
Opacity Enforcement by Insertion
Functions under Energy Constraints ?

Yiding Ji ∗ Xiang Yin ∗∗ Stéphane Lafortune ∗

∗Department of Electrical Engineering and Computer Science, the
University of Michigan, Ann Arbor, Michigan, USA.

∗∗Department of Automation, Shanghai Jiao Tong University,
Shanghai, China.

Abstract:
We investigate the enforcement of opacity by insertion functions, when the system has a certain
amount of initial-credit energy for its operation and defense of secrets. The problem is formulated
as a two-player game between the insertion function and the system (or environment) with an
energy objective and asymmetric partial information. The insertion function must defend the
secrets by inserting fictitious output events while guaranteeing that the energy level never drops
below zero, under the worst-case scenario of system operation. The insertion function has only
partial information about the system, due to unobservable events that affect the energy level.
To resolve the partial observation, we construct a game structure called the Energy Insertion
Structure (or EIS) that provably embeds insertion functions solving the proposed problem.

Keywords: Privacy, opacity enforcement, insertion function, partial observation, energy game

1. INTRODUCTION

Opacity is an information-flow property that characterizes
whether the secrets of a system can be inferred by an
outside intruder with malicious goals. The outside intruder
is typically modeled as an observer with knowledge of the
structure of the system whose intention is to infer system
secrets when observing the system outputs. The system is
called opaque if the intruder is never able to determine any
of the system secrets unambiguously from its observations.

Since the work by Bryans et al. [2005], opacity has re-
ceived significant attention for systems modeled as Dis-
crete Event Systems (DES). Several opacity notions have
been defined and studied for finite state automata mod-
els, e.g., language-based opacity [Lin 2011], current-state
opacity [Saboori and Hadjicostis 2007], initial-state opac-
ity [Saboori and Hadjicostis 2013], K-step opacity, and
infinite-step opacity [Yin and Lafortune 2017]. Opacity has
also been evaluated quantitatively in stochastic settings,
e.g., [Keroglou and Hadjicostis 2017], and timed settings,
e.g., [Cassez 2009]. The survey paper Jacob et al. [2016]
provides a comprehensive review of opacity results in DES.

Violations of opacity give rise to the opacity enforcement
problem [Falcone and Marchand 2015], which has been
investigated under various mechanisms. Supervisory con-
trol can be used to disable non-opaque behaviors, thereby
preventing disclosure of secrets [Dubreil et al. 2010, Tong
et al. 2017, Takai and Oka 2008, Yin and Lafortune 2016].
Another method is sensor activation [Cassez et al. 2012,
Yin and Lafortune 2015], which dynamically changes the
observability of certain events but does not intervene with
the system’s operation. Opacity enforcement using inser-
? Research supported in part by the US National Science Foundation
under grants CNS-1421122 and CNS-1738103.

tion functions was proposed by Wu and Lafortune [2014]
and extended in Ji and Lafortune [2017] to a more general
method called edit functions. An edit function may insert
fictitious events into the system’s output or erase events
from the system’s output to obfuscate the intruder. In this
paper, we consider obfuscation by event insertion alone.

In many applications, the execution of system events as
well as the obfuscation method may consume quantitative
resources of the system, which we refer to as energy. We
assume that the system may only have a limited amount of
energy for its operation and for the defense of its secrets.
Motivated by this practical situation, we investigate for
the first time opacity enforcement by insertion functions
under energy constraints, which require that the energy
of the system should never be depleted. Furthermore, we
assume that the insertion function is only aware of the
occurrence of observable events.

We formulate this problem as opacity enforcement with
a quantitative objective and imperfect information. The
insertion function aims to enforce opacity under the con-
straint that the energy of the system should never drop
below zero, for all possible system behaviors (worst-case
analysis). Then we reduce this problem to a game with
perfect information and solve it by constructing a discrete
structure called Energy Insertion Structure (EIS). The in-
sertion function plays by inserting events, which consumes
energy, while the system plays by executing events, which
consumes or gains energy. Therefore the system’s energy
level dynamically changes. The EIS is a game graph in-
cluding winning strategies of the insertion function under
both qualitative and quantitative requirements.

Our approach is inspired by recent work on energy games,
which are two-player quantitative games on weighted

graphs, where the weights represent energy gain or con-
sumption. The objective of the first player is to keep the
energy above zero, while the other player intends to do
the opposite. A special type of energy game is a fixed-
initial-credit energy game, where the system has a certain
amount of initial energy. In some cases, the first player
may have imperfect information about the game [Degorre
et al. 2010]. Under certain assumptions, such games are
decidable but they are ACK-complete [Pérez 2017]. They
are solved by reducing them to reachability games [Degorre
et al. 2010, de Alfaro et al. 2007]. The above works have
also inspired the work Pruekprasert and Ushio [2017],
which studies supervisory control for DES using energy
games with partial observation. We adapt some of the
methodology in Pruekprasert and Ushio [2017] to the
different problem of opacity enforcement by obfuscation,
leveraging the approach of Wu and Lafortune [2014]. We
believe this paper is the first to investigate opacity enforce-
ment under such types of quantitative energy constraints.

This paper is organized as follows. Section 2 describes our
system model. Section 3 formulates the opacity enforce-
ment problem under energy constraints discussed in this
paper. Section 4 introduces the Energy Insertion Struc-
ture (EIS). Section 5 uses the EIS to solve the proposed
problem. And Section 6 concludes the paper.

2. SYSTEM MODEL

We consider opacity in a quantitative DES modeled as a
weighted finite-state automaton:

G = (X,E, f, x0, ω)

where X is the finite set of states, E is the finite set of
events, f : X × E → X is the partial state transition
function, and x0 ∈ X is the unique initial state. We
denote by XS ⊂ X the set of secret states that should
remain opaque. The transition function is extended to
domain X × E∗ in the standard manner [Cassandras and
Lafortune 2008] and we still denote it by f . The language
generated by G is defined as L(G) = {s ∈ E∗ : f(x0, s)!}
where ! means “is defined”. The function ω : E → Z
assigns a weight to each event in E. The value of the
weight reflects the energy gain or cost associated with the
occurrence of the event. The function ω is additive and
its domain can be extended to E∗ by letting ω(ε) = 0,
ω(se) = ω(s) + ω(e) where s ∈ E∗, e ∈ E. An execution
in G is a sequence of states and events: x0e0x1e1 · · · enxn
where xi = f(xi−1, ei), 1 ≤ i ≤ n. An execution contains
a cycle if ∃i, j ∈ N, 0 ≤ i < j ≤ n, s.t. xi = xj .

The system has initial-credit energy v0 ∈ N+ and its en-
ergy changes with the occurrence of events. Given a string
s = e0e1 · · · en−1 ∈ L(G), the energy level of the system
after s is defined as V : L(G) → Z where V (s) = v0 +
n−1∑
i=0

ω(ei). In this work, we make the important assumption

that the energy level should always be nonnegative.

Assumption 1. ∀s ∈ L(G), V (s) ≥ 0.

We assume that G is partially observable, i.e., E = Eo ∪
Euo, where Eo is the set of observable events and Euo
is the set of unobservable events. Given t = t′e ∈ E∗,
its natural projection under P : E∗ → E∗o is recursively

defined as P (t) = P (t′e) = P (t′)P (e) where t′ ∈ E∗

and e ∈ E. The projection of an event is P (e) = e
if e ∈ Eo and P (e) = ε if e ∈ Euo ∪ {ε}, where ε is
the empty string. Then the observer of G is defined as
Obs(G) = (Xobs, Eo, δ, xobs,0, ωobs) and is obtained follow-
ing the standard technique in Cassandras and Lafortune
[2008]. Here Xobs is the state space, δ is the transition
function, xobs,0 is the initial state and ωobs is the same as
ω over the restricted domain Eo. We call the observer state
as the current state estimate (estimate) of the system.

3. OPACITY AND INSERTION MECHANISM

In this section, we formulate the opacity enforcement
problem under energy constraints. We start by reviewing
the concept of current-state opacity and then discuss the
insertion mechanism for its enforcement.

Definition 1. (Current-State Opacity (CSO)). Given sys-
tem G, projection P , and secret states XS , G is CSO if
∀t ∈ LS := {t ∈ L(G) : f(x0, t) ∈ XS}, ∃t′ ∈ LNS := {t ∈
L(G) : f(x0, t) ∈ (X \XS)} such that P (t) = P (t′).

A system is current-state opaque if for every string reach-
ing a secret state, there exists another string reaching a
non-secret state which shares the same projection, thereby
providing deniability of the secret. CSO can be verified
by building the observer and checking whether an ob-
server state contains solely secret states. Based on CSO,
we define the safe language, which is the prefix-closure
of the projected non-secret strings: Lsafe = [P [L(G)] \
[P [L(G)] \ P (LNS)]]E∗o . We also define the unsafe lan-
guage Lunsafe = P [L(G)] \ Lsafe. The desired observer
Obsd(G) = (Xd, Eo, δd, xd,0) is obtained by deleting all
the observer states composed of only secret states and then
taking the accessible part, see Wu and Lafortune [2014].
It generates Lsafe and we omit the weight function.

Opacity may not always hold and an insertion function
may be used to enforce it. The insertion function is an
interface between the system’s output and the external
environment including the intruder. It may insert fictitious
events into the output stream of the system to obfuscate
the intruder, see Wu and Lafortune [2014] for more details.

Definition 2. (Insertion Function). An insertion function
is defined as: fi : E∗o × Eo → E∗oEo such that for l ∈ E∗o
and eo ∈ Eo, fi(l, eo) = sIeo where sI ∈ E∗o ,

By definition, sI is the inserted string and may be ε when
nothing is inserted. With a slight abuse of notation, we also
define fi in a string-based manner: fi(ε) = ε and fi(leo) =
fi(l, eo)fi(l). An insertion function inserts strings based on
the observable behavior. However, unobservable events do
occur between two observable events; as a convention, we
assume that the inserted string is placed right before the
next observable event in an unprojected string.

Convention 1. Given s = ξ0e0 · · · ξn−1en−1ξn ∈ L(G)
where ∀i ≤ n, ξi ∈ E∗uo and ei ∈ Eo, if fi(e0e1 · · · ei−1, ei) =
θiei where ∀i ≤ n, θi ∈ E∗o , then s is mapped to s′ =
ξ0θ0e0 · · · ξiθiei · · · ξnθnen where P (s′) ∈ P [L(G)].

Here it is possible that s′ /∈ L(G) but only P (s′) ∈ P [L(G)]
since the intruder only observes strings in P [L(G)].

Based on Lsafe, we define private safety of the insertion
function, which characterizes its performance.

Definition 3. (Private Safety). Consider system G with P ,
and Lsafe. Insertion function fi is privately safe if ∀s ∈
P [L(G)], fi(s) ∈ Lsafe.

Event insertion always costs energy and we define the
insertion cost function ωi : Eo → Z \ N, which assigns
a negative weight to each inserted event. Function ωi is
additive and its domain is extended to E∗o by letting
ωi(ε) = 0 and ωi(seo) = ωi(s)+ωi(eo) for s ∈ E∗o , eo ∈ Eo.
Next, we define the system’s energy level after insertion as
Vm : L(G)×E∗ → Z. Given s = ξ0e0ξ1e1 · · · ξn−1en−1ξn ∈
L(G) where ∀j ≤ n, ξj ∈ E∗uo and ej ∈ Eo, suppose
s is mapped to s′ = ξ0θ0e0ξ1θ1e1 · · · ξn−1θn−1en−1ξn
by Convention 1 under some insertion function, then

Vm(s, s′) = V (s) +
n−1∑
j=0

ωi(θj). We will denote s′ by sfi

if s is mapped to s′ by fi. We call Vm(s, sfi) as the energy
level of the system by string s under insertion function fi.

Given a non-opaque system G and initial energy v0, we aim
to design an insertion function fi which enforces opacity
but never makes the system’s energy level below zero at
any time. Thus the operation of the insertion function
is constrained by the energy level of the system, i.e.,
∀s ∈ P [L(G)], Vm(s, sfi) ≥ 0. Since insertion costs energy,
we make Assumption 1 to guarantee an energy margin for
the insertion function. We can now formally formulate the
opacity enforcement problem under energy constraints.

Problem 1. (Opacity Enforcement with Energy Constraints).
Given system G with initial-credit energy v0, the opacity
enforcement under energy constraints problem is to find
an insertion function fi such that: (1) fi is privately safe;
(2) ∀s ∈ L(G), Vm(s, sfi) ≥ 0.

Due to the partial observation of the system, we need
to properly estimate both the system’s current state and
the energy level so that the insertion function may make
decisions. We will discuss this issue in the next section.

4. ENERGY INSERTION STRUCTURE

In this section, we propose energy information states
and a bipartite game structure called “Energy Insertion
Structure” (EIS). In this way, Problem 1 is transformed
into a reachability game of perfect information between the
insertion function and the environment. The construction
is of the EIS a three-step process: (1) build the verifier ;
(2) build the safe energy verifier ; (3) build the EIS.

4.1 Build the Safe Energy Verifier

Step (1) was first presented in Wu and Lafortune [2014]
and we briefly repeat it here. We first build the desired es-
timator and the feasible estimator. The feasible estimator
is obtained by adding self-loops at each state in Obs(G)
for all observable events. We denote the feasible estimator
Obsf (G) = (Xf , Eo, δ, δsl, xf0) where δsl(xf , eo) = xf for
every xf ∈ Xf and every eo ∈ Eo. Thus at a state xf , there
may be two eo defined, one is for the normal transition δ
and the other is for self-loop transition δsl, where δ stands
for the event execution in the observer while δsl stands for
the occurrence of inserted fictitious events.

Then we synchronize Obsd(G) and Obsf (G) by the veri-
fier parallel composition to obtain the verifier, defined as

Gv = (Xv, Eo, δvd, δvs, xv0). Here Xv ⊆ Xd × Xf is the
state space, Eo is the set of observable events, δvs : Xv ×
Eo → Xv is the transition function corresponding to
normal transitions in both Obsd(G) and Obsf (G), δvd :
Xv × Eo → Xv is the transition function corresponding
to normal transitions in Obsd(G) with added self-loop
transitions in Obsf (G), and xv0 is the initial state. A state
xv = (xd, xf) ∈ Xv has two components: the left one is the
intruder’s estimate and the right one is the (true) system’s
estimate. By construction (see Wu and Lafortune [2014]),
xd is not a subset of secret states and does not reveal
the system’s secrets to the intruder. The two transition
functions δvs and δvd work as follows from the verifier par-
allel composition: δvs((xd, xf), eo) = (δd(xd, eo), δ(xf , eo))
if δd(xd, eo)! in Obsd(G) and δ(xf , eo)! in Obsf (G);
δvd((xd, xf), e) = (δd(xd, e), δsl(xf , e)) = (δd(xd, e), xf)
if δd(xd, e)! in Obsd(G). We set δvd(xv, ε) = xv for any
xv ∈ Xv. Intuitively, δvd indicates potential event insertion
and δvs indicates system’s observable event execution.

Next, we come to step (2). Before building the safe
energy verifier, we first introduce a measure on vectors.
Given two vectors v1 = [v1(1), v1(2), · · · , v1(n)], v2 =
[v2(1), v2(2), · · · , v2(n)] ∈ Zn, we denote by v1 ≤ v2
(respectively v1 ≥ v2) if ∀1 ≤ i ≤ n, v1(i) ≤ v2(i)
(respectively v1(i) ≥ v2(i)). In order to cope with partial
observation as well as to track the system’s energy level,
we define the Energy Information State as follows.

Definition 4. (Energy Information State). An energy in-
formation state is: qe = ((xd, xf), [v(1), · · · v(|xf |)]) ∈
Xv × Z|xf |. Let I(qe) and EL(qe) denote the verifier state
and energy level components; hence, qe = (I(qe), EL(qe)).

Denote by QE the set of energy information states, which
tracks the system’s estimate, the intruder’s estimate, and
the system’s energy level. Each qe ∈ QE induces a belief
function hqe : X → Z. Specifically, for qe ∈ QE where
I(qe) = (xd, xf) ∈ Xv, EL(qe) = {hqe(x) : x ∈ xf}. We
usually put EL(qe) in vector form: [hqe(x1), · · ·hqe(x|xf |)].
By convention, elements in EL(qe) are placed in an in-
creasing order w.r.t. state names in xf . Our definition is
inspired by the belief function in Degorre et al. [2010] and
the observation function in Pruekprasert and Ushio [2017].

An energy information state qe ∈ QE is energy safe (or
simply safe) if EL(qe) ≥ 0 in the point-wise sense. We
define an order 4 over QE : for qe1, q

e
2 ∈ QE , qe1 4 qe2 if

I(qe1) = I(qe2) and EL(qe1) ≤ EL(qe2). We also say that qe2
subsumes qe1 if qe1 4 qe2, i.e., qe1 and qe2 share the same
verifier state component but the energy level of qe2 is no
less than that of qe1 at every possible current state in I(qe2).
By Dickson’s lemma (see Levy [2002]), the order ≤ on
Nk is a well-quasi-ordering for any k ∈ N. We further
argue that 4 on safe energy information states is also a
well-quasi-ordering, i.e., for any infinite sequence of states
qe1, q

e
2 · · · ∈ QE , there exists i, j ∈ N, s.t. i < j and qei 4 qej .

For eo ∈ Eo, we say qe2 is a (eo, δvd) successor of qe1 if:

• I(qe2) = (xd2, xf1) = δvd(I(qe1), eo) where I(qe1) =
(xd1, xf1)
• ∀x ∈ xf1, hqe2 (x) = hqe1 (x) + ωi(eo)

When eo is inserted, the energy information state is
updated from qe1 to qe2. Meanwhile, the system’s estimate

xf1 does not change and the intruder’s estimate changes
from xd1 to xd2. Besides, the value of hqe1 (x) decreases by
the absolute value of ωi(eo) for every x ∈ xf1 since the
insertion of eo costs energy ωi(eo). We also extend this
definition to (θ, δvd) successor for θ ∈ E∗o : qe2 is a (θ, δvd)
successor of qe1 if I(qe2) = (xd2, xf1) = δvd(I(qe1), θ) and
∀x ∈ xf1, hqe2 (x) = hqe2 (x) + ωi(θ).

Similarly, we say qe2 is a (eo, δvs) successor of qe1 if:

• I(qe2) = (xd2, xf2) = δvs(I(qe1), eo) where I(qe1) =
(xd1, xf1)
• ∀x′ ∈ xf2, hqe2 (x′) = min

ξ∈E∗
uo

{hqe1 (x) + ω(eo) + ω(ξ) :

∃x ∈ xf1, ξ ∈ E∗uo, s.t. f(x, eoξ) = x′}
When eo is executed by the system, the energy information
state is updated from qe1 to qe2. Meanwhile, both the
system’s and the intruder’s estimates may change. A
possible current state x′ in xf2 may be reached through
different strings from some state(s) x in xf1. In this case,
hqe2 (x′) indicates the system’s worst case energy at x′ with
the occurrence of observable event eo and unobservable
string ξ from some x ∈ xf1 s.t. x′ = f(x, eoξ).

Then we define the safe energy verifier that only contains
safe energy information states following Algorithm 1. It
is denoted by Gsev = (Xev, Eo, δevs, δevd, xev0, v0) where
Xev ⊆ QE is the state space, δevs : Xev ×Eo → Xev is the
observable event insertion transition function, δevd : Xev×
Eo → Xev is the event execution transition function, xev0
is the initial state, and v0 is the initial energy. Procedure
Energy − Unfold builds the state space recursively until
an unsafe energy information state is reached or an energy
information state subsumes an existing one.

Algorithm 1 Construct the Safe Energy Verifier

Input: Gv, v0, Obs(G)
Output: Gsev = (Xev, Eo, δevs, δevd, xev0, v0)
1: Xev = {xev0}, I(xev0) = (xobs,0, xobs,0), ∀x ∈ xobs,0,
hxev0(x) = min

ξ∈E∗
uo

{V (ξ) : ∃ξ ∈ E∗uo, f(x0, ξ) = x};

2: Gsev = Energy − Unfold(xev0, Gv);
3: procedure Energy-Unfold(xev, Gv)
4: for e ∈ Eo, s.t. δvd(I(xev), e0)! or δvs(I(xev), e0)!

where I(xev) = (xd, xf) do
5: if δvd(I(xev), e0)! then
6: let state x′ev be an (eo, δvd) successor of xev;

7: add transition xev
e0−→ x′ev to δevd;

8: else
9: let state x′ev be an (eo, δvs) successor of xev;

10: add transition xev
e0−→ x′ev to δevs;

11: if x′ev /∈ Xs
ev and x′ev is energy safe then

12: Xs
ev = Xs

ev ∪ {x′ev};
13: if ∃j < n, s.t. xev,j 4 x′ev in execution

xev0e0xev1e1 · · ·xev,n−1en−1x′ev then
14: merge x′ev and xev,j in Gsev: remove x′ev

and let all transitions reaching x′ev reach xev,j ;
15: else
16: Energy − Unfold(x′ev, Gv);

An execution inGsev is of the form xev0e0xev1e1 · · · en−1xev,n
where xev,i+1 = δevs(xev,i, ei) or xev,i+1 = δevd(xev,i, ei)
for some ei ∈ Eo. If ∃xev,j 4 xev,n for j < n, then a cycle
is formed in the verifier and the system’s energy level is

nondecreasing when the cycle is traversed. We merge xev,j
and xev,n by making all transitions reaching xev,n end in
xev,j instead since the energy level would forever remain
nonnegative on the current branch. Then the following
result holds. Similar results are in Degorre et al. [2010],
Pruekprasert and Ushio [2017] for different problems.

Theorem 1. The state space of Gsev is finite.

Proof. Proof by contradiction. Suppose Gsev is infinite.
Since X, Eo and Xv are all finite, the number of outgoing
transitions at each state in Gsev is also finite. By König’s
lemma (see e.g., Levy [2002]), there exists an infinite
execution xev0e0xev1e1 · · · , where xev,i+1 is a (ei, δvd) or
(ei, δvs) successor of xev,i. From Algorithm 1, any xev,i
is energy safe and it is never the case that ∃i < j, s.t.
xev,i 4 xev,j . However, this contradicts with well quasi-
ordering 4 on safe energy information states. 2

Given an execution xev0e0xev1e1 · · · en−1xev,n and ∀i ≤
n let I(xev,i) = (xd,i, xf,i), there exists an execution
xd0e0xd1e1 · · · en−1xd,n in the desired estimator by defi-
nition, which implies e0e1 · · · en ∈ L[Obsd(G)] = Lsafe.
Thus L(Gsev) ⊆ Lsafe and private safety is not violated.
When we merge states in Gsev, we do not change the
language of the logical part (i.e., disregarding energy) since
the logical parts of the states are the same, hence they have
the same future logical behavior. Actually, considering en-
ergy will only restrict the logical behavior, so L(Gsev) may
be smaller than Lsafe. Next, the belief function indicates
the minimum energy level of the system by strings with the
same observation reaching a state under certain insertion.

Theorem 2. Given xev ∈ Xev in the energy verifier, if
I(xev) = (xd, xf) and ∃l ∈ P [L(G)], s.t. δ(xobs,0, l) =
xf , then ∀x ∈ xf , hxev (x) = min

s∈P−1(l)∩L(G)
{Vm(s, s′) :

f(x0, s) = x, δ(xobs,0, P (s)) = xf , δd(xobs,0, P (s′)) = xd}.

The formal proof is omitted here, we give some inter-
pretation instead. Since both δevd and δevs transitions
track the minimum possible energy level by event insertion
or occurrence, we can show this theorem by induction
on the length of l ∈ P [L(G)]. Given xev ∈ Xev with
I(xev) = (xd, xf), we locate string pairs {(s, s′) ∈ L(G)×
E∗ : δ(xobs,0, P (s)) = xf , δd(xobs,0, P (s′)) = xd}. That is,
s is the original string that reaches state x in G and s
is mapped to s′ after insertion; P (s) reaches the system’s
estimate xf in Obs(G) and P (s′) reaches the intruder’s
estimate xd in Obsd(G). Let P (s) = l, then Theorem 2
shows that hxev (x) returns the system’s worst case en-
ergy level by strings in S(l, xf) = {s ∈ L(G) : s ∈
P−1(l), δ(xobs,0, l) = xf}. Those strings have the same pro-
jection l but potentially different unobservable substrings
and energy levels. Besides, if the minimum energy level
by some strings with the same projection is nonnegative,
it is true that the energy level by those strings is always
nonnegative. It justifies how we update energy information
states by (eo, δvd) successor and (eo, δvs) successor.

Example 1. This example presents a safe energy verifier.
Consider the system G in Fig. 1, with Eo = {a, b, c}, Euo =
{u1, u2, u3, u4, u4, u5, u6} and secret states XS = {x7, x9}.
Let ω(a) = −8, ω(b) = 1, ω(c) = 2 and ωi(a) = −3,
ωi(b) = −2, ωi(c) = −1. Also, let ω(u1) = 2, ω(u2) = 1,
ω(u3) = −3, ω(u4) = −1, ω(u5) = −2 and ω(u6) = −1.
Finally, let v0 = 9 be the system’s initial energy.

The observer Obs(G) is shown in Fig. 2 with renamed
states: A = {x0, x3, x4, x8}, B = {x1}, C = {x2}, D =
{x5, x6}, E = {x7}, F = {x9}. The system is obviously not
opaque and we apply insertion functions to enforce opacity.
The desired estimator is obtained by removing E and F
from Obs(G), while the feasible estimator is obtained by
adding self-loops for every event in Eo at every state in
Obs(G). We omit them here due to space limitations.

Next we build the verifier in Fig. 3, where dashed lines
indicate δvd transitions and solid lines indicate δvs tran-
sitions. Then we build the safe energy verifier in Fig. 4.
States (D,A) and (C,F) are ignored in building Gs

ev since
by insertion mechanism, every dashed transition should
be followed by some solid transition, i.e., a valid string
is inserted before observable events. The energy informa-
tion states are as follows: xev0 = ((A,A), [9, 10, 7, 10]),
xev1 = ((B,A), [6, 7, 4, 7]), xev2 = ((C,A), [4, 5, 2, 5]),
xev3 = ((B,F), 6), xev4 = (((B,A)), [3, 4, 1, 4]), xev5 =
(((C,A)), [1, 2,−1, 2]), xev6 = ((C,D), [2, 0]), xev7 =
((B,E), 2), xev8 = ((C,E), 0), xev9 = ((B,E), 2),
xev10 = ((B,D), [1,−1]), xev11 = ((C,D), [5, 3]), xev12 =
((B,E), 5), xev13 = ((C,E), 3), xev14 = ((B,E), 5),
xev15 = ((B,D), [4, 2]), xev16 = ((C,D), [2, 0]), xev17 =
((B,E), 2), xev18 = ((C,E), 0), xev19 = ((B,E), 2),
xev20 = ((D,D), [8, 6]), xev21 = ((B,B), 1), xev22 =
((C,C), 2), xev23 = ((B,B), 4), xev24 = ((B,C), 1),
xev25 = ((C,C),−1) and xev26 = ((C,B),−1).

EL(xev0) = [hxev0
(x0), hxev0

(x3), hxev0
(x4), hxev0

(x8)] =
[9, 10, 7, 10] since the elements in EL(xev0) are placed
in an increasing order w.r.t. state names. For example,
hxev0

(x0) = v0 = 9, hxev0
(x3) = min{v0 + ω(u1), v0 +

ω(u2)} = 10, hxev0
(x4) = min{v0 + ω(u1u3), v0 +

ω(u2u3)} = 7, hxev0
(x8) = v0 + ω(u6) = 10. xev1 is

a (a, δvd) successor of xev0 in Figure 4 and ∀x ∈ A,
hxev1

(x) = hxev0
(x) + ωi(a). Also xev,11 is a (b, δvs)

successor of xev1, so hxev,11
(x5) = min{hxev1

(x4) +
ω(b), xev1(x3) + ω(b)} = 5, hxev,11

(x6) = min{hxev1
(x4) +

ω(b) + ω(u4), hxev1
(x4) + ω(b) + ω(u5), hxev1

(x3) + ω(b) +
ω(u4), hxev1

(x3) + ω(b) + ω(u5)} = 3. All the other states
are obtained in a similar way. Among them, hxev5

(x4) =
−1, hxev,10

(x6) = −1, hxev,25
(x2) = −1 and hxev,26

(x1) =
−1. Thus xev5, xev,10, xev,25 and xev,26 are not safe, they
are not included in Gs

ev. Also, we merge the states con-
nected with green lines in Fig. 4 since xev7, xev,12, xev,17,
xev,21 subsume xev9, xev,14, xev,19, xev,23, respectively.

��

�� ��

��

����
��

��

�� �� �� ��
����

����

�����
�����

�����

����

�

���

���

���

���

���

���

���

���

Fig. 1. The original system G

4.2 Build the Energy Insertion Structure

We come to step (3) and construct the Energy Insertion
Structure (EIS) from the safe energy verifier. By building
the EIS, we form a game with perfect information between
the insertion function and the environment.

�

� �

� �

�

����

���

���

���

���

���

���

Fig. 2. Observer Obs(G) where A = {x0, x3, x4, x8}, B =
{x1}, C = {x2}, D = {x5, x6}, E = {x7}, F = {x9}

�����

�����

�����

�����

�����

�

�����

�����

����� �����
�

�����

�

�����

�
�

�

�

�

�

�

�
�

�

� �

�

�����

�����

� �

�

�����

�

�����

��

Fig. 3. Verifier Gv

����

��������

����
����

���� ����

����

����

�����

�����

�����

�����

�����

�����

�����

�����

����
����

����

����

����

����

����

����
���

��� ���
���

���

���

���

���
���

���

�����

����

�����

����

����

���

����
���

�����

�����

�����

����� �����

�����

�����

����

����

����

Fig. 4. Safe energy verifier Gs
ev (without red states, merge

states connected with green lines)

Given system G with initial energy v0, the Energy Inser-
tion Structure (EIS) is a bipartite structure described by
a tuple (QB

Y , Q
B
Z , Eo,Θ, fB

yz, f
B
zy, y0, v0) where QB

Y ⊆ QE

is the set of energy information states; QB
Z ⊆ QE × Eo

is the set of energy information states augmented with
observable events; fB

yz : QB
Y × Eo → QB

Z is the transition

function from QB
Y to QB

Z ; f
B
zy : QB

Z ×Θ → QB
Y is the tran-

sition function from QB
Z to QB

Y ; Eo is the set of observable
events; Θ ⊆ E∗

o is the set of insertion decisions; y0 ∈ QB
Y

is the initial state where y0 = xev0; v0 ∈ N+ is the initial
energy. The EIS is formally defined by Algorithm 2.

In the EIS, the environment plays at QB
Y states (Y -states)

and the insertion function plays at QB
Z states (Z-states).

We call z ∈ QB
Z a deadlocking state if �θ ∈ Θ, s.t.

fB
zy(z, θ)!. Also y ∈ QB

Y is called a terminating state if

�eo ∈ Eo, s.t. fB
yz(y, eo)!. Deadlocking states are not

allowed and will be pruned away in constructing the EIS.

Next, we construct the EIS from Gs
ev in Algorithm 2.

In Gs
ev, we define its unmodified language, denoted by

Lu(G
s
ev), as the language generated by Gs

ev if we view

all δevd transitions as ε-transitions. If Lu(G
s
ev) = P [L(G)]

does not hold, then we return ∅ and claim that we cannot
find privately safe insertion functions from the EIS, since
a privately safe insertion function should be able to map
every string in P [L(G)] to some safe string. On the other
hand, if the preceding equality holds, then we may obtain
insertion functions from the EIS to solve Problem 1.

Algorithm 2 Construction of the EIS

Input: Gs
ev, Obs(G)

Output: EIS or ∅
1: if Lu(G

s
ev) �= P [L(G)] then

2: Return ∅;
3: else
4: QB

Y = {y0} = {xev0}, QB
Z = ∅;

5: DoDFS(y0, G
s
ev, Obs(G));

6: while ∃z ∈ QB
Z , s.t. z is deadlocking do

7: Remove z and all preceding states y ∈ QB
Y , s.t.

fA
yz(y, eo) = z for some eo ∈ Eo;

8: Take the accessible part of the structure;

9: procedure DoDFS(y,Gs
ev, Obs(G))

10: for eo ∈ Eo, s.t. δ(xf , eo)! in Obs(G) where
I(y) = xv = (xd, xf) do

11: z = (y, eo) = fB
yz(y, eo);

12: add transition y
eo−→ z to fB

yz;

13: if z /∈ QB
Z then

14: QB
Z = QB

Z ∪ {z};
15: for θ ∈ Θ, s.t. ∃x̃ev = δevd(y, θ) and

δevs(x̃ev, eo)! do
16: y′ = δevs(x̃ev, eo) = fB

zy(z, θ);

17: add transition z
θ−→ y′ to fB

zy;

18: if y′ /∈ QB
Y then

19: QB
Y = QB

Y ∪ {y′};
20: DoDFS(y′, Gs

ev, Obs(G));

Procedure DoDFS is a depth-first search process, which
adds states and transitions to the EIS. In line 15, θ is
a valid insertion choice if string θeo is well defined in
Gs

ev. DoDFS may cause deadlocking Z-states and we
prune them away and remove their preceding Y -states
in a recursive manner until no state is to be removed,
thus the EIS terminates only at terminating states. If the
initial state is pruned, the algorithm also returns nothing.
Since Gs

ev is finite, Algorithm 2 converges in finite number
of steps. The algorithm is similar with the algorithm of
building the All Insertion Structure in Wu and Lafortune
[2014]. In the following discussion, we assume the EIS is
not empty so that it can be used to solve Problem 1.

Example 2. We revisit Example 1 and construct the EIS
in Fig. 5 following Algorithm 2. Since Lu(G

s
ev) = P [L(G)],

the EIS is not empty. There are two types of states in the
EIS: the square Y -states and the oval Z-states. The tran-
sitions from Y -states are events executed by the system
and the transitions from Z-states are insertion function’s
choices. The game is initialized at y0 = xev0 where events
a, b, c are the system’s observable outputs. After b is ob-
served, the game reaches state (xev0, b) and the insertion
function begins to play by inserting a or abc before b,
where ωi(a) = −3 and ωi(abc) = −6. All transitions in
the structure are interpreted in a similar manner. After
DoDFS, there is a deadlocking Z-state (xev,20, c), which

is pruned together with its preceding Y -state xev,20. In
the EIS, each time Y -states xev7, xev,12, xev,17, xev,21 are
visited, the energy level of the system will increase or stay
the same, thus remain nonnegative forever.

�����
����

��������

����

���

���

�����

���
�����

���

���

�

�

� �

�

�

�

������
�

�����

���

�

�����

����

�����

��� ���

�

�

���

���

����

��������������

�������

�������

��������

�������� ��������

��������

�������

��������

��������

Fig. 5. Energy insertion structure (without the dashed
transitions and states)

5. SOLVING OPACITY ENFORCEMENT PROBLEM

In this section, we discuss some properties of the EIS and
solve Problem 1 by finding insertion functions in the EIS.
Intuitively, since all energy information states in the EIS
are safe and every string in P [L(G)] is mapped to some safe
strings under some insertion decisions, then any insertion
function obtained from the EIS solves Problem 1.

Definition 5. (Run). A run in the EIS is a sequence of al-
ternating states, observable events and insertion decisions:

r = y0
e0−→ z0

θ0−→ y1
e1−→ · · · yn−1

en−1−−−→ zn−1
θn−1−−−→ yn

where n ∈ N, y0 is the initial state of the EIS, ∀i < n,
ei ∈ Eo and θi ∈ Θ(zi). Denote the set of runs by Run.

Given a run r as defined above, the edit projection Pe :
Run → P [L(G)] is such that Pe(r) = e0e1 · · · en and the
generated string lg(r) returns θ0e0θ1e1 · · · θn−1en−1.

Definition 6. (Insertion function embedded in the EIS).
An insertion function fi is embedded in the EIS if ∀l ∈
P [L(G)], ∃r ∈ Run, s.t. Pe(r) = l and lg(r) = fi(l).

If insertion function fi is embedded in the EIS, given a
string l = e0e1 · · · en−1 ∈ P [L(G)], suppose l is edited
to θ0e0θ1e1 · · · θn−1en−1, then there is a unique run r =

y0
e0−→ z0

θ0−→ y1
e1−→ · · · yn−1

en−1−−−→ zn−1
θn−1−−−→ yn ∈

Run where each θi is defined at a Z-state in the run.
Specifically, we denote a run r by rfi(l) if Pe(r) = l and
lg(r) = fi(l). fi works by specifying an outgoing transition
at each Z state in the EIS. Insertion functions can be
extracted from the EIS and represented as I/O automata,
similarly with Algorithm 5 in Wu and Lafortune [2014];
the readers are referred to that work for more details. The
following theorem shows the soundness of Algorithm 2.

Theorem 3. Any insertion function embedded in the EIS
solves Problem 1.

Proof. Suppose fi is embedded in the EIS. By the defi-
nition of the verifier, Xv ⊆ Xobsd ×Xobs and the intruder

only observes states in Xobsd. Since the state estimate
component of each state in the EIS is from Xv, fi maps
every string to a safe one, thus is privately safe.

Besides, for s ∈ L(G) with P (s) = l = e0e1 · · · en−1,
suppose that fi(l) = θ0e0θ1e1 · · · θn−1en−1, then there

exists a run r = y0
e0−→ z0

θ0−→ y1
e1−→ · · · yn−1

en−1−−−→
zn−1

θn−1−−−→ yn in the EIS. Denote this run by rfi(l). Since
each yi in rfi(l) is energy safe and each energy information
state contains the worst case energy level of the system by
strings under certain insertions, then from Theorem 2, we
know that ∀s ∈ P−1(l) ∩ L(G), Vm(s, sfi) ≥ 0. Also by
Algorithm 2 and Definition 6, we know Vm(s, sfi) ≥ 0
holds ∀s ∈ P [L(G)], therefore fi solves Problem 1. 2

Thus Theorem 3 proves the soundness of Algorithm 2.
However, its completeness is still an open problem.

Example 3. We reconsider the EIS in Fig. 5 and obtain
an embedded insertion function fi as follows: fi(c) = abc,
fi(b) = ab and b is inserted as soon as it observes event c
occurring from state E in Fig. 2; no other insertions are
made. It is easy to verify that fi and any other insertion
function embedded in the EIS solve Problem 1.

6. CONCLUSION

We investigated opacity enforcement by insertion func-
tions in a partially-observed discrete event system under
initial energy constraint. To the best of our knowledge,
this work is the first one to investigate opacity enforcement
under such quantitative constraints. The system’s energy
level changes dynamically according to event insertion and
execution. Our goal is to synthesize an insertion function
that enforces opacity as well as guarantees that the sys-
tem’s energy level is never below zero. A bipartite tran-
sition structure called Energy Insertion Structure (EIS)
was proposed, in order to capture information states and
their associated worst-case energy level vectors. The EIS
characterizes the game between the insertion functions and
the environment. We showed that the EIS embeds inser-
tion functions that solve our proposed problem, thereby
providing a valid characterization of the solution space.

ACKNOWLEDGEMENTS

We thank all the reviewers for their useful suggestions for
improvement. We are especially indebted to an anonymous
reviewer for pointing out an incomplete proof in the sub-
mitted version of Theorem 3; at present, the completeness
of Algorithm 2 remains an open problem.

REFERENCES

Bryans, J.W., Koutny, M., and Ryan, P. (2005). Modelling
opacity using Petri nets. Electronic Notes in Theoretical
Computer Science, 121, 101–115.

Cassandras, C.G. and Lafortune, S. (2008). Introduction
to discrete event systems – 2nd Edition. Springer.

Cassez, F. (2009). The dark side of timed opacity. In
International Conference on Information Security and
Assurance, 21–30. Springer.

Cassez, F., Dubreil, J., and Marchand, H. (2012). Synthe-
sis of opaque systems with static and dynamic masks.
Formal Methods in System Design, 40(1), 88–115.

de Alfaro, L., Henzinger, T.A., and Kupferman, O. (2007).
Concurrent reachability games. Theoretical Computer
Science, 386(3), 188–217.

Degorre, A., Doyen, L., Gentilini, R., Raskin, J.F., and
Toruńczyk, S. (2010). Energy and mean-payoff games
with imperfect information. In Computer Science Logic,
260–274. Springer.

Dubreil, J., Darondeau, P., and Marchand, H. (2010).
Supervisory control for opacity. IEEE Transactions on
Automatic Control, 55(5), 1089–1100.

Falcone, Y. and Marchand, H. (2015). Enforcement and
validation (at runtime) of various notions of opacity.
Discrete Event Dynamic Systems: Theory and Applica-
tions, 25(4), 531–570.

Jacob, R., Lesage, J.J., and Faure, J.M. (2016). Overview
of discrete event systems opacity: Models, validation,
and quantification. Annual Reviews in Control.

Ji, Y. and Lafortune, S. (2017). Enforcing opacity by
publicly known edit functions. In Proceedings of the 56th
IEEE Conference on Decision and Control, 4866–4871.

Keroglou, C. and Hadjicostis, C.N. (2017). Probabilistic
system opacity in discrete event systems. Discrete Event
Dynamic Systems: Theory and Applications.

Levy, A. (2002). Basic set theory. Courier Corporation.
Lin, F. (2011). Opacity of discrete event systems and its

applications. Automatica, 47(3), 496–503.
Pérez, G.A. (2017). The fixed initial credit problem

for partial-observation energy games is ack-complete.
Information Processing Letters, 118, 91–99.

Pruekprasert, S. and Ushio, T. (2017). Supervisory control
of partially observed quantitative discrete event systems
for fixed-initial-credit energy problem. IEICE transac-
tions on Information and Systems, 100(6), 1166–1171.

Saboori, A. and Hadjicostis, C.N. (2007). Notions of
security and opacity in discrete event systems. In
Proceedings of the 46th IEEE Conference on Decision
and Control, 5056–5061. IEEE.

Saboori, A. and Hadjicostis, C.N. (2013). Verification of
initial-state opacity in security applications of discrete
event systems. Information Sciences, 246, 115–132.

Takai, S. and Oka, Y. (2008). A formula for the supremal
controllable and opaque sublanguage arising in supervi-
sory control. SICE Journal of Control, Measurement,
and System Integration, 1(4), 307–311.

Tong, Y., Li, Z., Seatzu, C., and Giua, A. (2017). Current-
state opacity enforcement in discrete event systems un-
der incomparable observations. Discrete Event Dynamic
Systems: Theory and Applications, 1–22.

Wu, Y.C. and Lafortune, S. (2014). Synthesis of insertion
functions for enforcement of opacity security properties.
Automatica, 50(5), 1336–1348.

Yin, X. and Lafortune, S. (2015). A general approach for
solving dynamic sensor activation problems for a class of
properties. In Proceedings of the 54th IEEE Conference
on Decision and Control, 3610–3615.

Yin, X. and Lafortune, S. (2016). A uniform ap-
proach for synthesizing property-enforcing supervisors
for partially-observed discrete-event systems. IEEE
Transactions on Automatic Control, 61(8), 2140–2154.

Yin, X. and Lafortune, S. (2017). A new approach for
the verification of infinite-step and K-step opacity using
two-way observers. Automatica, 80, 162–171.

