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ABSTRACT

Identifying interspecies changes in gene regulation, one of the two primary sources of
phenotypic variation, is challenging on a genome-wide scale. The use of paired time course data
on cold-responsive gene expression in maize (Zea mays) and sorghum (Sorghum bicolor)
allowed us to identify differentially regulated orthologs. While the majority of cold-responsive
transcriptional regulation of conserved gene pairs is species specific, the initial transcriptional
responses to cold appear to be more conserved than later responses. In maize, the promoters of
genes with conserved transcriptional responses to cold tend to contain more micrococcal
nuclease hypersensitive sites in their promoters, a proxy for open chromatin. Genes with
conserved patterns of transcriptional regulation between the two species show lower ratios of
nonsynonymous to synonymous substitutions. Genes involved in lipid metabolism, known to be
involved in cold acclimation, tended to show consistent regulation in both species. Genes with
species-specific cold responses did not cluster in particular pathways nor were they enriched in
particular functional categories. We propose that cold-responsive transcriptional regulation in
individual species may not be a reliable marker for function, while a core set of genes involved
in perceiving and responding to cold stress are subject to functionally constrained cold-
responsive regulation across the grass tribe Andropogoneae.
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INTRODUCTION

The grasses are a clade of more than 10,000 species, which exhibit conserved morphology and
genome architecture (Bennetzen and Freeling, 1993). Grasses have adapted to grow in a wide
range of climates and ecologies across the globe, with 20% of total land area covered by
ecosystems dominated by grasses (Shantz, 1954). As a result, the range of tolerance to abiotic
stresses present in the grass family (Poaceae) far exceeds that present within any single grass
species. However, to date, studies attempting to identify determinants of abiotic stress tolerance
at a genetic or genomic level have predominantly focused on individual species (Chopra et al.,
2017; Priest et al., 2014; Revilla et al., 2016; Tiwari et al., 2016; Waters et al., 2017). The
majority of genetic changes with phenotypic effects can be broadly classified into two categories:

those that alter protein-coding sequence and those that alter the regulation of gene expression.

DNA sequence changes that alter protein-coding sequences can be identified in a straightforward
fashion. The probability that a given polymorphism in a protein-coding sequence will have a
phenotypic effect can also often be estimated. At a basic level, this involves classification as
synonymous, missense and nonsense mutations. Information on the overall level of evolutionary
conservation for a given amino acid residue can also be used to increase the accuracy of these
predictions (Cooper et al., 2005; Ng and Henikoff, 2001; Reva et al., 2011). Cross species
comparisons of the protein-coding sequences from genes co-opted into new functional roles in
C4 photosynthesis have been able to identify protein changes linked to changes in function at a

resolution of individual amino acid residues (Christin et al., 2007).

Identifying changes in gene regulation across related species is more challenging, and the
associated methods are far less advanced. For extremely close relatives, such as Arabidopsis
thaliana and Arabidopsis arenosa, RNA-Seq reads from both species can be mapped to a
common reference genome (Burkart-Waco et al., 2015). For species with greater levels of
sequence divergence in transcribed regions, this approach becomes impractical. Recent work in
Sophophora (formerly Drosophila) described some of the many challenges present in comparing
changes in baseline expression levels across closely related species with independently
sequenced and assembled reference genomes (Torres-Oliva et al., 2016). However, this approach

is limited to identifying changes in baselines expression in the same treatment rather than
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examining patterns of regulation across multiple treatments. Within the grasses several research
groups have employed clustering-based methods to identify genes with conserved patterns of
regulation during either reproductive or photosynthetic development (Davidson et al., 2012;
Wang et al., 2014). Among other results, one of these studies concluded that orthologous genes
conserved at syntenic locations are more likely to share correlated expression patterns across
multiple species than genes classified as orthologs based on phylogenetic analysis but located at
non-syntenic locations (Davidson et al., 2012). Clustering-based methods can identify genes with
conserved patterns of regulation across multiple species, but they have high false positive rates

when used to identify genes with changes in regulatory pattern.

In even closely related species, the baseline expression levels of orthologous genes can diverge
significantly (Hollister and Gaut, 2009; Hollister et al., 2011). Testing for conserved or divergent
patterns of regulation across different genotypes or different species when baseline expression
levels have diverged creates a statistical challenge. Modeling of multiple environmental or
genotype level effects can be combined either additively or multiplicatively. The model selected
will determine which set of genes will be classified as differentially regulated between species.
While few attempts have been made to identify differential patterns of gene regulation across
species, attempts to do so between subspecies or diverse accessions have largely used either only
a multiplicative model (Lovell et al., 2016), an additive model, or additive and multiplicative
models separately (Waters et al., 2017) but have not made comparisons between the suitability of

the two models.

Here, we sought to develop effective methods for comparing gene regulatory patterns between
syntenic orthologous genes in closely related species. For initial cross species comparisons, data
on changes in the transcriptional responses to cold stress in maize and sorghum were employed.
Cold was selected as a stress that could be delivered in a consistent fashion and time frame.
Maize and sorghum were selected based on their close evolutionary relationship (Swigonova et
al., 2004), high quality sequenced genomes (Paterson et al., 2009; Schnable et al., 2009), and
common susceptibility to cold stress (Chinnusamy et al., 2007; Hetherington et al., 1989;

Wendorf et al., 1992). In addition, maize is a mesotetraploid species that experienced a whole-
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genome duplication approximately 12 million years ago after its divergence from sorghum
(Swigonova et al., 2004), producing two functionally distinct maize subgenomes, maizel

and maize2 (Schnable et al., 2011). Approximately 3,000-5,000 pairs of genes are retained on
both maize subgenomes (Schnable et al., 2011, 2012, 2009). Unlike other types of gene
duplication, whole-genome duplicates initially retain almost all the same associated conserved
regulatory sequences (Freeling et al., 2012). Comparing the expression patterns of duplicated
genes exposed to the same trans-regulatory factors provides a bridge to comparing the expression
patterns of orthologous genes in closely related species with similar phenotypes. These two
systems provide a useful platform for developing and testing approaches to comparative gene
regulatory analysis. However, one goal of cross species comparisons of transcriptional
regulation must ultimately be to link changes in regulation to changes in phenotype, which in the
case of low temperature stress will require conducting comparisons between species with

differing, rather than similar, tolerance to cold.

RESULTS

A set of 15,231 syntenic orthologous gene pairs conserved between the maizel subgenome and
sorghum and 9,553 syntenic gene pairs conserved between the maize2 subgenome were
employed in this study (Figure 1A). The sequence identity in coding regions of syntenic genes
between sorghum and either maize subgenome or between maize subgenomes is approximately
90% (Supplemental Figure 1), which is a level of divergence that makes alignment to a common
reference sequence impractical. We conducted parallel expression analyses of the set of syntenic
orthologous gene pairs conserved between the maizel subgenome and sorghum and the smaller

set of syntenic gene pairs conserved between the maize2 subgenome and sorghum.

Syntenic orthologs exhibited reasonably well-correlated patterns of absolute gene expression
levels between sorghum and either subgenome of maize based on expression data generated from
whole seedlings under control conditions (Spearman's rho = 0.79-0.84, Pearson r = 0.67-0.85,
Kendall rank correlation 0.67-0.63, Figure 1B). This observation is consistent with previous
reports about the analysis of expression across reproductive tissues in three grass species
(Davidson et al., 2012). However, it should be noted that these correlations were significantly

lower than those observed between biological replicates (see Methods for a detailed explanation
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of what constituted a biological replicate in this study) of the same species (Spearman's rho =
0.88-0.98, Pearson r = 0.89-0.99, Kendall rank correlation 0.78-0.91), and many individual genes
have large divergence in baseline expression levels between the two species, creating divergence
between the predictions of additive and multiplicative statistical models of gene regulation, as

described above.

We visually confirmed the lethal effect of prolonged cold stress on maize and sorghum (Ercoli et
al., 2004; Hetherington et al., 1989; Olsen et al., 1993; Sanchez et al., 2014; Shaykewich, 1995)
following prolonged cold treatment (Figure 2A-C, Supplemental Figure 2, See Methods). We
employed measurements of impairment of CO, assimilation rates after recovery from a
controlled length cold stress to provide more quantitative measures of cold stress and to assess
the suitability of the level of cold stress employed to distinguish differing degrees of cold stress
sensitivity or cold stress tolerance among maize, sorghum, and several related panicoid grass
species. Data were generated from a total of six panicoid grasses, including the relatively cold
tolerant paspalum (Paspalum vaginatum) and the extremely cold sensitive proso millet (Panicum
miliaceum) (Figure 2D). After one day of cold stress, the species could be broadly classified as
either cold stress insensitive or cold stress sensitive, with both maize and sorghum in the cold
stress sensitive category. A longer period of cold stress (3 days) revealed greater impairment of
CO; assimilation rates in sorghum than in maize, consistent with previous reports on the relative
cold sensitivity of these two species (Chinnusamy et al., 2007; Chopra et al., 2017; Fiedler et al.,
2016; Hetherington et al., 1989; Wendorf et al., 1992), and separated the six species into three
broad categories of cold tolerant, moderately cold sensitive and extremely cold sensitive. Based
on these data, we selected one day of cold stress, when maize and sorghum still exhibit
comparable levels of CO, assimilation impairment (Figure 2D), for downstream expression

analysis.

Conventional differentially expressed gene analysis

We identified differentially expressed genes in each species by comparing gene expression data
in control seedlings to those subjected to one day of cold stress (Supplemental Data Set 1).
Among maizel/sorghum syntenic gene pairs, 1,686 (11.1%, 1,686 out of 15,231) and 2,343
(15.4%, 2,343 out of 15,231) genes were classified as differentially expressed genes (DEGs),
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respectively (Figure 3A, see Methods). For maize2/sorghum syntenic gene pairs, these values
were 968 (10.1%, 968 out of 9,553) and 1,446 (15.1%, 1,446 out of 9,553) genes, respectively.
Only 836 (5.5%, 836 out of 15,231) of maizel/sorghum syntenic genes were classified as
showing differential regulation in response to cold in both species (Figure 3A). In addition, there
were 29 and 16 genes pairs in the maizel/sorghum and maize2/sorghum gene pairs, respectively,
where both genes were classified as differentially expressed but in opposite directions (Figure
3B). The 836 observed syntenic gene pairs is approximately 3.2 times higher than the 259 genes
pairs that should have been identified if cold-responsive gene regulation were not correlated
between the two species (see legend of Figure 3 for a detailed breakdown of how this value was
calculated). With these two values, the maximum number of genes responding to cold in the
same fashion as a result of common descent from an ancestrally cold-responsive gene in the
common ancestor of maize and sorghum can be calculated using the formula ((observed number
of shared DEGs) - (expected number of shared DEGs))/(observed number of shared DEGs). In
this case, a maximum of approximately two thirds (69.0%, 577 out of 836) of genes identified as
responding to cold in both species are likely to do so as a result of common descent. However,
this may in fact be an overestimate if some of the same changes in cold-responsive gene
regulation have been selected for in parallel in both lineages. Extending this calculation to the set
of gene pairs that responded transcriptionally to cold in either maize or sorghum or both, only
18.1% (577 out of 3,193) of gene pairs responding to cold in either species are likely to have
retained a conserved pattern of cold-responsive gene expression since the divergence of maize

and sorghum from a common ancestor 12 million years ago (Swigoniova et al., 2004).

One potential explanation for this observation is that low statistical power to detect differentially
expressed genes may create a false impression that differential expression is not conserved
between related species. Prior estimates from real biological data in yeast (Saccharomyces
cerevisiae) suggest that, given the number of replicates and minimum cut-off for differential
expression employed here, the power of DESeq?2 to identify differentially expressed genes
should be between 0.65 and 0.90 (Schurch et al., 2016). In addition, a simulation study using
observed expression values and variances in the maize dataset generated here indicated that the
power to detect differential gene expression ranged from 0.63 for genes with a change in

expression exactly at the minimum cut off to 0.961 for genes with larger changes in expression
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value (Supplemental Data Set 2). The expected proportion of genes classified as differentially
expressed in either species that are classified as differentially expressed in both species is given
by the formula power?/1 — (1 — power)?. Given the worst-case assumption (power = 0.628),
this value would be 46% if gene regulation were perfectly conserved between maize and

sorghum, which is higher than the observed value of 25%.

Results for maize2/sorghum gene pairs were largely comparable. However, the proportion of
genes classified as not differentially expressed in either species was greater for maize2/sorghum
gene pairs (Figure 3A), likely because maize2 genes tend to have lower overall levels of
expression (Schnable et al., 2011). In total, 766 nonsyntenic maize genes were classified as
differentially expressed in response to cold (2.0% of all nonsyntenic genes in maize, 766 out of
38,664), while 1,333 (9.1%, 1,333 out of 14,683) of nonsyntenic genes in sorghum were
classified as differentially expressed in response to cold. The absolute numbers of differentially
expressed nonsyntenic genes are more similar to each other than the proportions, as the current
set of maize gene model annotations includes many lower confidence genes - which are
generally nonsyntenic and often show little or no detectable expression (Schnable, 2015) - than

the current set of sorghum gene model annotations.

Maize and sorghum share a close relationship (Swigonova et al., 2004), and both originated from
tropical latitudes (De Wet, 1978; van Heerwaarden et al., 2011). The two species even have a
high degree of promoter conservation in abiotic stress-responsive genes (Freeling et al., 2007).
Therefore, the apparent low degree of conservation in cold stress-responsive regulation is
unexpected. However, this result is also consistent with studies that have found significant

divergence in abiotic stress responses between different haplotypes in maize (Waters et al., 2017).

One potential explanation is that the same cold stress pathways are being induced in maize and
sorghum, but these pathways are induced more rapidly in one crop than the other when exposed
to equivalent cold stresses. To test this hypothesis, we used data from a more detailed time
course to compare the expression levels between matched pairs of cold stressed and control
plants of each species at six time points distributed over 24 hours (See Methods and

Supplemental Data Set 1). The number of gene pairs classified as differentially expressed at
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different time points ranged from 60 to 2,199 for maizel/sorghum gene pairs and 29 to 1,235 for
maize2/sorghum gene pairs. Comparing the number of genes identified as differentially
expressed in each of all 36 possible pairwise combinations of time points between the two
species showed that the greatest proportion of shared differentially expressed gene pairs was
identified when identical time points were compared between the two species and that the overall
number of shared differentially expressed gene pairs increases at later time points (Figure 4A).
Overall, genes tended to remain in the same categories, with a general trend towards more DEO
genes moving into all three cold-responsive expression categories as the length of cold stress
increased (Figure 4A). Because the proportion of all genes classified as differentially expressed
increases at later time points, the expected number of gene pairs classified at DE2 under the null
model described above also increases. Therefore, considering only the absolute number of gene
pairs classified as DEGs in both species (DE2) at each time point can be misleading. After
controlling for the expected number of DE2 genes, early time points show significantly higher

proportions of true positives than later time points (Figure 4B).

Differentially regulated ortholog analysis

Another potential explanation for the finding that relatively few shared differentially expressed
genes were identified between maize and sorghum is that differential gene expression analysis
may not be testing the correct null hypothesis for between-species comparisons (Paschold et al.,
2014). The null hypothesis of conventional DEG analysis is that the expression values observed
for a given gene under control and stress conditions are drawn from the same underlying
distribution. This approach is perfectly suitable for single-species analysis. In a two-species
analyses, such as those conducted above, a DEG approach divides gene pairs into three
categories: genes pairs classified as differentially expressed in neither species (DEQ), in one

species but not the other (DEI), and in both species (DE2, Figure 3A).

As shown in Figure 5A, in principle, each of those three categories (DEO, DE1, and DE2) can
include gene pairs without significant differences in the pattern of regulation between species
(comparably regulated orthologs or CROs), as well as gene pairs that do show significant
differences in regulation between the two species (differentially regulated orthologs or DROs).

All six theoretical cases from Figure SA were observed in the RNA-Seq expression dataset
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generated above (Supplemental Figure 3A). DROs and CROs were both observed in all the DEG
groups (Supplemental Figure 3B). Distinguishing between DROs and CROs requires testing a
different null hypothesis: that the change in expression for a given gene between two treatments
is equivalent to the change in expression for an ortholog of that same gene, in a different species,
across the same two treatments. Another way of describing this same experimental approach is
testing for a statistically significant treatment by species interaction effect. Several existing
statistical packages incorporate the ability to test for significant interactions between different
treatments (Love et al., 2014; Ritchie et al., 2015; Robinson et al., 2010) by including species as
an effect in the model. However, comparing across species under different conditions, including
testing for interaction effects to cross species comparisons, requires us to define an accurate
model for what the same change in gene regulation looks like starting from different baseline
levels of expression. Testing this null hypothesis across species in turn requires us to define an
accurate model of what the same pattern of gene expression looks like when starting from

different baseline levels of expression.

For an orthologous gene pair where gene copies are expressed at different baseline levels in two
species, two different models can be used to compare a change in expression between treatment
and control conditions: additive and multiplicative (Figure 5B). When expression under control
conditions is equivalent between the two species, these models yield the same predicted
expression under stressed conditions. However, when control condition expression is different
between the two species, the models produce different expected expression values under stress
conditions. Using simulated data based on additive and multiplicative models, an ANOV A-based
test classified genes with different baseline expression levels but the same pattern of expression
(as simulated by a multiplicative model) as significantly differentially regulated between species,
while the generalized linear model-based DESeq?2 classified genes with different baseline
expression levels but the same pattern of expression (as simulated by a additive model) as

significantly differentially regulated between species (Supplemental Data Set 3).

To test which of these models is a better representation of how cold-responsive gene regulation
actually operates, we utilized a set of 5,257 gene pairs retained from the maize whole genome

duplication (WGD) (Schnable et al., 2011). The maize WGD created two copies of each gene in
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the genome, each associated with the same chromatin environments and regulatory sequences.
RNA-Seqg-based measurements of expression for duplicate genes can be unreliable when gene
copies are similar enough that reads cannot be unambiguously mapped to individual copies.
Maize WGD-derived duplicate gene pairs show approximately 93% sequence similarity in exon
regions (Supplemental Figure 1). This is equivalent to 4.5 mismatches per 50 bp sequence read,
significantly reducing the risk of ambiguous or incorrect read mapping. The expression level of
each gene copy in a WGD gene pairs in the maize genome in the same samples results from the
exact same trans-factors acting in the exact same tissue and cell types. Therefore, divergence in
the regulation of these genes should start out with the same cis-regulatory sequence prior to their
divergence from their most recent common ancestor (whether at the time of WDG for
autopolyploids or at the time of speciation prior to WGD for allopolyploids) (Freeling et al.,
2012).

To test the additive and multiplicative null models, we used the expression pattern of one maize
gene copy between control and cold stress conditions to predict the expression pattern of the
other maize gene copy using each null model from Figure 5B. We conducted the analysis in
parallel at each of the six time points in maize using maizel/maize2 gene pairs where at least one
copy was identified as differentially expressed at that time point. Gene pairs were omitted from
the analysis if the predictions of both models were more similar to each other than either was to

the observed value.

The multiplicative model was more accurate at predicting cold-responsive expression patterns
between maize WGD duplicates than the additive model at all time points (p=0.004-2.4*10-15),
paired two tailed t-test) (Supplemental Data Set 4). Requiring the difference between the
predictions of the two models to be at least twice as large as the difference between the better
model and the observed expression pattern produced similar results (Figure 5C, Supplemental
Data Set 4). The set of genes where the additive model produced better predictions was
examined for differences in expression, selection (Ka/Ks ratio), (Supplemental Figure 4) or GO
annotation No significant markers for which genes could be best predicted with which model
were identified. Therefore, going forward, we employed the multiplicative model for conserved

gene regulation across species, as implemented in DESeq?2’s test for multiple factors (Love et al.,

10 10
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2014) (see Methods).

Figure 6A shows the proportion of gene pairs classified as DROs among all gene pairs in the
DEO, DEI, and DE2 groups at each of the six time points. Comparing the same time points for
maize and sorghum identifies fewer differentially regulated orthologs than comparisons between
non-equivalent time points in the two species. Fewer differentially regulated orthologs were
identified at earlier cold treatment time points than at later time points. This is consistent with the
results of DEG analysis described above, which suggested early cold stress responses were more

conserved across sorghum and maize than later cold stress responses.

Functional differences between genes with conserved or lineage-specific regulatory
patterns

Genes classified as responding to cold stress in both species (DE2) tended to have significantly
lower ratios of nonsynonymous nucleotide changes to synonymous nucleotide changes (Ka/Ks
ratio) than genes that responded to cold stress in only one species or in neither species. This
suggests genes with conserved patterns of cold-responsive regulation experience stronger
purifying selection than genes with lineage-specific patterns of cold-responsive regulation
(Figure 6B-C). GO (Gene Ontology) enrichment analysis identified genes differentially regulated
in both species as enriched in transcription factor-related GO terms, such as GO:0006355
“regulation of transcription, DNA-templated”. This enrichment was further confirmed in a
separate test for enrichment of genes annotated as transcription factors in the GRASSIUS
database (Yilmaz et al., 2009). No non-transcription factor-related GO term showed significant
enrichment when compared to the population of gene pairs that were syntenically conserved
between both species. Comparison to the total population of annotated genes in maize or
sorghum showed many additional enrichments; however, this approach can produce misleading
results, as non-syntenic genes are enriched among genes without any functional annotation
(Schnable et al., 2012). We used MapMan (Usadel et al., 2009) to visualize the patterns of
expression within particular functional categories among DE2 genes as well as DE1 maize and
DE1 sorghum genes. As expected, genes related to cell wall growth, a marker for plant growth,
were downregulated in both species in the cold, including xyloglucosyl transferase

(Sobic.001g538000 and GRMZM2G388684) and leucine-rich repeat family protein
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(Sobic.003g205600 and GRMZM2G333811) genes (Cui et al., 2005; Pearce, 2001; Tenhaken,
2014). Genes involved in lipid metabolism were upregulated in both species, including glycerol-
3-phosphate acyltransferase 8 (Sobic.009g162000 and GRMZM2G166176), diacylglycerol
kinase (Sobic.006g230400 and GRMZM2G106578), choline-phosphate cytidylyltransferase
(Sobic.001g282900 and GRMZM2G132898), MGDG synthase (Sobic.004g334000 and
GRMZM2G178892, Sobic.007g211900 and GRMZM2G141320), glycerophosphodiester
phosphodiesterase (Sobic.007g190700 and GRMZM2G064962, Sobic.004g157300 and
GRMZM2G018820) and FA elongation acyl-CoA ligase (Sobic.004g015400 and
GRMZM2G120539) genes. This observation is consistent with the reported role of changes in
membrane composition to avoid stiffening in the cold as an adaptive response to cold (Quinn,
1988; Singer and Nicolson, 1972). No consistent expression patterns of genes in particular
metabolic processes (up- or downregulated) were observed among the DE1 maize or DE1

sorghum gene pairs.

The previously defined binding site for DREB/CBF transcription factors, which are induced in
response to drought and cold stress (Muifio et al., 2016), showed significant enrichment in the
proximal promoters of gene pairs in the DE2 category, as well as significant purification in the
proximal promoters of gene pairs in the DEO category (Supplemental Figure 5). As transcription
factors are often associated with larger quantities of conserved noncoding sequences (CNS)
(Freeling et al., 2007; Turco et al., 2013), we also investigated the number and quantity of
conserved noncoding sequence associated with different classes of genes; however, no strong
patterns were observed (Figure 6D). The use of conserved noncoding sequence data to identify
regulatory sequence requires that the regulatory sequence be conserved between species. Given
that many of the genes identified as responding to cold in either maize or sorghum appear to do
so in a lineage-specific fashion, this requirement may not be satisfied in many cases. Various
measurements of open chromatin have been shown to be good predictors of where regulatory
sequences will be identified using CNS-based methods (Lai et al., 2017; Vera et al., 2014; Zhang
et al., 2012), and unlike CNS-based methods, chromatin structure-based methods do not require
that the same regulatory sequence be conserved across multiple species. We therefore examined
the chromatin states in the promoters of genes with different patterns of cold-responsive

regulation using a published dataset of MNase hypersensitive sites (HS) generated from maize
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seedlings grown under non-stressed conditions (Rodgers-Melnick et al., 2016). Comparisons
were made for maize DEO, Maize DE1, Sorghum DEI1, DE2 and nonsyntenic genes at each of
the six cold stress time points. Many nonsyntenic genes responded to cold; however, nonsyntenic
genes as a whole showed little or no open chromatin (as defined by MNase HS) associated with
their TSS (transcriptional start sites) or proximal promoters. Previous studies of other epigenetic
marks have also concluded that the chromatin signatures of nonsyntenic genes in maize are more
similar to those of intergenic sequences versus syntenic genes (Eichten et al., 2011). All
categories of syntenic genes tended to have a peak of MNase sensitivity associated with their
TSS and more open chromatin in their proximal promoters than nonsyntenic genes. Genes with
conserved cold-responsive regulation (DE2) appear to have the greatest amount of open
chromatin in their proximal promoters (Figure 7). Intriguingly, the maize copies of maize DE1
gene pairs exhibited stronger open chromatin signals that the maize copies of sorghum DE1 gene
pairs, even though data on MNase hypersensitive sites came from seedlings grown under control
conditions. The patterns reported above remained apparent when genes were divided into nine
categories based on their relative expression level and Ka/Ks ratio, although statistical
significance was reduced substantially as a result of the smaller number of genes included in

each analysis (Supplemental Figure 6).

DISCUSSION

The above results indicate that there are roughly equivalent numbers of genes differentially
expressed in response to cold compared to those reported from separate studies in each species
(Chopra et al., 2015; Makarevitch et al., 2015). However, cross-species comparisons of the
transcriptional regulation of the same genes in these two different species reveals that many cold-
responsive patterns of regulation are not conserved between the two species. Correcting for the
expected overlap across conserved genes based solely on the absolute genes number exhibiting
cold-responsive transcriptional changes in each species further reduced the expected number of
gene pairs where shared regulation resulted from the conservation of an ancestral pattern of cold-
responsive transcriptional regulation. These data imply that gains or losses of cold-responsive
regulation are relatively frequent in the grass tribe Andropogoneae. Genes that respond to cold in
only a single lineage experience lower levels of purifying selection and are less likely to be

annotated as transcription factor genes than genes that are cold-responsive in both lineages. It
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should be noted that these results are based on data from a single accession of maize (B73) and a
single accession of sorghum (BTx623). Evidence suggests that lower, but still significant, levels
of divergence in transcriptional regulation in response to cold are present in different accessions

of a single species (Makarevitch et al., 2015; Waters et al., 2017).

It appears that a relatively small core set of genes exhibit conserved responses to cold across the
two species in this initial analysis, and functional analysis suggests that these genes are more
likely to be present in pathways with logical links to cold stress (decreases in growth and cell
wall biosynthesis, increases in lipid metabolism). Thus, we propose a model where a small core
set of genes involved in the mechanisms by which panicoid grasses perceive and respond to cold
stress are under functionally constrained cold-responsive transcriptional regulation, while a much
larger set of genes can gain or lose cold-responsive transcriptional regulation in a neutral fashion
or potentially as a result stabilizing selection, potentially through transposon-mediated
mechanisms (Makarevitch et al., 2015; Naito et al., 2009). Consistent with this model, the genes
with conserved cold-responsive gene regulation exhibited lower ratios of nonsynonymous to
synonymous coding sequence substitutions than the other genes, which would imply their coding
sequence is also subject to greater functional constraint. This model would also be consistent
with the relatively high proportion of maize cold-responsive genes that exhibit variation in cold-

responsive regulation across alleles (Waters et al., 2017).

We evaluated two different models for predicting conserved regulation across different
expression levels and found that the multiplicative model was more effective at predicting
orthologous gene pair expression than the additive model (Figure 5C, Supplemental Data Set 4).
However, while this different was statistically significant, the additive model remained the better
predictor for many gene pairs. While no obvious markers that distinguish genes where one model
is the better predictor than the other were identified in this study, further study may identify
additional molecular traits measured from the genome that can forecast which model is more

appropriate for testing the expression pattern of a given gene across multiple related species.

The challenge of linking genes to functions based on expression evidence

The model above would predict than the observation of stress-responsive changes in transcript
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abundance in a single species is not strong evidence that the associated gene plays a role in the
response to that particular stress. While sequencing genomes and identifying genes are becoming
more straightforward tasks, confidently assigning functional roles to newly identified genes
remains challenging. Many genes in maize (35.1%) and sorghum (16.2%) are not associated with
any GO annotations in the current release of Phytozome (v12). Many genes that do possess GO
annotations are associated with only extremely broad annotation categories, such as protein
binding or catalytic activity. “Guilt by association” studies using co-expression analysis are an
intriguing method for assigning putative functional roles to some orphan or poorly annotated
genes (Li et al., 2016; Schaefer et al., 2014). However, the use of these methods in a single
species may also produce false positive annotations in the case of selectively neutral or
stabilizing changes in gene regulation. It may prove to be the case that functionally constrained
transcriptional responses are an effective method for identifying these links. Collecting parallel
expression datasets in multiple species can be time consuming and costly. We therefore tested a
number of alternative approaches to identifying functionally constrained cold-responsive
transcriptional regulation. Early transcriptional responses to cold (30 minutes-3 hours) appeared
to show greater conservation across species than later transcriptional responses. Regions of open
chromatin detected through MNase HS (Rodgers-Melnick et al., 2016; Vera et al., 2014) were
preferentially associated with genes that responded transcriptionally to cold stress in maize;
however, this association was observed for genes with either conserved or lineage-specific

patterns of cold-responsive regulation.

Importance of developing methods for cross-species comparisons of transcriptional
regulation

Both modeling (Orr, 1998, 1999) and empirical studies (Chan et al., 2010; Studer et al., 2011)
have found that genetic variants responsible for large, sudden changes in natural or artificial
selection tend to have large, pleiotropic effects. In maize, distinct genetic architectures underlie
traits that have been subjected to selection during domestication - one large-effect quantitative
trait locus and many small modifiers - and traits that were not selected on during domestication -
many small-effect quantitative trait loci (Wallace et al., 2014). This model was supported by
recent work with an inter-subspecies cross of maize and its wild progenitor teosinte (Zea mays

ssp. parviglumis). Looking at tassel morphology, distinctly genetic architectures were reported
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for traits believed to have been under selection during domestication compared to those traits that
were not (Xu et al., 2017). Developing effective approaches for comparing transcriptional
regulation of conserved syntenic genes across related grass species has the potential to identify
large-effect polymorphisms responsible for interspecies phenotypic variation in traits such as
abiotic stress tolerance where substantial phenotypic variation exists between species (Figure

2D).

Here we have shown that by using synteny to identify pairs of conserved orthologs across related
species, it is possible to identify species by treatment interactions, which signify changes in gene
regulation across species (DROs), using a multiplicative model of gene regulation. The use of a
multiplicative model was in turn supported by analysis of the regulation of duplicated maize
genes within the same sample. By increasing the number of species sampled, it may soon be
possible to define a consistent core set of genes subjected to functionally constrained regulation
in response to cold across the grasses. Changes in the regulation of these core genes in specific
lineages with different cold stress-response phenotypes would be useful candidates for the type
of large-effect changes predicted to produce between-species phenotypic variation. However, the
interpretation of such data must take into account that, unlike within-species studies of allelic
variation in cold-responsive regulation, between-species analysis cannot distinguish cis-

regulatory from trans-regulatory sources of variation in transcriptional responses.

METHODS

Plant growth and cold treatment

For maize and sorghum, the reference genotypes used for genome sequencing and assembly were
B73 and BTx623, respectively. SNP calling using RNA-Seq data from B73 was used to verify
that the plants used in this study came from the USA South clade of B73 accessions, i.e., those
closest to the original reference genome (Liang and Schnable, 2016). Under the growing
conditions employed, maize developed more quickly than sorghum, and sorghum seedlings
twelve days after planting (DAP) were selected as being roughly developmentally equivalent to
10 DAP maize seedlings based on leaf number and morphology (Figure 2A). Planting dates were
staggered so that all species reached this developmental time point simultaneously. For the

original RNA-Seq presented in Figure 2A, seeds were planted in MetroMix 200 and grown in
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greenhouse conditions under 13 hour day length in greenhouses at University of Nebraska-
Lincoln's Beadle Center, with target conditions of 320 mol m™ s™', high pressure sodium bulb, 13
hours/11 hours 29 °C /23 °C day/night and 60% relative humidity. Control plants were harvested
directly from the greenhouse three hours before lights on. Plants subjected to cold stress
treatment were moved to a cold treatment growth chamber, with 33 mol m™ s, metal halide
grow bulb, 12 hours/12 hours 6°C /6°C day/night. Cold stressed plants were harvested three
hours before lights on. Each sample consisted of pooled aboveground tissue from at least three
seedlings. Each biological replicate was harvested from plants that were planted, grown, and
harvested at a distinct and separate time from each other biological replicate. A total of three
independent biological replicates where generated for this experiment. For the time course RNA-
Seq data presented in Figure 4 and onward in the study, maize and sorghum were planted as
above and grown in a Percival growth chamber (Percival model E-411.2) with target conditions
of 111 mol m™ s light levels, 60% relative humidity, a 12 hour/12 hour day night cycle with a
target temperature of 29 °C during the day and 23 °C at night. The onset of cold stress treatment
was immediately before the end of daylight illumination, at which point half of the plants were
moved to a second growth chamber with equivalent settings with the exception of a target
temperature of 6 °C both during the day and at night. Each sample represents a pool of all
aboveground tissue from at least three seedlings. Samples were harvested from both the paired
control and cold stress treatments at 0.5 hours, 1 hour, 3 hours, 6 hours, 16 hours, and 24 hours
after the onset of cold stress. Biological replicates included both maize and sorghum plants that
were offset in planting but stressed and harvested at the same time in the same growth chambers.

A total of 3 independent biological replicates were generated for this experiment.

Definition of samples and biological replicates employed in this paper. Sample: each sample
consists of RNA extracted from the pooled tissue of no less than 3 and no more than 5 separate
plants planted and harvested on the same date and grown in the same growth chamber. All
aboveground tissue was harvested from each plant included in a pool. All aboveground tissue:
at the stage plants were harvested, all aboveground tissue included leaf blades, ligules, and leaf
sheaths, but not apical meristems, stems, or roots. Biological replicate: each biological replicate
consists of RNA extracted from pooled tissue harvested from plants of the same genotype

planted and harvested on separate dates from any other biological replicate. Paired replicate:
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biological replicates were paired across species, with tissue harvested on the same day from

plants of each species growth in the same growth chamber.

COz2 assimilation rate measurements

Plants were grown and cold treated as above, with the modification that in the case of sorghum,
small plastic caps were placed over the seedlings to prevent the plants from becoming too tall to
fit into the LiCor measurement chamber (approximately two inches). After 0, 1, or 3 days of cold
treatment, the plants were allowed to recover in the greenhouse overnight. The following
morning, CO; assimilation rates were measured using the Li-6400 portable photosystem unit
under the following conditions: PAR 200 mol mol'l, CO; at 400 mol mol-1 with flow at 400 mol
mol” and humidity at greenhouse conditions. Whole plant readings were measured for sorghum,
paspalum, Japanese millet (Echincloa esculenta), proso millet, and urochloa (Urochloa fusca)
after covering their pots with clay and using the LiCor Arabidopsis chamber. Maize was
measured using the leaf clamp attachment, which was consistently placed on the second leaf at a
position 3 cm above the ligule. Leaf area was measured using the Li-3100c Area meter (Li-Cor).
The accessions used for each species presented in Figure 1D included the following: paspalum:
USDA PI 509022, Japanese millet: USDA PI 647850, proso millet: earlybird USDA PI 578073,
urochloa: LBJWC-52, sorghum: BTx623, and maize: B73.

Identifying syntenic orthologs

Coding sequence data for primary transcripts of each annotated gene in the genome assemblies
of 8 grass species, including maize and sorghum used in the analysis, were obtained from
Phytozome 10.2. Similar sequences were identified using LASTZ (Harris, 2007), requiring an
alignment spanning at least 50% of total sequence length and 70% sequence identity. In addition,
the arguments -ambiguous=iupac, -notransition, and -seed=match12 were all set in each run.
LASTZ output was converted to QuotaAlign's "RAW" format using a version of the blast to
raw.py script that had been modified to take into account differences in output format between
BLAST and LASTZ. The additional parameters -tandem Nmax=10 and -cscore=0.5 were

specified when running this script.

RAW formatted data were processed using the core QuotaAlign algorithm with the parameters

18 18



527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

-merge, and -Dm=20. -quota was set to 1:2 in comparisons to maize and 1:1 in all other
comparisons. Pure QuotaAlign pan-grass syntenic gene sets were constructed using this dataset
directly. Polished QuotaAlign pan-grass syntenic gene sets were constructed by first predicting
the expected location for a given query gene in the target genome and then selecting the gene
showing the greatest sequence similarity (as determined by lastz alignment score) within

the window from 20 genes downstream of the predicted location to 20 genes upstream of the

predicted location.

RNA-Seq data generation

RNA isolation and library construction followed the protocol described by Zhang et al. (Zhang et
al., 2015). The number of reads generated per library is summarized in (Supplemental Data Set
1). Sequencing was conducted at [llumina Sequencing Genomics Resources Core Facility at
Weill Cornell Medical College. Raw sequencing data are available through the NCBI
(http://www.ncbi.nlm.nih.gov/bioproject) under accession number PRINA343268 and
PRINA344653. Adapters were removed from raw sequence reads using cutadapt version 1.6
(Martin, 2011). RNA-Seq reads were mapped to genome assemblies downloaded from
Phytozome: RefGen v3 (Zea mays), v3.1 (Sorghum bicolor). RNA-Seq reads from each species
were aligned using GSNAP version 2014-12-29 (Wu and Nacu, 2010; Wu and Watanabe, 2005).
Per-gene read counts were obtained using HTSeq v. 0.6.1 (Anders et al., 2014).

Identifying differentially expressed genes (DEGs)

Differentially expressed genes (DEGs) were identified using count data generated as described
above and DESeq2 (version 1.14.0) (Love et al., 2014) based on a comparison of the treatment
and control with adjP-value < 0:05, meaning absolute log; of fold change of between-treatment
and control value > 1. All expressed syntenic orthologous genes were classified into one of three
categories. The three categories include genes that were classified as responding transcriptionally
to cold in at least one species (DE1) (Figure 3A). The remaining category includes all expressed
syntenic orthologous genes that were not classified as cold-responsive in either of the two
species (DEO). The number of shared genes identified as differentially expressed in the two

species (DE2) was tested relative to the expected overlap if there was no correlation in gene
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regulation across species. For the time course RNA-Seq, analysis was conducted as above for all

36 possible pairwise comparisons of the six sorghum time points and six maize time points.

When estimating the true discovery proportion in analyses of DE2 genes (see Figure 3A, Figure
4B), it was necessary to calculate the number of DE2 genes expected under a null hypothesis of
no conservation of gene regulation. This expected number of DE2 genes was calculated using the
formula (percent of gene pairs DE in species 1)*(percent of gene pairs DE in species 2)*(total
number of gene pairs analyzed was used). Total number of gene pairs was fixed at 15,232
syntenic orthologous gene pairs for maizel/sorghum comparisons and 9,554 for maize2/sorghum

comparisons.

Estimating the power of DESeq2 in this dataset using simulated data

One-thousand genes were randomly sampled from the maizel/sorghum syntenic gene list in each
repetition of the simulation. These selected genes included three replicates from both normal
growth conditions (control) and one-day cold treatment (treatment). The geometric mean of each
gene was calculated (adding 1 to the data to avoid 0 readings). A random sample from the
uniform distribution on (5, 50) was used as the estimate of the true dispersion parameter. The
simulated data for the non-differentially expressed genes were generated from a negative
binomial distribution with the calculated geometric mean from the actual data and the sampled
dispersion parameter. To generate the list of differentially expressed genes, the first 100 genes
out of the 1000 sampled genes were selected with a treatment mean value equal to the geometric
mean from the original data, whereas the mean value of the control was a multiple of the
geometric mean (multiples of 2, 2.5, and 3 are reported). The calculated false discovery rate
(FDR, ratio of number of false positives over total number of discoveries) and the power (ratio of
true positives over the true number of differentially expressed genes) of the DESeq2 procedure

are reported in Supplemental Data Set 2.

Evaluating the additive and multiplicative models of gene regulation
From the 5,257 duplicate genes retained from the maize WGD (Schnable et al., 2011) in each of
the six time points in maize, gene pairs where both copies were classified as differentially

expressed in response to cold were used to test both models. The expression pattern of the
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maizel gene under control and cold stress conditions plus the expression of the maize2 gene
under control conditions was used to predict the expression of the maize2 gene under cold stress
using both the additive and multiplicative models defined in Figure 5B. The distance between the
prediction from the additive model and the observed value was defined as "a", the distance
between the prediction from the multiplicative model and the observed value was defined as "b",
and the predictions between the two models were defined as "c". In the relaxed case, gene pairs
where the two models produced predictions that were closer to each other than either was to the
observed expression value of the maize2 gene under cold stress were excluded. That is, if c<a
and c<b, the multiplicative model works better than the additive model, while if b<a and b<c, the
additive model works better than the other model. In the most stringent case, gene pairs where
the two models produced predictions that were less than twice as large as the difference between
the better model and the observed value were excluded (Supplemental Data Set 4). In other
words, if b>2a and b>c, the multiplicative model was considered to be the better model; if c>2a
and c>b, the additive model was considered to be the better model. Analyses were also
conducted reciprocally using data from control and cold stress conditions in maize2 plus data
from maizel under control conditions to predict the expression of the maizel gene under cold

stress conditions.

Identifying differentially regulated orthologs (DRO)

Differentially regulated orthologs were identified using count data generated as described above
and an interaction term for species (maize or sorghum) and treatment (cold or control) in
DESeq?2 (Love et al., 2014). Species (maize and sorghum) and condition (cold and control) were
considered to be two factors for design in this analysis. Simulated data for comparably regulated
orthologs (CROs) generated using additive and multiplicative models were used to confirm that
this approach did not classify simulated CROs based on the multiplicative model as having
significant species-by-treatment interactions. The formula used was: design _ condition +
genotype + condition: genotype. Maize sorghum gene pairs with an interaction adjP-value <
0:001 were classified as DROs, those with interaction adjP-value > 0:05 were classified as CROs,
and those with intermediate p-values were disregarded (Yoav and Yosef, 1995). The decision
was made to retain an ambiguous case of gene pairs with interaction p-values too high to be

classified as DROs but too significant to be classified as CROs rather than increase the number

21 21



620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

of classification errors by forcing all gene pairs to be assigned to one category or the other.

Calculating Ka/Ks values

“Primary Transcript only” coding sequences for maize (v6a), sorghum (v3.1), and setaria (v2.2)
were retrieved from Phytozome version 12.0. The gene model annotations v6a for maize were
annotated onto the B73 RefGen v3 pseudomolecules. Coding sequences were translated to
protein sequences and aligned using Kalign version 2.04 (Lassmann and Sonnhammer, 2005).
The protein alignment was used as a guide to create a codon level alignment of coding sequences.
The codon alignment was supplied to PAML (version 4.09) (Yang, 2007). Synonymous and
nonsynonymous substitution rates were calculated independently for each branch of the tree.
When both a maizel and maize2 gene copies were present for the same syntenic gene group,
alignment and substitution rate calculations were conducted separately for the maizel gene and
its syntenic orthologs in sorghum and setaria and for the maize2 and the same syntenic
orthologous genes. To eliminate genes with extreme Ka/Ks ratios resulting from very low
numbers of synonymous substitutions, only Ka/Ks ratios from genes with an estimated
synonymous substitution rate greater than or equal to 0.05 (approximately 1/2 the median Ks
ratio observed between maize and the most common recent ancestor of maize and sorghum) were

considered.

MNase hypersensitive site analysis

Intervals defined as MNase hypersenstive sites (MNase HS) were taken from (Rodgers-Melnick
et al., 2016). The same TSS was used for MNase and RNA-Seq analysis. Average coverage of
MNase HS was calculated on a per-base basis from 1 kb upstream of the annotated TSS to 1 kb
downstream of the TSS. When multiple transcripts with different TSS were present, the

transcript with the earliest TSS was selected for analysis.

Identifying Conserved Noncoding Sequences (CNS)

CNSs were identified using the CNS Discovery Pipeline 3.0 (CDP) (Turco et al., 2013) with
some modifications. Specifically, the built-in syntenic gene identification pipeline from the CDP
was replaced with the previously defined syntenic gene list described above. Functions for

finding local duplicates and comparing CNSs to Arabidopsis proteins and RNA were omitted.
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CNSs were identified between the region 12 kb upstream and 12 kb downstream using a word
size of 15 bp. CNSs with bit scores for each gene pair < 29.5 were removed following the same

scoring parameter settings outlined in the original software pipeline.

Transcription Factor Enrichment Calculation
Transcription Factor (TF) enrichment was calculated using the maize transcription factor list

from GRASSIUS (Yilmaz et al., 2009).

GO enrichment analysis
Gene ontology (GO) analysis was performed using GOATOOLS (Haibao et al., 2015) and
functional additions associated with the sorghum v3.1 sorghum gene model and maize RefGen-

v3 maize gene model annotations.

Pathway analysis
Pathway analysis was conducted using the MapMan software package

(http://mapman.gabipd.org/web/guest) (Usadel et al., 2009).

Accession numbers
GenelDs for all syntenic gene sets and the final syntenic gene list used in this study are posted at

figShare (http://dx.doi.org/10.6084/m9.figshare.3113488.v1).

Adapter sequences used for library construction and for adapter trimming are those provided in
Illumina TruSeq Library Prep Pooling Guide, with sequences reported on page 5 of the user

manual.

Supplemental Data

Supplemental Figure 1. Coding sequence similarity among syntenic genes in sorghum, maizel,
and maize2.

Supplemental Figure 2. Representative sample of cold stressed seedling phenotypes.
Supplemental Figure 3. Individual examples of genes in each of six possible DRO/DEG

classification categories.
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Supplemental Figure 4. Comparison of Ka/Ks ratio and expression level for genes
grouped based on expression classification model.

Supplemental Figure 5. Frequency of known CBF binding motifs within the 1 kb
proximal promoters of maize and sorghum.

Supplemental Figure 6. Relationship between gene pair expression pattern in maize and

sorghum after subdividing genes based on Ka/Ks ratio and expression tertile.

Supplemental Data Set 1. Number of sequenced and aligned reads per library.

Supplemental Data Set 2. Estimates of power and FDR for DESeq?2.

Supplemental Data Set 3. ANOVA and DESeq? tests for DROs using simulated data.

Supplemental Data Set 4. Accuracy of additive and multiplicative expression models across

maize duplicate gene pairs.
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FIGURE LEGENDS

Figure 1. Gene level and expression level conservation between sorghum, maizel, and
maize2. (A) The overlap between syntenic orthologous gene pairs conserved between
maizel/sorghum and maize2/sorghum. (B) Comparison of average control condition expression
levels (log, transformed FPKM) for either maizel/sorghum or maize2/sorghum gene pairs. (To

improve readability, a random sample of 1/3 of all gene pairs is displayed for each category.)

Figure 2. Effects of cold stress on maize, sorghum, and related species. Representative
seedling phenotypes for maize and sorghum. (A) Control conditions; (B) 24 hours of stress at
6°C; (C) 14 days at 6°C and two days recovery under greenhouse conditions. (D) Normalized
relative CO; assimilation rates for six panicoid grass species with differing degrees of sensitivity
or tolerance to cold stress. Individual data points were jittered (adding random noise to data in
order to prevent over-plotting in statistical graphs) on the x-axis to avoid overlap and improve

readability.

Figure 3. Combined DEG analysis of maize and sorghum. (A) An illustration of the DEG-
based gene pair classification model and a comparison of expected and observed values for gene
pairs classified as differentially expressed in response to cold in zero, one, or both species.
Expected distributions were calculated based on a null hypothesis of no correlation in gene
regulation between maize and sorghum (see Methods). DEQ: gene pairs classified as
differentially expressed in response to cold in neither species; DE1: gene pairs classified as
differentially expressed in response to cold in one species but not the other; DE2: gene pairs
classified as differentially expressed in response to cold in both species. (Observed number of
gene pairs in maizel/sorghum: DE1 maize = 850, DE2 = 836, DE1 sorghum = 1,507, DEO =
12,038; Observed number of gene pairs in maize2/sorghum: DE1 maize = 508, DE2 = 460, DE1

sorghum = 986, DEO = 7,599; Expected number of gene pairs in maizel/sorghum: DE1 maize =
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1,427, DE2 =259, DE1 sorghum = 2,084, DEO = 11,461; Expected number of gene pairs in
maize2/sorghum: DE1 maize = 822, DE2 = 146, DE1 sorghum = 1,300, DEO = 7,285). (B)
Comparison of fold change in gene expression between the treatment and control groups for
pairs of orthologous genes in maize and sorghum. Log, transformed treatment/control expression

ratios are shown.

Figure 4. Patterns of gene expression across a cold-stress time series in maize and sorghum.
(A) Changes in classification of individual gene pairs as DEO, DE1 maize, DE1 sorghum, and
DE?2 across adjacent time points. (B) The proportion of genes identified as differentially
expressed in both species in excess of the number of gene pairs expected in this category in the
absence of either conservation of gene regulation or parallel evolution of gene regulation. True
discovery proportion is defined as (Observed Positives - Estimated False Positives)/Observed
Positives. The expected number false positive DE2 gene pairs was calculated from the proportion
of all genes classified as DEGs in maize and sorghum using the null model described in Figure

3A.

Figure 5. Conceptual illustration of the differentially regulated ortholog model. (A)
[llustration of the different classification outcomes that can be produced for a given gene pair
using both a DEG-based analysis (testing whether the expression pattern of each gene changes
significantly between conditions) and a DRO-based analysis (testing whether the pattern across
the two conditions is significantly different between copies of the same gene in both species). (B)
Two models, additive and multiplicative, for predicting what a conserved pattern of gene
regulation should look like when the underlying level of expression changes. (C) Relationship
between prediction error (logo transformed) for expression under cold stress using a
multiplicative model to predict expression between maizel/maize2 gene pairs or an additive
model to predict expression between maizel/maize2 gene pairs. Maizel: Predictions for the
expression pattern of maize2 genes using data from their maizel homeologs; Maize2: Predictions
for the expression pattern of maizel genes using data from their maize2 homeologs. Blue dots
mark cases where the additive model was the better predictor; red dots mark cases where the

multiplicative model was the better predictor.
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Figure 6. Characteristics of genes in different DEG groups at different timepoints. (A) The
proportion of gene pairs classified as DROs between maize and sorghum in different DEG
groups at each of the six time points examined. (B)-(C) Median ratios of non-synonymous
substitutions to synonymous substations in coding sequences for maize and sorghum for gene
pairs classified as DEO, DE1, or DE2 at each of six time points. Time points where there is a
statistically significant difference in Ka/Ks ratio between DE2 and any of the other three
categories are marked with either + (if p<0.05) or ++ (if P<0.01). Color of the + indicates the
category to which DE2 is being compared. Time points where there is a statistically significant
difference in Ka/Ks ratio between DEO and either DE1 maize or DE1 sorghum categories are
marked with either * (if p<0.05) or ** (if P<0.01). Color of the * indicates the category to which
DEQO is being compared. (B)-(C) Enrichment of genes annotated as transcription factor genes
among DE?2 gene pairs relative to all syntenic gene pairs indicated by the black line and the right
hand axis. Double white triangles mark time points where the enrichment is statistically
significant (p < 0.01). (D) Frequency of CNS within the promoters of genes classified as DEO,
DEI1 maize, DE1 sorghum, DE2, DRO, or CRO at each of the six time points. Black lines within

the box plot mark the average number of CNS per gene for each category.

Figure 7. Chromatin patterns associated with different groups of genes in maize and
sorghum. Patterns of MNase hypersensitive regions around the transcriptional start sites of
genes classified based on their pattern of gene regulation in the 24 hour stress time point. Maizel
sorghum gene pairs and maize2 sorghum gene pairs were aggregated to increase statistical power.
The lighter band around the DE2 line indicates a two standard deviation confidence interval.
Black bars at the bottom of the graph indicate individual base pair positions where the amount of
open chromatin associated with DE2 genes is significantly different from that of each of the

other four categories displayed with a p-value < 0.01 for each comparison. Pairwise comparisons

were performed using a Fisher Exact Test.
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Figure 1. Gene level and expression level conservation between sorghum, maize1, and
maize2. (A) The overlap between syntenic orthologous gene pairs conserved between

maize 1/sorghum and maize2/sorghum. (B) Comparison of average control condition expression
levels (log, transformed FPKM) foreither maize1/sorghum or maize2/sorghum gene pairs. (To
improve readability, a random sample of 1/3 of all gene pairs is displayed for each category.)
Please use subscript for “log,” in the figure.
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Figure 2. Effects of cold stress on maize, sorghum, and related species. Representative
seedling phenotypes formaize and sorghum. (A) Control conditions; (B) 24 hours of stress at
6°C; (C) 14 days at 6°C and two days recovery undergreenhouse conditions. (D) Normalized
relative CO, assimilation rates forsix panicoid grass species with differing degrees of sensitivity
or tolerance to cold stress. Individual data points were jittered (adding random noise to datain
order to prevent over-plotting in statistical graphs)on the x-axis to avoid overlap and improve

readability.
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Figure 3. Combined DEG analysis of maize and sorghum. (A) An illustration of the DEG-based gene pair
classification model and a comparison of expected and observed values for gene pairs classified as
differentially expressed in response to cold in zero, one, or both species. Expected distributions were
calculated based on a null hypothesis of no correlation in gene regulation between maize and sorghum
(see Methods). DEO: gene pairs classified as differentially expressed in response to cold in neither
species; DE1: gene pairs classified as differentially expressed in response to cold in one species but not
the other; DE2: gene pairs classified as differentially expressed in response to cold in both species.
(Observed number of gene pairs in maizel/sorghum: DE1 maize = 850, DE2 =836, DE1 sorghum = 1,507,
DEO =12,038; Observed number of gene pairs in maize2/sorghum: DE1 maize =508, DE2 =460, DE1
sorghum =986, DEO = 7,599; Expected number of gene pairs in maizel/sorghum: DE1 maize = 1,427,
DE2 =259, DE1 sorghum = 2,084, DEO =11,461; Expected number of gene pairs in maize2/sorghum: DE1
maize =822, DE2 =146, DE1 sorghum = 1,300, DEO = 7,285). (B) Comparison of fold change in gene
expression between the treatment and control groups for pairs of orthologous genes in maize and
sorghum. Log, transformed treatment/control expression ratios are shown.
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Figure 4. Patterns of gene expression across a cold stress time series in maize and sorghum. (A)
Changes in classification of individual gene pairs as DEO, DE1 maize, DE1 sorghum, and DE2 across
adjacent time points. (B) The proportion of genes identified as differentially expressed in both species in
excess of the number of gene pairs expected in this category in the absence of either conservation of
gene regulation or parallel evolution of gene regulation. True discovery proportion is defined as
(Observed Positives - Estimated False Positives)/Observed Positives. The expected number false positive
DE2 gene pairs was calculated from the proportion of all genes classified as DEGs in maize and sorghum
using the null model described in Figure 3A.
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Figure 5. C onceptual illustration of the differentially regulated ortholog model. (A) lllustration of the
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predicting what a conserved pattern of gene regulation should look like when the underlying level of
expression changes. (C) Relationship between prediction error (log10 transformed) for expression under
cold stress using a multiplicative model to predict expression between maizel/maize2 gene pairs or an
additive model to predict expression between maizel/maize2 gene pairs. Maizel: Predictions for the
expression pattern of maize2 genes using data from their maizel homeologs; Maize2: Predictions for the
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where the additive model was the better predictor; red dots mark cases where the multiplicative model
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Figure 6. Characteristics of genes in different DEG groups at different timepoints. (A) The proportion of
gene pairs classified as DROs between maize and sorghum in different DEG groups at each of the six
time points examined. (B)-(C) Median ratios of non-synonymous substitutions to synonymous
substations in coding sequences for maize and sorghum for gene pairs classified as DEO, DE1, or DE2 at
each of six time points. Time points where there is a statistically significant difference in Ka/Ks ratio
between DE2 and any of the other three categories are marked with either + (if p<0.05) or ++ (if P<0.01).
Color of the + indicates the category to which DE2 is being compared. Time points where there is a
statistically significant difference in Ka/Ks ratio between DEO and either DE1 maize or DE1 sorghum
categories are marked with either * (if p<0.05) or ** (if P<0.01). Color of the * indicates the category to
which DEO is being compared. (B)-(C) Enrichment of genes annotated as transcription factor genes
among DE2 gene pairs relative to all syntenic gene pairs indicated by the black line and the right hand
axis. Double white triangles mark time points where the enrichment is statistically significant (p < 0.01).
(D) Frequency of CNS within the promoters of genes classified as DEO, DE1 maize, DE1 sorghum, DE2,
DRO, or CRO ateach of the six time points. Black lines within the box plot mark the average number of
CNS per gene for each category. These triangles are difficult to see against the dark background: perhaps
you should use white triangles instead.
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Figure 7. Chromatin patterns associated with different groups of genes in maize and sorghum.

Patterns of MNase hypersensitive regions around the transcriptional start sites of genes classified based
on their pattern of gene regulation in the 24 hour stress time point. Maizel sorghum gene pairs and
maize2 sorghum gene pairs were aggregated to increase statistical power. The lighter band around the
DE2 line indicates a two standard deviation confidence interval. Black bars at the bottom of the graph
indicate individual base pair positions where the amount of open chromatin associated with DE2 genes
is significantly different from that of each of the other four categories displayed with a p-value < 0.01 for
each comparison. Pairwise comparisons were performed using a Fisher Exact Test.
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