mutants (t-test, p < 0.05).
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Figure 6. MAC7 affects HYL1 subcellular localization.

(A) Images of nuclei in root cells of 7 to 10-day-old seedlings of the indicated genotypes. Images
(2) and (4) show five times enlarged images cropped from (1) and (3), respectively. Dicing bodies
are indicated by triangles. (B) The percentage of cells containing HYL1-positive dicing bodies in
wild type and mac7-1. The quantification was performed by observing more than 1000 cells from

27 roots for each genotype. The asterisk indicates significant difference between the samples (t-
test, p < 0.05).
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Figure 7. Down-regulated genes in the mac mutants are significantly related to stress
responses, while up-regulated genes are involved in various biosynthetic and metabolic
processes.

(A) GO enrichment analysis of 189 commonly down-regulated genes in mac7-1, mac3a mac3b
and prl1 pri2. The degree of overlap among down-regulated genes in mac7-1, mac3a mac3b and
pri1 pri2 is shown in the Venn diagram. (B) GO enrichment analysis of 222 commonly up-
regulated genes mac7-1, mac3a mac3b and pri1 pri2. The degree of overlap among up-regulated
genes in mac7-1, mac3a mac3b and pri1 pri2 is shown in the Venn diagram.
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Figure 8. MAC subunits affect pre-mRNA splicing.

(A) Box plot of intron/exon ratios in the indicated genotypes. All genes that pass an abundance
filter in expression were included in this analysis. Asterisks indicate significant difference between
the mutant and wild type (Col-0) (Wilcoxon test, p < 2.2e-16). (B) The intron/exon ratio per gene
in Col-0 vs. the indicated mutants. Black dots represent all genes with raw intronic read number
= 2, exonic read number = 5, and final intron/exon ratio between 0 to 1. Red dots represent genes
with significantly higher intron/exon ratio relative to wild type (fold change =2 2 and FDR < 0.01).
(C) A Venn diagram showing the degree of overlap among genes with intron retention defects in
mac7-1, mac3a mac3b and pri1 pri2. (D) Examples of genes with intron retention defects. RPKM:
Reads Per Kilobase per Million mapped reads. Two biological replicates for each genotype are
shown. The rectangles mark introns with higher retention in the mutants.
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Figure 9. MAC affects pre-mRNA splicing and gene expression independently.

(A) Volcano plots illustrating fold changes of gene expression levels in the indicated mutants
compared to Col-0. Thresholds for fold change of 1.5 and p < 0.01 are shown in the plots as gray
dashed lines. Black dots and red dots represent the same genes as in Figure 8B. (B) Box plots of
intron/exon ratios in total genes, up-regulated and down-regulated genes in the indicated
genotypes. Only genes that pass an abundance filter (raw intronic read number = 2 and exonic
read number = 5) were included in this analysis. Asterisks indicate significant difference between
the mutant and wild type (Col-0) (Wilcoxon test, p < 2.2e-16).
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Figure 10. A model for MAC’s functions in miRNA biogenesis and pre-mRNA processing.

MAC affects miRNA biogenesis through influencing Pol Il transcription and interacting with the
pri-miRNA processing factor HYL1. MAC also plays a role in pre-mRNA splicing through
interactions with the spliceosome. MAC seems to have separate roles in miRNA biogenesis and
RNA splicing but a common theme appears to be co-transcriptional RNA processing.
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