

RESEARCH ARTICLE

Differentially regulated orthologs in sorghum and the subgenomes of maize

Yang Zhang^{1,2}, Daniel W. Ngu^{1,2}, Daniel Carvalho^{1,2}, Zhikai Liang^{1,2}, Yumou Qiu³, Rebecca L. Roston^{1,4}, and James C. Schnable^{*,1,2}

¹ Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

² Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

³ Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

⁴ Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

* Corresponding Author: schnable@unl.edu

Short title: Gene regulatory changes between maize and sorghum

One-sentence summary: The response of the same genes to cold stress often varies between maize and sorghum, but the set of genes with conserved patterns of regulation show greater evidence of functional constraint.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: James C. Schnable (schnable@unl.edu).

ABSTRACT

Identifying interspecies changes in gene regulation, one of the two primary sources of phenotypic variation, is challenging on a genome-wide scale. The use of paired time course data on cold-responsive gene expression in maize (*Zea mays*) and sorghum (*Sorghum bicolor*) allowed us to identify differentially regulated orthologs. While the majority of cold-responsive transcriptional regulation of conserved gene pairs is species specific, the initial transcriptional responses to cold appear to be more conserved than later responses. In maize, the promoters of genes with conserved transcriptional responses to cold tend to contain more micrococcal nuclease hypersensitive sites in their promoters, a proxy for open chromatin. Genes with conserved patterns of transcriptional regulation between the two species show lower ratios of nonsynonymous to synonymous substitutions. Genes involved in lipid metabolism, known to be involved in cold acclimation, tended to show consistent regulation in both species. Genes with species-specific cold responses did not cluster in particular pathways nor were they enriched in particular functional categories. We propose that cold-responsive transcriptional regulation in individual species may not be a reliable marker for function, while a core set of genes involved in perceiving and responding to cold stress are subject to functionally constrained cold-responsive regulation across the grass tribe Andropogoneae.

1 **INTRODUCTION**

2 The grasses are a clade of more than 10,000 species, which exhibit conserved morphology and
3 genome architecture (Bennetzen and Freeling, 1993). Grasses have adapted to grow in a wide
4 range of climates and ecologies across the globe, with 20% of total land area covered by
5 ecosystems dominated by grasses (Shantz, 1954). As a result, the range of tolerance to abiotic
6 stresses present in the grass family (Poaceae) far exceeds that present within any single grass
7 species. However, to date, studies attempting to identify determinants of abiotic stress tolerance
8 at a genetic or genomic level have predominantly focused on individual species (Chopra et al.,
9 2017; Priest et al., 2014; Revilla et al., 2016; Tiwari et al., 2016; Waters et al., 2017). The
10 majority of genetic changes with phenotypic effects can be broadly classified into two categories:
11 those that alter protein-coding sequence and those that alter the regulation of gene expression.

12

13 DNA sequence changes that alter protein-coding sequences can be identified in a straightforward
14 fashion. The probability that a given polymorphism in a protein-coding sequence will have a
15 phenotypic effect can also often be estimated. At a basic level, this involves classification as
16 synonymous, missense and nonsense mutations. Information on the overall level of evolutionary
17 conservation for a given amino acid residue can also be used to increase the accuracy of these
18 predictions (Cooper et al., 2005; Ng and Henikoff, 2001; Reva et al., 2011). Cross species
19 comparisons of the protein-coding sequences from genes co-opted into new functional roles in
20 C4 photosynthesis have been able to identify protein changes linked to changes in function at a
21 resolution of individual amino acid residues (Christin et al., 2007).

22

23 Identifying changes in gene regulation across related species is more challenging, and the
24 associated methods are far less advanced. For extremely close relatives, such as *Arabidopsis*
25 *thaliana* and *Arabidopsis arenosa*, RNA-Seq reads from both species can be mapped to a
26 common reference genome (Burkart-Waco et al., 2015). For species with greater levels of
27 sequence divergence in transcribed regions, this approach becomes impractical. Recent work in
28 *Sophophora* (formerly *Drosophila*) described some of the many challenges present in comparing
29 changes in baseline expression levels across closely related species with independently
30 sequenced and assembled reference genomes (Torres-Oliva et al., 2016). However, this approach
31 is limited to identifying changes in baselines expression in the same treatment rather than

32 examining patterns of regulation across multiple treatments. Within the grasses several research
33 groups have employed clustering-based methods to identify genes with conserved patterns of
34 regulation during either reproductive or photosynthetic development (Davidson et al., 2012;
35 Wang et al., 2014). Among other results, one of these studies concluded that orthologous genes
36 conserved at syntenic locations are more likely to share correlated expression patterns across
37 multiple species than genes classified as orthologs based on phylogenetic analysis but located at
38 non-syntenic locations (Davidson et al., 2012). Clustering-based methods can identify genes with
39 conserved patterns of regulation across multiple species, but they have high false positive rates
40 when used to identify genes with changes in regulatory pattern.

41

42 In even closely related species, the baseline expression levels of orthologous genes can diverge
43 significantly (Hollister and Gaut, 2009; Hollister et al., 2011). Testing for conserved or divergent
44 patterns of regulation across different genotypes or different species when baseline expression
45 levels have diverged creates a statistical challenge. Modeling of multiple environmental or
46 genotype level effects can be combined either additively or multiplicatively. The model selected
47 will determine which set of genes will be classified as differentially regulated between species.
48 While few attempts have been made to identify differential patterns of gene regulation across
49 species, attempts to do so between subspecies or diverse accessions have largely used either only
50 a multiplicative model (Lovell et al., 2016), an additive model, or additive and multiplicative
51 models separately (Waters et al., 2017) but have not made comparisons between the suitability of
52 the two models.

53

54 Here, we sought to develop effective methods for comparing gene regulatory patterns between
55 syntenic orthologous genes in closely related species. For initial cross species comparisons, data
56 on changes in the transcriptional responses to cold stress in maize and sorghum were employed.
57 Cold was selected as a stress that could be delivered in a consistent fashion and time frame.
58 Maize and sorghum were selected based on their close evolutionary relationship (Swigoňová et
59 al., 2004), high quality sequenced genomes (Paterson et al., 2009; Schnable et al., 2009), and
60 common susceptibility to cold stress (Chinnusamy et al., 2007; Hetherington et al., 1989;
61 Wendorf et al., 1992). In addition, maize is a mesotetraploid species that experienced a whole-

62 genome duplication approximately 12 million years ago after its divergence from sorghum
63 (Swigoňová et al., 2004), producing two functionally distinct maize subgenomes, maize1
64 and maize2 (Schnable et al., 2011). Approximately 3,000-5,000 pairs of genes are retained on
65 both maize subgenomes (Schnable et al., 2011, 2012, 2009). Unlike other types of gene
66 duplication, whole-genome duplicates initially retain almost all the same associated conserved
67 regulatory sequences (Freeling et al., 2012). Comparing the expression patterns of duplicated
68 genes exposed to the same trans-regulatory factors provides a bridge to comparing the expression
69 patterns of orthologous genes in closely related species with similar phenotypes. These two
70 systems provide a useful platform for developing and testing approaches to comparative gene
71 regulatory analysis. However, one goal of cross species comparisons of transcriptional
72 regulation must ultimately be to link changes in regulation to changes in phenotype, which in the
73 case of low temperature stress will require conducting comparisons between species with
74 differing, rather than similar, tolerance to cold.

75

76 **RESULTS**

77 A set of 15,231 syntenic orthologous gene pairs conserved between the maize1 subgenome and
78 sorghum and 9,553 syntenic gene pairs conserved between the maize2 subgenome were
79 employed in this study (Figure 1A). The sequence identity in coding regions of syntenic genes
80 between sorghum and either maize subgenome or between maize subgenomes is approximately
81 90% (Supplemental Figure 1), which is a level of divergence that makes alignment to a common
82 reference sequence impractical. We conducted parallel expression analyses of the set of syntenic
83 orthologous gene pairs conserved between the maize1 subgenome and sorghum and the smaller
84 set of syntenic gene pairs conserved between the maize2 subgenome and sorghum.

85

86 Syntenic orthologs exhibited reasonably well-correlated patterns of absolute gene expression
87 levels between sorghum and either subgenome of maize based on expression data generated from
88 whole seedlings under control conditions (Spearman's rho = 0.79-0.84, Pearson r = 0.67-0.85,
89 Kendall rank correlation 0.67-0.63, Figure 1B). This observation is consistent with previous
90 reports about the analysis of expression across reproductive tissues in three grass species
91 (Davidson et al., 2012). However, it should be noted that these correlations were significantly
92 lower than those observed between biological replicates (see Methods for a detailed explanation

93 of what constituted a biological replicate in this study) of the same species (Spearman's rho =
94 0.88-0.98, Pearson r = 0.89-0.99, Kendall rank correlation 0.78-0.91), and many individual genes
95 have large divergence in baseline expression levels between the two species, creating divergence
96 between the predictions of additive and multiplicative statistical models of gene regulation, as
97 described above.

98

99 We visually confirmed the lethal effect of prolonged cold stress on maize and sorghum (Ercoli et
100 al., 2004; Hetherington et al., 1989; Olsen et al., 1993; Sánchez et al., 2014; Shaykewich, 1995)
101 following prolonged cold treatment (Figure 2A-C, Supplemental Figure 2, See Methods). We
102 employed measurements of impairment of CO₂ assimilation rates after recovery from a
103 controlled length cold stress to provide more quantitative measures of cold stress and to assess
104 the suitability of the level of cold stress employed to distinguish differing degrees of cold stress
105 sensitivity or cold stress tolerance among maize, sorghum, and several related panicoid grass
106 species. Data were generated from a total of six panicoid grasses, including the relatively cold
107 tolerant paspalum (*Paspalum vaginatum*) and the extremely cold sensitive proso millet (*Panicum*
108 *miliaceum*) (Figure 2D). After one day of cold stress, the species could be broadly classified as
109 either cold stress insensitive or cold stress sensitive, with both maize and sorghum in the cold
110 stress sensitive category. A longer period of cold stress (3 days) revealed greater impairment of
111 CO₂ assimilation rates in sorghum than in maize, consistent with previous reports on the relative
112 cold sensitivity of these two species (Chinnusamy et al., 2007; Chopra et al., 2017; Fiedler et al.,
113 2016; Hetherington et al., 1989; Wendorf et al., 1992), and separated the six species into three
114 broad categories of cold tolerant, moderately cold sensitive and extremely cold sensitive. Based
115 on these data, we selected one day of cold stress, when maize and sorghum still exhibit
116 comparable levels of CO₂ assimilation impairment (Figure 2D), for downstream expression
117 analysis.

118

119 **Conventional differentially expressed gene analysis**

120 We identified differentially expressed genes in each species by comparing gene expression data
121 in control seedlings to those subjected to one day of cold stress (Supplemental Data Set 1).
122 Among maize1/sorghum syntenic gene pairs, 1,686 (11.1%, 1,686 out of 15,231) and 2,343
123 (15.4%, 2,343 out of 15,231) genes were classified as differentially expressed genes (DEGs),

124 respectively (Figure 3A, see Methods). For maize2/sorghum syntenic gene pairs, these values
125 were 968 (10.1%, 968 out of 9,553) and 1,446 (15.1%, 1,446 out of 9,553) genes, respectively.
126 Only 836 (5.5%, 836 out of 15,231) of maize1/sorghum syntenic genes were classified as
127 showing differential regulation in response to cold in both species (Figure 3A). In addition, there
128 were 29 and 16 genes pairs in the maize1/sorghum and maize2/sorghum gene pairs, respectively,
129 where both genes were classified as differentially expressed but in opposite directions (Figure
130 3B). The 836 observed syntenic gene pairs is approximately 3.2 times higher than the 259 genes
131 pairs that should have been identified if cold-responsive gene regulation were not correlated
132 between the two species (see legend of Figure 3 for a detailed breakdown of how this value was
133 calculated). With these two values, the maximum number of genes responding to cold in the
134 same fashion as a result of common descent from an ancestrally cold-responsive gene in the
135 common ancestor of maize and sorghum can be calculated using the formula ((observed number
136 of shared DEGs) - (expected number of shared DEGs))/(observed number of shared DEGs). In
137 this case, a maximum of approximately two thirds (69.0%, 577 out of 836) of genes identified as
138 responding to cold in both species are likely to do so as a result of common descent. However,
139 this may in fact be an overestimate if some of the same changes in cold-responsive gene
140 regulation have been selected for in parallel in both lineages. Extending this calculation to the set
141 of gene pairs that responded transcriptionally to cold in either maize or sorghum or both, only
142 18.1% (577 out of 3,193) of gene pairs responding to cold in either species are likely to have
143 retained a conserved pattern of cold-responsive gene expression since the divergence of maize
144 and sorghum from a common ancestor 12 million years ago (Swigoňová et al., 2004).

145
146 One potential explanation for this observation is that low statistical power to detect differentially
147 expressed genes may create a false impression that differential expression is not conserved
148 between related species. Prior estimates from real biological data in yeast (*Saccharomyces*
149 *cerevisiae*) suggest that, given the number of replicates and minimum cut-off for differential
150 expression employed here, the power of DESeq2 to identify differentially expressed genes
151 should be between 0.65 and 0.90 (Schurch et al., 2016). In addition, a simulation study using
152 observed expression values and variances in the maize dataset generated here indicated that the
153 power to detect differential gene expression ranged from 0.63 for genes with a change in
154 expression exactly at the minimum cut off to 0.961 for genes with larger changes in expression

155 value (Supplemental Data Set 2). The expected proportion of genes classified as differentially
156 expressed in either species that are classified as differentially expressed in both species is given
157 by the formula $power^2 / 1 - (1 - power)^2$. Given the worst-case assumption (power = 0.628),
158 this value would be 46% if gene regulation were perfectly conserved between maize and
159 sorghum, which is higher than the observed value of 25%.

160

161 Results for maize2/sorghum gene pairs were largely comparable. However, the proportion of
162 genes classified as not differentially expressed in either species was greater for maize2/sorghum
163 gene pairs (Figure 3A), likely because maize2 genes tend to have lower overall levels of
164 expression (Schnable et al., 2011). In total, 766 nonsyntenic maize genes were classified as
165 differentially expressed in response to cold (2.0% of all nonsyntenic genes in maize, 766 out of
166 38,664), while 1,333 (9.1%, 1,333 out of 14,683) of nonsyntenic genes in sorghum were
167 classified as differentially expressed in response to cold. The absolute numbers of differentially
168 expressed nonsyntenic genes are more similar to each other than the proportions, as the current
169 set of maize gene model annotations includes many lower confidence genes - which are
170 generally nonsyntenic and often show little or no detectable expression (Schnable, 2015) - than
171 the current set of sorghum gene model annotations.

172

173 Maize and sorghum share a close relationship (Swigoňová et al., 2004), and both originated from
174 tropical latitudes (De Wet, 1978; van Heerwaarden et al., 2011). The two species even have a
175 high degree of promoter conservation in abiotic stress-responsive genes (Freeling et al., 2007).
176 Therefore, the apparent low degree of conservation in cold stress-responsive regulation is
177 unexpected. However, this result is also consistent with studies that have found significant
178 divergence in abiotic stress responses between different haplotypes in maize (Waters et al., 2017).
179

180 One potential explanation is that the same cold stress pathways are being induced in maize and
181 sorghum, but these pathways are induced more rapidly in one crop than the other when exposed
182 to equivalent cold stresses. To test this hypothesis, we used data from a more detailed time
183 course to compare the expression levels between matched pairs of cold stressed and control
184 plants of each species at six time points distributed over 24 hours (See Methods and
185 Supplemental Data Set 1). The number of gene pairs classified as differentially expressed at

186 different time points ranged from 60 to 2,199 for maize1/sorghum gene pairs and 29 to 1,235 for
187 maize2/sorghum gene pairs. Comparing the number of genes identified as differentially
188 expressed in each of all 36 possible pairwise combinations of time points between the two
189 species showed that the greatest proportion of shared differentially expressed gene pairs was
190 identified when identical time points were compared between the two species and that the overall
191 number of shared differentially expressed gene pairs increases at later time points (Figure 4A).
192 Overall, genes tended to remain in the same categories, with a general trend towards more DE0
193 genes moving into all three cold-responsive expression categories as the length of cold stress
194 increased (Figure 4A). Because the proportion of all genes classified as differentially expressed
195 increases at later time points, the expected number of gene pairs classified at DE2 under the null
196 model described above also increases. Therefore, considering only the absolute number of gene
197 pairs classified as DEGs in both species (DE2) at each time point can be misleading. After
198 controlling for the expected number of DE2 genes, early time points show significantly higher
199 proportions of true positives than later time points (Figure 4B).

200

201 **Differentially regulated ortholog analysis**

202 Another potential explanation for the finding that relatively few shared differentially expressed
203 genes were identified between maize and sorghum is that differential gene expression analysis
204 may not be testing the correct null hypothesis for between-species comparisons (Paschold et al.,
205 2014). The null hypothesis of conventional DEG analysis is that the expression values observed
206 for a given gene under control and stress conditions are drawn from the same underlying
207 distribution. This approach is perfectly suitable for single-species analysis. In a two-species
208 analyses, such as those conducted above, a DEG approach divides gene pairs into three
209 categories: genes pairs classified as differentially expressed in neither species (DE0), in one
210 species but not the other (DE1), and in both species (DE2, Figure 3A).

211

212 As shown in Figure 5A, in principle, each of those three categories (DE0, DE1, and DE2) can
213 include gene pairs without significant differences in the pattern of regulation between species
214 (comparably regulated orthologs or CROs), as well as gene pairs that do show significant
215 differences in regulation between the two species (differentially regulated orthologs or DROs).
216 All six theoretical cases from Figure 5A were observed in the RNA-Seq expression dataset

217 generated above (Supplemental Figure 3A). DROs and CROs were both observed in all the DEG
218 groups (Supplemental Figure 3B). Distinguishing between DROs and CROs requires testing a
219 different null hypothesis: that the change in expression for a given gene between two treatments
220 is equivalent to the change in expression for an ortholog of that same gene, in a different species,
221 across the same two treatments. Another way of describing this same experimental approach is
222 testing for a statistically significant treatment by species interaction effect. Several existing
223 statistical packages incorporate the ability to test for significant interactions between different
224 treatments (Love et al., 2014; Ritchie et al., 2015; Robinson et al., 2010) by including species as
225 an effect in the model. However, comparing across species under different conditions, including
226 testing for interaction effects to cross species comparisons, requires us to define an accurate
227 model for what the same change in gene regulation looks like starting from different baseline
228 levels of expression. Testing this null hypothesis across species in turn requires us to define an
229 accurate model of what the same pattern of gene expression looks like when starting from
230 different baseline levels of expression.

231
232 For an orthologous gene pair where gene copies are expressed at different baseline levels in two
233 species, two different models can be used to compare a change in expression between treatment
234 and control conditions: additive and multiplicative (Figure 5B). When expression under control
235 conditions is equivalent between the two species, these models yield the same predicted
236 expression under stressed conditions. However, when control condition expression is different
237 between the two species, the models produce different expected expression values under stress
238 conditions. Using simulated data based on additive and multiplicative models, an ANOVA-based
239 test classified genes with different baseline expression levels but the same pattern of expression
240 (as simulated by a multiplicative model) as significantly differentially regulated between species,
241 while the generalized linear model-based DESeq2 classified genes with different baseline
242 expression levels but the same pattern of expression (as simulated by a additive model) as
243 significantly differentially regulated between species (Supplemental Data Set 3).

244
245 To test which of these models is a better representation of how cold-responsive gene regulation
246 actually operates, we utilized a set of 5,257 gene pairs retained from the maize whole genome
247 duplication (WGD) (Schnable et al., 2011). The maize WGD created two copies of each gene in

248 the genome, each associated with the same chromatin environments and regulatory sequences.
249 RNA-Seq-based measurements of expression for duplicate genes can be unreliable when gene
250 copies are similar enough that reads cannot be unambiguously mapped to individual copies.
251 Maize WGD-derived duplicate gene pairs show approximately 93% sequence similarity in exon
252 regions (Supplemental Figure 1). This is equivalent to 4.5 mismatches per 50 bp sequence read,
253 significantly reducing the risk of ambiguous or incorrect read mapping. The expression level of
254 each gene copy in a WGD gene pairs in the maize genome in the same samples results from the
255 exact same trans-factors acting in the exact same tissue and cell types. Therefore, divergence in
256 the regulation of these genes should start out with the same cis-regulatory sequence prior to their
257 divergence from their most recent common ancestor (whether at the time of WDG for
258 autopolyploids or at the time of speciation prior to WGD for allopolyploids) (Freeling et al.,
259 2012).

260

261 To test the additive and multiplicative null models, we used the expression pattern of one maize
262 gene copy between control and cold stress conditions to predict the expression pattern of the
263 other maize gene copy using each null model from Figure 5B. We conducted the analysis in
264 parallel at each of the six time points in maize using maize1/maize2 gene pairs where at least one
265 copy was identified as differentially expressed at that time point. Gene pairs were omitted from
266 the analysis if the predictions of both models were more similar to each other than either was to
267 the observed value.

268

269 The multiplicative model was more accurate at predicting cold-responsive expression patterns
270 between maize WGD duplicates than the additive model at all time points ($p=0.004-2.4*10-15$),
271 paired two tailed t-test) (Supplemental Data Set 4). Requiring the difference between the
272 predictions of the two models to be at least twice as large as the difference between the better
273 model and the observed expression pattern produced similar results (Figure 5C, Supplemental
274 Data Set 4). The set of genes where the additive model produced better predictions was
275 examined for differences in expression, selection (Ka/Ks ratio), (Supplemental Figure 4) or GO
276 annotation No significant markers for which genes could be best predicted with which model
277 were identified. Therefore, going forward, we employed the multiplicative model for conserved
278 gene regulation across species, as implemented in DESeq2's test for multiple factors (Love et al.,

279 2014) (see Methods).

280

281 Figure 6A shows the proportion of gene pairs classified as DROs among all gene pairs in the
282 DE0, DE1, and DE2 groups at each of the six time points. Comparing the same time points for
283 maize and sorghum identifies fewer differentially regulated orthologs than comparisons between
284 non-equivalent time points in the two species. Fewer differentially regulated orthologs were
285 identified at earlier cold treatment time points than at later time points. This is consistent with the
286 results of DEG analysis described above, which suggested early cold stress responses were more
287 conserved across sorghum and maize than later cold stress responses.

288

289 **Functional differences between genes with conserved or lineage-specific regulatory
290 patterns**

291 Genes classified as responding to cold stress in both species (DE2) tended to have significantly
292 lower ratios of nonsynonymous nucleotide changes to synonymous nucleotide changes (Ka/Ks
293 ratio) than genes that responded to cold stress in only one species or in neither species. This
294 suggests genes with conserved patterns of cold-responsive regulation experience stronger
295 purifying selection than genes with lineage-specific patterns of cold-responsive regulation
296 (Figure 6B-C). GO (Gene Ontology) enrichment analysis identified genes differentially regulated
297 in both species as enriched in transcription factor-related GO terms, such as GO:0006355
298 “regulation of transcription, DNA-templated”. This enrichment was further confirmed in a
299 separate test for enrichment of genes annotated as transcription factors in the GRASSIUS
300 database (Yilmaz et al., 2009). No non-transcription factor-related GO term showed significant
301 enrichment when compared to the population of gene pairs that were syntenically conserved
302 between both species. Comparison to the total population of annotated genes in maize or
303 sorghum showed many additional enrichments; however, this approach can produce misleading
304 results, as non-syntenic genes are enriched among genes without any functional annotation
305 (Schnable et al., 2012). We used MapMan (Usadel et al., 2009) to visualize the patterns of
306 expression within particular functional categories among DE2 genes as well as DE1 maize and
307 DE1 sorghum genes. As expected, genes related to cell wall growth, a marker for plant growth,
308 were downregulated in both species in the cold, including xyloglucosyl transferase
309 (Sobic.001g538000 and GRMZM2G388684) and leucine-rich repeat family protein

310 (Sobic.003g205600 and GRMZM2G333811) genes (Cui et al., 2005; Pearce, 2001; Tenhaken,
311 2014). Genes involved in lipid metabolism were upregulated in both species, including glycerol-
312 3-phosphate acyltransferase 8 (Sobic.009g162000 and GRMZM2G166176), diacylglycerol
313 kinase (Sobic.006g230400 and GRMZM2G106578), choline-phosphate cytidylyltransferase
314 (Sobic.001g282900 and GRMZM2G132898), MGDG synthase (Sobic.004g334000 and
315 GRMZM2G178892, Sobic.007g211900 and GRMZM2G141320), glycerophosphodiester
316 phosphodiesterase (Sobic.007g190700 and GRMZM2G064962, Sobic.004g157300 and
317 GRMZM2G018820) and FA elongation acyl-CoA ligase (Sobic.004g015400 and
318 GRMZM2G120539) genes. This observation is consistent with the reported role of changes in
319 membrane composition to avoid stiffening in the cold as an adaptive response to cold (Quinn,
320 1988; Singer and Nicolson, 1972). No consistent expression patterns of genes in particular
321 metabolic processes (up- or downregulated) were observed among the DE1 maize or DE1
322 sorghum gene pairs.

323
324 The previously defined binding site for DREB/CBF transcription factors, which are induced in
325 response to drought and cold stress (Muiño et al., 2016), showed significant enrichment in the
326 proximal promoters of gene pairs in the DE2 category, as well as significant purification in the
327 proximal promoters of gene pairs in the DE0 category (Supplemental Figure 5). As transcription
328 factors are often associated with larger quantities of conserved noncoding sequences (CNS)
329 (Freeling et al., 2007; Turco et al., 2013), we also investigated the number and quantity of
330 conserved noncoding sequence associated with different classes of genes; however, no strong
331 patterns were observed (Figure 6D). The use of conserved noncoding sequence data to identify
332 regulatory sequence requires that the regulatory sequence be conserved between species. Given
333 that many of the genes identified as responding to cold in either maize or sorghum appear to do
334 so in a lineage-specific fashion, this requirement may not be satisfied in many cases. Various
335 measurements of open chromatin have been shown to be good predictors of where regulatory
336 sequences will be identified using CNS-based methods (Lai et al., 2017; Vera et al., 2014; Zhang
337 et al., 2012), and unlike CNS-based methods, chromatin structure-based methods do not require
338 that the same regulatory sequence be conserved across multiple species. We therefore examined
339 the chromatin states in the promoters of genes with different patterns of cold-responsive
340 regulation using a published dataset of MNase hypersensitive sites (HS) generated from maize

341 seedlings grown under non-stressed conditions (Rodgers-Melnick et al., 2016). Comparisons
342 were made for maize DE0, Maize DE1, Sorghum DE1, DE2 and nonsyntenic genes at each of
343 the six cold stress time points. Many nonsyntenic genes responded to cold; however, nonsyntenic
344 genes as a whole showed little or no open chromatin (as defined by MNase HS) associated with
345 their TSS (transcriptional start sites) or proximal promoters. Previous studies of other epigenetic
346 marks have also concluded that the chromatin signatures of nonsyntenic genes in maize are more
347 similar to those of intergenic sequences versus syntenic genes (Eichten et al., 2011). All
348 categories of syntenic genes tended to have a peak of MNase sensitivity associated with their
349 TSS and more open chromatin in their proximal promoters than nonsyntenic genes. Genes with
350 conserved cold-responsive regulation (DE2) appear to have the greatest amount of open
351 chromatin in their proximal promoters (Figure 7). Intriguingly, the maize copies of maize DE1
352 gene pairs exhibited stronger open chromatin signals than the maize copies of sorghum DE1 gene
353 pairs, even though data on MNase hypersensitive sites came from seedlings grown under control
354 conditions. The patterns reported above remained apparent when genes were divided into nine
355 categories based on their relative expression level and Ka/Ks ratio, although statistical
356 significance was reduced substantially as a result of the smaller number of genes included in
357 each analysis (Supplemental Figure 6).

358

359 **DISCUSSION**

360 The above results indicate that there are roughly equivalent numbers of genes differentially
361 expressed in response to cold compared to those reported from separate studies in each species
362 (Chopra et al., 2015; Makarevitch et al., 2015). However, cross-species comparisons of the
363 transcriptional regulation of the same genes in these two different species reveals that many cold-
364 responsive patterns of regulation are not conserved between the two species. Correcting for the
365 expected overlap across conserved genes based solely on the absolute genes number exhibiting
366 cold-responsive transcriptional changes in each species further reduced the expected number of
367 gene pairs where shared regulation resulted from the conservation of an ancestral pattern of cold-
368 responsive transcriptional regulation. These data imply that gains or losses of cold-responsive
369 regulation are relatively frequent in the grass tribe Andropogoneae. Genes that respond to cold in
370 only a single lineage experience lower levels of purifying selection and are less likely to be
371 annotated as transcription factor genes than genes that are cold-responsive in both lineages. It

372 should be noted that these results are based on data from a single accession of maize (B73) and a
373 single accession of sorghum (BTx623). Evidence suggests that lower, but still significant, levels
374 of divergence in transcriptional regulation in response to cold are present in different accessions
375 of a single species (Makarevitch et al., 2015; Waters et al., 2017).

376

377 It appears that a relatively small core set of genes exhibit conserved responses to cold across the
378 two species in this initial analysis, and functional analysis suggests that these genes are more
379 likely to be present in pathways with logical links to cold stress (decreases in growth and cell
380 wall biosynthesis, increases in lipid metabolism). Thus, we propose a model where a small core
381 set of genes involved in the mechanisms by which panicoid grasses perceive and respond to cold
382 stress are under functionally constrained cold-responsive transcriptional regulation, while a much
383 larger set of genes can gain or lose cold-responsive transcriptional regulation in a neutral fashion
384 or potentially as a result stabilizing selection, potentially through transposon-mediated
385 mechanisms (Makarevitch et al., 2015; Naito et al., 2009). Consistent with this model, the genes
386 with conserved cold-responsive gene regulation exhibited lower ratios of nonsynonymous to
387 synonymous coding sequence substitutions than the other genes, which would imply their coding
388 sequence is also subject to greater functional constraint. This model would also be consistent
389 with the relatively high proportion of maize cold-responsive genes that exhibit variation in cold-
390 responsive regulation across alleles (Waters et al., 2017).

391

392 We evaluated two different models for predicting conserved regulation across different
393 expression levels and found that the multiplicative model was more effective at predicting
394 orthologous gene pair expression than the additive model (Figure 5C, Supplemental Data Set 4).
395 However, while this difference was statistically significant, the additive model remained the better
396 predictor for many gene pairs. While no obvious markers that distinguish genes where one model
397 is the better predictor than the other were identified in this study, further study may identify
398 additional molecular traits measured from the genome that can forecast which model is more
399 appropriate for testing the expression pattern of a given gene across multiple related species.

400

401 **The challenge of linking genes to functions based on expression evidence**

402 The model above would predict that the observation of stress-responsive changes in transcript

403 abundance in a single species is not strong evidence that the associated gene plays a role in the
404 response to that particular stress. While sequencing genomes and identifying genes are becoming
405 more straightforward tasks, confidently assigning functional roles to newly identified genes
406 remains challenging. Many genes in maize (35.1%) and sorghum (16.2%) are not associated with
407 any GO annotations in the current release of Phytozome (v12). Many genes that do possess GO
408 annotations are associated with only extremely broad annotation categories, such as protein
409 binding or catalytic activity. “Guilt by association” studies using co-expression analysis are an
410 intriguing method for assigning putative functional roles to some orphan or poorly annotated
411 genes (Li et al., 2016; Schaefer et al., 2014). However, the use of these methods in a single
412 species may also produce false positive annotations in the case of selectively neutral or
413 stabilizing changes in gene regulation. It may prove to be the case that functionally constrained
414 transcriptional responses are an effective method for identifying these links. Collecting parallel
415 expression datasets in multiple species can be time consuming and costly. We therefore tested a
416 number of alternative approaches to identifying functionally constrained cold-responsive
417 transcriptional regulation. Early transcriptional responses to cold (30 minutes-3 hours) appeared
418 to show greater conservation across species than later transcriptional responses. Regions of open
419 chromatin detected through MNase HS (Rodgers-Melnick et al., 2016; Vera et al., 2014) were
420 preferentially associated with genes that responded transcriptionally to cold stress in maize;
421 however, this association was observed for genes with either conserved or lineage-specific
422 patterns of cold-responsive regulation.

423

424 **Importance of developing methods for cross-species comparisons of transcriptional 425 regulation**

426 Both modeling (Orr, 1998, 1999) and empirical studies (Chan et al., 2010; Studer et al., 2011)
427 have found that genetic variants responsible for large, sudden changes in natural or artificial
428 selection tend to have large, pleiotropic effects. In maize, distinct genetic architectures underlie
429 traits that have been subjected to selection during domestication - one large-effect quantitative
430 trait locus and many small modifiers - and traits that were not selected on during domestication -
431 many small-effect quantitative trait loci (Wallace et al., 2014). This model was supported by
432 recent work with an inter-subspecies cross of maize and its wild progenitor teosinte (*Zea mays*
433 ssp. *parviglumis*). Looking at tassel morphology, distinctly genetic architectures were reported

434 for traits believed to have been under selection during domestication compared to those traits that
435 were not (Xu et al., 2017). Developing effective approaches for comparing transcriptional
436 regulation of conserved syntenic genes across related grass species has the potential to identify
437 large-effect polymorphisms responsible for interspecies phenotypic variation in traits such as
438 abiotic stress tolerance where substantial phenotypic variation exists between species (Figure
439 2D).

440

441 Here we have shown that by using synteny to identify pairs of conserved orthologs across related
442 species, it is possible to identify species by treatment interactions, which signify changes in gene
443 regulation across species (DROs), using a multiplicative model of gene regulation. The use of a
444 multiplicative model was in turn supported by analysis of the regulation of duplicated maize
445 genes within the same sample. By increasing the number of species sampled, it may soon be
446 possible to define a consistent core set of genes subjected to functionally constrained regulation
447 in response to cold across the grasses. Changes in the regulation of these core genes in specific
448 lineages with different cold stress-response phenotypes would be useful candidates for the type
449 of large-effect changes predicted to produce between-species phenotypic variation. However, the
450 interpretation of such data must take into account that, unlike within-species studies of allelic
451 variation in cold-responsive regulation, between-species analysis cannot distinguish cis-
452 regulatory from trans-regulatory sources of variation in transcriptional responses.

453

454 METHODS

455 **Plant growth and cold treatment**

456 For maize and sorghum, the reference genotypes used for genome sequencing and assembly were
457 B73 and BTx623, respectively. SNP calling using RNA-Seq data from B73 was used to verify
458 that the plants used in this study came from the USA South clade of B73 accessions, i.e., those
459 closest to the original reference genome (Liang and Schnable, 2016). Under the growing
460 conditions employed, maize developed more quickly than sorghum, and sorghum seedlings
461 twelve days after planting (DAP) were selected as being roughly developmentally equivalent to
462 10 DAP maize seedlings based on leaf number and morphology (Figure 2A). Planting dates were
463 staggered so that all species reached this developmental time point simultaneously. For the
464 original RNA-Seq presented in Figure 2A, seeds were planted in MetroMix 200 and grown in

465 greenhouse conditions under 13 hour day length in greenhouses at University of Nebraska-
466 Lincoln's Beadle Center, with target conditions of $320 \text{ mol m}^{-2} \text{ s}^{-1}$, high pressure sodium bulb, 13
467 hours/11 hours 29°C / 23°C day/night and 60% relative humidity. Control plants were harvested
468 directly from the greenhouse three hours before lights on. Plants subjected to cold stress
469 treatment were moved to a cold treatment growth chamber, with $33 \text{ mol m}^{-2} \text{ s}^{-1}$, metal halide
470 grow bulb, 12 hours/12 hours 6°C / 6°C day/night. Cold stressed plants were harvested three
471 hours before lights on. Each sample consisted of pooled aboveground tissue from at least three
472 seedlings. Each biological replicate was harvested from plants that were planted, grown, and
473 harvested at a distinct and separate time from each other biological replicate. A total of three
474 independent biological replicates were generated for this experiment. For the time course RNA-
475 Seq data presented in Figure 4 and onward in the study, maize and sorghum were planted as
476 above and grown in a Percival growth chamber (Percival model E-41L2) with target conditions
477 of $111 \text{ mol m}^{-2} \text{ s}^{-1}$ light levels, 60% relative humidity, a 12 hour/12 hour day night cycle with a
478 target temperature of 29°C during the day and 23°C at night. The onset of cold stress treatment
479 was immediately before the end of daylight illumination, at which point half of the plants were
480 moved to a second growth chamber with equivalent settings with the exception of a target
481 temperature of 6°C both during the day and at night. Each sample represents a pool of all
482 aboveground tissue from at least three seedlings. Samples were harvested from both the paired
483 control and cold stress treatments at 0.5 hours, 1 hour, 3 hours, 6 hours, 16 hours, and 24 hours
484 after the onset of cold stress. Biological replicates included both maize and sorghum plants that
485 were offset in planting but stressed and harvested at the same time in the same growth chambers.
486 A total of 3 independent biological replicates were generated for this experiment.
487

488 Definition of samples and biological replicates employed in this paper. **Sample**: each sample
489 consists of RNA extracted from the pooled tissue of no less than 3 and no more than 5 separate
490 plants planted and harvested on the same date and grown in the same growth chamber. All
491 aboveground tissue was harvested from each plant included in a pool. **All aboveground tissue**:
492 at the stage plants were harvested, all aboveground tissue included leaf blades, ligules, and leaf
493 sheaths, but not apical meristems, stems, or roots. **Biological replicate**: each biological replicate
494 consists of RNA extracted from pooled tissue harvested from plants of the same genotype
495 planted and harvested on separate dates from any other biological replicate. **Paired replicate**:

496 biological replicates were paired across species, with tissue harvested on the same day from
497 plants of each species growth in the same growth chamber.

498

499 **CO₂ assimilation rate measurements**

500 Plants were grown and cold treated as above, with the modification that in the case of sorghum,
501 small plastic caps were placed over the seedlings to prevent the plants from becoming too tall to
502 fit into the LiCor measurement chamber (approximately two inches). After 0, 1, or 3 days of cold
503 treatment, the plants were allowed to recover in the greenhouse overnight. The following
504 morning, CO₂ assimilation rates were measured using the Li-6400 portable photosystem unit
505 under the following conditions: PAR 200 mol mol⁻¹, CO₂ at 400 mol mol⁻¹ with flow at 400 mol
506 mol⁻¹ and humidity at greenhouse conditions. Whole plant readings were measured for sorghum,
507 paspalum, Japanese millet (*Echinochloa esculenta*), proso millet, and urochloa (*Urochloa fusca*)
508 after covering their pots with clay and using the LiCor Arabidopsis chamber. Maize was
509 measured using the leaf clamp attachment, which was consistently placed on the second leaf at a
510 position 3 cm above the ligule. Leaf area was measured using the Li-3100c Area meter (Li-Cor).
511 The accessions used for each species presented in Figure 1D included the following: paspalum:
512 USDA PI 509022, Japanese millet: USDA PI 647850, proso millet: earlybird USDA PI 578073,
513 urochloa: LBJWC-52, sorghum: BTx623, and maize: B73.

514

515 **Identifying syntenic orthologs**

516 Coding sequence data for primary transcripts of each annotated gene in the genome assemblies
517 of 8 grass species, including maize and sorghum used in the analysis, were obtained from
518 Phytozome 10.2. Similar sequences were identified using LASTZ (Harris, 2007), requiring an
519 alignment spanning at least 50% of total sequence length and 70% sequence identity. In addition,
520 the arguments -ambiguous=iupac, -notransition, and -seed=match12 were all set in each run.
521 LASTZ output was converted to QuotaAlign's "RAW" format using a version of the blast to
522 raw.py script that had been modified to take into account differences in output format between
523 BLAST and LASTZ. The additional parameters -tandem Nmax=10 and -cscore=0.5 were
524 specified when running this script.

525

526 RAW formatted data were processed using the core QuotaAlign algorithm with the parameters

527 -merge, and -Dm=20. -quota was set to 1:2 in comparisons to maize and 1:1 in all other
528 comparisons. Pure QuotaAlign pan-grass syntenic gene sets were constructed using this dataset
529 directly. Polished QuotaAlign pan-grass syntenic gene sets were constructed by first predicting
530 the expected location for a given query gene in the target genome and then selecting the gene
531 showing the greatest sequence similarity (as determined by lastz alignment score) within
532 the window from 20 genes downstream of the predicted location to 20 genes upstream of the
533 predicted location.

534

535

536 **RNA-Seq data generation**

537 RNA isolation and library construction followed the protocol described by Zhang et al. (Zhang et
538 al., 2015). The number of reads generated per library is summarized in (Supplemental Data Set
539 1). Sequencing was conducted at Illumina Sequencing Genomics Resources Core Facility at
540 Weill Cornell Medical College. Raw sequencing data are available through the NCBI
541 (<http://www.ncbi.nlm.nih.gov/bioproject>) under accession number PRJNA343268 and
542 PRJNA344653. Adapters were removed from raw sequence reads using cutadapt version 1.6
543 (Martin, 2011). RNA-Seq reads were mapped to genome assemblies downloaded from
544 Phytozome: RefGen v3 (*Zea mays*), v3.1 (*Sorghum bicolor*). RNA-Seq reads from each species
545 were aligned using GSNAP version 2014-12-29 (Wu and Nacu, 2010; Wu and Watanabe, 2005).
546 Per-gene read counts were obtained using HTSeq v. 0.6.1 (Anders et al., 2014).

547

548 **Identifying differentially expressed genes (DEGs)**

549 Differentially expressed genes (DEGs) were identified using count data generated as described
550 above and DESeq2 (version 1.14.0) (Love et al., 2014) based on a comparison of the treatment
551 and control with adjP-value ≤ 0.05 , meaning absolute \log_2 of fold change of between-treatment
552 and control value ≥ 1 . All expressed syntenic orthologous genes were classified into one of three
553 categories. The three categories include genes that were classified as responding transcriptionally
554 to cold in at least one species (DE1) (Figure 3A). The remaining category includes all expressed
555 syntenic orthologous genes that were not classified as cold-responsive in either of the two
556 species (DE0). The number of shared genes identified as differentially expressed in the two
557 species (DE2) was tested relative to the expected overlap if there was no correlation in gene

558 regulation across species. For the time course RNA-Seq, analysis was conducted as above for all
559 36 possible pairwise comparisons of the six sorghum time points and six maize time points.

560

561 When estimating the true discovery proportion in analyses of DE2 genes (see Figure 3A, Figure
562 4B), it was necessary to calculate the number of DE2 genes expected under a null hypothesis of
563 no conservation of gene regulation. This expected number of DE2 genes was calculated using the
564 formula (percent of gene pairs DE in species 1)*(percent of gene pairs DE in species 2)*(total
565 number of gene pairs analyzed was used). Total number of gene pairs was fixed at 15,232
566 syntenic orthologous gene pairs for maize1/sorghum comparisons and 9,554 for maize2/sorghum
567 comparisons.

568

569 **Estimating the power of DESeq2 in this dataset using simulated data**

570 One-thousand genes were randomly sampled from the maize1/sorghum syntenic gene list in each
571 repetition of the simulation. These selected genes included three replicates from both normal
572 growth conditions (control) and one-day cold treatment (treatment). The geometric mean of each
573 gene was calculated (adding 1 to the data to avoid 0 readings). A random sample from the
574 uniform distribution on (5, 50) was used as the estimate of the true dispersion parameter. The
575 simulated data for the non-differentially expressed genes were generated from a negative
576 binomial distribution with the calculated geometric mean from the actual data and the sampled
577 dispersion parameter. To generate the list of differentially expressed genes, the first 100 genes
578 out of the 1000 sampled genes were selected with a treatment mean value equal to the geometric
579 mean from the original data, whereas the mean value of the control was a multiple of the
580 geometric mean (multiples of 2, 2.5, and 3 are reported). The calculated false discovery rate
581 (FDR, ratio of number of false positives over total number of discoveries) and the power (ratio of
582 true positives over the true number of differentially expressed genes) of the DESeq2 procedure
583 are reported in Supplemental Data Set 2.

584

585 **Evaluating the additive and multiplicative models of gene regulation**

586 From the 5,257 duplicate genes retained from the maize WGD (Schnable et al., 2011) in each of
587 the six time points in maize, gene pairs where both copies were classified as differentially
588 expressed in response to cold were used to test both models. The expression pattern of the

589 maize1 gene under control and cold stress conditions plus the expression of the maize2 gene
590 under control conditions was used to predict the expression of the maize2 gene under cold stress
591 using both the additive and multiplicative models defined in Figure 5B. The distance between the
592 prediction from the additive model and the observed value was defined as "a", the distance
593 between the prediction from the multiplicative model and the observed value was defined as "b",
594 and the predictions between the two models were defined as "c". In the relaxed case, gene pairs
595 where the two models produced predictions that were closer to each other than either was to the
596 observed expression value of the maize2 gene under cold stress were excluded. That is, if $c < a$
597 and $c < b$, the multiplicative model works better than the additive model, while if $b < a$ and $b < c$, the
598 additive model works better than the other model. In the most stringent case, gene pairs where
599 the two models produced predictions that were less than twice as large as the difference between
600 the better model and the observed value were excluded (Supplemental Data Set 4). In other
601 words, if $b > 2a$ and $b > c$, the multiplicative model was considered to be the better model; if $c > 2a$
602 and $c > b$, the additive model was considered to be the better model. Analyses were also
603 conducted reciprocally using data from control and cold stress conditions in maize2 plus data
604 from maize1 under control conditions to predict the expression of the maize1 gene under cold
605 stress conditions.

606

607 **Identifying differentially regulated orthologs (DRO)**

608 Differentially regulated orthologs were identified using count data generated as described above
609 and an interaction term for species (maize or sorghum) and treatment (cold or control) in
610 DESeq2 (Love et al., 2014). Species (maize and sorghum) and condition (cold and control) were
611 considered to be two factors for design in this analysis. Simulated data for comparably regulated
612 orthologs (CROs) generated using additive and multiplicative models were used to confirm that
613 this approach did not classify simulated CROs based on the multiplicative model as having
614 significant species-by-treatment interactions. The formula used was: design _ condition +
615 genotype + condition: genotype. Maize sorghum gene pairs with an interaction adjP-value \leq
616 0:001 were classified as DROs, those with interaction adjP-value $\geq 0:05$ were classified as CROs,
617 and those with intermediate p-values were disregarded (Yoav and Yosef, 1995). The decision
618 was made to retain an ambiguous case of gene pairs with interaction p-values too high to be
619 classified as DROs but too significant to be classified as CROs rather than increase the number

620 of classification errors by forcing all gene pairs to be assigned to one category or the other.

621

622 **Calculating Ka/Ks values**

623 “Primary Transcript only” coding sequences for maize (v6a), sorghum (v3.1), and setaria (v2.2)
624 were retrieved from Phytozome version 12.0. The gene model annotations v6a for maize were
625 annotated onto the B73 RefGen v3 pseudomolecules. Coding sequences were translated to
626 protein sequences and aligned using Kalign version 2.04 (Lassmann and Sonnhammer, 2005).
627 The protein alignment was used as a guide to create a codon level alignment of coding sequences.
628 The codon alignment was supplied to PAML (version 4.09) (Yang, 2007). Synonymous and
629 nonsynonymous substitution rates were calculated independently for each branch of the tree.
630 When both a maize1 and maize2 gene copies were present for the same syntenic gene group,
631 alignment and substitution rate calculations were conducted separately for the maize1 gene and
632 its syntenic orthologs in sorghum and setaria and for the maize2 and the same syntenic
633 orthologous genes. To eliminate genes with extreme Ka/Ks ratios resulting from very low
634 numbers of synonymous substitutions, only Ka/Ks ratios from genes with an estimated
635 synonymous substitution rate greater than or equal to 0.05 (approximately 1/2 the median Ks
636 ratio observed between maize and the most common recent ancestor of maize and sorghum) were
637 considered.

638

639 **MNase hypersensitive site analysis**

640 Intervals defined as MNase hypersensitive sites (MNase HS) were taken from (Rodgers-Melnick
641 et al., 2016). The same TSS was used for MNase and RNA-Seq analysis. Average coverage of
642 MNase HS was calculated on a per-base basis from 1 kb upstream of the annotated TSS to 1 kb
643 downstream of the TSS. When multiple transcripts with different TSS were present, the
644 transcript with the earliest TSS was selected for analysis.

645

646 **Identifying Conserved Noncoding Sequences (CNS)**

647 CNSs were identified using the CNS Discovery Pipeline 3.0 (CDP) (Turco et al., 2013) with
648 some modifications. Specifically, the built-in syntenic gene identification pipeline from the CDP
649 was replaced with the previously defined syntenic gene list described above. Functions for
650 finding local duplicates and comparing CNSs to *Arabidopsis* proteins and RNA were omitted.

651 CNSs were identified between the region 12 kb upstream and 12 kb downstream using a word
652 size of 15 bp. CNSs with bit scores for each gene pair < 29.5 were removed following the same
653 scoring parameter settings outlined in the original software pipeline.

654

655 **Transcription Factor Enrichment Calculation**

656 Transcription Factor (TF) enrichment was calculated using the maize transcription factor list
657 from GRASSIUS (Yilmaz et al., 2009).

658

659 **GO enrichment analysis**

660 Gene ontology (GO) analysis was performed using GOATOOLS (Haibao et al., 2015) and
661 functional additions associated with the sorghum v3.1 sorghum gene model and maize RefGen-
662 v3 maize gene model annotations.

663

664 **Pathway analysis**

665 Pathway analysis was conducted using the MapMan software package
666 (<http://mapman.gabipd.org/web/guest>) (Usadel et al., 2009).

667

668 **Accession numbers**

669 GeneIDs for all syntenic gene sets and the final syntenic gene list used in this study are posted at
670 figShare (<http://dx.doi.org/10.6084/m9.figshare.3113488.v1>).

671 Adapter sequences used for library construction and for adapter trimming are those provided in
672 Illumina TruSeq Library Prep Pooling Guide, with sequences reported on page 5 of the user
673 manual.

674

675 **Supplemental Data**

676

677 **Supplemental Figure 1.** Coding sequence similarity among syntenic genes in sorghum, maize1,
678 and maize2.

679 **Supplemental Figure 2.** Representative sample of cold stressed seedling phenotypes.

680 **Supplemental Figure 3.** Individual examples of genes in each of six possible DRO/DEG
681 classification categories.

682 **Supplemental Figure 4.** Comparison of Ka/Ks ratio and expression level for genes
683 grouped based on expression classification model.

684 **Supplemental Figure 5.** Frequency of known CBF binding motifs within the 1 kb
685 proximal promoters of maize and sorghum.

686 **Supplemental Figure 6.** Relationship between gene pair expression pattern in maize and
687 sorghum after subdividing genes based on Ka/Ks ratio and expression tertile.

688

689 **Supplemental Data Set 1.** Number of sequenced and aligned reads per library.

690

691 **Supplemental Data Set 2.** Estimates of power and FDR for DESeq2.

692

693 **Supplemental Data Set 3.** ANOVA and DESeq2 tests for DROs using simulated data.

694

695 **Supplemental Data Set 4.** Accuracy of additive and multiplicative expression models across
696 maize duplicate gene pairs.

697

698 **ACKNOWLEDGMENTS**

699 This material is based upon work supported by the National Institute of Food and Agriculture,
700 U.S. Department of Agriculture under award number 016-67013-24613 to RLR and JCS. This
701 material is based upon work supported by the National Science Foundation under Grant No.
702 OIA-1557417. In addition, this work was supported by startup funding from the University of
703 Nebraska Lincoln to RLR, YQ, and JCS.

704

705 **AUTHOR CONTRIBUTIONS**

706

707 JCS and RLR conceived the project and designed the studies; YZ, DWN, DC, and ZL performed
708 the research; YZ and YQ analyzed the data; YZ, JCS, and RLR wrote the paper. All authors
709 reviewed the manuscript.

710

711 **REFERENCES**

712 **Anders, S., Pyl, P.T., and Huber, W.** (2014). HTSeq-a python framework to work with high-
713 throughput sequencing data. *Bioinformatics*. **31**(2): 166-169.

714 **Yoav, B., Yosef, H.,** (1995). Controlling the false discovery rate: a practical and powerful
715 approach to multiple testing. *J R Stat Soc Ser B Methodol.* **57:** 289-300.

716 **Bennetzen, J. L., and Freeling, M.** (1993). Grasses as a single genetic system: genome
717 composition, collinearity and compatibility. *Trends Genet.* **9(8):** 259-261.

718 **Burkart-Waco, D., Ngo, K., Lieberman, M., and Comai, L.** (2015). Perturbation of
719 parentally biased gene expression during interspecific hybridization. *PLoS One.*
720 **10(2):** e0117293.

721 **Chan, Y.F., Marks, M.E., Jones, F.C., Villarreal, G., Shapiro, M.D., Brady, S.D.,**
722 **Southwick, A.M., Absher, D.M., Grimwood, J., Schmutz, J., Myers, R.M.,**
723 **Petrov D., Jónsson B., Schluter, D., Bell M.A., Kingsley, D.M.** (2010).
724 Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a
725 pitx1 enhancer. *Science.* **327(5963):** 302-305.

726 **Chinnusamy, V., Zhu, J., and Zhu, J.K.** (2007). Cold stress regulation of gene
727 expression in plants. *Trend Plant Sci.* **12(10):** 444-451.

728 **Chopra, R., Burow, G., Hayes, C., Emendack, Y., Xin, Z., and Burke, J.** (2015).
729 Transcriptome profiling and validation of gene based single nucleotide
730 polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold
731 stress. *BMC genomics.* **16:** 1040.

732 **Chopra, R., Burow, G., Burke, J. J., Gladman, N., and Xin, Z.** (2017). Genome-wide
733 association analysis of seedling traits in diverse sorghum germplasm under
734 thermal stress. *BMC Plant Biol.* **17:** 12.

735 **Christin, P.A., Salamin, N., Savolainen, V., Duvall, M.R., and Besnard, G.** (2007). C₄
736 photosynthesis evolved in grasses via parallel adaptive genetic changes. *Current*
737 *Biology,* **17(14):** 1241-1247.

738 **Cooper, G.M., Stone, E.A., Asimenos, G., Green, E.D., Batzoglou, S., and Sidow, A.**
739 (2005). Distribution and intensity of constraint in mammalian genomic sequence.
740 *Genome Res.* **15(7):** 901-913.

741 **Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., and Liu, J.** (2005). A proteomic
742 analysis of cold stress responses in rice seedlings. *Proteomics.* **5(12):** 3162-3172.

743 **Davidson, R. M., Gowda, M., Moghe, G., Lin, H., Vaillancourt, B., Shiu S.-H, Jiang**
744 **N., and Buell, C.R.** (2012). Comparative transcriptomics of three poaceae species
745 reveals patterns of gene expression evolution. *Plant J.* **71(3):** 492-502.

746 **De Wet J.** (1978). Systematics and evolution of sorghum sect. sorghum (gramineae). *Am*
747 *J Bot.* **65(4):** 477-484.

748 **Eichten, S.R., Swanson-Wagner, R.A., Schnable, J.C, Waters, A.J., Hermanson, P.J.,**
749 **Liu, S., Yeh, CT., Jia, Y., Gendler, K., Freeling, M., Schnable, P.S., Vaughn,**
750 **M.W., Springer, N.M.** (2011). Heritable epigenetic variation among maize
751 inbreds. *PLoS Genet.* **7(11):** e1002372.

752 **Ercoli, L., Mariotti, M., Masoni, A., and Arduini, I.** (2004). Growth responses of
753 sorghum plants to chilling temperature and duration of exposure. *Eur J Agron.*
754 **21(1):** 93-103.

755 **Fiedler, K., Bekele, W. A., Matschegewski, C., Snowdon, R., Wieckhorst, S.,**
756 **Zacharias, A., and Uptmoor, R.** (2016). Cold tolerance during juvenile
757 development in sorghum: a comparative analysis by genomewide association and
758 linkage mapping. *Plant Breeding.*, **135(5):** 598-606.

759 **Freeling, M., Rapaka, L., Lyons, E., Pedersen, B., and Thomas, B.C.** (2007). G-boxes,
760 bigfoot genes, and environmental response: characterization of intragenomic
761 conserved noncoding sequences in arabidopsis. *Plant Cell.* **19(5):** 1441-1457.

762 **Freeling, M., Woodhouse, M.R., Subramaniam, S., Turco, G., Lisch, D., and**
763 **Schnable, J.C.** (2012). Fractionation mutagenesis and similar consequences of
764 mechanisms removing dispensable or less-expressed dna in plants. *Curr Opin*
765 *Plant Biol.* **15(2):** 131-139.

766 **Haibao, T., Klopfenstein, D., Pedersen, B., Flick, P., Sato, K., Ramirez, F., Yunes, J.,**
767 **and Mungall, C.** (2015). Goatools: Tools for gene ontology. *Zenodo*.

768 **Harris R.S.** (2007). Improved pairwise alignment of genomic DNA. Ph.D. thesis
769 Pennsylvania State University.

770 **Hetherington, S. E., He, J., and Smillie, R.M.** (1989). Photoinhibition at low
771 temperature in chilling-sensitive and-resistant plants. *Plant Physiol.* **90(4):** 1609-
772 1615.

773 **Hollister, J.D. and Gaut, B.S.** (2009). Epigenetic silencing of transposable elements: a
774 trade-off between reduced transposition and deleterious effects on neighboring
775 gene expression. *Genome Res.* **19(8)**: 1419-1428.

776 **Hollister J.D., Smith L.M., Guo, Y.-L., Ott, F., Weigel, D., and Gaut, B.S.** (2011).
777 Transposable elements and small RNAs contribute to gene expression divergence
778 between *Arabidopsis thaliana* and *Arabidopsis lyrata*. *Proc. Natl. Acad. Sci.*
779 U.S.A.

780 **Lai, X., Behera, S., Liang, Z., Lu, Y., Deogun, J. S., and Schnable, J. C.** (2017). Stag-CNS:
781 An order-aware conserved non-coding sequences discovery tool for arbitrary numbers of
782 species. *Mol Plant*.

783 **Lassmann, T., and Sonnhammer, E.L.** (2005). Kalign-an accurate and fast multiple
784 sequence alignment algorithm. *BMC bioinformatics*. **6(1)**: 298.

785 **Li, L., Briskine, R., Schaefer, R., Schnable, P.S., Myers, C.L., Flagel, L.E., Springer,**
786 **N.M., and Muehlbauer, G.J.** (2016). Co- expression network analysis of
787 duplicate genes in maize (*Zea mays L.*) reveals no subgenome bias. *BMC*
788 *genomics*, **17(1)**: 875.

789 **Liang, Z. and Schnable, J.C.** (2016). RNA-Seq based analysis of population structure
790 within the maize inbred B73. *PloS One*. **11(6)**: e0157942.

791 **Love, M.I., Huber, W., and Anders, S.** (2014). Moderated estimation of fold change and
792 dispersion for RNA-Seq data with DESeq2. *Genome Biol.* **15(12)**: 550.

793 **Lovell, J. T., Schwartz, S., Lowry, D. B., Shakirov, E. V., Bonnette, J. E., Weng, X., Wang,**
794 **M., Johnson, J., Sreedasyam, A., Plott, C., et al.** (2016). Drought responsive gene
795 expression regulatory divergence between upland and lowland ecotypes of a perennial c4
796 grass. *Genome Res.* **26(4)**: 510-518.

797 **Makarevitch, I., Waters, A.J., West, P.T., Stitzer, M., Hirsch, C.N., Ross-Ibarra, J.,**
798 **and Springer, N.M** (2015). Transposable elements contribute to activation of
799 maize genes in response to abiotic stress. *PLoS Genet.* **11(1)**: e1004915.

800 **Martin, M.** (2011). Cutadapt removes adapter sequences from high-throughput
801 sequencing reads. *EMBnet.journal*. **17(1)**:10-12.

802 **Muiño, J.M., de Bruijn, S., Pajoro, A., Geuten, K., Vingron, M., Angenent, G.C., and**
803 **Kaufmann, K.** (2016). Evolution of dna-binding sites of a floral master regulatory
804 transcription factor. *Mol Biol Evol.* **33**(1): 185-200.

805 **Naito, K., Zhang, F., Tsukiyama, T., Saito, H., Hancock, C.N., Richardson, A.O.,**
806 **Okumoto, Y., Tanisaka, T., and Wessler, S.R.** (2009). Unexpected
807 consequences of a sudden and massive transposon amplification on rice gene
808 expression. *Nature.* **461**(7267): 1130-1134.

809 **Ng, P.C and Henikoff, S.** (2001). Predicting deleterious amino acid substitutions.
810 *Genome Res.* **11**(5): 863-874.

811 **Olsen, J., McMahon, C., and Hammer, G.** (1993). Prediction of sweet corn phenology
812 in subtropical environments. *Agron J.* **85**(2): 410-415.

813 **Orr, H.A.** (1998). The population genetics of adaptation: the distribution of factors fixed
814 during adaptive evolution. *Evolution.* **52**(4): 935-949.

815 **Orr, H.A.,** (1999). The evolutionary genetics of adaptation: a simulation study. *Genet*
816 *Res.* **74**(03): 207-214.

817 **Paschold, A., Larson, N.B., Marcon, C., Schnable, J.C., Yeh C.-T., Lanz, C.,**
818 **Nettleton, D., Piepho, H.-P., Schnable, P.S., and Hochholdinger, F.** (2014).
819 Nonsyntenic genes drive highly dynamic complementation of gene expression in
820 maize hybrids. *Plant Cell.* **26**(10): 3939-3948.

821 **Paterson, A.H., Bowers J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach,**
822 **H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., et al.** (2009). The
823 Sorghum bicolor genome and the diversification of grasses. *Nature.* **457**(7229):
824 551-556.

825 **Pearce, R. S.,** (2001). Plant freezing and damage. *Annals of Botany.* **87**(4): 417-424.

826 **Priest, H.D., Fox, S.E., Rowley, E.R., Murray, J.R., Michael, T.P., and Mockler, T.C.**
827 (2014). Analysis of global gene expression in *brachypodium distachyon* reveals
828 extensive network plasticity in response to abiotic stress. *PLoS One.* **9**(1): e87499.

829 **Quinn, P. J.,** (1988). Effects of temperature on cell membranes. *Symp Soc Exp Biol.* **42:**
830 237-258.

831 **Reva, B., Antipin, Y., and Sander, C.** (2011). Predicting the functional impact of protein
832 mutations: application to cancer genomics. *Nucleic Acids Res.* **39**(17): e118.

833 **Revilla, P., Rodríguez, V.M., Ordás, A., Rincent, R., Charcosset, A., Giauffret, C.,**
834 **Melchinger, A.E., Schön, C.-C., Bauer, E., Altmann, T., et al. (2016).**
835 Association mapping for cold tolerance in two large maize inbred panels. *BMC*
836 *Plant Biol.* **16:** 127.

837 **Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth G.K.**
838 (2015). Limma powers differential expression analyses for RNA-Sequencing and
839 microarray studies. *Nucleic Acids Res.* **43 (7):** e47

840 **Robinson M. D, McCarthy D. J, and Smyth G. K 2010.** edger: a bioconductor package
841 for differential expression analysis of digital gene expression data. *Bioinformatics*,
842 **26(1):** 139-140.

843 **Rodgers-Melnick, E., Vera D.L., Bass, H.W., and Buckler, E.S.** (2016). Open
844 chromatin reveals the functional maize genome. *Proc. Natl. Acad. Sci. U.S.A.*
845 **113(22):** E3177-E3184.

846 **Sánchez, B., Rasmussen, A., and Porter, J.R.** (2014). Temperatures and the growth and
847 development of maize and rice: a review. *Global Change Biol.* **20(2):** 408-417.

848 **Schaefer, R.J., Briskine, R., Springer, N.M., and Myers, C.L.** (2014). Discovering
849 functional modules across diverse maize transcriptomes using cob, the co-
850 expression browser. *PloS one*, **9(6):** e99193.

851 **Schnable, J. C.,** (2015). Genome evolution in maize: From genomes back to genes. *Annu*
852 *Rev Plant Biol.* **66:** 329-343.

853 **Schnable, J.C., Springer, N.M., and Freeling, M.** (2011). Differentiation of the maize
854 subgenomes by genome dominance and both ancient and ongoing gene loss. *Proc*
855 *Natl Acad Sci U.S.A.* **108(10):** 4069-4074.

856 **Schnable J.C., Freeling, M., and Lyons, E.** (2012). Genome-wide analysis of syntenic
857 gene deletion in the grasses. *Genome Biol Evol.* **4(3):** 265-277.

858 **Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C.,**
859 **Zhang, J., Fulton, L., Graves, T.A., et al.** 2009. The B73 maize genome:
860 complexity, diversity, and dynamics. *Science.* **326(5956):** 1112-1115.

861 **Schurh, N. J., Schofield, P., Gierlinski, M., Cole, C., Sherstnev, A., Singh, V., Wrobel, N.,**
862 **Gharbi, K., Simpson, G. G., Owen-Hughes, T., et al.** (2016). How many biological
863 replicates are needed in an RNA-Seq experiment and which differential expression tool

864 should you use? *RNA*. **22(6)**: 839-851.

865 **Shantz, H.** (1954). The place of grasslands in the earth's cover. *Ecology*. **35(2)**: 143-145.

866 **Shaykewich, C.** (1995). An appraisal of cereal crop phenology modelling. *Can J Plant
867 Sci.* **75(2)**: 329-341.

868 **Studer, A., Zhao, Q., Ross-Ibarra, J., and Doebley, J.** (2011). Identification of a
869 functional transposon insertion in the maize domestication gene tb1. *Nature Genet.*
870 **43(11)**: 1160-1163.

871 **Swigoňová, Z., Lai, J., Ma, J., Ramakrishna, W., Llaca, V., Bennetzen, J.L., and
872 Messing, J.** (2004). Close split of sorghum and maize genome progenitors.
873 *Genome Res.* **14(10a)**: 1916-1923.

874 **Tenhaken, R., (2014)**. Cell wall remodeling under abiotic stress. *Front. Plant Sci.*,
875 **5**. doi: 10.3389/fpls.2014.00771.

876 **Tiwari, S., Krishnamurthy, S., Kumar, V., Singh, B., Rao, A., SV, A.M., Rai, V.,
877 Singh, A.K., and Singh, N.K.** (2016). Mapping qtls for salt tolerance in rice
878 (*Oryza sativa L.*) by bulked segregant analysis of recombinant inbred lines using
879 50k snp chip. *PloS One.*, **11(4)**: e0153610.

880 **Torres-Oliva, M., Almudi, I., McGregor, A.P., and Posnien, N.** (2016). A robust (re-
881 annotation approach to generate unbiased mapping references for RNA-Seq-based
882 analyses of differential expression across closely related species. *BMC genomics*,
883 **17(1)**: 392.

884 **Turco, G., Schnable, J.C., Pedersen, B., and Freeling, M.** (2013). Automated
885 conserved non-coding sequence (CNS) discovery reveals differences in gene
886 content and promoter evolution among grasses. *Front Plant Sci.* **4**: 170.

887 **Usadel, B., Poree, F., Nagel, A., Lohse, M., CZEDIK-EYSENBERG A., and Stitt, M.** (2009).
888 A guide to using mapman to visualize and compare omics data in plants: a case study in
889 the crop species, maize. *Plant Cell Environ.* **32(9)**: 1211-1229.

890 **van Heerwaarden, J., Doebley, J., Briggs, W.H., Glaubitz, J.C., Goodman, M.M.,
891 Gonzalez, J.d.J.S., and Ross-Ibarra, J.** (2011). Genetic signals of origin, spread,
892 and introgression in a large sample of maize landraces. *Proc Natl Acad Sci U.S.A.*
893 **108(3)**: 1088-1092.

894 **Vera, D.L., Madzima, T.F., Labonne, J.D., Alam M.P., Hoffman, G.G., Girimurugan,**
895 **S., Zhang, J., McGinnis, K.M., Dennis, J.H., and Bass, H.W.** (2014).
896 Differential nuclease sensitivity profiling of chromatin reveals biochemical
897 footprints coupled to gene expression and functional dna elements in maize. *Plant*
898 *Cell.* **26(10):** 3883-3893.

899 **Wallace, J., Larsson, S., and Buckler, E.** (2014). Entering the second century of maize
900 quantitative genetics. *Heredity*, **112(1):** 30-38.

901 **Wang, L., Czedik-Eysenberg, A., Mertz, R. A., Si, Y., Tohge, T., Nunes-Nesi, A., Arrivault,**
902 **S., Dedow, L. K., Bryant, D. W., Zhou, W., et al.** (2014). Comparative analyses of C₄
903 and C₃ photosynthesis in developing leaves of maize and rice. *Nature Biotechnol.* **32(11):**
904 1158-1165.

905 **Waters, A.J., Makarevitch, I., Noshay, J., Burghardt, L.T., Hirsch, C.N., Hirsch, C.D.,**
906 **and Springer, N.M.** (2017). Natural variation for gene expression responses to
907 abiotic stress in maize. *Plant J.* **89:** 706-717.

908 **Wendorf, F., Close, A.E., Schild, R., Wasylkowa, K., Housley, R.A., Harlan, J.R.,**
909 **and Krolik, H.** (1992). Saharan exploitation of plants 8,000 years bp. *Nature*,
910 **359(6397):** 721-724.

911 **Wu, T.D and Nacu, S.** (2010). Fast and snp-tolerant detection of complex variants and
912 splicing in short reads. *Bioinformatics*. **26(7):** 873-881.

913 **Wu, T.D and Watanabe, C.K** (2005). Gmap: a genomic mapping and alignment
914 program for mRNA and EST sequences. *Bioinformatics*. **21(9):** 1859-1875.

915 **Xu, G., Wang, X., Huang, C., Xu, D., Li, D., Tian, J., Chen, Q., Wang, C., Liang, Y.,**
916 **Wu, Y., et al.** (2017). Complex genetic architecture underlies maize tassel
917 domestication. *New Phytol.* **214:** 852-864.

918 **Yang, Z.** (2007). Paml 4: phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.*
919 **24(8):** 1586-1591.

920 **Yilmaz, A., Nishiyama, M.Y., Fuentes, B.G., Souza, G.M., Janies, D., Gray, J., and**
921 **Grotewold, E.** (2009). Grassius: a platform for comparative regulatory genomics
922 across the grasses. *Plant Physiol.* **149(1):** 171-180.

923 **Zhang, W., Wu, Y., Schnable, J. C., Zeng, Z., Freeling, M., Crawford, G. E., and Jiang, J.**
924 (2012). High-resolution mapping of open chromatin in the rice genome. *Genome Res.*

925 22(1): 151-162.

926 **Zhang, Y., Ding, Z., Ma, F., Chauhan, R.D., Allen, D.K., Brutnell, T.P., Wang, W.,**
927 **Peng, M., and Li, P.** (2015). Transcriptional response to petiole heat girdling in
928 cassava. *Sci Rep.* **5**: 8414.

929

930 **FIGURE LEGENDS**

931 **Figure 1. Gene level and expression level conservation between sorghum, maize1, and**
932 **maize2.** **(A)** The overlap between syntenic orthologous gene pairs conserved between
933 maize1/sorghum and maize2/sorghum. **(B)** Comparison of average control condition expression
934 levels (\log_2 transformed FPKM) for either maize1/sorghum or maize2/sorghum gene pairs. (To
935 improve readability, a random sample of 1/3 of all gene pairs is displayed for each category.)

936

937 **Figure 2. Effects of cold stress on maize, sorghum, and related species.** Representative
938 seedling phenotypes for maize and sorghum. **(A)** Control conditions; **(B)** 24 hours of stress at
939 6°C; **(C)** 14 days at 6°C and two days recovery under greenhouse conditions. **(D)** Normalized
940 relative CO₂ assimilation rates for six panicoid grass species with differing degrees of sensitivity
941 or tolerance to cold stress. Individual data points were jittered (adding random noise to data in
942 order to prevent over-plotting in statistical graphs) on the x-axis to avoid overlap and improve
943 readability.

944

945 **Figure 3. Combined DEG analysis of maize and sorghum.** **(A)** An illustration of the DEG-
946 based gene pair classification model and a comparison of expected and observed values for gene
947 pairs classified as differentially expressed in response to cold in zero, one, or both species.
948 Expected distributions were calculated based on a null hypothesis of no correlation in gene
949 regulation between maize and sorghum (see Methods). DE0: gene pairs classified as
950 differentially expressed in response to cold in neither species; DE1: gene pairs classified as
951 differentially expressed in response to cold in one species but not the other; DE2: gene pairs
952 classified as differentially expressed in response to cold in both species. (Observed number of
953 gene pairs in maize1/sorghum: DE1 maize = 850, DE2 = 836, DE1 sorghum = 1,507, DE0 =
954 12,038; Observed number of gene pairs in maize2/sorghum: DE1 maize = 508, DE2 = 460, DE1
955 sorghum = 986, DE0 = 7,599; Expected number of gene pairs in maize1/sorghum: DE1 maize =

956 1,427, DE2 = 259, DE1 sorghum = 2,084, DE0 = 11,461; Expected number of gene pairs in
957 maize2/sorghum: DE1 maize = 822, DE2 = 146, DE1 sorghum = 1,300, DE0 = 7,285). **(B)**
958 Comparison of fold change in gene expression between the treatment and control groups for
959 pairs of orthologous genes in maize and sorghum. Log₂ transformed treatment/control expression
960 ratios are shown.

961

962 **Figure 4. Patterns of gene expression across a cold-stress time series in maize and sorghum.**
963 **(A)** Changes in classification of individual gene pairs as DE0, DE1 maize, DE1 sorghum, and
964 DE2 across adjacent time points. **(B)** The proportion of genes identified as differentially
965 expressed in both species in excess of the number of gene pairs expected in this category in the
966 absence of either conservation of gene regulation or parallel evolution of gene regulation. True
967 discovery proportion is defined as (Observed Positives - Estimated False Positives)/Observed
968 Positives. The expected number false positive DE2 gene pairs was calculated from the proportion
969 of all genes classified as DEGs in maize and sorghum using the null model described in Figure
970 3A.

971

972 **Figure 5. Conceptual illustration of the differentially regulated ortholog model. (A)**
973 Illustration of the different classification outcomes that can be produced for a given gene pair
974 using both a DEG-based analysis (testing whether the expression pattern of each gene changes
975 significantly between conditions) and a DRO-based analysis (testing whether the pattern across
976 the two conditions is significantly different between copies of the same gene in both species). **(B)**
977 Two models, additive and multiplicative, for predicting what a conserved pattern of gene
978 regulation should look like when the underlying level of expression changes. **(C)** Relationship
979 between prediction error (log₁₀ transformed) for expression under cold stress using a
980 multiplicative model to predict expression between maize1/maize2 gene pairs or an additive
981 model to predict expression between maize1/maize2 gene pairs. Maize1: Predictions for the
982 expression pattern of maize2 genes using data from their maize1 homeologs; Maize2: Predictions
983 for the expression pattern of maize1 genes using data from their maize2 homeologs. Blue dots
984 mark cases where the additive model was the better predictor; red dots mark cases where the
985 multiplicative model was the better predictor.

986

987 **Figure 6. Characteristics of genes in different DEG groups at different timepoints. (A)** The
988 proportion of gene pairs classified as DROs between maize and sorghum in different DEG
989 groups at each of the six time points examined. **(B)-(C)** Median ratios of non-synonymous
990 substitutions to synonymous substations in coding sequences for maize and sorghum for gene
991 pairs classified as DE0, DE1, or DE2 at each of six time points. Time points where there is a
992 statistically significant difference in Ka/Ks ratio between DE2 and any of the other three
993 categories are marked with either + (if $p < 0.05$) or ++ (if $P < 0.01$). Color of the + indicates the
994 category to which DE2 is being compared. Time points where there is a statistically significant
995 difference in Ka/Ks ratio between DE0 and either DE1 maize or DE1 sorghum categories are
996 marked with either * (if $p < 0.05$) or ** (if $P < 0.01$). Color of the * indicates the category to which
997 DE0 is being compared. **(B)-(C)** Enrichment of genes annotated as transcription factor genes
998 among DE2 gene pairs relative to all syntenic gene pairs indicated by the black line and the right
999 hand axis. Double white triangles mark time points where the enrichment is statistically
1000 significant ($p < 0.01$). **(D)** Frequency of CNS within the promoters of genes classified as DE0,
1001 DE1 maize, DE1 sorghum, DE2, DRO, or CRO at each of the six time points. Black lines within
1002 the box plot mark the average number of CNS per gene for each category.

1003
1004 **Figure 7. Chromatin patterns associated with different groups of genes in maize and**
1005 **sorghum.** Patterns of MNase hypersensitive regions around the transcriptional start sites of
1006 genes classified based on their pattern of gene regulation in the 24 hour stress time point. Maize1
1007 sorghum gene pairs and maize2 sorghum gene pairs were aggregated to increase statistical power.
1008 The lighter band around the DE2 line indicates a two standard deviation confidence interval.
1009 Black bars at the bottom of the graph indicate individual base pair positions where the amount of
1010 open chromatin associated with DE2 genes is significantly different from that of each of the
1011 other four categories displayed with a p-value < 0.01 for each comparison. Pairwise comparisons
1012 were performed using a Fisher Exact Test.

1013
1014
1015
1016
1017

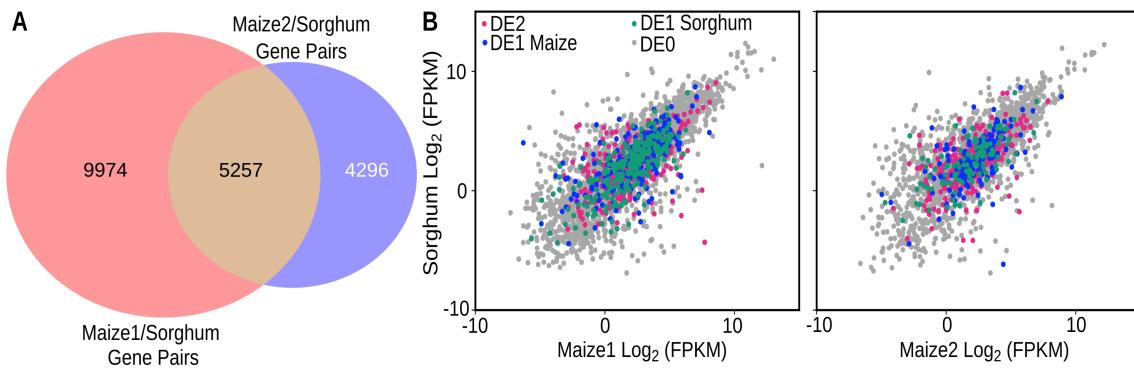


Figure 1. Gene level and expression level conservation between sorghum, maize1, and maize2. (A) The overlap between syntenic orthologous gene pairs conserved between maize1/sorghum and maize2/sorghum. (B) Comparison of average control condition expression levels (\log_2 transformed FPKM) for either maize1/sorghum or maize2/sorghum gene pairs. (To improve readability, a random sample of 1/3 of all gene pairs is displayed for each category.) Please use subscript for “ \log_2 ” in the figure.

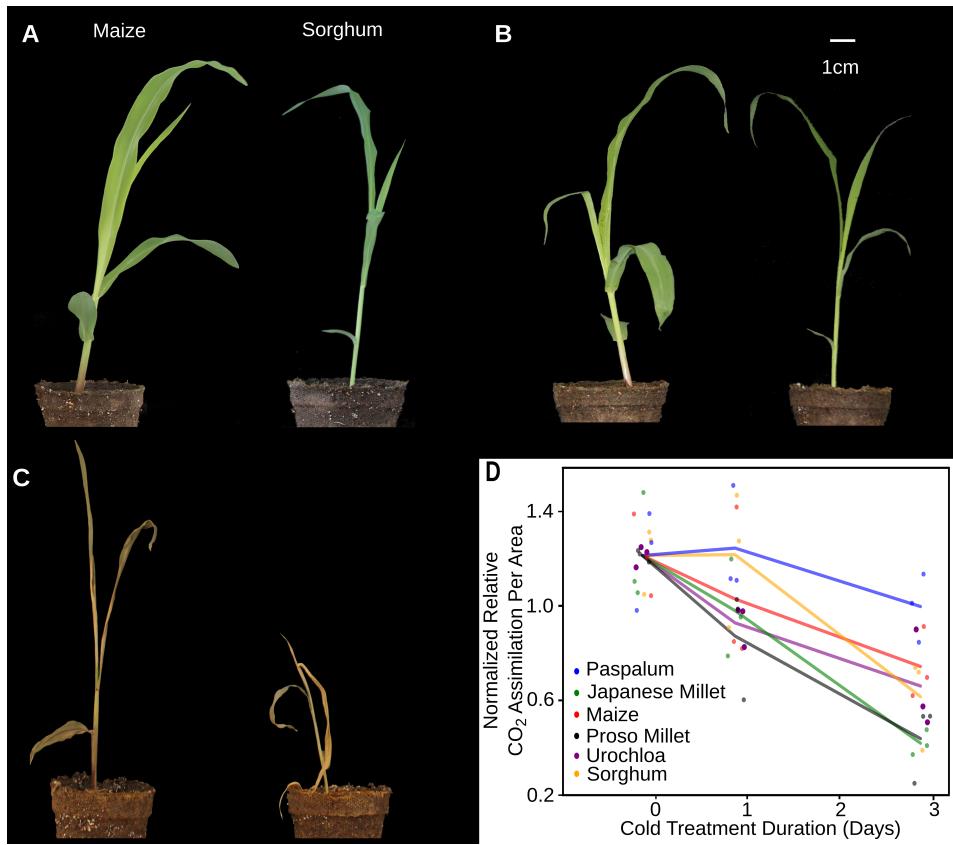


Figure 2. Effects of cold stress on maize, sorghum, and related species. Representative seedling phenotypes for maize and sorghum. **(A)** Control conditions; **(B)** 24 hours of stress at 6°C; **(C)** 14 days at 6°C and two days recovery under greenhouse conditions. **(D)** Normalized relative CO_2 assimilation rates for six panicoid grass species with differing degrees of sensitivity or tolerance to cold stress. Individual data points were jittered (adding random noise to data in order to prevent over-plotting in statistical graphs) on the x-axis to avoid overlap and improve readability.

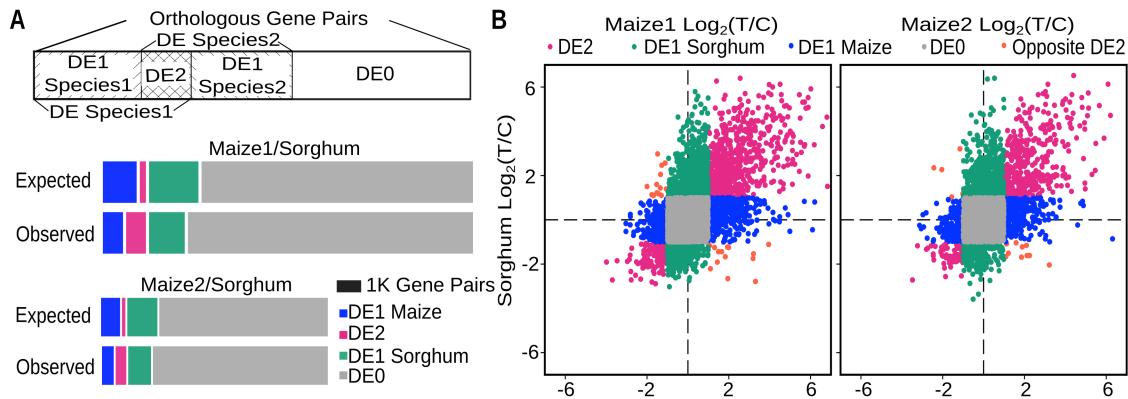


Figure 3. Combined DEG analysis of maize and sorghum. (A) An illustration of the DEG-based gene pair classification model and a comparison of expected and observed values for gene pairs classified as differentially expressed in response to cold in zero, one, or both species. Expected distributions were calculated based on a null hypothesis of no correlation in gene regulation between maize and sorghum (see Methods). DE0: gene pairs classified as differentially expressed in response to cold in neither species; DE1: gene pairs classified as differentially expressed in response to cold in one species but not the other; DE2: gene pairs classified as differentially expressed in response to cold in both species. (Observed number of gene pairs in maize1/sorghum: DE1 maize = 850, DE2 = 836, DE1 sorghum = 1,507, DE0 = 12,038; Observed number of gene pairs in maize2/sorghum: DE1 maize = 508, DE2 = 460, DE1 sorghum = 986, DE0 = 7,599; Expected number of gene pairs in maize1/sorghum: DE1 maize = 1,427, DE2 = 259, DE1 sorghum = 2,084, DE0 = 11,461; Expected number of gene pairs in maize2/sorghum: DE1 maize = 822, DE2 = 146, DE1 sorghum = 1,300, DE0 = 7,285). **(B)** Comparison of fold change in gene expression between the treatment and control groups for pairs of orthologous genes in maize and sorghum. Log₂ transformed treatment/control expression ratios are shown.

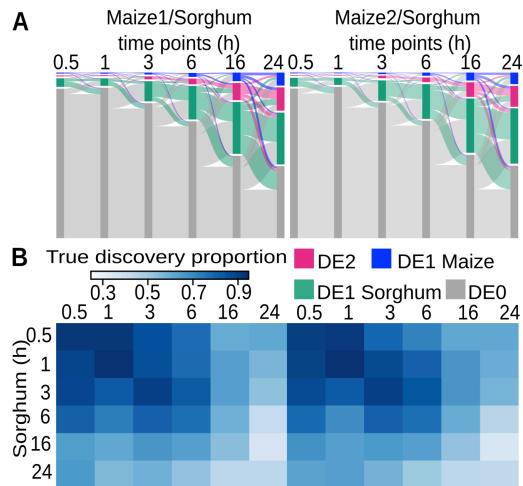


Figure 4. Patterns of gene expression across a cold stress time series in maize and sorghum. (A) Changes in classification of individual gene pairs as DE0, DE1 maize, DE1 sorghum, and DE2 across adjacent time points. **(B)** The proportion of genes identified as differentially expressed in both species in excess of the number of gene pairs expected in this category in the absence of either conservation of gene regulation or parallel evolution of gene regulation. True discovery proportion is defined as (Observed Positives - Estimated False Positives)/Observed Positives. The expected number false positive DE2 gene pairs was calculated from the proportion of all genes classified as DEGs in maize and sorghum using the null model described in Figure 3A.

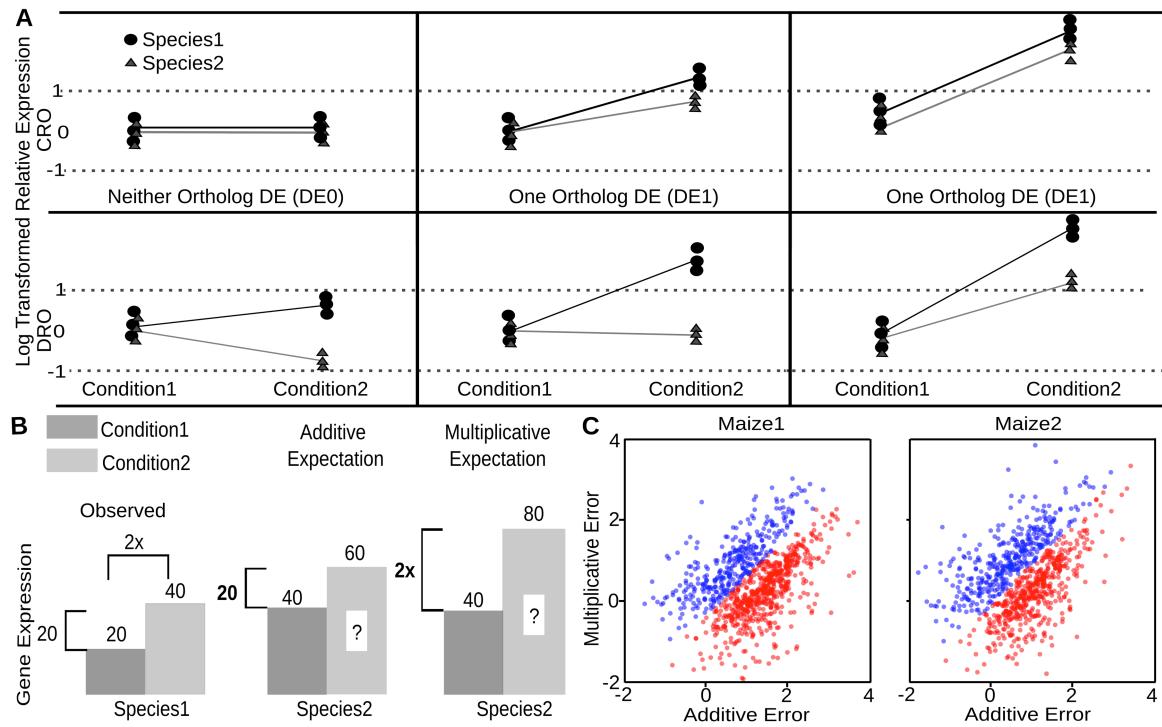


Figure 5. C conceptual illustration of the differentially regulated ortholog model. (A) Illustration of the different classification outcomes that can be produced for a given gene pair using both a DEG-based analysis (testing whether the expression pattern of each gene changes significantly between conditions) and a DRO-based analysis (testing whether the pattern across the two conditions is significantly different between copies of the same gene in both species). **(B)** Two models, additive and multiplicative, for predicting what a conserved pattern of gene regulation should look like when the underlying level of expression changes. **(C)** Relationship between prediction error (\log_{10} transformed) for expression under cold stress using a multiplicative model to predict expression between maize1/maize2 gene pairs or an additive model to predict expression between maize1/maize2 gene pairs. Maize1: Predictions for the expression pattern of maize2 genes using data from their maize1 homeologs; Maize2: Predictions for the expression pattern of maize1 genes using data from their maize2 homeologs. Blue dots mark cases where the additive model was the better predictor; red dots mark cases where the multiplicative model was the better predictor.

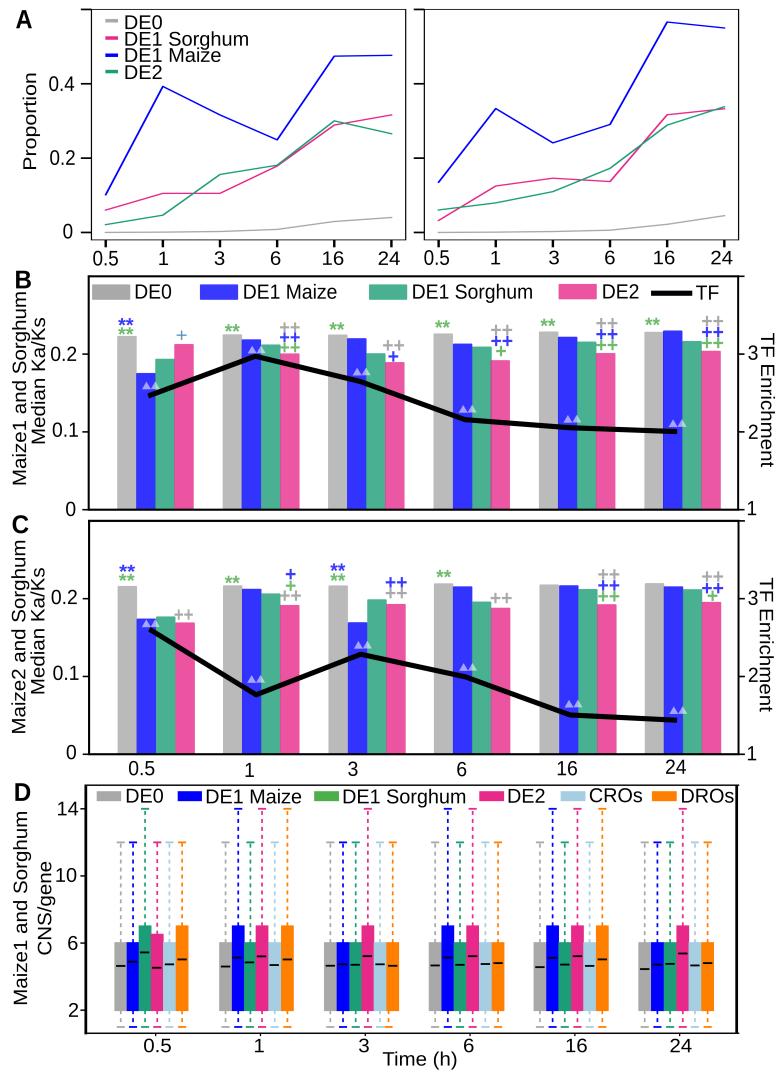


Figure 6. Characteristics of genes in different DEG groups at different timepoints. (A) The proportion of gene pairs classified as DROs between maize and sorghum in different DEG groups at each of the six time points examined. (B)-(C) Median ratios of non-synonymous substitutions to synonymous substations in coding sequences for maize and sorghum for gene pairs classified as DE0, DE1, or DE2 at each of six time points. Time points where there is a statistically significant difference in Ka/Ks ratio between DE2 and any of the other three categories are marked with either + (if $p<0.05$) or ++ (if $P<0.01$). Color of the + indicates the category to which DE2 is being compared. Time points where there is a statistically significant difference in Ka/Ks ratio between DE0 and either DE1 maize or DE1 sorghum categories are marked with either * (if $p<0.05$) or ** (if $P<0.01$). Color of the * indicates the category to which DE0 is being compared. (B)-(C) Enrichment of genes annotated as transcription factor genes among DE2 gene pairs relative to all syntenic gene pairs indicated by the black line and the right hand axis. Double white triangles mark time points where the enrichment is statistically significant ($p < 0.01$). (D) Frequency of CNS within the promoters of genes classified as DE0, DE1 maize, DE1 sorghum, DE2, DRO, or CRO at each of the six time points. Black lines within the box plot mark the average number of CNS per gene for each category. These triangles are difficult to see against the dark background: perhaps you should use white triangles instead.

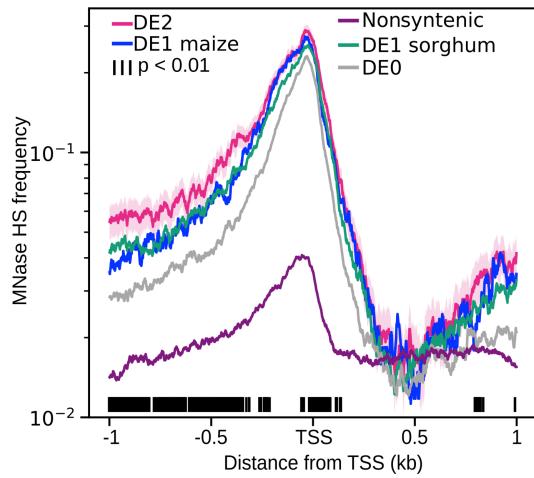


Figure 7. Chromatin patterns associated with different groups of genes in maize and sorghum.

Patterns of MNase hypersensitive regions around the transcriptional start sites of genes classified based on their pattern of gene regulation in the 24 hour stress time point. Maize1 sorghum gene pairs and maize2 sorghum gene pairs were aggregated to increase statistical power. The lighter band around the DE2 line indicates a two standard deviation confidence interval. Black bars at the bottom of the graph indicate individual base pair positions where the amount of open chromatin associated with DE2 genes is significantly different from that of each of the other four categories displayed with a p-value < 0.01 for each comparison. Pairwise comparisons were performed using a Fisher Exact Test.

Parsed Citations

Anders, S., Pyl, P.T., and Huber, W. (2014). HTSeq-a python framework to work with high-throughput sequencing data. *Bioinformatics*. 31(2): 166-169.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Yoav, B., Yosef, H., (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J R Stat Soc Ser B Methodol.* 57: 289-300.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Bennetzen, J. L., and Freeling, M. (1993). Grasses as a single genetic system: genome composition, collinearity and compatibility. *Trends Genet.* 9(8): 259-261.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Burkart-Waco, D., Ngo, K., Lieberman, M., and Comai, L. (2015). Perturbation of parentally biased gene expression during interspecific hybridization. *PLoS One*. 10(2): e0117293.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Chan, Y.F., Marks, M.E., Jones, F.C., Villarreal, G., Shapiro, M.D., Brady, S.D., Southwick, A.M., Absher, D.M., Grimwood, J., Schmutz, J., Myers, R.M., Petrov D., Jónsson B., Schluter, D., Bell M.A., Kingsley, D.M. (2010). Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a *pitx1* enhancer. *Science*. 327(5963): 302-305.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Chinnusamy, V., Zhu, J., and Zhu, J.K. (2007). Cold stress regulation of gene expression in plants. *Trend Plant Sci.* 12(10): 444-451.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Chopra, R., Burow, G., Hayes, C., Ermendack, Y., Xin, Z., and Burke, J. (2015). Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. *BMC genomics*. 16: 1040.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Chopra, R., Burow, G., Burke, J. J., Gladman, N., and Xin, Z. (2017). Genome-wide association analysis of seedling traits in diverse sorghum germplasm under thermal stress. *BMC Plant Biol.* 17: 12.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Christin, P.A., Salamin, N., Savolainen, V., Duvall, M.R., and Besnard, G. (2007). C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. *Current Biology*, 17(14): 1241-1247.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Cooper, G.M., Stone, E.A., Asimenos, G., Green, E.D., Batzoglou, S., and Sidow, A. (2005). Distribution and intensity of constraint in mammalian genomic sequence. *Genome Res.* 15(7): 901-913.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., and Liu, J. (2005). A proteomic analysis of cold stress responses in rice seedlings. *Proteomics*. 5(12): 3162-3172.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Davidson, R. M., Gowda, M., Moghe, G., Lin, H., Vaillancourt, B., Shiu S.-H, Jiang N., and Buell, C.R. (2012). Comparative transcriptomics of three poaceae species reveals patterns of gene expression evolution. *Plant J.* 71(3): 492-502.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

De Wet J. (1978). Systematics and evolution of sorghum sect. sorghum (gramineae). *Am J Bot.* 65(4): 477-484.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Eichten, S.R., Swanson-Wagner, R.A., Schnable, J.C., Waters, A.J., Hermanson, P.J., Liu, S., Yeh, C.T., Jia, Y., Gendler, K., Freeling, M., Schnable, P.S., Vaughn, M.W., Springer, N.M. (2011). Heritable epigenetic variation among maize inbreds. *PLoS Genet.* 7(11): e1002372.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Ercoli, L., Mariotti, M., Masoni, A., and Arduini, I. (2004). Growth responses of sorghum plants to chilling temperature and duration of exposure. *Eur J Agron.* 21(1): 93-103.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Fiedler, K., Bekele, W. A., Matschegewski, C., Snowdon, R., Weckhorst, S., Zacharias, A., and Uptmoor, R. (2016). Cold tolerance during juvenile development in sorghum: a comparative analysis by genomewide association and linkage mapping. *Plant Breeding.*, 135(5): 598-606.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Freeling, M., Rapaka, L., Lyons, E., Pedersen, B., and Thomas, B.C. (2007). G-boxes, bigfoot genes, and environmental response: characterization of intragenomic conserved noncoding sequences in arabidopsis. *Plant Cell.* 19(5): 1441-1457.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Freeling, M., Woodhouse, M.R., Subramanian, S., Turco, G., Lisch, D., and Schnable, J.C. (2012). Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed dna in plants. *Curr Opin Plant Biol.* 15(2): 131-139.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Haibao, T., Klopfenstein, D., Pedersen, B., Flick, P., Sato, K., Ramirez, F., Yunes, J., and Mungall, C. (2015). Goatools: Tools for gene ontology. *Zenodo*.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Harris R.S. (2007). Improved pairwise alignment of genomic DNA. Ph.D. thesis Pennsylvania State University.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hetherington, S. E., He, J., and Smillie, R.M. (1989). Photoinhibition at low temperature in chilling-sensitive and-resistant plants. *Plant Physiol.* 90(4): 1609-1615.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hollister, J.D. and Gaut, B.S. (2009). Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. *Genome Res.* 19(8): 1419-1428.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hollister J.D., Smith L.M., Guo, Y.-L., Ott, F., Weigel, D., and Gaut, B.S. (2011). Transposable elements and small RNAs contribute to gene expression divergence between *Arabidopsis thaliana* and *Arabidopsis lyrata*. *Proc. Natl. Acad. Sci. U.S.A.* 108(6): 2322-2327.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lai, X., Behera, S., Liang, Z., Lu, Y., Deogun, J. S., and Schnable, J. C. (2017). Stag-CNS: An order-aware conserved non-coding sequences discovery tool for arbitrary numbers of species. *Mol Plant*.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lassmann, T., and Sonnhammer, E.L. (2005). Kalign-an accurate and fast multiple sequence alignment algorithm. *BMC bioinformatics.* 6(1): 298.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Li, L., Briskine, R., Schaefer, R., Schnable, P.S., Myers, C.L., Flagel, L.E., Springer, N.M., and Muehlbauer, G.J. (2016). Co-expression network analysis of duplicate genes in maize (*Zea mays L.*) reveals no subgenome bias. *BMC genomics*, 17(1): 875.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Liang, Z and Schnable, J.C. (2016). RNA-Seq based analysis of population structure within the maize inbred B73. *PLoS One.* 11(6):

e0157942.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15(12): 550.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lovell, J. T., Schwartz, S., Lowry, D. B., Shakirov, E. V., Bonnette, J. E., Weng, X., Wang, M., Johnson, J., Sreedasyam, A., Plott, C., et al. (2016). Drought responsive gene expression regulatory divergence between upland and lowland ecotypes of a perennial c4 grass. Genome Res. 26(4): 510-518.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Makarevitch, I., Waters, A.J., West, P.T., Stitzer, M., Hirsch, C.N., Ross-Ibarra, J., and Springer, N.M (2015). Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet. 11(1): e1004915.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 17(1):10-12.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Muiño, J.M., de Bruijn, S., Pajoro, A., Geuten, K., Vingron, M., Angenent, G.C., and Kaufmann, K. (2016). Evolution of dna-binding sites of a floral master regulatory transcription factor. Mol Biol Evol. 33(1): 185-200.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Naito, K., Zhang, F., Tsukiyama, T., Saito, H., Hancock, C.N., Richardson, A.O., Okumoto, Y., Tanisaka, T., and Wessler, S.R. (2009). Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature. 461(7267): 1130-1134.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Ng, P.C and Henikoff, S. (2001). Predicting deleterious amino acid substitutions. Genome Res. 11(5): 863-874.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Olsen, J., McMahon, C., and Hammer, G. (1993). Prediction of sweet corn phenology in subtropical environments. Agron J. 85(2): 410-415.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Orr, H.A (1998). The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution. 52(4): 935-949.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Orr, H.A. (1999). The evolutionary genetics of adaptation: a simulation study. Genet Res. 74(03): 207-214.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Paschold, A., Larson, N.B., Marcon, C., Schnable, J.C., Yeh C.-T., Lanz, C., Nettleton, D., Piepho, H.-P., Schnable, P.S., and Hochholdinger, F. (2014). Nonsyntenic genes drive highly dynamic complementation of gene expression in maize hybrids. Plant Cell. 26(10): 3939-3948.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Paterson, A.H., Bowers J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., et al. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature. 457(7229): 551-556.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Pearce, R. S., (2001). Plant freezing and damage. Annals of Botany, 87(4): 417-424.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Priest, H.D., Fox, S.E., Rowley, E.R., Murray, J.R., Michael, T.P., and Mockler, T.C. (2014). Analysis of global gene expression in *brachypodium distachyon* reveals extensive network plasticity in response to abiotic stress. *PLoS One*. 9(1): e87499.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Quinn, P. J., (1988). Effects of temperature on cell membranes. *Symp Soc Exp Biol*. 42: 237-258.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Reva, B., Antipin, Y., and Sander, C. (2011). Predicting the functional impact of protein mutations: application to cancer genomics. *Nucleic Acids Res*. 39(17): e118.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Revilla, P., Rodríguez, V.M., Ordás, A., Rincent, R., Charcosset, A., Giauffret, C., Melchinger, A.E., Schön, C.-C., Bauer, E., Altmann, T., et al. (2016). Association mapping for cold tolerance in two large maize inbred panels. *BMC Plant Biol*. 16: 127.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth G.K. (2015). Limma powers differential expression analyses for RNA-Sequencing and microarray studies. *Nucleic Acids Res*. 43 (7): e47

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Robinson M. D, McCarthy D. J, and Smyth G. K 2010. edger: a bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1): 139-140.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Rodgers-Melnick, E., Vera D.L., Bass, H.W., and Buckler, E.S. (2016). Open chromatin reveals the functional maize genome. *Proc. Natl. Acad. Sci. U.S.A.* 113(22): E3177-E3184.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Sánchez, B., Rasmussen, A., and Porter, J.R. (2014). Temperatures and the growth and development of maize and rice: a review. *Global Change Biol*. 20(2): 408-417.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Schaefer, R.J., Briskine, R., Springer, N.M., and Myers, C.L. (2014). Discovering functional modules across diverse maize transcriptomes using cob, the co-expression browser. *PLoS one*, 9(6): e99193.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Schnable, J. C., (2015). Genome evolution in maize: From genomes back to genes. *Annu Rev Plant Biol*. 66: 329-343.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Schnable, J.C, Springer, N.M., and Freeling, M. (2011). Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. *Proc Natl Acad Sci U.S.A*. 108(10): 4069-4074.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Schnable J.C., Freeling, M., and Lyons, E. (2012). Genome-wide analysis of syntenic gene deletion in the grasses. *Genome Biol Evol*. 4(3): 265-277.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. *Science*. 326(5956): 1112-1115.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Schurch, N. J., Schofield, P., Gierlinski, M., Cole, C., Sherstnev, A., Singh, V., Wrobel, N., Gharbi, K., Simpson, G. G., Owen-Hughes, T., et al. (2016). How many biological replicates are needed in an RNA-Seq experiment and which differential expression tool should you use? *RNA*. 22(6): 839-851.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Shantz, H. (1954). The place of grasslands in the earth's cover. Ecology. 35(2): 143-145.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Shaykewich, C. (1995). An appraisal of cereal crop phenology modelling. Can J Plant Sci. 75(2): 329-341.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Studer, A., Zhao, Q., Ross-Ibarra, J., and Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genet. 43(11): 1160-1163.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Swigonová, Z., Lai, J., Ma, J., Ramakrishna, W., Llaca, V., Bennetzen, J.L., and Messing, J. (2004). Close split of sorghum and maize genome progenitors. Genome Res. 14(10a): 1916-1923.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Tenhaken, R., (2014). Cell wall remodeling under abiotic stress. Front. Plant Sci.,

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

5. doi: 10.3389/fpls.2014.00771.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Tiwari, S., Krishnamurthy, S., Kumar, V., Singh, B., Rao, A., SV, A.M., Rai, V., Singh, A.K., and Singh, N.K. (2016). Mapping qtls for salt tolerance in rice (*Oryza sativa* L.) by bulked segregant analysis of recombinant inbred lines using 50k snp chip. PloS One., 11(4): e0153610.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Torres-Oliva, M., Almudi, I., McGregor, A.P., and Posnien, N. (2016). A robust (re-) annotation approach to generate unbiased mapping references for RNA-Seq-based analyses of differential expression across closely related species. BMC genomics, 17(1): 392.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Turco, G., Schnable, J.C., Pedersen, B., and Freeling, M. (2013). Automated conserved non-coding sequence (CNS) discovery reveals differences in gene content and promoter evolution among grasses. Front Plant Sci. 4: 170.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Usadel, B., Poree, F., Nagel, A., Lohse, M., CZEDIK-EYSENBERG A., and Stitt, M. (2009). A guide to using mapman to visualize and compare omics data in plants: a case study in the crop species, maize. Plant Cell Environ. 32(9): 1211-1229.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

van Heerwaarden, J., Doebley, J., Briggs, W.H., Glauert, J.C., Goodman, M.M., Gonzalez, J.d.J.S., and Ross-Ibarra, J. (2011). Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci U.S.A. 108(3): 1088-1092.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Vera, D.L., Madzima, T.F., Labonne, J.D., Alam M.P., Hoffman, G.G., Girimurugan, S., Zhang, J., McGinnis, K.M., Dennis, J.H., and Bass, H.W. (2014). Differential nuclelease sensitivity profiling of chromatin reveals biochemical footprints coupled to gene expression and functional dna elements in maize. Plant Cell. 26(10): 3883-3893.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Wallace, J., Larsson, S., and Buckler, E. (2014). Entering the second century of maize quantitative genetics. Heredity, 112(1): 30-38.

Pubmed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only Title Only Author and Title](#)

Wang, L., Czedik-Eysenberg, A., Mertz, R. A., Si, Y., Tohge, T., Nunes-Nesi, A., Arrivault, S., Dedow, L. K., Bryant, D. W., Zhou, W., et al. (2014). Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. *Nature Biotechnol.* 32(11): 1158-1165.

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)Google Scholar: [Author Only Title Only Author and Title](#)

Waters, A.J., Makarevitch, I., Noshay, J., Burghardt, L.T., Hirsch, C.N., Hirsch, C.D., and Springer, N.M. (2017). Natural variation for gene expression responses to abiotic stress in maize. *Plant J.* 89: 706-717.

Pubmed: [Author and Title](#)CrossRef: [Author and Title](#)Google Scholar: [Author Only Title Only Author and Title](#)

Wendorf, F., Close, A.E., Schild, R., Wasylkowa, K., Housley, R.A., Harlan, J.R., and Krolik, H. (1992). Saharan exploitation of plants 8,000 years bp. *Nature*, 359(6397): 721-724.

Pubmed: [Author and Title](#)CrossRef: [Author and Title](#)Google Scholar: [Author Only Title Only Author and Title](#)

Wu, T.D and Nacu, S. (2010). Fast and SNP-tolerant detection of complex variants and splicing in short reads. *Bioinformatics*. 26(7): 873-881.

Pubmed: [Author and Title](#)CrossRef: [Author and Title](#)Google Scholar: [Author Only Title Only Author and Title](#)

Wu, T.D and Watanabe, C.K (2005). Gmap: a genomic mapping and alignment program for mRNA and EST sequences. *Bioinformatics*. 21(9): 1859-1875.

Pubmed: [Author and Title](#)CrossRef: [Author and Title](#)Google Scholar: [Author Only Title Only Author and Title](#)

Xu, G., Wang, X., Huang, C., Xu, D., Li, D., Tian, J., Chen, Q., Wang, C., Liang, Y., Wu, Y., et al. (2017). Complex genetic architecture underlies maize tassel domestication. *New Phytol.* 214: 852-864.

Pubmed: [Author and Title](#)CrossRef: [Author and Title](#)Google Scholar: [Author Only Title Only Author and Title](#)

Yang, Z (2007). Paml 4: phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.* 24(8): 1586-1591.

Pubmed: [Author and Title](#)CrossRef: [Author and Title](#)Google Scholar: [Author Only Title Only Author and Title](#)

Yilmaz, A., Nishiyama, M.Y., Fuentes, B.G., Souza, G.M., Janies, D., Gray, J., and Grotewold, E. (2009). Grassius: a platform for comparative regulatory genomics across the grasses. *Plant Physiol.* 149(1): 171-180.

Pubmed: [Author and Title](#)CrossRef: [Author and Title](#)Google Scholar: [Author Only Title Only Author and Title](#)

Zhang, W., Wu, Y., Schnable, J. C., Zeng, Z., Freeling, M., Crawford, G. E., and Jiang, J. (2012). High-resolution mapping of open chromatin in the rice genome. *Genome Res.* 22(1): 151-162.

Pubmed: [Author and Title](#)CrossRef: [Author and Title](#)Google Scholar: [Author Only Title Only Author and Title](#)

Zhang, Y., Ding, Z., Ma, F., Chauhan, R.D., Allen, D.K., Brutnell, T.P., Wang, W., Peng, M., and Li, P. (2015). Transcriptional response to petiole heat girdling in cassava. *Sci Rep.* 5: 8414.

Pubmed: [Author and Title](#)CrossRef: [Author and Title](#)Google Scholar: [Author Only Title Only Author and Title](#)

Differentially Regulated Orthologs in Sorghum and the Subgenomes of Maize

Yang Zhang, Daniel W. Ngu, Daniel Carvalho, Zhikai Liang, Yumou Qiu, Rebecca Roston and James Schnable

Plant Cell; originally published online July 21, 2017;
DOI 10.1105/tpc.17.00354

This information is current as of July 13, 2018

Supplemental Data	/content/suppl/2017/07/21/tpc.17.00354.DC1.html /content/suppl/2017/07/30/tpc.17.00354.DC2.html
Permissions	https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X
eTOCs	Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain
CiteTrack Alerts	Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain
Subscription Information	Subscription Information for <i>The Plant Cell</i> and <i>Plant Physiology</i> is available at: http://www.aspb.org/publications/subscriptions.cfm