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Abstract Salt marshes are sinks for atmospheric carbon dioxide that respond to environmental changes
related to sea level rise and climate. Here we assess how climatic variations affect marsh-atmosphere
exchange of carbon dioxide in the short term and compare it to long-term burial rates based on radiometric
dating. The 5 years of atmospheric measurements show a strong interannual variation in atmospheric
carbon exchange, varying from −104 to −233 g C m−2 a−1 with a mean of −179 ± 32 g C m−2 a−1.
Variation in these annual sums was best explained by differences in rainfall early in the growing season.
In the two years with below average rainfall in June, both net uptake and Normalized Difference Vegetation
Index were less than in the other three years. Measurements in 2016 and 2017 suggest that the mechanism
behind this variability may be rainfall decreasing soil salinity which has been shown to strongly
control productivity. The net ecosystem carbon balance was determined as burial rate from four sediment
cores using radiometric dating and was lower than the net uptake measured by eddy covariance
(mean: 110 ± 13 g C m−2 a−1). The difference between these estimates was significant and may be because
the atmospheric measurements do not capture lateral carbon fluxes due to tidal exchange. Overall, it was
smaller than values reported in the literature for lateral fluxes and highlights the importance of investigating
lateral C fluxes in future studies.

1. Introduction

Salt marshes have long been recognized for their critical role in processing and storing material passing
between terrestrial ecosystems and the ocean. The accumulation of terrestrial sediments and soil organic
matter are important mechanisms contributing to the development and maintenance of tidal wetlands rela-
tive to sea level rise (Morris et al., 2002; Redfield, 1965). Burial of organic matter and carbon (C) in sediments
makes them strong sinks of atmospheric carbon dioxide (CO2) (Chmura et al., 2003; Hopkinson et al., 2012;
Mcleod et al., 2011). This C burial rate can be determined as average accumulation rates over the lifetime of
key radioisotopes, for example, 50 to 100 years based on radiometric dating using 137Cs and 210Pb (Chmura
et al., 2003; Mcleod et al., 2011). However, the sources of organic C burial, the relative contribution of in situ
plant production, and the controls on burial are highly uncertain inwetland-dominated coastal system (Bauer
et al., 2013). This is mostly due to a lack of large-scale measures of relevant fluxes over varying environmen-
tal conditions. In terrestrial systems, the eddy covariance method (Baldocchi et al., 1988) has been used to
study the net ecosystem exchange (NEE) of carbon dioxide (CO2) and its drivers at various scales (i.e., hourly
to years). However, unlike in terrestrial systems, NEE in tidal wetlands may not fully represent net C accumu-
lation, as considerable amounts of organic and inorganic forms of C are exchanged laterally with estuarine
waters (Cai, 2011; Chapin et al., 2006; Wang et al., 2016, 2017). Nevertheless, NEE does have the potential to
constrain lateral C fluxes. The difference between NEE measurements and burial rates allows to estimate the
mass loss of C that is not exchanged with the atmosphere (e.g., Troxler et al., 2013).

Long-termannualmeasuresof abovegroundproductivity reveal substantial variation fromyear to year (Morris
& Haskin, 1990; Morris et al., 2013). This variation in marsh biomass production is most often explained by
variation in drivers that affect soil salinity levels, such as anomalies in mean sea level, freshwater discharge,
and rainfall (Hanson et al., 2016; Morris, 2000; Morris et al., 2002; Wieski & Pennings, 2014). Generally, high soil
salinity levels reduce biomass production, for example, via inhibition of nutrient uptake (Morris, 1984) and/or
CO2 uptake via stomatal closure (Hwang & Morris, 1994). In contrast to variations in net biomass production,
we know little about annual variations inmarsh gross primary production (GPP), ecosystem respiration (Reco),
and NEE or the role of salinity variation as their drivers. Here we conducted eddy covariance measurements
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Figure 1. Land cover map of study site with footprint climatology
(FFP v. 2.1) for all valid flux measurements in 2013. Coordinates are in meters,
and the center point is the flux tower location. Radius is 2,000 m. Shown
are the maximum of the footprint function and the 30%, 60%, and
90% footprint contribution. Land cover types are defined by elevation
thresholds (in NAVD88) in a digital elevation model: upland (≥1.8 m), marsh
(0.6–1.8 m), and creek (≤0.6 m). Ponds were digitized from 2005 imagery
(Millette et al., 2010).

of CO2 exchange for 5 years in a New England salt marsh and determined
the long-term burial rate of organic carbon. We address the following
questions: (1) What is the interannual variability in NEE and how does it
relate to variation in climate? and (2) How does contemporary NEE differ
from the long-term C burial rate?

2. Materials and Methods
2.1. Site Description
Carbon cycling processes were examined in a tidal salt marsh in the
Plum Island Sound estuary in northeastern Massachusetts, USA. Tides are
semidiurnal with an average range of 2.9 m and a spring-neap range of
2.6–4.0 m. The study site, as most of the marsh, is dominated by high
marsh (elevation > 1.3 m in North American Vertical Datum of 1988
(NAVD88)), which is only inundated during biweekly spring tides and
storms. Vegetation on the dominant high marsh platform is composed of
Spartina patens and Distichilis spicata in well-drained areas with stunted
Spartina alterniflora occurring in areas with limited drainage. Low marsh
areas and creek banksmake up less than 20% of the area and are predom-
inantly vegetated by Spartina alterniflora. Ponds occur at both higher and
lower elevations (Millette et al., 2010) and are dynamic features in the land-
scape (Wilson et al., 2014). The average habitat composition of the area
contributing to the fluxmeasurements is 1%upland, 9%ponds, 9% creeks,
and 81% vegetated marsh (Figure 1).

2.2. Eddy Covariance and Meteorological Measurements
NEEwasmeasured using the eddy covariance technique for 5 years begin-
ning in 2013. To be able tomeasure continuous year-round fluxes, the flux
tower was established on a small rocky upland outcrop within the high
marsh,which protected it fromwinter ice damage.Wind velocitywasmea-
sured by a 3-D sonic anemometer (CSAT-3A) mounted 14 m above the

marsh surface. The relatively high measurement height was chosen in order to minimize the influence of the
rock and shrub vegetation on the turbulence.

Sample air was drawn from the central point of the anemometer and drawn through a 60 cm long tube to an
infrared gas analyzer (CPEC200). Pump flow rate was 7 L/min. Turbulent measurements were recorded with a
frequency of 10 Hz. Air temperature and relative humidity (Campbell Scientific HC2S3) weremonitored at the
same height as the anemometer.

FromMay to end of October, a separate meteorological station was set up on the high marsh to record addi-
tional radiation data. A four-component net radiometer (Hukseflux NR01) wasmounted 1.5m above the high
marsh surface. At the same height, two sensors (LI190SB) monitored incoming and reflected photosyntheti-
cally active radiation (PAR) to estimate a broadbandNormalizedDifference Vegetation Index (NDVI) according
to Wilson and Meyers (2007). This index was used in our NEE model described below. Water table height was
recorded with a pressure transducer (Campbell Scientific CS456). Soil temperature was recorded at depths of
2 cm, 6 cm, 10 cm, 20 cm, and 40 cm. In 2016 and 2017, measurements were expanded to include specific
conductivity and temperature of surface well water on the high marsh (model 600R water quality sampling
sonde, YSI Inc.) as described in Barr et al. (2010).

In the nongrowing season (November–April), themeteorological stationwasmoved to a protected site close
to the Plum Island Long-Term Ecological Research field station to record incoming and reflected radiation,
albedo, and PAR as well as water table height. All meteorological data were recorded in 10 min intervals.

2.3. Eddy Covariance Data Processing
2.3.1. Flux Calculation and Quality Control
Atmospheric turbulent fluxes were calculated as covariance between vertical wind speed and dry mixing
ratios (Novick et al., 2013). Signals were despiked, and two coordinate rotations were performed on the wind
components. The time lag between wind and CO2 mixing ratio measurements was determined within a set
window between 0.1 and 0.3 s and removed for each averaging interval of 30 min. For every 30 min period,
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Figure 2. Air temperature (Tair, top) at the tower and precipitation
(P, bottom) recorded at the recorded at the meteorological station run by
the Long-Term Research Project meteorological station approximately 7 km
away from the study site for the five study years. Thirty year averages for
Tair and P (solid lines) and maxima and minima for Tair (dashed lines)
are from a NOAA station in Haverhill, MA, approximately 20 km from the
study site.

a factor for the correction of the frequency attenuation of the flux was cal-
culated according to Moore (1986) and applied to the flux. Fluxes were
calculatedusing the Edire software (version 1.5.0.32, R. Clement, University
of Edinburgh, UK).

The calculated fluxes were filtered for system malfunctioning and cali-
bration periods, integral turbulence characteristics, stationarity, and wind
direction (Foken et al., 2012). Outliers were filtered out using the approach
described by Papale et al. (2006). Furthermore, we excluded data when (a)
the footprint was not representative for the high marsh, that is, included
large fractions of upland and large water bodies (0–115∘, Figure 1) and
(b) when the 80% footprint extended more than 2,000 m (see below
and Figure 1). On average 48% of the observations were removed before
filtering nighttime fluxes during low turbulent conditions.

The thresholds in friction velocity and their uncertainty were determined
according to Papale et al. (2006) as implemented in REddyProc 0.8-2
(Department for Biogeochemical Integration, 2016).

2.3.2. NEE Gap-Filling, Partitioning, and Uncertainty
Processes that have short-term effects on CO2 fluxes from marsh sedi-
ments and plants, such as temperature, radiation, and tidal inundation,
need to be considered in NEE modeling. We have not observed such
short-term effects in the nongrowing season, and thus we used the mean
diurnal variation method (Falge et al., 2001) to fill gaps in the fluxes from
November to April (using 10 day windows). During the growing season,
however, we have used an adjusted PLIRTLE model (using 8 day win-
dows) (Forbrich & Giblin, 2015), to partition the growing season fluxes
(May–October) into GPP and ecosystem respiration (Reco). Following the
approach developed in Forbrich and Giblin (2015), we can account for
the reduction of GPP and Reco during inundation of plant tissues by using
the simultaneous reduction in NDVI whichmimics the decrease in soil and
vegetation exposed to the atmosphere:

NEE = GPP + Reco (1)

GPP =
Pmax

k
× ln

(
Pmax + 𝛼 × I

Pmax + 𝛼 × I × exp−k × NDVI

)
(2)

R = Rref × NDVI × exp

(
E0 ×

(
1

Tref − T0
− 1

T − T0

))
(3)

where NDVI is the gap-filled time series of NDVI determined on site (Forbrich & Giblin, 2015), I is PAR
(μmol m−2 s−1), T is air temperature (∘C), Tref is the reference temperature set to 15∘C, and T0 is −46.02∘C).
Pmax is the light-saturated photosynthetic rate (μmol m2 s1), k is the Beer’s light extinction coefficient
(fixed to 0.5), and 𝛼 is the initial slope of the light response curve (μmol CO2 μmol photons−1). Rref is the
temperature-independent level of respiration (μmol CO2 m−2 s−1), while E0 is a short-term temperature
sensitivity parameter (μmol CO2 m

−2 s−1) (Reichstein et al., 2005).

To estimate the effect of randommeasurement uncertainty and gap-filling uncertainty on the integrated net
and gross fluxes, we used a Monte Carlo approach based on Richardson and Hollinger (2007). We estimated
the random measurement uncertainty following Finkelstein and Sims (2001). We then created 100 flux data
sets by adding normally distributed random noise to the observations and their individual error. For each run
the gap-filling procedure described above was implemented. We then calculated the mean of the integrated
fluxes from the 100 runs and its 95% confidence interval.
2.3.3. Land Cover Map and Footprint Modeling
We distinguished between four different land cover types: forested upland, vegetated marsh, marsh creeks,
and marsh ponds. We use a digital elevation model (Millette et al., 2010) to separate the first three based on
elevation thresholds (Figure 1). Ponds were digitized from 2005 imagery (Millette et al., 2010).
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Figure 3. Average monthly budgets for net ecosystem exchange (NEE)
(top) and gross primary production (GPP) and Reco (bottom). Values are u∗
corrected. NEE displays a pronounced seasonality with net release (positive
fluxes) from October to May and strong net uptake (negative fluxes) from
June to September when GPP dominates (bottom).

We ran the 2-D footprint parametrization (FFP) by Kljun et al. (2015), which
is based on the Langrangian particle dispersion model of Kljun et al.
(2002) and suitable for convective to stable boundary layer conditions. It
was run with inputs derived frommeasurements of measurement height,
wind speed, Obukhov length (which characterizes the relative contribu-
tions from buoyant and shear production to turbulent kinetic energy),
u∗, standard deviation of lateral velocity fluctuations, and wind direction
to calculate 30 min 80% footprints. Values for roughness length were set
to 0.015 to account for the short marsh plant canopies and adjusted
for snow cover (z0 = 0.002 m) and flooding (z0 = 0.001 m). The boundary
layer heights were estimated according to Kljun et al. (2015). The land
cover composition of the 30min footprintswas determinedoverlaying the
footprints with each land cover map (Figure 1).
2.3.4. Controls on Interannual Variability in NEE
We studied the controls on interannual variability in annual C uptake using
the approach described by Zscheischler et al. (2016). It identifies days with
high fluxes (“most active days”) that best explain the variation in annual
C fluxes and analyzes their environmental drivers. Most active days were
defined as dayswhen fluxes crossed the 85th percentile of the aggregated
flux distribution of all years.

We analyzed whether most active days could be separated from the
remaining days using a principal component analysis (PCA) of environ-
mental drivers. We used the same drivers as Zscheischler et al. (2016):
day of the year, temperature, PAR, vapor pressure deficit (VPD), and cumula-
tive rainfall of the previous 30 days. We also estimated the growing season
length as a possible alternative to most active days. Beginning and end-
ing of the growing season were defined as the point in time when the
smoothed daily GPP value crossed a threshold set to 10% of the 99th
percentile of summer GPP values across all years.

2.4. Moderate Resolution Imaging Spectroradiometer NDVI
To monitor vegetation dynamics, we used satellite data from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) that have been filtered for tidal flooding conditions (O’Connell et al., 2017). These images
were used to generate an NDVI time series composite for 8 day windows. We estimated parameters related to
phenology using a double logistic model (Beck et al., 2006) after filtering for outliers. NDVI was modeled as a
function of time (t) using six parameters: the winter NDVI (wNDVI); the maximum NDVI (mNDVI) during the
growing year; two inflection points, one as the curve rises (S) and one as it drops (A); and the rate of increase
or decrease (mS and mA) of the curve at the inflection points.

NDVI(t) = wNDVI + (mNDVI − wNDVI)

×
(

1
1 + exp(−mS × (t − S))

+ 1
1 + exp(mA × (t − A))

− 1

)
(4)

2.5. Peat Core C Content, Radiometric Dating, and Rates of C Burial
In October 2014, four 40 cm deep cores were taken on the high marsh platform within 20–40 m of the flux
tower. Two were taken in stunted S. alterniflora, and two were taken in S. patens. Cores were taken to the lab
and stored at 4∘C before further analysis.

Cores were sectioned in 2 cm layers, which were subsequently dried. Bulk density was determined on the
section, which was subsequently ground. Subsamples for CHN analysis (Thermo Scientific Flash 2000 NC Soil
Analyzer) were first hydrated and then fumed with HCl to remove carbonates. The core sections were dated
based on profiles of 137Cs and 210Pb. We used a pure germanium gamma spectrometer (Canberra, GCW3023)
tomeasuregammaemissionsof 210Pb (46keV), 137Cs (661.62 keV), 214Pb (352keV), and 214Bi (609.32 kev). 214Pb
and 214Bi were used to determine unsupported 210Pb, as a measure of 226Ra. Subsamples for radiochemical
analysis were sealed for at least 21 days to ensure equilibrium between 226Ra and 210Pb before counting.
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Table 1
Growing Season Length (GSL) andMost Active Days (MAD) for NEE, GPP, and Reco
(All in Days)

Year GSL NEE GPP Reco
2013 168 64 45 36

2014 173 45 18 33

2015 162 66 43 54

2016 160 55 13 12

2017 177 62 28 12

nall — 1,826 920 920

85th percentile — 2.4 7.5 4.4

Note. MAD were determined as flux values above the 85th percentile of the
aggregated flux distribution of all years (nall = 1,826) or all growing seasons
(nall = 920). These thresholds are given in g C m−2 a−1. NEE = net ecosystem
exchange; GPP = gross primary production.

137Cs is a product of bomb-derived fallout with an expected peak indi-
cating 1963. 210Pb activity depends on two sources, supported activity
from radioactive decay of the natural 226Ra occurring in the sediments
and the unsupported 210Pb activity from atmospheric fallout. The age of
sediments (t) canbedeterminedwithCxs(t) as themeasuredexcess 210Pb
activity and Cxs(0), the unknown initial activity, from equation

Cxs(t) = Cxs(0) × exp(−𝜆 × t) (5)

provided that the value for the initial activity (Cxs(0)), which depends on
the rate of atmospheric fallout, can be estimated (Appleby, 2008). Here
we assume a constant initial activity and a constant sedimentation rate
(CIC model; Krishnaswamy et al., 1971). Mass accumulation rates were
determined based onmass depth.We calculated the 137Cs-derived accu-
mulation rates bydividing themass depthof the 137Cs activity peakby51
(the number of years between sampling and 1963). Using the CICmodel,
we calculated a single mass accumulation rate from a plot of the natural
log of the excess activity withmass depth. Burial rates are based on each

mass accumulation rate times the average C concentration below the rooting zone (i.e., of the lowest 10 cm
of each core; 11–16%; section 3.4.1).

Accretion rates were determined as described above, but using soil depth instead of mass depth. Finally, to
evaluate the dating, we compare the age derived from the CIC model with the 137Cs peak.

tCIC =
zi

accretion rate
(6)

with zi as soil depth.

2.6. Comparison of NEE and Burial Rates
We tested whether the difference between the mean annual NEE of the four years and the mean of the
burial rates was significantly different from 0. To do so, we used a bootstrap analysis to determine the 95%

Figure 4. Principal component analysis for environmental drivers from May
to October, projection on the first two principal components (PC). Most
active days of net ecosystem exchange are in red, others in black. DOY = day
of year, Rain 30d = cumulative rainfall over the previous 30 days.

confidence interval of the difference. This analysis repeatedly sampled
both data sets with substitution 100 times to recalculate the mean differ-
ence and its confidence interval.

3. Results
3.1. Meteorology
Annual average temperatures at the marsh site between 2013 and 2017
were higher than the long-term average of 8.7∘C (NOAA, Haverhill, MA,
USA, USC00193505). Annual precipitation over the 5 year periodwas lower
than the long-term average of 1269mm (1981–2010) with marked sea-
sonal differences between the years. In the long term, rainfall is fairly
evenly distributed over the year with two smaller peaks in spring and fall
(Figure 2). Summer rainfall varied markedly over the five years, especially
in June. In 2013, 2015, and 2017, monthly rainfall was above average; in
the other two years it was below average. In 2016, measured rainfall was
below average throughout the growing season (Figure 2).

3.2. CO2 Fluxes
3.2.1. Net Ecosystem Exchange of CO2

Net CO2 fluxes showed a pronounced seasonality in all years. The marsh
acts as a net source to the atmosphere from October to May and as a sub-
stantial net sink from June to September (Figure 3). Lowest fluxes occur in
February and March when the soil temperature is close to freezing (data
not shown). In all years, the marsh was a strong net carbon sink but the
strength of this sink varied considerably. Annual net uptake was similar
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Figure 5.Weekly rainfall sums and averages of porewater salinity measured
on the high marsh in 2016 and 2017.

in 2013 (−199±12 g Cm−2 a−1), 2015 (−196±17.1 g Cm−2 a−1), and 2017
(−233 ± 17 g Cm−2 a−1) but lower in 2014 (−104 ± 11 g Cm−2 a−1) and in
2016 (−165 ± 13 g C m−2 a−1).
3.2.2. CO2 Flux Components
The component fluxes GPP and Reco showed strong seasonal trends in all
five years (Figure 3). In 2013, 2015, and 2017, GPP in June and July was
greater than in the other two years. During the period May–October, GPP
varied from−807± 10 (2017) and−877± 10 (2013) to−900± 10 g Cm−2

(2015) compared to −759 ± 9 and −737 ± 13 g C m−2 for 2014 and 2016.
Monthly Reco did not show this systematic variability between years. Grow-
ing season Reco tended to be higher in 2013 and 2015 (606 ± 12.8 and
643 ± 16.6 g C m−2, respectively) than in 2014 and 2016 (581 ± 11 and
539 ± 14 g C m−2) but not in 2017 (532 ± 13 g C m−2).

3.2.3. Controls on Interannual Variability in NEE
We found that the number of most active days per year explained vari-
ation in annual C fluxes better than the length of the growing season

(Zscheischler et al., 2016): The latter varied little between the years, ranging from 160 days (2016) to 177 days
(2017), and did not vary with annual net uptake. Contrasting this, the number of most active days for NEE var-
ied between years and higher numbers occurred in 2013, 2015, and 2017 (Table 1). Meanwhile, the seasonal
distribution of most active days did not vary between years (data not shown).

In our PCA analysis we found two main drivers linked to the observed variability. Most variation within the
selected climate drivers described above occurs seasonally and thus were separated along the direction of
day of year (DOY) within the PCA. This first principal component explained 61.2% of the variance; the second
component was directed toward “cumulative rainfall in prior 30 days” and explained 33.7% (Figure 4). Most
active days were generally separated along the second principal component, indicating a positive effect of
rainfall on annual NEE (Figure 4). The most likely way in which rainfall impacts variability in NEE is through
altering soil salinity. Measurements taken in 2016 (dry) and 2017 (wet) show a marked divergence of salinity
in June and July which corresponded to the large differences in early season rainfall (Figure 5).

3.3. MODIS NDVI
NDVI started to increase at the beginning of May and started to decrease in September during all five years
(Figure 6). The fitted double logistic curve described this pattern. Fitting parameters did not significantly differ
between years except the one describing the early inflection point (Table 2). It is significantly earlier in 2013,
2015, and 2017 than in the other two years, describing an earlier increase in NDVI which results in a higher
peak NDVI in these three years (Figure 6).

Figure 6. Moderate Resolution Imaging Spectroradiometer Normalized
Difference Vegetation Index (NDVI), filtered for tidal inundation according to
O’Connell et al. (2017) and double logistic model fit (Table 2). NDVI in 2013,
2015, and 2017 increases earlier than in the other two years.

3.4. Sediment Core Analysis
3.4.1. Sediment Characteristics
Sediment bulk density did not show a consistent trend with depth in the
four cores (Figure 7). The average of the upper 10 cm is 0.22 g cm−3 and
of the lowest 10 cm is 0.25 g cm−3. The carbon content in all four cores
ranged from8.8% to 23.9% andwas generally higher in the top 25 cm than
below. This corresponds to our observation that below that depth the root
density is less than in the top soil. Average C content in the upper 10 cm
was 16% carbon and 12.5% in the lowest 10 cm (core 1: 11%, core 2: 12%,
core 3: 16%, and core 4: 11%). These values fall well in the range of a recent
synthesis (Morris et al., 2016).

3.4.2. Mass Accumulation and Burial Rates
Excess 210Pb activities decreased exponentially with (mass) depth in all
four cores (Figure 8). The 137Cs peak occurred at slightly different depths
in each core, ranging from 16 cm to 25 cm. The age estimates for the two
techniques agreed well, with the exception of core 3 (Table 3). Its 210Pb
depth profile was irregular which resulted in an unreasonably young age
estimate for the section with the 1963 137Cs peak. We thus excluded the
210Pb data from core 3 from any further calculation.
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Table 2
Fitting Parameters of Double Logistic Model (Beck et al., 2006)

Year n wNDVI mNDVI mS S mA A

2013 32 0.27 (±0.01) 0.74 (±0.01) 0.08 (±0.01) 152 (±1) 0.05 (±0.0) 288 (±2)
2014 35 0.28 (±0.01) 0.69 (±0.02) 0.07 (±0.01) 161 (±2) 0.04 (±0.01) 294 (±4)
2015 34 0.25 (±0.01) 0.72 (±0.01) 0.08 (±0.01) 145 (±1) 0.03 (±0.01) 284 (±2)
2016 37 0.27 (±0.0) 0.74 (±0.04) 0.06 (±0.01) 172 (±3) 0.04 (±0.01) 294 (±5)
2017 33 0.31 (±0.0) 0.75 (±0.02) 0.09 (±0.01) 149 (±1) 0.03 (±0.01) 294 (±4)

Note. Values in parentheses indicate their 95% confidence interval. NDVI = Normalized Difference Vegetation Index;
wNDVI = winter NDVI; mNDVI = maximum NDVI. S and A are inflection points of the curve, representing transition of
growing season, and mS and mA the change of the curve.

Figure 7. Depth profiles of bulk densities (BD, left) and carbon (C, right) content of all four cores.

Figure 8. Profiles of radioisotope activities along mass depth. 137Cs activities are uncorrected for counting efficiency.
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Table 3
Dating Results for All Four Cores Taken in 2014

Depth of 210Pb age Accretion rate Mass accumulation rate C burial
137Cs peak at 137Cs peak 137Cs 210Pb 137Cs 210Pb 137Cs 210Pb

Core (cm) (years) (cm a−1) (g m2 a−1) (gC m2 a−1)

1 25 52 0.49 0.48 1,036 1,012 114 111

2 22 56 0.43 0.39 936 918 112 110

3 21 42 0.42 — 813 — 130 —

4 16 50 0.32 0.32 843 998 93 110

Mean ± 2𝜎 907 ± 201 976 ± 99 112 ± 15 110 ± 1

Note. The 137Cs peak (depth in centimeters) is 51 years ago which should agree with the age determined from the CIC model using 210Pb (age in years). Accretion
rates (cm a−1 and mass accumulation rates (g m2 a−1) were determined from the (mass) depth of the 137Cs peak or a fit of 210Pb activities against depth or mass
depth. C burial rates (in g C m2 a−1) were estimated using mass accumulation rates multiplied with average C content of the lowest 10 cm. Values are shown for
single cores and means ±2𝜎.

Both accretion and mass accumulation rates agreed well between methods, with accretion rate estimates
ranging from 0.32 cm a−1 to 0.49 cm a−1 (137Cs) or 0.32 cm a−1 to 0.48 cm a−1 (210Pb) (Table 3). Since there
were no large variations in C density between cores, the average C burial rates agreed very well between the
two methods as well: 112 ± 15 g C m2 a−1 (137Cs) and 110± g C m2 a−1 (210Pb).

3.5. Comparison of NEE and Burial Rates
The average annual NEE over the five years was significantly greater than the burial rate by 69 g Cm2 a−1 (95%
confidence interval 25–103 g C m2 a−1).

4. Discussion
4.1. Rainfall as Driver of Marsh Productivity
In the five years presented here, the magnitude of net CO2 uptake between years can best be explained by
the occurrence of high fluxes during the growing season rather than growing season length (Zscheischler
et al., 2016). At this site, the growing season length is short and characterized by rapid growth in June (Morris
et al., 2013). This strong seasonality is evident in all years, but higher fluxes are associated with high rainfall
in the prior month, which at our site reflects lower soil salinity levels (Figure 5). Corresponding to high rainfall
events, NDVI values are higher during summermonths withmore rainfall (2013, 2015, and 2017) compared to
the other two years, indicating higher biomass production during these years. Similarly, Mo et al. (2017) found
low NDVI values in June and July in Spartinamarshes in Louisiana during drought years, when plant growth
was inhibited. Rainfall, together with tidal inundation and evapotranspiration, controls soil salinity levels in
salt marshes (e.g., Hughes et al., 2012), which regulates marsh productivity (Morris, 2000). For example, under
anaerobic conditions, increased salinity inhibits ammonium uptake by S. alterniflora and S. patens (Bradley &
Morris, 1991; Morris, 1984). A direct effect on photosynthesis in S. alterniflora occurs during increasing salin-
ities via a reduction in stomatal conductance (Hwang & Morris, 1994). A comparison of soil salinity between
2016 and 2017 shows lower salinities in 2017 early in the growing seasonwhen rainfall was higher than in the
previous year. This would have created favorable conditions for plant growth in a critical phase of plant devel-
opment (Figure 6), explaining our observation of higher NDVI and GPP in summer 2017 and possibly in 2013
and 2015. The resulting higher NDVI in these years would indicate an increased capacity for light absorption
by the marsh canopy and thereby increase GPP overall (Baldocchi et al., 2018). These observations support
the finding that timing of rainfall is more important for plant growth than its magnitude in salt marshes (Chu
et al., 2018; Hanson et al., 2016). For example, above average rainfall occurred in July 2014, which seems to
have been too late in the growing season to have any positive effect on GPP. Similarly, Chu et al. (2018) find
a positive effect of rainfall on NEE by decreasing soil salinity levels during the period of rapid growth but less
or even negative effects in later parts of the season.

Reco shows less annual variation than GPP, though it tends to be higher in more productive years. Conditions
that increase GPP fromone year to another are usually accompanied by a proportional but smaller increase in
Reco (Baldocchi et al., 2018). However, in some freshwater wetlands, an increase in Reco has been observed dur-
ing extended periods of low rainfall as a consequence of a lowered water table, which decreases productivity
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if plants become water stressed and increases aerobic decomposition (Aurela et al., 2007; Helfter et al., 2015;
Lund et al., 2012; Peichl et al., 2014). We did not observe this effect in the salt marsh described here, where
regular tides prevent a prolonged lowering of the water table and peat oxidation.

At PIE, productivity of S. alterniflora growing at a lower elevation than at our site correlates positively with the
mean highwater (MHW) during the growing season, as tidal flushing helps regulate salinity as well as hypoxia
inmarsh porewaters (Morris et al., 2013). However, in higher elevationmarshes dominated by S. patens, Morris
et al. (2013) could not detect a similar correlation between productivity withMHW. This may in part be due to
larger variability around biomassmeasurements of S. patenswhich forms dense carpets of stems. However, at
higher elevation sites and especially in areas with limited drainage (i.e., the most salt stressed areas), rainfall
rather than tidal inundation may be the dominant control on soil salinity in these interior marsh areas (Gross
et al., 1990).

4.2. Marsh Carbon Storage
It is well established that salt marshes are strong sinks of organic carbon as long as they continuously gain
elevation. This vertical growth isolates deeper soil layers from the input of labile carbon via roots and rhizomes
(Morris &Bowden, 1986). The assumption as summarizedbyMorris et al. (2016) is that sediment volumewithin
the rooting zone is influenced by loss of volume due to decomposition, erosion, and compaction and gains
in volume due to the addition of roots, rhizomes, and surface deposition. Because only the refractory portion
contributes to accretion and long-term C burial, the final volume is only achieved when the organic matter
is stabilized, which is well below the rooting zone (Davis et al., 2015; Morris & Bowden, 1986). Therefore, in
assessing burial rates from sediment cores, we have used the C content frombelow the rooting zone (Figure 7)
as a proxy for this refractory portion of soil C and assume negligible further compaction. The resulting burial
rates are in the range of estimates recently reviewed for New England by Drake et al. (2015) ranging from 74
to 257 g C m−2 a−1. As the authors mention, the considerable variation is likely due to the differing sampling
depths, varyingbulk densities, and estimation techniques of C applied in each study. However, their estimated
C accumulation rates for Plum Island marshes were similar to ours (87 (using 137Cs) to 116 (using 210Pb CIC)
g C m−2 a−1).

Conceptually, sediment C accumulation rates can be assumed to equal the net ecosystem carbon balance
(NECB) budget, that is, the amount of C stored in the system. In tidal wetlands, NEE may exceed these burial
rates because the marsh is known to export carbon to the estuary via porewater drainage and tidal flushing
(Raymond & Hopkinson, 2003; Vallino et al., 2005). As expected, our measured NEE indicates a larger net C
uptake than the burial rate, and this difference may be used as first-order estimate of lateral C export (Troxler
et al., 2013). At our site this would suggest a bulk lateral export on the order of 69 g C m−2 a−1. This is con-
siderably less than the 400 g C m−2 a−1 estimated by Wang et al. (2016) for dissolved inorganic carbon (DIC)
export alone.

One reason for the low estimate of C export may be themarsh and creekmorphology of Plum Island. The hot
spot for this exchange is themarsh interface along the creeks (Gardner &Gaines, 2008).Marshes at Plum Island
are relatively high in elevation and flooded only during spring tides. Most of the flux footprint represents the
marsh interior (Figure 1), which is characterized by limited drainage and flooding frequency. Therefore, the
creekbanksdonothavea large influenceon theoverall NEEmeasurements. Another issuemaybe thedifferent
fate of the two main dissolved C compounds: In the creekbank, porewater concentration can be elevated
by 0.7 mM and 4.7 mM for dissolved organic carbon (DOC) and DIC, respectively (Raymond & Hopkinson,
2003). Prior estimates suggest that export of DOC alone can support a large fraction of estuarine respiration
(Vallino et al., 2005). Since DIC porewater concentrations are higher than DOC concentrations, the DIC flux
is likely larger than the DOC flux (Wang et al., 2016). The fate of this marsh-derived DIC is a critical question
for resolving marsh-estuarine GPP and R estimates (Wang et al., 2017). Depending on pH values, DIC may be
exported as alkalinity dissolved in water and/or as a gas which may be lost to the atmosphere. Raymond and
Hopkinson (2003) estimated that about 50% of the porewater DIC was gaseous CO2. It seems likely that this
emission is captured by the atmospheric flux measurements. However, considering the small spatial extent
of aquatic systems compared to vegetatedmarsh at our site (Figure 1), the atmospheric net flux is dominated
by processes in the vegetated marsh (Pelletier et al., 2015). To further resolve these pathways, atmospheric
measurements from vegetated and aquatic systems need to be combined with hydrological ones (Kearney
et al., 2017; Wang et al., 2016).
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An additional reason why the NEE from our flux tower may not match burial rates is the different temporal
scales of the two approaches. The dating using 210Pb allows us to calculate a mean accumulation rate over
approximately 100 years. During this time period, sea level rise has accelerated and changes in sediment
deposition and productivity may have occurred that all together increased accretion and burial rates (Hill &
Anisfeld, 2015). The fairly deep depth of the rooting zone at our site does not allow us to accurately determine
changes in accumulation rates over the last 30 years to test this hypothesis. However, there is some reason
to suspect that the last few years could have been a time of enhanced marsh productivity. At Plum Island,
S. alternifloramarshes are at an elevation that is above their optimum growth elevation (Morris et al., 2013).
Because of their high elevation, aboveground productivity of S. alterniflora correlates positively with MHW
during the growing season, an indication of increased tidal flushing that alleviates soil salinity and sulfide lev-
els (Morris et al., 2013).MHWdoes vary between yearswith changes in the tidal amplitude,which aredrivenby
astronomical forcing components such as the 18.6 lunar nodal cycle. For example,Morris et al. (2013) reported
an increase of 14 cm in tidal amplitude from 2007 to 2011, during the rising phase of the current nodal cycle.
It is around the peak (in 2015) of this phase that we started with our atmospheric measurements. Thus, we
possibly overestimate the “mean” marsh net CO2 uptake because of the short duration and the timing of
our measurement period relative to the lunar nodal cycle. However, long-term climate records at Haverhill
indicate that roughly a third of all years since 1950 (20 out of 67 years) are characterized by below-average
rainfall in June. This is a somewhat smaller proportion than in our sampling period, where 40% of the years
indicate below average rainfall. This would suggest that ourmean NEE is actually underestimated—aswould
be the difference between NEE and burial. In either case, longer flux measurements are necessary to ade-
quately sample long-term drivers (Chu et al., 2017). This is true with regard to temperature changes as well.
The 5 years of measurements reported here are all above the long-term average, but at this point it is not
known whether C accumulation will increase due to more biomass production or decrease due to increased
decomposition.

5. Conclusions

We studied salt marsh C storage using 5 years of atmospheric measurements of CO2 exchange and by esti-
mating long-term C accumulation rates in sediment cores. The atmospheric flux measurements showed that
the seasonality in fluxes was very similar between the five years. However, the flux magnitude in the growing
season differed and decreased with rainfall and NDVI in 2014 and 2016. Rainfall and other hydrological vari-
ables may serve to regulate plant growth and NEE through soil salinity (as seen in our 2016 and 2017 data).
Overall, the mean in net uptake over 5 years was 179 ± 32 g C m−2 a−1 and significantly larger than carbon
storage measured in sediment cores (110 ± 13 g C m−2 a−1). This difference may be attributed to missing lat-
eral C fluxes in the aquatic phase and/or to changes in marsh productivity over time and the different time
scales captured by our two measures. The first explanation suggests that atmospheric measurements of CO2

exchange need to be coupled withmeasurements of lateral exchange of both DOC and DIC to determine the
contemporaryNECB in tidalwetlands. The secondexplanation argues for long-termdata sets of CO2 exchange
that allow an assessment on the appropriate time scales.
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