
High Availability for VM Placement and a
Stochastic Model for Multiple Knapsack

Bochao Shen1, Ravi Sundaram1, Alexander Russell2, Srinivas Aiyar3

Karan Gupta3, Abhinay Nagpal3, Aditya Ramesh3, Himanshu Shukla3

1College of Computer and Information Science, Northeastern University, Boston, MA, USA
2 Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA

3 Nutanix, Inc., San Jose, CA, USA
Email: 1{ordinary, koods}@ccs.neu.edu, 2acr@cse.uconn.edu

3{sriniva.aiyar, karan.gupta, anagpa, aramesh, hshukla}@nutanix.com

Abstract—k-HA (high-Availability) is an important fault-
tolerance property of VM placement in clouds and clusters - it
is the ability to tolerate up to k host failures by relocating VMs
from failed hosts without disrupting other VMs. It has long been
assumed [1] that deciding the existence of a k-HA placement is
ΣP

3 -hard. In a surprising yet simple result we show that k-HA
reduces to multiple knapsack and hence is in NP= ΣP

1 .
We propose a stochastic model for multiple knapsack that not

only captures real-world workloads but also provides a uniform
basis for comparing the efficiencies of different polynomial-time
heuristics. We prove, using the central limit theorem and linear
programming, that, there exists a best polynomial-time heuristic,
albeit impractical from the standpoint of implementation.

We turn to industry practice and discuss the drawbacks of
commonly used heuristics - First-fit, Best-fit, Worst-fit, MTHM and
CSP. Load-balancing is a fundamental customer requirement
in industry. Based on a large real-world dataset of cluster
workloads (from industry leader Nutanix) we show that the
natural load-balancing heuristic - Water-filling - has several
excellent properties. We compare and contrast Water-filling with
MTHM using our stochastic model and find that Water-filling is
a heuristic of choice.

Keywords-Virtual Machine Placement, High Availability; Mul-
tiple Knapsack Problem

I. MOTIVATION

Cloud computing has established itself as a mainstay of
modern computing infrastructures. Clouds enable the efficient
utilization of resources on an as-needed basis by dynamically
configuring these resources to accommodate varying workload
needs. The core technology at the heart of public cloud data-
centers and private clusters is virtualization. Virtualization
is the use of shared resources to create and operate virtual
machines (VMs) [2]; a VM is an operating system or software
that emulates the behavior of a computing system with a
specified set of resource characteristics, such as CPU and
memory capacity. Virtualization allows for the execution of
an application onto heterogeneous systems as well as mul-
tiple applications in parallel. Virtualization also enables live
migration or the movement of running VMs between hosts.
The enormous flexibility afforded by virtualization enables
the placement (mapping of VMs to physical hosts) and re-
balancing of VMs for a variety of reasons including per-
formance and cost-efficient resource utilization [3]. In this

paper we will primarily be concerned with fault-tolerance, i.e.
robustness to failures.

An important aspect of fault-tolerance in a cluster is High
Availability (HA) [4]. In general, HA is the property of en-
suring continuity of services (applications) despite the failures
of hosts, VMs or the applications themselves. In the context
of this paper we will interpret HA narrowly as the ability
to tolerate host failures by restarting the VMs (from the
failed hosts) in back up hosts without affecting any other
existing running VMs. We define k-HA to be the property of a
placement to tolerate the failure of up to k hosts (sequentially
or in parallel). In practice the response to a failure or multiple
failures the system could involve restarting of the failed VMs
in other hosts; in platforms with HwPFA (Hardware Predicted
Failure Analysis alerts it could also involve live migration of
the VMs in advance of an impending failure. In either case
the key algorithmic requirement is ensuring the sufficiency
of resources in the back up hosts to support the new VMs.
In general resources are multi-dimensional (such as CPU,
memory, IO etc) but in this paper we focus on a single resource
- namely, memory.

HA has been studied extensively both in the algorithms and
the systems communities. Unfortunately, even the special of
case of 0-HA with a single resource is the probem of bin pack-
ing and hence already NP-complete [5]. Partly as a reaction
to the hardness of HA the systems community has turned to
polynomial-time heuristics on the one hand or AI (artificial
intelligence) and CSP (Constraint Satisfaction Programming)
on the other. Heuristics, the choice of industry, are typically
quick to return some solution but fail to provide guarantees on
the quality of the solution. AI and CSP, areas of academic re-
search, allow much greater expressiveness involving additional
constraints such as affinity and co-location requirements as
well as multiple resource dimensions. However, both of these
techniques are very slow, particularly CSP which solves SAT
(satisfiability, an NP-complete problem [5]) at its core.

In spite of the attention that HA has received the funda-
mental theoretical questions still remain unanswered: Given
VMs (with sizes) and hosts (with capacities) and k how
easy/hard is it to decide whether there exists a feasible k-
HA placement? Given a placement and k how easy/hard is it

 978-1-5090-2991-4/17/$31.00 ©2017 IEEE

to decide whether it (the given placement) is k-HA? And, on
the practical side, the fundamental questions are: Given that
typical inputs encountered in practice are not adversarially
chosen (worst-case) how do we meaningfully compare the
quality of different heuristics? Given that load-balancing is a
basic customer requirement what is the best heuristic to use?
In this paper we make substantial progress towards answering
such questions.

II. OUR CONTRIBUTIONS

Our main technical contributions are as follows:

• k-HA is NP-complete Counter to intuition we prove
that deciding the existence of a k-HA placement is
NP-complete by a simple reduction to MKP (Multiple
Knapsack Problem) [6]. We note two things here 1. the
clever part of the proof is in showing that k-HA is in NP
and not that it is NP-hard, which is why the reduction is
to (and not from) MKP, and 2. we do, however, believe
that the problem of deciding whether a given placement
is k-HA is ΠP

2 -complete.
• IID-IK and existence of a best heuristic We propose

a simple stochastic model, IID-IK (Independently and
Identically Distributed Items and Knapsacks), for MKP,
that captures the essence of real-world workloads as well
as synthetic generators. We define an asymptotic metric
PE for comparing the quality of different heuristics. We
prove that the quality of the best heuristic is computable.

• Water-filling is the best We discuss the shortcomings of
some heuristics used in practice- First-fit, Best-fit, Worst-
fit, CSP and the industry leader MTHM. Based on a
dataset of cluster workloads from Nutanix we posit two
natural subcases: the doubling world where VM sizes are
powers of 2 (this is indeed the case for Amazon’s AWS
where VM sizes are restricted to be powers of 2) and the
gold-dust world where VM sizes are much smaller than
host capacities. We consider Water-filling, which smooths
out the load by definition, and show that it is optimal for
the doubling world and near-optimal for the gold-dust
world. We also show that Water-filling provides a simple
and easily computed criterion for determining the largest
k for which a given placement is k-HA. We also compare
Water-filling and MTHM using IID-IK with distributions
instantiated from a large real-world dataset of cluster
workloads provided by Nutanix Inc. We conclude that
Water-filling is the heuristic of choice, from among the
heuristics in consideration.

On a conceptual level we have shown that deciding the
existence of a k-HA placement is easier than checking whether
a given placement is k-HA. We have presented a simple
stochastic model for workload generation that is both use-
ful for comparing heuristics and tractable. We have shown,
through a variety of arguments, that Water-filling satisfies
customer requirement for load-balancing while possessing
useful k-HA properties.

III. RELATED WORK

[4] is a comprehensive source on a variety of techniques
leveraging virtualization for HA including replication patterns
such as active/active, active/passive and cold standby. Our
work derived inspiration from [1] that formally defines the
k-HA problem - they call it k-resilient HA. They observe
that k-HA lends itself naturally to expression as a statement
in Second Order Logic and present a transformation as a
statement in First-Order Logic thus allowing the constraints
to be solved by a generic CSP solver. However, this trans-
formation is not exact in that there may be solutions to the
original problem even though the transformed input to the
CSP solver may have none. We note that they extend the
notion of k-HA to VMs - a k-HA VM must be tolerant to
the failure of up to k hosts through relocation. Our result can
be seen as an exact representation of k-HA in First Order
Logic, though our result does not apply to the notion of k-HA
extended to VMs. We represent our results in the language of
complexity theory rather than in terms of logic systems, which
is the more accurate way to capture computational issues. [7]
describes BtrPlace, a CSP solver customized for handling VM
placements that allows the user considerable expressiveness in
specifying custom requirements. Though BtrPlace is generally
fast and scalable, the CSP solver is slow to check feasibility of
HA requirements. [8] consider the related problem of replica
VM placement constrained by bounded communication delays
between the replicas. They prove the NP-completeness of their
problem and compare a variety of different heuristics. Replica
placement is different from the strategy of relocating VMs
from failed hosts to other hosts considered in this paper.

From a systems perspective some related works include [9]
which describes an HA-aware scheduler based on openstack,
[10] that considers the issue of hardware redundancy, [11]
which proposes an availability-aware scheduler that dynam-
ically manages computing resources based on user-specified
requirements and [12] that describes a method for related VMs
to share check point images.

In this paper we show that the problem of VM place-
ment reduces to MKP (Multiple Knapsack Problem) an NP-
complete problem [5]. [13] presents an EPTAS for MKP. Our
stochastic model, IID-IK is inspired by the model for bin
packing investigated in [14] where items are drawn from a
continuous distribution. Subsequent to [14] there has been
much work on distributions with both continuous and discrete
supports [15], [16]. [17] is a recent work with several related
references. our model IID-IK assumes a discrete support which
we also refer to as a finite support since they are the same
for a bounded domain. MTHM is a polynomial-time heuristic
for MKP presented in [6] and deployed in some commercial
providers of cloud infrastructure.

In Section IV we state the k-HA VM placement problem.
Section V proves k-HA placement is NP-complete. We pro-
pose our stochastic model IID-IK model for multiple knapsack
in Section VI. Section VII studies the performance of different
heuristics and points out that Water-filling is the heuristic of

choice. Our paper concludes in Section VIII.

IV. PROBLEM STATEMENT AND PRELIMINARIES

A. VMPP and VMPP-AC

We start by defining the most basic VM placement problem
(VMPP): Let V denote the set of all n VMs and H denote
the set of all m hosts. Each VM vj requires sj (GB) sized
memory to run. Each host hi has a total memory capacity ci
(GB) configured for VMs. To each VM vj is attached profit pj
which reflects the value or reward for placing VMs. The goal
is to place VMs on hosts, so as to maximize the sum of the
profits of the placed VMs, while satisfying the constraint that
for every host the sum of the memories of the VMs placed on
it must not exceed its capacity, i.e., ∀i

∑
vj∈hi

sj ≤ ci.

It is clear that VMPP is just MKP [13], [5] and therefore
NP-complete. For the rest of this paper we will assume that
all profits pj are the same and hence the goal of VMPP is to
place the maximum number of VMs on the hosts. This special
version of VMPP (or MKP) continues to be NP-complete, in
fact strongly NP-complete as bin packing reduces to it.

At this point the reader might wonder why we connected
VMPP to MKP rather than to bin packing - the reason is that
in the bin packing problem the bins are of uniform capacity
whereas in VMPP hosts can have different capacities just as
knapsacks in MKP. As decision problems bin packing and
MKP with uniform profits are the same in complexity but
as optimization problems they are different - in bin packing
the items are given and the goal is to minimize the number
of bins needed to place all of the items whereas in MKP
both the items and knapsacks are given and the goal is to
to maximize the number of placed items without violating the
capacity constraints of any host. Thus MKP is in concordance
with VMPP where, too, the VMs and hosts are given.

In the rest of this subsection we consider VMPP-AC (the
VM placement problem with affinity constraints). This prob-
lem is a digression in that we do not use VMPP-AC in the
rest of the paper, nevertheless the placement of uniformly
sized VMs with affinity constraints was mentioned in [1]
as a problem with undetermined complexity. We resolve its
complexity in this subsection.

Three kinds of affinity constraints are mentioned in [1] (1)
VM-VM co-location constraint: e.g. vi and vj must always be
placed on the same host (in order to minimize the communi-
cation cost, etc); (2) VM-VM anti co-location constraint: e.g.
vi and vj must always be placed on different hosts (so as to be
separate from each other due to privacy or security reasons);
(3) VM-host affinity constraint: e.g. vi can only be placed on
a specific subset of hosts.

Theorem 1: VMPP-AC with uniform VM sizes is NP-
complete.

Proof: We give a reduction from 3DM (3D-matching)
which is NP-hard [5].

The input in 3DM is a tripartite graph with each partition
having n vertices. The question is whether the edges of the
graph can be partitioned into exactly n triangles.

We transform a given instance of 3D-Matching into an
instance of VMPP-AC as follows: let the tripartite graph be
G(V1,V2,V3, E), where V1, V2, V3 denote the three partitions
of vertices, and E denotes the edges crossing them. We
interpret the three partitions as follows - the set of VMS V
= V1 ∪ V2 and the set of hosts H = V3. We interpret the
edge (vs, vt) between vs ∈ V1 and vt ∈ V2 to mean that vs
and vt can be placed together. (Note that these constraints are
easily expressed using VM-VM anti co-location constraints.)
The edge (vs, hi) between vs ∈ V1 or V2 and hi ∈ V3 means
vs can be placed on hi. (Note that these constraints are easily
expressed using VM-host affinity constraints.) We set the size
of each VM to be 1 and the capacity of each host to be 2. It
is easy to see that there exists a partition of the edges of the
tripartite graph into n triangles iff all the VMs can be packed.

B. Exists?k-HA and Is?k-HA

The HA property of a VM placement guarantees the system
can tolerate some level of failure in hosts. Basically, HA
should satisfy the following two conditions: (1) VMs on failed
hosts should be re-instantiated quickly in other running hosts;
(2) VMs originally on those running hosts should not be
affected, i.e. suspended, migrated, etc, at all.

This adds additional complexity in the VM placement
problem. When VMs are initially placed, one has to consider
if there will be enough space on the still running hosts for the
VMs assigned to a failed host.

The k-HA property of a VM placement can quantify such
fault tolerance. Specifically, a placement is said to have the
k-HA property, if for all sequences of up to k host failures
there is enough memory space on the running hosts for the
VMs from the failed hosts to be re-instantiated (on the running
hosts).

We define two decision problems: Exists?k-HA and Is?k-
HA. Exists?k-HA is the problem of deciding whether a given
instance of VMPP has any placement with the k-HA property.
Is?k-HA is the problem of deciding whether a given placement
has the k-HA property.

Note that VMPP is the same as Exists?0-HA. Thus, we can
say that deciding the existence of a k-HA placement is at least
as hard as the original VM placement problem.

V. k-HA IS NP-COMPLETE

In a counter-intuitive result we show that the HA prob-
lem can be reduced to multiple knapsack and hence is NP-
complete.

A. Exists?k-HA is NP-hard

Naively, one would expect that Exists?k-HA lies in the third
level of the polynomial hierarchy, ΣP3 [18]. This is because it
would seem to require 3 alternating quantifiers in the following
form:
there-exists placement for-all upto k host failures there-exists
rebalancing such-that the original placement and rebalancing
strategy are valid.

However, we show that in fact it lies in NP = ΣP1 .
Theorem 2: For all k, Exists?k-HA reduces to MKP.

Proof: Given m knapsacks and n items pack the items
into the smallest m− k knapsacks, i.e. set aside the k largest
capacity knapsacks and pack the items into the rest. The given
system of knapsacks and items is k-HA iff this packing is
achievable. Clearly, if the system is k-HA then it should be
packable into the smallest m − k knapsacks in order to be
resilient to the failure scenario where the k largest knapsacks
fail. And conversely, the packing into the m − k smallest
knapsacks can tolerate failure of any k knapsacks - if one
of the smaller knapsacks fails then move its items into one of
the larger empty knapsacks and there will always be at least
one larger empty knapsack since we started out with k empty
knapsacks.

The key point to note is that MKP (or VMPP) is equivalent
to Exists?0-HA, hence it directly follows that Exists?k-HA is
at least NP-hard, and so the clever part of the above theorem
is in showing that Exists?k-HA is no harder by reducing it to
MKP.

Corollary 1: Exists?k-HA in NP-complete.
Note that even though Exists?k-HA suddenly seems to have

become easy we still believe that Is?k-HA continues to be
hard, i.e. ΠP

2 -complete, though we are unable to prove it yet.

VI. IID-IK AND BEST HEURISTIC

We propose a stochastic model for multiple knapsack that
not only captures real-world workloads but also provides a
uniform basis for comparing the performance of different
polynomial-time heuristics. We prove that, in a fairly general
sub-case, there is a best heuristic in our model, i.e., a heuristic
with optimal performance.

Having shown that HA reduces to the multiple knapsack
problem which is NP-complete we understand that we are
limited to using polynomial-time heuristics. The question we
are faced with is which heuristic to use, i.e. how to measure the
performance or efficiency of heuristics. One standard way to
do this is to look at their quality of approximation. However,
even quality of approximation is a worst-case measure. We
argue that workloads drawn in practice have a lot more
regularity. In fact, based on a large dataset of client workloads
drawn from the customer-base of one of the largest providers
of private cloud infrastructure we find that workloads can
be characterized as independent draws from distributions for
knapsacks and items. Inspired by this finding as well as by an
early analysis of bin packing [14] we propose the following
natural stochastic model of multiple knapsack:

Items are drawn independently from a distribution of items
- the item distribution specifies both the size and the value
of the draw ; knapsacks are drawn independently from a
distribution of knapsacks - the knapsack distribution specifies
the size of the knapsack. We assume that distributions for both
knapsacks and items have finite support, i.e., there are only
a finite number of different types of items and knapsacks.
For simplicity we assume that all items have value 1 - our

definitions and results can easily be generalized to the case
with arbitrary values.

This model gives us a solid mathematical basis for com-
paring different heuristics. We now describe the measure
PE(H) which captures the asymptotic packing efficiency of
the heuristic H . Draw n samples from the item distribution;
then keep drawing samples one-by-one from the knapsack
distribution; after each knapsack draw check whether H packs
all the items into the drawn collection of knapsacks; let
minH(n) denote the number of drawn knapsacks when H
successfully packs all items for the first time. Define the finite
packing efficiency for n:

PE(H,n) ,
n

minH(n)

Define the packing efficiency of H to be:

PE(H) = lim inf
n→∞

PE(H,n)

PE(H) is well-defined since lim sup exists for all bounded
sequences and is the expected number of items the heuristic
packs per bin, in the asymptotic limit. We also note that the
definition of PE is robust: instead of drawing bins until we can
pack the n items we could also define it in terms of the process
where we draw items until they will no longer fit inside the
m bins.

Through simulations and for simple distributions we are
able to verify the existence of packing efficiencies for Water-
filling and MTHM. We are led to the natural question of
whether, given the item and knapsack distributions, there exists
a best heuristic and surprisingly we can show that the answer
is yes for distributions with a finite support, which captures
all real-world situations. Informally the theorem below states
that in the stochastic model of multiple knapsack where the
distributions have finite support, we can find the best heuristic
and its packing efficiency (which is optimal).

Theorem 3: There exists a heuristic H that achieves the
maximum possible PE in the IID-IK model; both H and
PE(H) are explicitly computable.

Proof: We first give the intuition behind the proof to
enable the reader to follow the formal argument easily.

That the distributions have finite support means there are
a finite number of different types of item sizes and knapsack
capacities. Further, by the Central Limit Theorem when the
number of items and knapsacks goes to infinity then we will
get close to the expected proportion of each size (for items)
and capacity (for knapsacks). Now consider all possible ways
of packing each of these different knapsacks with different
combinations of items - there are only a finite number of
different packed knapsack configurations. (This includes all
such configurations, including for example the empty knap-
sack). With one variable per packed knapsack configuration
representing its proportion in the final solution we can write
a linear program to maximize packing efficiency constraining
the proportions of items sizes and knapsack capacities to fit
the proportions dictated by the Central Limit Theorem. Thus
the maximum packing efficiency can be calculated in time

polynomial in the support size. Formally, let ι and κ index
the finite support set of items and knapsacks respectively. Let
the ι’th item be generated in proportion Pι and let the κ’th
knapsack be generated in proportion Pκ. Let w(κ) denote the
number of distinct ways that the κ’th knapsack can be packed
with items, and let ω be the corresponding index. Let Nω

κ (ι)
denote the number of copies of item ι in the ω’th packing of
the κ’th knapsack. Variable pωκ is the proportion of the ω’th
packing of the κ’th knapsack in the optimal packing. Variable
pe is the packing efficiency that we are trying to maximize.
Then the solution to the following LP gives the maximum
possible PE in the IID-IK model:

maximize pe

subject to
∑
ω,κ

pωκ(
∑
ι

Nω
κ (ι))= pe

∀ι
∑

ω,kappa

pωκN
ω
κ (ι) = Pκ ∗ pe

∀κ
∑
ω

pωκ = Pκ

Since the support set is finite the above LP calculates the
optimal PE in constant time. The optimal heuristic H is also
derivable in straightforward fashion from the values of the pωκ
variables in the optimal solution: given any input the optimal
heuristic is to utilize the ω’th packing of the κ’th knapsack
to the extent of n

PE(H) ∗ p
ω
κ copies; any items left over can be

given their own individual knapsack; by Chernoff bounds we
are guaranteed that there will be at most O(n0.5) additional
knapsacks used so that asymptotically the packing efficiency
will limit to PE since packing efficiency is a ratio which has
minH(n) = Ω(n) in the denominator.

Note that PE(H) is the best packing efficiency achievable
when both items and knapsacks are generated using the
stochastic model. However, given an arbitrary collection of
items, we can potentially achieve better packing efficiencies
if we are allowed to select the knapsacks. In fact, using an
LP similar to the one above and the fact that fixed dimension
integer programming is in P [19] it is possible to compute the
best packing in time polynomial in the number of items.

VII. ANALYSIS OF HEURISTICS

Given the reduction of k-HA to Multiple Knapsack Prob-
lem, k-HA is NP-complete. Unless P = NP , to compute
k-HA placement efficiently in polynomial time is impossible.
Thus, to solve a placement problem, we consider CSP and
the following 5 polynomial time heuristics commonly used
in industrial practice: First-fit, Best-fit, Worst-fit, MTHM and
Water-filling. Each of these 5 heuristics is a different variant
of greedy algorithm.

In our scenario of VM placement, the hosts are sorted
in increasing order of size before being input into these
heuristics. Given a sequence of VMs, First-fit and Best-fit will
pack VMs one by one until all the hosts can hold no more. At
each step, First-fit will put the VM into the smallest indexed
host that has enough space, while Best-fit will put the VM into
the tightest host that has enough space. For Worst-fit, it puts

VMs one by one into the emptiest host until no additional VM
can fit into any of the hosts.

MTHM is more complicated and we will give a more
detailed description in the next subsection.

Water-filling first sorts the VM in decreasing order of size,
then puts each VM into the lightest loaded VM that also has
enough space for that VM.

Load-balancing, i.e., ensuring the load is evenly spread
among the hosts, is a critical property desired by cloud clients.
It is also a research topic that attracts much attention [20].
However, First-fit, Best-fit and Worst-fit will overload some
hosts with many VMs while underloading other hosts with
too few VMs.

Also, the time to compute a placement is critical both for
initial placement of a set of VMs as well as contingency
placement of VMs from a failed host since cloud providers
are contracted to provide service with interruption/delay below
some small threshold.

This makes a CSP solver impractical for industrial use.
For example, the duration of a placement computation for
32 hosts can take on the order of minutes [1]. But industrial
requirement demands the computation be at most on the order
of milliseconds.

This leaves us with just two methods - Water-filling and
MTHM - to consider. In the following subsections, we first
describe how MTHM works and use a simple example to show
the limitation of MTHM. Then we show that, in the Gold-dust
World, Water-filling performs very close to the optimal. We
also develop simple bounds for the level of HA achievable
in the Gold-dust World - these bounds apply to all greedy
variants though we state and prove them only for Water-filling.
We further show that in the Doubling World Water-filling
actually achieves optimality.

In the end of this section, we evaluate the relative perfor-
mance between Water-filling and MTHM and conclude that
Water-filling is the heuristic of choice.

A. MTHM revisited

We review a heuristic for Multiple Knapsack Problem –
MTHM by Martello and Toth [6]. We first go over the heuristic
at a high level, then we use a small example to show the limit
of MTHM.

1) A high level overview of MTHM: MTHM takes the input:
(a) descending sorted list of items in unit profit (value over
weight); (b) ascending sorted list of knapsacks in sizes. It
outputs the approximated maximized total value of packable
items with the information of which knapsack to pack each of
them into.

In the case of our VM placement, we assign all the items
with uniform value 1. This reduces the goal to maximizing
the number of the VMs that get placed. We just need to input
a sorted VM list in order of increasing size.

The overall procedure of MTHM is:
i) (Initialization): For each knapsack, run the greedy step

in Algorithm 1, i.e. place as many items from the

Algorithm 1 Greedy packing on one bin in MTHM
Given one knapsack, and a sorted list of unassigned items

1: for each item in the sorted list do
2: if the size of this item is no greater than the bin’s

capacity then
3: Assign this item to the bin.
4: Remove this item from the unassigned list.
5: Subtract the bin’s capacity by the size of this item.

unassigned sorted item list as possible. Label packed
items as ”assigned”, otherwise ”unassigned”.

ii) (Rearrangement): Clear all items from knapsacks but
retain the ”assigned” or ”unassigned” information. Run a
cyclic allocation in Algorithm 2 only for those assigned
items. During this process, relabel these items if neces-
sary. Finally, run the greedy step in Algorithm 1 again
over all the knapsacks with the rest of the ”unassigned”
items.

iii) (Swap and fit): For each pair of assigned items, try to
see if swapping them will create more space for more
item to fit in.

iv) (Delete and fit): For each assigned item, try to see if
removing this item in its knapsack would create space
for more items to fit in.

The VMs are considered ”packable” if and only if the
maximized packed value equals the total value.

2) One simple counter example: We use the following
simple counter example to show that for certain lists of items,
MTHM will return “unpackable”, even though the items are
truly “packable” into the same knapsacks.

Consider 2 knapsacks with capacity 100, a list of items
sized [11, 12, 13, 14, 27, 44, 71]. There is one packing solution:
items sized [11, 13, 71] in the first knapsack, items sized
[12, 14, 27, 44] in the second knapsack. But MTHM will not
return this solution.

Let us see each step of MTHM.

1) Initialization step will label all the item except ”71” as
”assigned”. The greedy result is: [11, 12, 13, 14, 27] in
the first knapsack, [44] in the second knapsack.

2) In rearrangement step, the cyclic allocation process will
have the following. The first knapsack has [44, 14, 12],
and the second knapsack has [27, 13, 11]. Then 71 can
not fit into any of the two in the final greedy step.

3) In swap and fit step, the largest possible space increase
for the first bin can be made by ”swapping out 44, and
swapping in 11”. This only increases the space from
30 to 63, which is not enough for 71. Similarly, for
the second knapsack, the largest possible space increase
can come from ”swapping out 27, and swapping in 12”.
Then it only increases the space from 49 to 64 which is
still not enough for 71.

4) The delete and fit step simply does not contribute at all
towards getting a packing solution.

Algorithm 2 Cyclic allocation in MTHM
Given a sorted list of assigned items

1: s← 0
2: for each item in the sorted list of assigned item do
3: Let l be the first knapsack index in {s, s+ 1, . . . ,m−

1, 0, . . . , s − 1} such that knapsack l’s capacity is no
less than this item’s size.

4: if There is no such l then
5: Label this item back to “Unassigned”.
6: else
7: Assign this item to knapsack l.
8: Subtract knapsack l’s capacity by the size of this

item.
9: if l + 1 == m then

10: s← 0.
11: else
12: s← l + 1.

B. Gold-dust world: when VM sizes are small

We study the performance of Water-filling when the maxi-
mum VM size smax is much smaller than the minimum host
capacity cmin. Particularly, we show that the number of items
that Water-filling will allocate is close to the number achieved
by OPT the optimal algorithm.

We show the following two results.
i) For packing, when smax � cmin, the number VMs of

Water-filling can pack is close to the number packed by
OPT.

ii) Then for k-HA, when smax � cmin, instead of keeping
k standby hosts, we can just keep assigning VMs to hosts
by Water-filling, until the total remaining space reaches
some threshold. We state the corresponding claim and
quantify the threshold in Theorem 5.

1) Bounds for packing when using Water-filling: Let there
be m knapsacks with smallest of capacity cmin and let the
largest of the items have size smax with smax � cmin. Let
total capacity of all knapsacks be C0, so C0 >= m · cmin.

Theorem 4: If NOPT items can be packed into the bins by
OPT then Water-filling will pack at least (1 − smax/cmin) ∗
NOPT items.

Proof: First, Water-filling will always pack at least
Nwaterfill = NOPT −m items. Consider the items left over
by Water-filling, the smallest left over item is bigger the largest
residual space else greedy would pack it. but we know the total
volume of the residual space is greater than the total volume
of the leftover items because OPT is able to pack everything.
So the number of remaining items by greedy is at most m.
(Otherwise, the total volume of the residual space must be less
than the total volume of the leftover items.)

So Nwaterfill >= NOPT − m, i.e. Nworstfit/NOPT >=
1 − m/NOPT . So Water-filling achieves a ratio better than
1 − m/NOPT . Now NOPT >= C/smax. Therefore 1 −
m/NOPT >= 1−m · smax/C >= 1−m · smax/m · cmin =
1− smax/cmin.

2) Bounds for k-HA when using Water-filling: Now given
that a set of VMs that are packable into m hosts, what HA
level will such packing achieve? We answer this question by
the following mechanism.

Let Ck denote the total capacity of all the hosts except the
largest k hosts.

Theorem 5: k-HA is guaranteed, if k is the maximum
number such that the inequality in Eq.(1) holds.

Ck − S > (m− k)(smax − 1) (1)

Proof: Given a k, Ck − S denotes the residual capacity
of all the hosts except the largest k hosts when all the VMs
are packed into these m − k hosts. Now, if Ck − S > (m −
k)(smax− 1), by Pigeon Hole Principle, then there is at least
one host that has residual capacity that is strictly greater than
smax − 1 (at least smax), i.e. one other VM can fit into the
residual space.

Now, given a set of m hosts, and a sequence of incoming
VMs, we can actually keep allocating VMs to hosts by
Water-filling. At each assignment, we need to update all m
inequalities, the number of such inequalities that hold gives
the number of HA level.

C. Doubling world: VM sizes in the form of 2i

We show that when the VM sizes are of the form: 2i(i =
0, 1, 2, . . .), VMP can be solved exactly in polynomial time.
In particular, Water-filling not only finds the feasible packing
if it exists but it also achieves load balancing.

We first give the intuition for why packability is decidable
in polynomial-time in the doubling world. We are given a list
of n VMs in decreasing order of size, the VM sizes being of
the form 2i(i = 0, 1, 2, . . .), i.e. 256GB, 512GB, etc., and a
fixed number of k hosts with arbitrary capacity (does not need
to be of any special form). Consider the first VM in the list;
one of the two following cases must happen.

i) There is no space on any host to accommodate this VM.
Then clearly, this set of VMs is simply not able to be
packed/repacked.

ii) There are multiple hosts that can accommodate this VM.
Then, it does not matter which host we place this VM
on, because the remaining VMs can always well-utilize
the empty space which the first could have been put into.

Then we claim that given a set of k hosts Water-filling can
exactly check the packability of the list of VMs, whose sizes
are in the form of some power of 2.

We develop the following definitions and theorems to sup-
port the above argument.

Definition 1 (General packing): Any packing that just sat-
isfies the capacity constraint is a general packing.

Definition 2 (Canonical packing): The packing solution re-
turned by Water-filling is called canonical packing.

Definition 3 (Packing level of each VM): Let j denote the
host to which VM i is assigned by Water-filling. Let lij denote
the total size of VMs packed on host j before VM i is placed.

Canonical packing has the following necessary and suffi-
cient condition:

Property 1: A general packing is a canonical packing, if
and only if for any packed item on any host, there is no strictly
smaller item on another host that has a strictly smaller packing
level.

Theorem 6: There is a general packing, if and only if there
is a canonical packing.

Proof: ”⇐”: this direction is trivial since any canonical
packing is a general packing.

”⇒”: Let VMs in each host be ordered from largest at the
bottom to smallest at the top; Then across different hosts, for
any two different hosts s, t, if a larger VM on host s is at
a higher packing level than a smaller VM on host t, doing a
swap still gets a valid packing. Do such swaps until no more
swap can be done. We have a canonical packing.

Corollary 2: If Water-filling decides no canonical packing
exists, then there is no general packing.

This guarantees no false negative when Water-filling returns
a non-packable decision.

D. Performance evaluation

We evaluate Water-filling vs MTHM by our IID-IK model.
Given host capacity and VM size distribution, repeat the
process of random sampling from both of the two distributions
described in Section VI for 500 times, we get the asymptotic
metric PE in each setting.

1) A small dataset: First, we show how much worse MTHM
performs while Water-filling achieves optimality. We compute
PE for Water-filling and MTHM given the following host/VM
size distribution in Table I.

TABLE I
ONE SMALL HOST/VM SIZE DISTRIBUTION

Host size (GB) Frequency (%) VM size (GB) Frequency (%)

100 100 2 16.66
4 16.66
8 16.66
16 16.66
32 16.66
64 16.66

TABLE II
ASYMPTOTIC METRIC PE FOR THE SMALL DISTRIBUTION

Number of hosts PE for Water-filling Ratio for MTHM

10 4.84 3.98
20 4.72 3.68
30 4.77 3.73
40 4.74 3.65
50 4.74 3.65
60 4.77 3.68
70 4.77 3.69
80 4.78 3.68
90 4.75 3.69
100 4.76 3.67

Table II shows MTHM performs ∼ 21% worse than Water-
filling which achieves optimality in this dataset with a small
support for the distributions.

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Memory usage percentage of running VMs (%)

0

5

10

15

20

25
F

re
q

u
e

n
c
y
 (

%
)

Fig. 1. Distribution of memory usage by running VMs

2) Nutanix workload & asymptotic metric PE results: In
Nutanix’s data center, host-nodes (hosts) are deployed inside
clusters. Each cluster contains a number of hosts. VMs share
physical resources on each host.

In this snapshot of a typical workload at Nutanix, there are
5499 clusters. 2687 of them have 4 host nodes, the remaining
2872 of them have 3 host nodes.

Fig. 1 shows the memory in percentage consumed by those
running VMs on their host nodes. We can see the majority of
memory consumption on those host nodes are under 40%.

Fig. 2 shows the host capacity distribution. Fig. 3 shows the
VM size distribution.

0 200 400 600 800 1000 1200 1400 1600

Host memory capacity (GB)

0

5

10

15

20

25

30

F
re

q
u

e
n

c
y
 (

%
)

Fig. 2. Distribution of host memory capacity

Table III shows the asymptotic metric PE for host/VM size
distribution from the unmodified Nutanix workload. As we can
see from Fig. 2 and 3, the VM sizes are much smaller than
the bin sizes. This causes the asymptotic metric PE of Water-
filling to be slightly better than MTHM’s, which also supports
our previous conclusion on Gold-dust World in Section VII-B.

We round VM sizes up to the closest 2i GB, and merge the

0 1 2 3 4 5 6 7 8 9

VM memory size in log scale (2i GB)

0

5

10

15

20

25

30

35

F
re

q
u
e
n
c
y
 (

%
)

Fig. 3. Distribution of VM memory size

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

VM memory size in log scale (2i GB)

0

5

10

15

20

25

30

35

40

F
re

q
u
e
n
c
y
 (

%
)

Fig. 4. Distribution of VM memory size after rounding

distribution entries with the same rounded-up sizes. We get
the rounded-up memory size distribution for VMs in Fig. 4.

Table IV presents the asymptotic metric for this setting.
Water-filling achieves optimality due to the conclusion on
Doubling World in Section VII-C. Water-filling still performs
slightly better than MTHM due to the large gap in size between
hosts and VMs.

TABLE III
ASYMPTOTIC METRIC PE FOR ORIGINAL HOST/VM SIZE DISTRIBUTION

FROM NUTANIX

Number of hosts PE for Water-filling Ratio for MTHM

10 23.253 22.905
20 23.996 23.732
30 23.136 22.898
40 23.101 22.855
50 23.798 23.591
60 23.670 23.453
70 23.668 23.462
80 23.484 23.275
90 23.265 23.060
100 23.666 23.454

TABLE IV
ASYMPTOTIC METRIC PE FOR POWER-OF-2

Number of hosts PE for Water-filling Ratio for MTHM

10 21.831 21.831
20 21.730 21.730
30 21.881 21.878
40 21.399 21.398
50 21.485 21.483
60 21.141 21.138
70 21.973 21.971
80 21.407 21.407
90 21.464 21.457
100 21.555 21.551

E. Water-filling packs best

To summarize, Water-filling has the following nice proper-
ties.
• Water-filling places VMs into the emptiest host at each

step, which leads to a most balanced load distribution
among hosts.

• Given sorted lists of VMs and hosts in order of size,
Water-filling runs in θ(mn) time, while MTHM takes
θ(mn+n2). In industrial practice, the number of hosts is
often a constant. Thus, Water-filling satisfies the stringent
real-time requirements of commercial applications.

• Water-filling is proved to perform very close to the
optimal in Gold-dust World where VM sizes are much
smaller than host sizes.

• Also in Gold-dust World, we develop simple inequalities
to check the level of HA when applying Water-filling
in Theorem 5, which makes the computation of k-HA
placement even faster.

• Simulation on industrial workload from Nutanix shows
Water-filling has better asymptotic metric than MTHM in
our IID-IK model.

In other words, Water-filling is the best.

VIII. CONCLUSION

In this paper, we study the HA problem in VM placement
and prove novel complexity-theoretic results, particularly the
surprising result that the existence of a k-HA placement is
in NP . We leave open the problem of deciding the exact
complexity of deciding whether a given placement is k-HA
or not. We propose a natural stochastic model - IID-IK model
- which provides a uniform basis for comparing heuristics. We
also show that interestingly there exists a best heuristic in this
model whose packing efficiency is computable. We utilize this
model and analyze a variety of heuristics used in practice; we
also consider natural special cases of input distributions that
occur in the real world and conclude that Water-filling is the
best.

REFERENCES

[1] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti,
and D. H. Lorenz, “Guaranteeing high availability goals for virtual
machine placement,” in Distributed Computing Systems (ICDCS), 2011
31st International Conference on. IEEE, 2011, pp. 700–709.

[2] S. Nanda and T. cker Chiueh, “A survey of virtualization technologies,”
StonyBrook University, Tech. Rep., 2005.

[3] I. Pietri and R. Sakellariou, “Mapping virtual machines onto physical
machines in cloud computing: A survey,” ACM Comput. Surv., vol. 49,
no. 3, pp. 49:1–49:30, Oct. 2016.

[4] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan, “Lever-
aging virtualization to optimize high-availability system configurations,”
IBM Systems Journal, vol. 47, no. 4, pp. 591–604, 2008.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[6] S. Martello and P. Toth, “Heuristic algorithms for the multiple knapsack
problem,” Computing, vol. 27, no. 2, pp. 93–112, 1981.

[7] F. Hermenier, J. Lawall, and G. Muller, “Btrplace: A flexible consolida-
tion manager for highly available applications,” IEEE Transactions on
dependable and Secure Computing, vol. 10, no. 5, pp. 273–286, 2013.

[8] S. Yang, P. Wieder, and R. Yahyapour, “Reliable virtual machine
placement in distributed clouds,” in Resilient Networks Design and
Modeling (RNDM), 2016 8th International Workshop on. IEEE, 2016,
pp. 267–273.

[9] M. Jammal, A. Kanso, and A. Shami, “Chase: Component high
availability-aware scheduler in cloud computing environment,” in Cloud
Computing (CLOUD), 2015 IEEE 8th International Conference on.
IEEE, 2015, pp. 477–484.

[10] A. Jahanbanifar, F. Khendek, and M. Toeroe, “Providing hardware
redundancy for highly available services in virtualized environments,” in
Software Security and Reliability, 2014 Eighth International Conference
on. IEEE, 2014, pp. 40–47.

[11] S. Shen, A. Iosup, A. Israel, W. Cirne, D. Raz, and D. Epema, “An
availability-on-demand mechanism for datacenters,” in Cluster, Cloud
and Grid Computing (CCGrid), 2015 15th IEEE/ACM International
Symposium on. IEEE, 2015, pp. 495–504.

[12] A. Zhou, S. Wang, Z. Zheng, C.-H. Hsu, M. R. Lyu, and F. Yang,
“On cloud service reliability enhancement with optimal resource usage,”
IEEE Transactions on Cloud Computing, vol. 4, no. 4, pp. 452–466,
2016.

[13] K. Jansen, “A fast approximation scheme for the multiple knapsack
problem,” in International Conference on Current Trends in Theory and
Practice of Computer Science. Springer, 2012, pp. 313–324.

[14] E. G. Coffman, K. So, M. Hofri, and A. Yao, “A stochastic model of
bin-packing,” Information and Control, vol. 44, no. 2, pp. 105–115,
1980.

[15] P. W. Shor, “the average-case analysis of some on-line algorithms for
bin packing,” Combinatorica, vol. 6, no. 2, pp. 179–200, 1986.

[16] E. G. C. Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, L. A.
McGeoch, P. W. Shor, R. R. Weber, and M. Yannakakis, “Fundamental
discrepancies between average-case analyses under discrete and contin-
uous distributions: A bin packing case study,” in Proceedings of the 23rd
Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New
Orleans, Louisiana, USA, 1991, pp. 230–240.

[17] V. Gupta and A. Radovanovic, “Online stochastic bin packing,” CoRR,
vol. abs/1211.2687, 2012. [Online]. Available: http://arxiv.org/abs/1211.
2687

[18] C. M. Papadimitriou, Computational complexity. Reading, Mas-
sachusetts: Addison-Wesley, 1994.

[19] I. Smeets, A. K. Lenstra, H. Lenstra, L. Lovász, and P. van Emde Boas,
“The history of the lll-algorithm,” in The LLL Algorithm - Survey and
Applications, 2010, pp. 1–17.

[20] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in INFOCOM,
2012 Proceedings IEEE. IEEE, 2012, pp. 702–710.

