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ABSTRACT
Identifying interspecies changes in gene regulation, one of the two primary sources of 
phenotypic variation, is challenging on a genome-wide scale. The use of paired time course data 
on cold-responsive gene expression in maize (Zea mays) and sorghum (Sorghum bicolor) 
allowed us to identify differentially regulated orthologs. While the majority of cold-responsive 
transcriptional regulation of conserved gene pairs is species specific, the initial transcriptional 
responses to cold appear to be more conserved than later responses. In maize, the promoters of 
genes with conserved transcriptional responses to cold tend to contain more micrococcal 
nuclease hypersensitive sites in their promoters, a proxy for open chromatin. Genes with 
conserved patterns of transcriptional regulation between the two species show lower ratios of 
nonsynonymous to synonymous substitutions. Genes involved in lipid metabolism, known to be 
involved in cold acclimation, tended to show consistent regulation in both species. Genes with 
species-specific cold responses did not cluster in particular pathways nor were they enriched in 
particular functional categories. We propose that cold-responsive transcriptional regulation in 
individual species may not be a reliable marker for function, while a core set of genes involved 
in perceiving and responding to cold stress are subject to functionally constrained cold-
responsive regulation across the grass tribe Andropogoneae. 
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INTRODUCTION 1 

The grasses are a clade of more than 10,000 species, which exhibit conserved morphology and 2 

genome architecture (Bennetzen and Freeling, 1993). Grasses have adapted to grow in a wide 3 

range of climates and ecologies across the globe, with 20% of total land area covered by 4 

ecosystems dominated by grasses (Shantz, 1954). As a result, the range of tolerance to abiotic 5 

stresses present in the grass family (Poaceae) far exceeds that present within any single grass 6 

species. However, to date, studies attempting to identify determinants of abiotic stress tolerance 7 

at a genetic or genomic level have predominantly focused on individual species (Chopra et al., 8 

2017; Priest et al., 2014; Revilla et al., 2016; Tiwari et al., 2016; Waters et al., 2017). The 9 

majority of genetic changes with phenotypic effects can be broadly classified into two categories: 10 

those that alter protein-coding sequence and those that alter the regulation of gene expression. 11 

 12 

DNA sequence changes that alter protein-coding sequences can be identified in a straightforward 13 

fashion. The probability that a given polymorphism in a protein-coding sequence will have a 14 

phenotypic effect can also often be estimated. At a basic level, this involves classification as 15 

synonymous, missense and nonsense mutations. Information on the overall level of evolutionary 16 

conservation for a given amino acid residue can also be used to increase the accuracy of these 17 

predictions (Cooper et al., 2005; Ng and Henikoff, 2001; Reva et al., 2011). Cross species 18 

comparisons of the protein-coding sequences from genes co-opted into new functional roles in 19 

C4 photosynthesis have been able to identify protein changes linked to changes in function at a 20 

resolution of individual amino acid residues (Christin et al., 2007). 21 

 22 

Identifying changes in gene regulation across related species is more challenging, and the 23 

associated methods are far less advanced. For extremely close relatives, such as Arabidopsis 24 

thaliana and Arabidopsis arenosa, RNA-Seq reads from both species can be mapped to a 25 

common reference genome (Burkart-Waco et al., 2015). For species with greater levels of 26 

sequence divergence in transcribed regions, this approach becomes impractical. Recent work in 27 

Sophophora (formerly Drosophila) described some of the many challenges present in comparing 28 

changes in baseline expression levels across closely related species with independently 29 

sequenced and assembled reference genomes (Torres-Oliva et al., 2016). However, this approach 30 

is limited to identifying changes in baselines expression in the same treatment rather than 31 
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examining patterns of regulation across multiple treatments. Within the grasses several research 32 

groups have employed clustering-based methods to identify genes with conserved patterns of 33 

regulation during either reproductive or photosynthetic development (Davidson et al., 2012; 34 

Wang et al., 2014). Among other results, one of these studies concluded that orthologous genes 35 

conserved at syntenic locations are more likely to share correlated expression patterns across 36 

multiple species than genes classified as orthologs based on phylogenetic analysis but located at 37 

non-syntenic locations (Davidson et al., 2012). Clustering-based methods can identify genes with 38 

conserved patterns of regulation across multiple species, but they have high false positive rates 39 

when used to identify genes with changes in regulatory pattern.  40 

 41 

In even closely related species, the baseline expression levels of orthologous genes can diverge 42 

significantly (Hollister and Gaut, 2009; Hollister et al., 2011). Testing for conserved or divergent 43 

patterns of regulation across different genotypes or different species when baseline expression 44 

levels have diverged creates a statistical challenge. Modeling of multiple environmental or 45 

genotype level effects can be combined either additively or multiplicatively. The model selected 46 

will determine which set of genes will be classified as differentially regulated between species. 47 

While few attempts have been made to identify differential patterns of gene regulation across 48 

species, attempts to do so between subspecies or diverse accessions have largely used either only 49 

a multiplicative model (Lovell et al., 2016), an additive model, or additive and multiplicative 50 

models separately (Waters et al., 2017) but have not made comparisons between the suitability of 51 

the two models. 52 

 53 

Here, we sought to develop effective methods for comparing gene regulatory patterns between 54 

syntenic orthologous genes in closely related species. For initial cross species comparisons, data 55 

on changes in the transcriptional responses to cold stress in maize and sorghum were employed. 56 

Cold was selected as a stress that could be delivered in a consistent fashion and time frame. 57 

Maize and sorghum were selected based on their close evolutionary relationship (Swigoňová et 58 

al., 2004), high quality sequenced genomes (Paterson et al., 2009; Schnable et al., 2009), and 59 

common susceptibility to cold stress (Chinnusamy et al., 2007; Hetherington et al., 1989; 60 

Wendorf et al., 1992). In addition, maize is a mesotetraploid species that experienced a whole-61 
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genome duplication approximately 12 million years ago after its divergence from sorghum 62 

(Swigoňová et al., 2004), producing two functionally distinct maize subgenomes, maize1  63 

and maize2 (Schnable et al., 2011). Approximately 3,000-5,000 pairs of genes are retained on 64 

both maize subgenomes (Schnable et al., 2011, 2012, 2009). Unlike other types of gene 65 

duplication, whole-genome duplicates initially retain almost all the same associated conserved 66 

regulatory sequences (Freeling et al., 2012). Comparing the expression patterns of duplicated 67 

genes exposed to the same trans-regulatory factors provides a bridge to comparing the expression 68 

patterns of orthologous genes in closely related species with similar phenotypes. These two 69 

systems provide a useful platform for developing and testing approaches to comparative gene 70 

regulatory analysis. However, one goal of cross species comparisons of transcriptional  71 

regulation must ultimately be to link changes in regulation to changes in phenotype, which in the 72 

case of low temperature stress will require conducting comparisons between species with 73 

differing, rather than similar, tolerance to cold. 74 

 75 

RESULTS 76 

A set of 15,231 syntenic orthologous gene pairs conserved between the maize1 subgenome and 77 

sorghum and 9,553 syntenic gene pairs conserved between the maize2 subgenome were 78 

employed in this study (Figure 1A). The sequence identity in coding regions of syntenic genes 79 

between sorghum and either maize subgenome or between maize subgenomes is approximately 80 

90% (Supplemental Figure 1), which is a level of divergence that makes alignment to a common 81 

reference sequence impractical. We conducted parallel expression analyses of the set of syntenic 82 

orthologous gene pairs conserved between the maize1 subgenome and sorghum and the smaller 83 

set of syntenic gene pairs conserved between the maize2 subgenome and sorghum. 84 

 85 

Syntenic orthologs exhibited reasonably well-correlated patterns of absolute gene expression 86 

levels between sorghum and either subgenome of maize based on expression data generated from 87 

whole seedlings under control conditions (Spearman's rho = 0.79-0.84, Pearson r = 0.67-0.85, 88 

Kendall rank correlation 0.67-0.63, Figure 1B). This observation is consistent with previous 89 

reports about the analysis of expression across reproductive tissues in three grass species 90 

(Davidson et al., 2012). However, it should be noted that these correlations were significantly 91 

lower than those observed between biological replicates (see Methods for a detailed explanation 92 
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of what constituted a biological replicate in this study) of the same species (Spearman's rho = 93 

0.88-0.98, Pearson r = 0.89-0.99, Kendall rank correlation 0.78-0.91), and many individual genes 94 

have large divergence in baseline expression levels between the two species, creating divergence 95 

between the predictions of additive and multiplicative statistical models of gene regulation, as 96 

described above. 97 

 98 

We visually confirmed the lethal effect of prolonged cold stress on maize and sorghum (Ercoli et 99 

al., 2004; Hetherington et al., 1989; Olsen et al., 1993; Sánchez et al., 2014; Shaykewich, 1995) 100 

following prolonged cold treatment (Figure 2A-C, Supplemental Figure 2, See Methods). We 101 

employed measurements of impairment of CO2 assimilation rates after recovery from a 102 

controlled length cold stress to provide more quantitative measures of cold stress and to assess 103 

the suitability of the level of cold stress employed to distinguish differing degrees of cold stress 104 

sensitivity or cold stress tolerance among maize, sorghum, and several related panicoid grass 105 

species. Data were generated from a total of six panicoid grasses, including the relatively cold 106 

tolerant paspalum (Paspalum vaginatum) and the extremely cold sensitive proso millet (Panicum 107 

miliaceum) (Figure 2D). After one day of cold stress, the species could be broadly classified as 108 

either cold stress insensitive or cold stress sensitive, with both maize and sorghum in the cold 109 

stress sensitive category. A longer period of cold stress (3 days) revealed greater impairment of 110 

CO2 assimilation rates in sorghum than in maize, consistent with previous reports on the relative 111 

cold sensitivity of these two species (Chinnusamy et al., 2007; Chopra et al., 2017; Fiedler et al., 112 

2016; Hetherington et al., 1989; Wendorf et al., 1992), and separated the six species into three 113 

broad categories of cold tolerant, moderately cold sensitive and extremely cold sensitive. Based 114 

on these data, we selected one day of cold stress, when maize and sorghum still exhibit 115 

comparable levels of CO2 assimilation impairment (Figure 2D), for downstream expression 116 

analysis. 117 

 118 
Conventional differentially expressed gene analysis 119 

We identified differentially expressed genes in each species by comparing gene expression data 120 

in control seedlings to those subjected to one day of cold stress (Supplemental Data Set 1). 121 

Among maize1/sorghum syntenic gene pairs, 1,686 (11.1%, 1,686 out of 15,231) and 2,343 122 

(15.4%, 2,343 out of 15,231) genes were classified as differentially expressed genes (DEGs), 123 
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respectively (Figure 3A, see Methods). For maize2/sorghum syntenic gene pairs, these values 124 

were 968 (10.1%, 968 out of 9,553) and 1,446 (15.1%, 1,446 out of 9,553) genes, respectively. 125 

Only 836 (5.5%, 836 out of 15,231) of maize1/sorghum syntenic genes were classified as 126 

showing differential regulation in response to cold in both species (Figure 3A). In addition, there 127 

were 29 and 16 genes pairs in the maize1/sorghum and maize2/sorghum gene pairs, respectively, 128 

where both genes were classified as differentially expressed but in opposite directions (Figure 129 

3B). The 836 observed syntenic gene pairs is approximately 3.2 times higher than the 259 genes 130 

pairs that should have been identified if cold-responsive gene regulation were not correlated 131 

between the two species (see legend of Figure 3 for a detailed breakdown of how this value was 132 

calculated). With these two values, the maximum number of genes responding to cold in the 133 

same fashion as a result of common descent from an ancestrally cold-responsive gene in the 134 

common ancestor of maize and sorghum can be calculated using the formula ((observed number 135 

of shared DEGs) - (expected number of shared DEGs))/(observed number of shared DEGs). In 136 

this case, a maximum of approximately two thirds (69.0%, 577 out of 836) of genes identified as 137 

responding to cold in both species are likely to do so as a result of common descent. However, 138 

this may in fact be an overestimate if some of the same changes in cold-responsive gene 139 

regulation have been selected for in parallel in both lineages. Extending this calculation to the set 140 

of gene pairs that responded transcriptionally to cold in either maize or sorghum or both, only 141 

18.1% (577 out of 3,193) of gene pairs responding to cold in either species are likely to have 142 

retained a conserved pattern of cold-responsive gene expression since the divergence of maize 143 

and sorghum from a common ancestor 12 million years ago (Swigoňová et al., 2004). 144 

 145 

One potential explanation for this observation is that low statistical power to detect differentially  146 

expressed genes may create a false impression that differential expression is not conserved 147 

between related species. Prior estimates from real biological data in yeast (Saccharomyces 148 

cerevisiae) suggest that, given the number of replicates and minimum cut-off for differential 149 

expression employed here, the power of DESeq2 to identify differentially expressed genes 150 

should be between 0.65 and 0.90 (Schurch et al., 2016). In addition, a simulation study using 151 

observed expression values and variances in the maize dataset generated here indicated that the 152 

power to detect differential gene expression ranged from 0.63 for genes with a change in 153 

expression exactly at the minimum cut off to 0.961 for genes with larger changes in expression 154 
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value (Supplemental Data Set 2). The expected proportion of genes classified as differentially 155 

expressed in either species that are classified as differentially expressed in both species is given 156 

by the formula 𝑝𝑜𝑤𝑒𝑟2/1 − (1 − 𝑝𝑜𝑤𝑒𝑟)2. Given the worst-case assumption (power = 0.628), 157 

this value would be 46% if gene regulation were perfectly conserved between maize and 158 

sorghum, which is higher than the observed value of 25%. 159 

 160 

Results for maize2/sorghum gene pairs were largely comparable. However, the proportion of 161 

genes classified as not differentially expressed in either species was greater for maize2/sorghum 162 

gene pairs (Figure 3A), likely because maize2 genes tend to have lower overall levels of 163 

expression (Schnable et al., 2011). In total, 766 nonsyntenic maize genes were classified as 164 

differentially expressed in response to cold (2.0% of all nonsyntenic genes in maize, 766 out of 165 

38,664), while 1,333 (9.1%, 1,333 out of 14,683) of nonsyntenic genes in sorghum were 166 

classified as differentially expressed in response to cold. The absolute numbers of differentially 167 

expressed nonsyntenic genes are more similar to each other than the proportions, as the current 168 

set of maize gene model annotations includes many lower confidence genes - which are 169 

generally nonsyntenic and often show little or no detectable expression (Schnable, 2015) - than 170 

the current set of sorghum gene model annotations. 171 

 172 

Maize and sorghum share a close relationship (Swigoňová et al., 2004), and both originated from 173 

tropical latitudes (De Wet, 1978; van Heerwaarden et al., 2011). The two species even have a 174 

high degree of promoter conservation in abiotic stress-responsive genes (Freeling et al., 2007). 175 

Therefore, the apparent low degree of conservation in cold stress-responsive regulation is 176 

unexpected. However, this result is also consistent with studies that have found significant 177 

divergence in abiotic stress responses between different haplotypes in maize (Waters et al., 2017). 178 

 179 

One potential explanation is that the same cold stress pathways are being induced in maize and 180 

sorghum, but these pathways are induced more rapidly in one crop than the other when exposed 181 

to equivalent cold stresses. To test this hypothesis, we used data from a more detailed time 182 

course to compare the expression levels between matched pairs of cold stressed and control 183 

plants of each species at six time points distributed over 24 hours (See Methods and 184 

Supplemental Data Set 1). The number of gene pairs classified as differentially expressed at 185 
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different time points ranged from 60 to 2,199 for maize1/sorghum gene pairs and 29 to 1,235 for 186 

maize2/sorghum gene pairs. Comparing the number of genes identified as differentially 187 

expressed in each of all 36 possible pairwise combinations of time points between the two 188 

species showed that the greatest proportion of shared differentially expressed gene pairs was 189 

identified when identical time points were compared between the two species and that the overall 190 

number of shared differentially expressed gene pairs increases at later time points (Figure 4A). 191 

Overall, genes tended to remain in the same categories, with a general trend towards more DE0 192 

genes moving into all three cold-responsive expression categories as the length of cold stress 193 

increased (Figure 4A). Because the proportion of all genes classified as differentially expressed 194 

increases at later time points, the expected number of gene pairs classified at DE2 under the null 195 

model described above also increases. Therefore, considering only the absolute number of gene 196 

pairs classified as DEGs in both species (DE2) at each time point can be misleading. After 197 

controlling for the expected number of DE2 genes, early time points show significantly higher 198 

proportions of true positives than later time points (Figure 4B). 199 

 200 

Differentially regulated ortholog analysis 201 

Another potential explanation for the finding that relatively few shared differentially expressed 202 

genes were identified between maize and sorghum is that differential gene expression analysis 203 

may not be testing the correct null hypothesis for between-species comparisons (Paschold et al., 204 

2014). The null hypothesis of conventional DEG analysis is that the expression values observed 205 

for a given gene under control and stress conditions are drawn from the same underlying 206 

distribution. This approach is perfectly suitable for single-species analysis. In a two-species 207 

analyses, such as those conducted above, a DEG approach divides gene pairs into three 208 

categories: genes pairs classified as differentially expressed in neither species (DE0), in one 209 

species but not the other (DE1), and in both species (DE2, Figure 3A). 210 

 211 

As shown in Figure 5A, in principle, each of those three categories (DE0, DE1, and DE2) can 212 

include gene pairs without significant differences in the pattern of regulation between species 213 

(comparably regulated orthologs or CROs), as well as gene pairs that do show significant 214 

differences in regulation between the two species (differentially regulated orthologs or DROs). 215 

All six theoretical cases from Figure 5A were observed in the RNA-Seq expression dataset 216 
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generated above (Supplemental Figure 3A). DROs and CROs were both observed in all the DEG 217 

groups (Supplemental Figure 3B). Distinguishing between DROs and CROs requires testing a 218 

different null hypothesis: that the change in expression for a given gene between two treatments 219 

is equivalent to the change in expression for an ortholog of that same gene, in a different species, 220 

across the same two treatments. Another way of describing this same experimental approach is 221 

testing for a statistically significant treatment by species interaction effect. Several existing 222 

statistical packages incorporate the ability to test for significant interactions between different 223 

treatments (Love et al., 2014; Ritchie et al., 2015; Robinson et al., 2010) by including species as 224 

an effect in the model. However, comparing across species under different conditions, including 225 

testing for interaction effects to cross species comparisons, requires us to define an accurate 226 

model for what the same change in gene regulation looks like starting from different baseline 227 

levels of expression. Testing this null hypothesis across species in turn requires us to define an 228 

accurate model of what the same pattern of gene expression looks like when starting from 229 

different baseline levels of expression. 230 

 231 

For an orthologous gene pair where gene copies are expressed at different baseline levels in two 232 

species, two different models can be used to compare a change in expression between treatment 233 

and control conditions: additive and multiplicative (Figure 5B). When expression under control 234 

conditions is equivalent between the two species, these models yield the same predicted 235 

expression under stressed conditions. However, when control condition expression is different 236 

between the two species, the models produce different expected expression values under stress 237 

conditions. Using simulated data based on additive and multiplicative models, an ANOVA-based 238 

test classified genes with different baseline expression levels but the same pattern of expression 239 

(as simulated by a multiplicative model) as significantly differentially regulated between species, 240 

while the generalized linear model-based DESeq2 classified genes with different baseline 241 

expression levels but the same pattern of expression (as simulated by a additive model) as 242 

significantly differentially regulated between species (Supplemental Data Set 3). 243 

 244 

To test which of these models is a better representation of how cold-responsive gene regulation 245 

actually operates, we utilized a set of 5,257 gene pairs retained from the maize whole genome 246 

duplication (WGD) (Schnable et al., 2011). The maize WGD created two copies of each gene in 247 
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the genome, each associated with the same chromatin environments and regulatory sequences. 248 

RNA-Seq-based measurements of expression for duplicate genes can be unreliable when gene 249 

copies are similar enough that reads cannot be unambiguously mapped to individual copies. 250 

Maize WGD-derived duplicate gene pairs show approximately 93% sequence similarity in exon 251 

regions (Supplemental Figure 1). This is equivalent to 4.5 mismatches per 50 bp sequence read, 252 

significantly reducing the risk of ambiguous or incorrect read mapping. The expression level of 253 

each gene copy in a WGD gene pairs in the maize genome in the same samples results from the 254 

exact same trans-factors acting in the exact same tissue and cell types. Therefore, divergence in 255 

the regulation of these genes should start out with the same cis-regulatory sequence prior to their 256 

divergence from their most recent common ancestor (whether at the time of WDG for 257 

autopolyploids or at the time of speciation prior to WGD for allopolyploids) (Freeling et al., 258 

2012). 259 

 260 

To test the additive and multiplicative null models, we used the expression pattern of one maize 261 

gene copy between control and cold stress conditions to predict the expression pattern of the 262 

other maize gene copy using each null model from Figure 5B. We conducted the analysis in 263 

parallel at each of the six time points in maize using maize1/maize2 gene pairs where at least one 264 

copy was identified as differentially expressed at that time point. Gene pairs were omitted from 265 

the analysis if the predictions of both models were more similar to each other than either was to 266 

the observed value. 267 

 268 

The multiplicative model was more accurate at predicting cold-responsive expression patterns 269 

between maize WGD duplicates than the additive model at all time points (p=0.004-2.4*10-15), 270 

paired two tailed t-test) (Supplemental Data Set 4). Requiring the difference between the 271 

predictions of the two models to be at least twice as large as the difference between the better 272 

model and the observed expression pattern produced similar results (Figure 5C, Supplemental 273 

Data Set 4). The set of genes where the additive model produced better predictions was 274 

examined for differences in expression, selection (Ka/Ks ratio), (Supplemental Figure 4) or GO 275 

annotation No significant markers for which genes could be best predicted with which model 276 

were identified. Therefore, going forward, we employed the multiplicative model for conserved 277 

gene regulation across species, as implemented in DESeq2’s test for multiple factors (Love et al., 278 
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2014) (see Methods). 279 

 280 

Figure 6A shows the proportion of gene pairs classified as DROs among all gene pairs in the 281 

DE0, DE1, and DE2 groups at each of the six time points. Comparing the same time points for 282 

maize and sorghum identifies fewer differentially regulated orthologs than comparisons between 283 

non-equivalent time points in the two species. Fewer differentially regulated orthologs were 284 

identified at earlier cold treatment time points than at later time points. This is consistent with the 285 

results of DEG analysis described above, which suggested early cold stress responses were more 286 

conserved across sorghum and maize than later cold stress responses. 287 

 288 

Functional differences between genes with conserved or lineage-specific regulatory 289 

patterns 290 

Genes classified as responding to cold stress in both species (DE2) tended to have significantly 291 

lower ratios of nonsynonymous nucleotide changes to synonymous nucleotide changes (Ka/Ks 292 

ratio) than genes that responded to cold stress in only one species or in neither species. This 293 

suggests genes with conserved patterns of cold-responsive regulation experience stronger 294 

purifying selection than genes with lineage-specific patterns of cold-responsive regulation 295 

(Figure 6B-C). GO (Gene Ontology) enrichment analysis identified genes differentially regulated 296 

in both species as enriched in transcription factor-related GO terms, such as GO:0006355 297 

“regulation of transcription, DNA-templated”. This enrichment was further confirmed in a 298 

separate test for enrichment of genes annotated as transcription factors in the GRASSIUS 299 

database (Yilmaz et al., 2009). No non-transcription factor-related GO term showed significant 300 

enrichment when compared to the population of gene pairs that were syntenically conserved 301 

between both species. Comparison to the total population of annotated genes in maize or 302 

sorghum showed many additional enrichments; however, this approach can produce misleading 303 

results, as non-syntenic genes are enriched among genes without any functional annotation 304 

(Schnable et al., 2012). We used MapMan (Usadel et al., 2009) to visualize the patterns of 305 

expression within particular functional categories among DE2 genes as well as DE1 maize and 306 

DE1 sorghum genes. As expected, genes related to cell wall growth, a marker for plant growth, 307 

were downregulated in both species in the cold, including xyloglucosyl transferase 308 

(Sobic.001g538000 and GRMZM2G388684) and leucine-rich repeat family protein 309 
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(Sobic.003g205600 and GRMZM2G333811) genes (Cui et al., 2005; Pearce, 2001; Tenhaken, 310 

2014). Genes involved in lipid metabolism were upregulated in both species, including glycerol-311 

3-phosphate acyltransferase 8 (Sobic.009g162000 and GRMZM2G166176), diacylglycerol 312 

kinase (Sobic.006g230400 and GRMZM2G106578), choline-phosphate cytidylyltransferase 313 

(Sobic.001g282900 and GRMZM2G132898), MGDG synthase (Sobic.004g334000 and 314 

GRMZM2G178892, Sobic.007g211900 and GRMZM2G141320), glycerophosphodiester 315 

phosphodiesterase (Sobic.007g190700 and GRMZM2G064962, Sobic.004g157300 and 316 

GRMZM2G018820) and FA elongation acyl-CoA ligase (Sobic.004g015400 and 317 

GRMZM2G120539) genes. This observation is consistent with the reported role of changes in 318 

membrane composition to avoid stiffening in the cold as an adaptive response to cold (Quinn, 319 

1988; Singer and Nicolson, 1972). No consistent expression patterns of genes in particular 320 

metabolic processes (up- or downregulated) were observed among the DE1 maize or DE1 321 

sorghum gene pairs. 322 

 323 

The previously defined binding site for DREB/CBF transcription factors, which are induced in 324 

response to drought and cold stress (Muiño et al., 2016), showed significant enrichment in the 325 

proximal promoters of gene pairs in the DE2 category, as well as significant purification in the 326 

proximal promoters of gene pairs in the DE0 category (Supplemental Figure 5). As transcription 327 

factors are often associated with larger quantities of conserved noncoding sequences (CNS) 328 

(Freeling et al., 2007; Turco et al., 2013), we also investigated the number and quantity of 329 

conserved noncoding sequence associated with different classes of genes; however, no strong 330 

patterns were observed (Figure 6D). The use of conserved noncoding sequence data to identify 331 

regulatory sequence requires that the regulatory sequence be conserved between species. Given 332 

that many of the genes identified as responding to cold in either maize or sorghum appear to do 333 

so in a lineage-specific fashion, this requirement may not be satisfied in many cases. Various 334 

measurements of open chromatin have been shown to be good predictors of where regulatory 335 

sequences will be identified using CNS-based methods (Lai et al., 2017; Vera et al., 2014; Zhang 336 

et al., 2012), and unlike CNS-based methods, chromatin structure-based methods do not require 337 

that the same regulatory sequence be conserved across multiple species. We therefore examined 338 

the chromatin states in the promoters of genes with different patterns of cold-responsive 339 

regulation using a published dataset of MNase hypersensitive sites (HS) generated from maize 340 
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seedlings grown under non-stressed conditions (Rodgers-Melnick et al., 2016). Comparisons 341 

were made for maize DE0, Maize DE1, Sorghum DE1, DE2 and nonsyntenic genes at each of 342 

the six cold stress time points. Many nonsyntenic genes responded to cold; however, nonsyntenic 343 

genes as a whole showed little or no open chromatin (as defined by MNase HS) associated with 344 

their TSS (transcriptional start sites) or proximal promoters. Previous studies of other epigenetic 345 

marks have also concluded that the chromatin signatures of nonsyntenic genes in maize are more 346 

similar to those of intergenic sequences versus syntenic genes (Eichten et al., 2011). All 347 

categories of syntenic genes tended to have a peak of MNase sensitivity associated with their 348 

TSS and more open chromatin in their proximal promoters than nonsyntenic genes. Genes with 349 

conserved cold-responsive regulation (DE2) appear to have the greatest amount of open 350 

chromatin in their proximal promoters (Figure 7). Intriguingly, the maize copies of maize DE1 351 

gene pairs exhibited stronger open chromatin signals that the maize copies of sorghum DE1 gene 352 

pairs, even though data on MNase hypersensitive sites came from seedlings grown under control 353 

conditions. The patterns reported above remained apparent when genes were divided into nine 354 

categories based on their relative expression level and Ka/Ks ratio, although statistical 355 

significance was reduced substantially as a result of the smaller number of genes included in 356 

each analysis (Supplemental Figure 6). 357 

 358 

DISCUSSION 359 

The above results indicate that there are roughly equivalent numbers of genes differentially 360 

expressed in response to cold compared to those reported from separate studies in each species 361 

(Chopra et al., 2015; Makarevitch et al., 2015). However, cross-species comparisons of the 362 

transcriptional regulation of the same genes in these two different species reveals that many cold-363 

responsive patterns of regulation are not conserved between the two species. Correcting for the 364 

expected overlap across conserved genes based solely on the absolute genes number exhibiting 365 

cold-responsive transcriptional changes in each species further reduced the expected number of 366 

gene pairs where shared regulation resulted from the conservation of an ancestral pattern of cold-367 

responsive transcriptional regulation. These data imply that gains or losses of cold-responsive 368 

regulation are relatively frequent in the grass tribe Andropogoneae. Genes that respond to cold in 369 

only a single lineage experience lower levels of purifying selection and are less likely to be 370 

annotated as transcription factor genes than genes that are cold-responsive in both lineages. It 371 
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should be noted that these results are based on data from a single accession of maize (B73) and a 372 

single accession of sorghum (BTx623). Evidence suggests that lower, but still significant, levels 373 

of divergence in transcriptional regulation in response to cold are present in different accessions 374 

of a single species (Makarevitch et al., 2015; Waters et al., 2017). 375 

 376 

It appears that a relatively small core set of genes exhibit conserved responses to cold across the 377 

two species in this initial analysis, and functional analysis suggests that these genes are more 378 

likely to be present in pathways with logical links to cold stress (decreases in growth and cell 379 

wall biosynthesis, increases in lipid metabolism). Thus, we propose a model where a small core 380 

set of genes involved in the mechanisms by which panicoid grasses perceive and respond to cold 381 

stress are under functionally constrained cold-responsive transcriptional regulation, while a much 382 

larger set of genes can gain or lose cold-responsive transcriptional regulation in a neutral fashion 383 

or potentially as a result stabilizing selection, potentially through transposon-mediated 384 

mechanisms (Makarevitch et al., 2015; Naito et al., 2009). Consistent with this model, the genes 385 

with conserved cold-responsive gene regulation exhibited lower ratios of nonsynonymous to 386 

synonymous coding sequence substitutions than the other genes, which would imply their coding 387 

sequence is also subject to greater functional constraint. This model would also be consistent 388 

with the relatively high proportion of maize cold-responsive genes that exhibit variation in cold-389 

responsive regulation across alleles (Waters et al., 2017). 390 

 391 

We evaluated two different models for predicting conserved regulation across different 392 

expression levels and found that the multiplicative model was more effective at predicting 393 

orthologous gene pair expression than the additive model (Figure 5C, Supplemental Data Set 4). 394 

However, while this different was statistically significant, the additive model remained the better 395 

predictor for many gene pairs. While no obvious markers that distinguish genes where one model 396 

is the better predictor than the other were identified in this study, further study may identify 397 

additional molecular traits measured from the genome that can forecast which model is more 398 

appropriate for testing the expression pattern of a given gene across multiple related species. 399 

 400 

The challenge of linking genes to functions based on expression evidence 401 

The model above would predict than the observation of stress-responsive changes in transcript  402 
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abundance in a single species is not strong evidence that the associated gene plays a role in the  403 

response to that particular stress. While sequencing genomes and identifying genes are becoming 404 

more straightforward tasks, confidently assigning functional roles to newly identified genes 405 

remains challenging. Many genes in maize (35.1%) and sorghum (16.2%) are not associated with 406 

any GO annotations in the current release of Phytozome (v12). Many genes that do possess GO 407 

annotations are associated with only extremely broad annotation categories, such as protein 408 

binding or catalytic activity. “Guilt by association” studies using co-expression analysis are an 409 

intriguing method for assigning putative functional roles to some orphan or poorly annotated 410 

genes (Li et al., 2016; Schaefer et al., 2014). However, the use of these methods in a single 411 

species may also produce false positive annotations in the case of selectively neutral or 412 

stabilizing changes in gene regulation. It may prove to be the case that functionally constrained 413 

transcriptional responses are an effective method for identifying these links. Collecting parallel 414 

expression datasets in multiple species can be time consuming and costly. We therefore tested a 415 

number of alternative approaches to identifying functionally constrained cold-responsive 416 

transcriptional regulation. Early transcriptional responses to cold (30 minutes-3 hours) appeared 417 

to show greater conservation across species than later transcriptional responses. Regions of open 418 

chromatin detected through MNase HS (Rodgers-Melnick et al., 2016; Vera et al., 2014) were 419 

preferentially associated with genes that responded transcriptionally to cold stress in maize; 420 

however, this association was observed for genes with either conserved or lineage-specific 421 

patterns of cold-responsive regulation. 422 

 423 

Importance of developing methods for cross-species comparisons of transcriptional 424 

regulation 425 

Both modeling (Orr, 1998, 1999) and empirical studies (Chan et al., 2010; Studer et al., 2011) 426 

have found that genetic variants responsible for large, sudden changes in natural or artificial 427 

selection tend to have large, pleiotropic effects. In maize, distinct genetic architectures underlie 428 

traits that have been subjected to selection during domestication - one large-effect quantitative 429 

trait locus and many small modifiers - and traits that were not selected on during domestication - 430 

many small-effect quantitative trait loci (Wallace et al., 2014). This model was supported by 431 

recent work with an inter-subspecies cross of maize and its wild progenitor teosinte (Zea mays 432 

ssp. parviglumis). Looking at tassel morphology, distinctly genetic architectures were reported 433 
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for traits believed to have been under selection during domestication compared to those traits that 434 

were not (Xu et al., 2017). Developing effective approaches for comparing transcriptional 435 

regulation of conserved syntenic genes across related grass species has the potential to identify 436 

large-effect polymorphisms responsible for interspecies phenotypic variation in traits such as 437 

abiotic stress tolerance where substantial phenotypic variation exists between species (Figure 438 

2D). 439 

 440 

Here we have shown that by using synteny to identify pairs of conserved orthologs across related 441 

species, it is possible to identify species by treatment interactions, which signify changes in gene 442 

regulation across species (DROs), using a multiplicative model of gene regulation. The use of a 443 

multiplicative model was in turn supported by analysis of the regulation of duplicated maize 444 

genes within the same sample. By increasing the number of species sampled, it may soon be 445 

possible to define a consistent core set of genes subjected to functionally constrained regulation 446 

in response to cold across the grasses. Changes in the regulation of these core genes in specific 447 

lineages with different cold stress-response phenotypes would be useful candidates for the type 448 

of large-effect changes predicted to produce between-species phenotypic variation. However, the 449 

interpretation of such data must take into account that, unlike within-species studies of allelic 450 

variation in cold-responsive regulation, between-species analysis cannot distinguish cis-451 

regulatory from trans-regulatory sources of variation in transcriptional responses. 452 

 453 

METHODS 454 

Plant growth and cold treatment 455 

For maize and sorghum, the reference genotypes used for genome sequencing and assembly were 456 

B73 and BTx623, respectively. SNP calling using RNA-Seq data from B73 was used to verify 457 

that the plants used in this study came from the USA South clade of B73 accessions, i.e., those 458 

closest to the original reference genome (Liang and Schnable, 2016). Under the growing 459 

conditions employed, maize developed more quickly than sorghum, and sorghum seedlings 460 

twelve days after planting (DAP) were selected as being roughly developmentally equivalent to 461 

10 DAP maize seedlings based on leaf number and morphology (Figure 2A). Planting dates were 462 

staggered so that all species reached this developmental time point simultaneously. For the 463 

original RNA-Seq presented in Figure 2A, seeds were planted in MetroMix 200 and grown in 464 
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greenhouse conditions under 13 hour day length in greenhouses at University of Nebraska- 465 

Lincoln's Beadle Center, with target conditions of 320 mol m-2 s-1, high pressure sodium bulb, 13 466 

hours/11 hours 29 ºC /23 ºC day/night and 60% relative humidity. Control plants were harvested 467 

directly from the greenhouse three hours before lights on. Plants subjected to cold stress 468 

treatment were moved to a cold treatment growth chamber, with 33 mol m-2 s-1, metal halide 469 

grow bulb, 12 hours/12 hours 6ºC /6ºC day/night. Cold stressed plants were harvested three 470 

hours before lights on. Each sample consisted of pooled aboveground tissue from at least three 471 

seedlings. Each biological replicate was harvested from plants that were planted, grown, and 472 

harvested at a distinct and separate time from each other biological replicate. A total of three 473 

independent biological replicates where generated for this experiment. For the time course RNA-474 

Seq data presented in Figure 4 and onward in the study, maize and sorghum were planted as 475 

above and grown in a Percival growth chamber (Percival model E-41L2) with target conditions 476 

of 111 mol m-2 s-1 light levels, 60% relative humidity, a 12 hour/12 hour day night cycle with a 477 

target temperature of 29 ºC during the day and 23 ºC at night. The onset of cold stress treatment 478 

was immediately before the end of daylight illumination, at which point half of the plants were 479 

moved to a second growth chamber with equivalent settings with the exception of a target 480 

temperature of 6 ºC both during the day and at night. Each sample represents a pool of all 481 

aboveground tissue from at least three seedlings. Samples were harvested from both the paired 482 

control and cold stress treatments at 0.5 hours, 1 hour, 3 hours, 6 hours, 16 hours, and 24 hours 483 

after the onset of cold stress. Biological replicates included both maize and sorghum plants that 484 

were offset in planting but stressed and harvested at the same time in the same growth chambers. 485 

A total of 3 independent biological replicates were generated for this experiment. 486 

 487 

Definition of samples and biological replicates employed in this paper. Sample: each sample 488 

consists of RNA extracted from the pooled tissue of no less than 3 and no more than 5 separate 489 

plants planted and harvested on the same date and grown in the same growth chamber. All 490 

aboveground tissue was harvested from each plant included in a pool. All aboveground tissue: 491 

at the stage plants were harvested, all aboveground tissue included leaf blades, ligules, and leaf 492 

sheaths, but not apical meristems, stems, or roots. Biological replicate: each biological replicate 493 

consists of RNA extracted from pooled tissue harvested from plants of the same genotype 494 

planted and harvested on separate dates from any other biological replicate. Paired replicate: 495 
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biological replicates were paired across species, with tissue harvested on the same day from 496 

plants of each species growth in the same growth chamber. 497 

 498 

CO2 assimilation rate measurements 499 

Plants were grown and cold treated as above, with the modification that in the case of sorghum,  500 

small plastic caps were placed over the seedlings to prevent the plants from becoming too tall to 501 

fit into the LiCor measurement chamber (approximately two inches). After 0, 1, or 3 days of cold 502 

treatment, the plants were allowed to recover in the greenhouse overnight. The following 503 

morning, CO2 assimilation rates were measured using the Li-6400 portable photosystem unit 504 

under the following conditions: PAR 200 mol mol-1, CO2 at 400 mol mol-1 with flow at 400 mol 505 

mol-1 and humidity at greenhouse conditions. Whole plant readings were measured for sorghum, 506 

paspalum, Japanese millet (Echincloa esculenta), proso millet, and urochloa (Urochloa fusca) 507 

after covering their pots with clay and using the LiCor Arabidopsis chamber. Maize was 508 

measured using the leaf clamp attachment, which was consistently placed on the second leaf at a 509 

position 3 cm above the ligule. Leaf area was measured using the Li-3100c Area meter (Li-Cor). 510 

The accessions used for each species presented in Figure 1D included the following: paspalum: 511 

USDA PI 509022, Japanese millet: USDA PI 647850, proso millet: earlybird USDA PI 578073, 512 

urochloa: LBJWC-52, sorghum: BTx623, and maize: B73. 513 

 514 

Identifying syntenic orthologs 515 

Coding sequence data for primary transcripts of each annotated gene in the genome assemblies 516 

of 8 grass species, including maize and sorghum used in the analysis, were obtained from 517 

Phytozome 10.2. Similar sequences were identified using LASTZ (Harris, 2007), requiring an 518 

alignment spanning at least 50% of total sequence length and 70% sequence identity. In addition, 519 

the arguments -ambiguous=iupac, -notransition, and -seed=match12 were all set in each run. 520 

LASTZ output was converted to QuotaAlign's "RAW" format using a version of the blast to 521 

raw.py script that had been modified to take into account differences in output format between 522 

BLAST and LASTZ. The additional parameters -tandem Nmax=10 and -cscore=0.5 were 523 

specified when running this script.  524 

 525 

RAW formatted data were processed using the core QuotaAlign algorithm with the parameters  526 
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-merge, and -Dm=20. -quota was set to 1:2 in comparisons to maize and 1:1 in all other 527 

comparisons. Pure QuotaAlign pan-grass syntenic gene sets were constructed using this dataset  528 

directly. Polished QuotaAlign pan-grass syntenic gene sets were constructed by first predicting 529 

the expected location for a given query gene in the target genome and then selecting the gene 530 

showing the greatest sequence similarity (as determined by lastz alignment score) within  531 

the window from 20 genes downstream of the predicted location to 20 genes upstream of the 532 

predicted location. 533 

 534 

 535 

RNA-Seq data generation 536 

RNA isolation and library construction followed the protocol described by Zhang et al. (Zhang et 537 

al., 2015). The number of reads generated per library is summarized in (Supplemental Data Set  538 

1). Sequencing was conducted at Illumina Sequencing Genomics Resources Core Facility at 539 

Weill Cornell Medical College. Raw sequencing data are available through the NCBI 540 

(http://www.ncbi.nlm.nih.gov/bioproject) under accession number PRJNA343268 and 541 

PRJNA344653.  Adapters were removed from raw sequence reads using cutadapt version 1.6 542 

(Martin, 2011). RNA-Seq reads were mapped to genome assemblies downloaded from 543 

Phytozome: RefGen v3 (Zea mays), v3.1 (Sorghum bicolor). RNA-Seq reads from each species 544 

were aligned using GSNAP version 2014-12-29 (Wu and Nacu, 2010; Wu and Watanabe, 2005). 545 

Per-gene read counts were obtained using HTSeq v. 0.6.1 (Anders et al., 2014). 546 

 547 

Identifying differentially expressed genes (DEGs) 548 

Differentially expressed genes (DEGs) were identified using count data generated as described 549 

above and DESeq2 (version 1.14.0) (Love et al., 2014) based on a comparison of the treatment 550 

and control with adjP-value ≤ 0:05, meaning absolute log2 of fold change of between-treatment 551 

and control value ≥ 1. All expressed syntenic orthologous genes were classified into one of three 552 

categories. The three categories include genes that were classified as responding transcriptionally 553 

to cold in at least one species (DE1) (Figure 3A). The remaining category includes all expressed 554 

syntenic orthologous genes that were not classified as cold-responsive in either of the two 555 

species (DE0). The number of shared genes identified as differentially expressed in the two 556 

species (DE2) was tested relative to the expected overlap if there was no correlation in gene 557 
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regulation across species. For the time course RNA-Seq, analysis was conducted as above for all 558 

36 possible pairwise comparisons of the six sorghum time points and six maize time points.  559 

 560 

When estimating the true discovery proportion in analyses of DE2 genes (see Figure 3A, Figure 561 

4B), it was necessary to calculate the number of DE2 genes expected under a null hypothesis of 562 

no conservation of gene regulation. This expected number of DE2 genes was calculated using the 563 

formula (percent of gene pairs DE in species 1)*(percent of gene pairs DE in species 2)*(total 564 

number of gene pairs analyzed was used). Total number of gene pairs was fixed at 15,232 565 

syntenic orthologous gene pairs for maize1/sorghum comparisons and 9,554 for maize2/sorghum 566 

comparisons. 567 

 568 

Estimating the power of DESeq2 in this dataset using simulated data 569 

One-thousand genes were randomly sampled from the maize1/sorghum syntenic gene list in each 570 

repetition of the simulation. These selected genes included three replicates from both normal 571 

growth conditions (control) and one-day cold treatment (treatment). The geometric mean of each 572 

gene was calculated (adding 1 to the data to avoid 0 readings). A random sample from the 573 

uniform distribution on (5, 50) was used as the estimate of the true dispersion parameter. The 574 

simulated data for the non-differentially expressed genes were generated from a negative 575 

binomial distribution with the calculated geometric mean from the actual data and the sampled 576 

dispersion parameter. To generate the list of differentially expressed genes, the first 100 genes 577 

out of the 1000 sampled genes were selected with a treatment mean value equal to the geometric 578 

mean from the original data, whereas the mean value of the control was a multiple of the 579 

geometric mean (multiples of 2, 2.5, and 3 are reported). The calculated false discovery rate 580 

(FDR, ratio of number of false positives over total number of discoveries) and the power (ratio of 581 

true positives over the true number of differentially expressed genes) of the DESeq2 procedure 582 

are reported in Supplemental Data Set 2. 583 

 584 

Evaluating the additive and multiplicative models of gene regulation 585 

From the 5,257 duplicate genes retained from the maize WGD (Schnable et al., 2011) in each of 586 

the six time points in maize, gene pairs where both copies were classified as differentially 587 

expressed in response to cold were used to test both models. The expression pattern of the 588 
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maize1 gene under control and cold stress conditions plus the expression of the maize2 gene 589 

under control conditions was used to predict the expression of the maize2 gene under cold stress 590 

using both the additive and multiplicative models defined in Figure 5B. The distance between the 591 

prediction from the additive model and the observed value was defined as "a", the distance 592 

between the prediction from the multiplicative model and the observed value was defined as "b", 593 

and the predictions between the two models were defined as "c". In the relaxed case, gene pairs 594 

where the two models produced predictions that were closer to each other than either was to the 595 

observed expression value of the maize2 gene under cold stress were excluded. That is, if c<a 596 

and c<b, the multiplicative model works better than the additive model, while if b<a and b<c, the 597 

additive model works better than the other model. In the most stringent case, gene pairs where 598 

the two models produced predictions that were less than twice as large as the difference between 599 

the better model and the observed value were excluded (Supplemental Data Set 4). In other 600 

words, if b>2a and b>c, the multiplicative model was considered to be the better model; if c>2a 601 

and c>b, the additive model was considered to be the better model. Analyses were also 602 

conducted reciprocally using data from control and cold stress conditions in maize2 plus data 603 

from maize1 under control conditions to predict the expression of the maize1 gene under cold 604 

stress conditions. 605 

 606 

Identifying differentially regulated orthologs (DRO) 607 

Differentially regulated orthologs were identified using count data generated as described above 608 

and an interaction term for species (maize or sorghum) and treatment (cold or control) in 609 

DESeq2 (Love et al., 2014). Species (maize and sorghum) and condition (cold and control) were 610 

considered to be two factors for design in this analysis. Simulated data for comparably regulated 611 

orthologs (CROs) generated using additive and multiplicative models were used to confirm that 612 

this approach did not classify simulated CROs based on the multiplicative model as having 613 

significant species-by-treatment interactions. The formula used was: design _ condition + 614 

genotype + condition: genotype. Maize sorghum gene pairs with an interaction adjP-value ≤ 615 

0:001 were classified as DROs, those with interaction adjP-value ≥ 0:05 were classified as CROs, 616 

and those with intermediate p-values were disregarded (Yoav and Yosef, 1995). The decision 617 

was made to retain an ambiguous case of gene pairs with interaction p-values too high to be 618 

classified as DROs but too significant to be classified as CROs rather than increase the number 619 
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of classification errors by forcing all gene pairs to be assigned to one category or the other. 620 

 621 

Calculating Ka/Ks values 622 

“Primary Transcript only” coding sequences for maize (v6a), sorghum (v3.1), and setaria (v2.2) 623 

were retrieved from Phytozome version 12.0. The gene model annotations v6a for maize were 624 

annotated onto the B73 RefGen v3 pseudomolecules. Coding sequences were translated to 625 

protein sequences and aligned using Kalign version 2.04 (Lassmann and Sonnhammer, 2005). 626 

The protein alignment was used as a guide to create a codon level alignment of coding sequences. 627 

The codon alignment was supplied to PAML (version 4.09) (Yang, 2007). Synonymous and 628 

nonsynonymous substitution rates were calculated independently for each branch of the tree. 629 

When both a maize1 and maize2 gene copies were present for the same syntenic gene group, 630 

alignment and substitution rate calculations were conducted separately for the maize1 gene and 631 

its syntenic orthologs in sorghum and setaria and for the maize2 and the same syntenic 632 

orthologous genes. To eliminate genes with extreme Ka/Ks ratios resulting from very low 633 

numbers of synonymous substitutions, only Ka/Ks ratios from genes with an estimated 634 

synonymous substitution rate greater than or equal to 0.05 (approximately 1/2 the median Ks 635 

ratio observed between maize and the most common recent ancestor of maize and sorghum) were 636 

considered. 637 

 638 

MNase hypersensitive site analysis 639 

Intervals defined as MNase hypersenstive sites (MNase HS) were taken from (Rodgers-Melnick 640 

et al., 2016). The same TSS was used for MNase and RNA-Seq analysis. Average coverage of 641 

MNase HS was calculated on a per-base basis from 1 kb upstream of the annotated TSS to 1 kb 642 

downstream of the TSS. When multiple transcripts with different TSS were present, the 643 

transcript with the earliest TSS was selected for analysis. 644 

 645 

Identifying Conserved Noncoding Sequences (CNS) 646 

CNSs were identified using the CNS Discovery Pipeline 3.0 (CDP) (Turco et al., 2013) with 647 

some modifications. Specifically, the built-in syntenic gene identification pipeline from the CDP 648 

was replaced with the previously defined syntenic gene list described above. Functions for 649 

finding local duplicates and comparing CNSs to Arabidopsis proteins and RNA were omitted. 650 
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CNSs were identified between the region 12 kb upstream and 12 kb downstream using a word 651 

size of 15 bp. CNSs with bit scores for each gene pair < 29.5 were removed following the same 652 

scoring parameter settings outlined in the original software pipeline. 653 

654 

Transcription Factor Enrichment Calculation 655 

Transcription Factor (TF) enrichment was calculated using the maize transcription factor list 656 

from GRASSIUS (Yilmaz et al., 2009). 657 

658 

GO enrichment analysis 659 

Gene ontology (GO) analysis was performed using GOATOOLS (Haibao et al., 2015) and 660 

functional additions associated with the sorghum v3.1 sorghum gene model and maize RefGen-661 

v3 maize gene model annotations. 662 

663 

Pathway analysis 664 

Pathway analysis was conducted using the MapMan software package 665 

(http://mapman.gabipd.org/web/guest) (Usadel et al., 2009). 666 

667 

Accession numbers 668 

GeneIDs for all syntenic gene sets and the final syntenic gene list used in this study are posted at 669 

figShare (http://dx.doi.org/10.6084/m9.figshare.3113488.v1). 670 

Adapter sequences used for library construction and for adapter trimming are those provided in 671 

Illumina TruSeq Library Prep Pooling Guide, with sequences reported on page 5 of the user 672 

manual. 673 

674 

Supplemental Data 675 

676 

Supplemental Figure 1. Coding sequence similarity among syntenic genes in sorghum, maize1, 677 

and maize2. 678 

Supplemental Figure 2. Representative sample of cold stressed seedling phenotypes. 679 

Supplemental Figure 3. Individual examples of genes in each of six possible DRO/DEG 680 

classification categories. 681 
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Supplemental Figure 4. Comparison of Ka/Ks ratio and expression level for genes 682 

grouped based on expression classification model. 683 

Supplemental Figure 5. Frequency of known CBF binding motifs within the 1 kb 684 

proximal promoters of maize and sorghum. 685 

Supplemental Figure 6. Relationship between gene pair expression pattern in maize and 686 

sorghum after subdividing genes based on Ka/Ks ratio and expression tertile.  687 

688 

Supplemental Data Set 1.  Number of sequenced and aligned reads per library. 689 

690 

Supplemental Data Set 2.  Estimates of power and FDR for DESeq2. 691 

692 

Supplemental Data Set 3. ANOVA and DESeq2 tests for DROs using simulated data. 693 

694 

Supplemental Data Set 4. Accuracy of additive and multiplicative expression models across 695 

maize duplicate gene pairs. 696 
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 929 

FIGURE LEGENDS 930 

Figure 1. Gene level and expression level conservation between sorghum, maize1, and 931 

maize2. (A) The overlap between syntenic orthologous gene pairs conserved between 932 

maize1/sorghum and maize2/sorghum. (B) Comparison of average control condition expression 933 

levels (log2 transformed FPKM) for either maize1/sorghum or maize2/sorghum gene pairs. (To 934 

improve readability, a random sample of 1/3 of all gene pairs is displayed for each category.) 935 

 936 

Figure 2. Effects of cold stress on maize, sorghum, and related species. Representative 937 

seedling phenotypes for maize and sorghum. (A) Control conditions; (B) 24 hours of stress at 938 

6°C; (C) 14 days at 6°C and two days recovery under greenhouse conditions. (D) Normalized 939 

relative CO2 assimilation rates for six panicoid grass species with differing degrees of sensitivity 940 

or tolerance to cold stress. Individual data points were jittered (adding random noise to data in 941 

order to prevent over-plotting in statistical graphs) on the x-axis to avoid overlap and improve 942 

readability.  943 

 944 

Figure 3. Combined DEG analysis of maize and sorghum. (A) An illustration of the DEG-945 

based gene pair classification model and a comparison of expected and observed values for gene 946 

pairs classified as differentially expressed in response to cold in zero, one, or both species. 947 

Expected distributions were calculated based on a null hypothesis of no correlation in gene 948 

regulation between maize and sorghum (see Methods). DE0: gene pairs classified as 949 

differentially expressed in response to cold in neither species; DE1: gene pairs classified as 950 

differentially expressed in response to cold in one species but not the other; DE2: gene pairs 951 

classified as differentially expressed in response to cold in both species. (Observed number of 952 

gene pairs in maize1/sorghum: DE1 maize = 850, DE2 = 836, DE1 sorghum = 1,507, DE0 = 953 

12,038; Observed number of gene pairs in maize2/sorghum: DE1 maize = 508, DE2 = 460, DE1 954 

sorghum = 986, DE0 = 7,599; Expected number of gene pairs in maize1/sorghum: DE1 maize = 955 
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1,427, DE2 = 259, DE1 sorghum = 2,084, DE0 = 11,461; Expected number of gene pairs in 956 

maize2/sorghum: DE1 maize = 822, DE2 = 146, DE1 sorghum = 1,300, DE0 = 7,285). (B) 957 

Comparison of fold change in gene expression between the treatment and control groups for 958 

pairs of orthologous genes in maize and sorghum. Log2 transformed treatment/control expression 959 

ratios are shown. 960 

 961 

Figure 4. Patterns of gene expression across a cold-stress time series in maize and sorghum. 962 

(A) Changes in classification of individual gene pairs as DE0, DE1 maize, DE1 sorghum, and 963 

DE2 across adjacent time points. (B) The proportion of genes identified as differentially 964 

expressed in both species in excess of the number of gene pairs expected in this category in the 965 

absence of either conservation of gene regulation or parallel evolution of gene regulation. True 966 

discovery proportion is defined as (Observed Positives - Estimated False Positives)/Observed 967 

Positives. The expected number false positive DE2 gene pairs was calculated from the proportion 968 

of all genes classified as DEGs in maize and sorghum using the null model described in Figure 969 

3A.  970 

 971 

Figure 5. Conceptual illustration of the differentially regulated ortholog model. (A) 972 

Illustration of the different classification outcomes that can be produced for a given gene pair 973 

using both a DEG-based analysis (testing whether the expression pattern of each gene changes 974 

significantly between conditions) and a DRO-based analysis (testing whether the pattern across 975 

the two conditions is significantly different between copies of the same gene in both species). (B) 976 

Two models, additive and multiplicative, for predicting what a conserved pattern of gene 977 

regulation should look like when the underlying level of expression changes. (C) Relationship 978 

between prediction error (log10 transformed) for expression under cold stress using a 979 

multiplicative model to predict expression between maize1/maize2 gene pairs or an additive 980 

model to predict expression between maize1/maize2 gene pairs. Maize1:  Predictions for the 981 

expression pattern of maize2 genes using data from their maize1 homeologs; Maize2: Predictions 982 

for the expression pattern of maize1 genes using data from their maize2 homeologs. Blue dots 983 

mark cases where the additive model was the better predictor; red dots mark cases where the 984 

multiplicative model was the better predictor.  985 

 986 
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Figure 6. Characteristics of genes in different DEG groups at different timepoints. (A) The 987 

proportion of gene pairs classified as DROs between maize and sorghum in different DEG 988 

groups at each of the six time points examined. (B)-(C) Median ratios of non-synonymous 989 

substitutions to synonymous substations in coding sequences for maize and sorghum for gene 990 

pairs classified as DE0, DE1, or DE2 at each of six time points. Time points where there is a 991 

statistically significant difference in Ka/Ks ratio between DE2 and any of the other three 992 

categories are marked with either + (if p<0.05) or ++ (if P<0.01). Color of the + indicates the 993 

category to which DE2 is being compared. Time points where there is a statistically significant 994 

difference in Ka/Ks ratio between DE0 and either DE1 maize or DE1 sorghum categories are 995 

marked with either * (if p<0.05) or ** (if P<0.01). Color of the * indicates the category to which 996 

DE0 is being compared. (B)-(C) Enrichment of genes annotated as transcription factor genes 997 

among DE2 gene pairs relative to all syntenic gene pairs indicated by the black line and the right 998 

hand axis. Double white triangles mark time points where the enrichment is statistically 999 

significant (p < 0.01). (D) Frequency of CNS within the promoters of genes classified as DE0, 1000 

DE1 maize, DE1 sorghum, DE2, DRO, or CRO at each of the six time points. Black lines within 1001 

the box plot mark the average number of CNS per gene for each category. 1002 

 1003 

Figure 7. Chromatin patterns associated with different groups of genes in maize and 1004 

sorghum. Patterns of MNase hypersensitive regions around the transcriptional start sites of 1005 

genes classified based on their pattern of gene regulation in the 24 hour stress time point. Maize1 1006 

sorghum gene pairs and maize2 sorghum gene pairs were aggregated to increase statistical power. 1007 

The lighter band around the DE2 line indicates a two standard deviation confidence interval. 1008 

Black bars at the bottom of the graph indicate individual base pair positions where the amount of 1009 

open chromatin associated with DE2 genes is significantly different from that of each of the 1010 

other four categories displayed with a p-value < 0.01 for each comparison. Pairwise comparisons 1011 

were performed using a Fisher Exact Test.  1012 
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 1016 

 1017 



Figure 1. Gene level and expression level conservation between sorghum, maize1, and 
maize2. (A) The overlap between syntenic orthologous gene pairs conserved between 
maize1/sorghum and maize2/sorghum. (B) Comparison of average control condition expression 
levels (log2 transformed FPKM) for either maize1/sorghum or maize2/sorghum gene pairs. (To 
improve readability, a random sample of 1/3 of all gene pairs is displayed for each category.) 
Please use subscript for “log2” in the figure.



Figure 2. Effects of cold stress on maize, sorghum, and related species. Representative 
seedling phenotypes for maize and sorghum. (A) Control conditions; (B) 24 hours of stress at 
6°C; (C) 14 days at 6°C and two days recovery under greenhouse conditions. (D) Normalized 
relative CO2 assimilation rates for six panicoid grass species with differing degrees of sensitivity 
or tolerance to cold stress. Individual data points were jittered (adding random noise to data in 
order to prevent over-plotting in statistical graphs) on the x-axis to avoid overlap and improve 
readability. 



Figure'3.'Combined' DEG'analysis' of'maize'and'sorghum.' (A) An#illustration# of#the# DEG2based#gene#pair#
classification# model# and#a#comparison# of#expected# and#observed#values#for#gene#pairs#classified# as#
differentially# expressed# in#response# to# cold#in#zero,# one,# or#both# species.#Expected# distributions# were#
calculated# based#on#a#null#hypothesis# of#no#correlation# in#gene#regulation# between#maize#and#sorghum#
(see#Methods).#DE0:#gene#pairs#classified# as#differentially# expressed# in#response# to#cold# in#neither#
species;#DE1:#gene#pairs# classified# as#differentially# expressed# in#response# to#cold# in#one#species#but# not#
the#other;# DE2:#gene#pairs# classified# as#differentially# expressed# in#response# to#cold# in#both#species.#
(Observed#number# of#gene#pairs#in#maize1/sorghum:# DE1#maize#=#850,#DE2#=#836,# DE1#sorghum#=#1,507,#
DE0#=#12,038;# Observed#number# of#gene#pairs#in#maize2/sorghum:# DE1#maize#=#508,# DE2#=#460,# DE1#
sorghum# =#986,# DE0#=#7,599;# Expected# number# of#gene#pairs# in#maize1/sorghum:# DE1#maize#=#1,427,#
DE2#=#259,# DE1#sorghum#=#2,084,# DE0#=#11,461;# Expected# number# of#gene#pairs#in#maize2/sorghum:# DE1#
maize#=#822,# DE2#=#146,# DE1#sorghum# =#1,300,# DE0#=#7,285).# (B) Comparison# of#fold#change#in#gene#
expression# between# the#treatment# and#control# groups# for#pairs# of#orthologous# genes#in#maize#and#
sorghum.#Log2 transformed# treatment/control# expression# ratios#are#shown.



Figure'4.'Patterns' of'gene'expression' across'a'cold' stress'time' series'in' maize'and'sorghum.' (A)'
Changes(in(classification( of(individual( gene(pairs( as(DE0,(DE1(maize,( DE1(sorghum,( and(DE2(across(
adjacent( time(points.( (B) The(proportion( of(genes(identified( as(differentially( expressed( in(both( species(in(
excess(of(the(number( of(gene(pairs(expected( in(this(category( in(the(absence(of(either( conservation( of(
gene(regulation( or( parallel( evolution( of(gene(regulation.( True( discovery(proportion( is(defined( as(
(Observed(Positives( E Estimated( False(Positives)/Observed( Positives.(The(expected( number( false(positive(
DE2(gene(pairs(was(calculated( from( the(proportion( of(all(genes(classified( as(DEGs(in(maize(and(sorghum(
using(the(null( model( described( in(Figure( 3A.(



Figure'5.'C'onceptual illustration' of'the' differentially' regulated' ortholog' model.' (A)'Illustration+ of+the+
different+ classification+ outcomes+ that+ can+be+produced+ for+ a+given+gene+pair+ using+both+ a+DEG9based+
analysis+(testing+whether+ the+expression+ pattern+ of+each+gene+changes+significantly+ between+ conditions)+
and+a+DRO9based+ analysis+(testing+whether+ the+pattern+ across+ the+two+conditions+ is+significantly+ different+
between+ copies+ of+the+same+gene+in+both+ species).+(B)'Two+models,+ additive+ and+multiplicative,+ for+
predicting+ what+a+conserved+ pattern+ of+gene+regulation+ should+ look+ like+when+ the+underlying+ level+of+
expression+ changes.+(C)' Relationship+ between+ prediction+ error+ (log10+transformed)+ for+ expression+ under+
cold+ stress+using+a+multiplicative+ model+to+predict+ expression+ between+maize1/maize2+ gene+pairs+or+an+
additive+ model+to+predict+ expression+ between+maize1/maize2+ gene+pairs.+Maize1:++Predictions+ for+the+
expression+ pattern+ of+maize2+genes+using+data+from+their+ maize1+ homeologs;+Maize2:+Predictions+ for+ the+
expression+ pattern+ of+maize1+genes+using+data+from+their+ maize2+ homeologs.+Blue+ dots+mark+cases+
where+ the+additive+ model+was+the+better+ predictor;+ red+dots+ mark+cases+where+ the+multiplicative+ model+
was+the+ better+ predictor.+



Figure'6. Characteristics' of'genes'in'different' DEG'groups'at'different' timepoints. (A) The$proportion$ of$
gene$pairs$classified$ as$DROs$between$maize$and$sorghum$ in$different$ DEG$groups$ at$each$of$the$six$
time$points$ examined.$ (B)=(C) Median$ratios$ of$non?synonymous$ substitutions$ to$synonymous$
substations$ in$coding$sequences$ for$ maize$and$sorghum$ for$ gene$pairs$ classified$ as$DE0,$DE1,$ or$DE2$at$
each$of$six$time$points.$ Time$points$ where$ there$is$a$statistically$ significant$ difference$ in$Ka/Ks$ratio$
between$ DE2$and$any$of$the$other$ three$ categories$ are$marked$with$ either$ +$(if$p<0.05)$or$++$(if$P<0.01).$
Color$ of$the$+$indicates$ the$category$ to$which$ DE2$is$being$compared.$ Time$points$ where$ there$ is$a$
statistically$ significant$ difference$ in$Ka/Ks$ratio$between$ DE0$and$either$ DE1$maize$or$DE1$sorghum$
categories$ are$marked$with$ either$ *$(if$p<0.05)$ or$**$(if$P<0.01).$Color$ of$the$*$indicates$ the$category$ to$
which$ DE0$is$being$ compared.$ (B)?(C)$ Enrichment$ of$genes$annotated$ as$transcription$ factor$ genes$
among$DE2$gene$pairs$ relative$ to$all$syntenic$ gene$pairs$indicated$ by$the$ black$line$ and$the$right$ hand$
axis.$Double$ white$triangles$ mark$time$ points$ where$ the$enrichment$ is$statistically$ significant$ (p$<$0.01).$
(D) Frequency$ of$CNS$within$ the$promoters$ of$genes$classified$ as$DE0,$ DE1$maize,$ DE1$sorghum,$ DE2,$
DRO,$or$ CRO$at$each$of$the$six$time$ points.$Black$lines$ within$ the$box$ plot$ mark$the$average$number$ of$
CNS$per$gene$for$ each$category.$These$triangles$ are$difficult$ to$see$against$the$dark$background:$ perhaps$
you$should$ use$white$ triangles$ instead.



Figure'7."Chromatin' patterns' associated' with' different' groups'of'genes'in'maize' and'sorghum.'
Patterns" of"MNase"hypersensitive" regions" around" the"transcriptional" start" sites"of"genes"classified" based"
on"their" pattern" of"gene"regulation" in"the"24"hour" stress"time"point." Maize1"sorghum" gene"pairs" and"
maize2"sorghum" gene"pairs"were" aggregated"to"increase" statistical" power." The"lighter" band"around" the"
DE2"line"indicates" a"two"standard" deviation" confidence" interval." Black"bars"at"the"bottom" of"the"graph"
indicate" individual" base"pair"positions" where" the"amount" of"open" chromatin" associated" with"DE2"genes"
is"significantly" different" from"that" of"each"of"the" other" four"categories" displayed"with" a"pDvalue"<"0.01"for"
each"comparison." Pairwise" comparisons" were"performed" using"a"Fisher" Exact"Test."
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