Opacity Enforcement by Insertion
Functions under Energy Constraints*

Yiding Ji* Xiang Yin ** Stéphane Lafortune *

* Department of Electrical Engineering and Computer Science, the
University of Michigan, Ann Arbor, Michigan, USA.
** Department of Automation, Shanghai Jiao Tong University,
Shanghai, China.

Abstract:

We investigate the enforcement of opacity by insertion functions, when the system has a certain
amount of initial-credit energy for its operation and defense of secrets. The problem is formulated
as a two-player game between the insertion function and the system (or environment) with an
energy objective and asymmetric partial information. The insertion function must defend the
secrets by inserting fictitious output events while guaranteeing that the energy level never drops
below zero, under the worst-case scenario of system operation. The insertion function has only
partial information about the system, due to unobservable events that affect the energy level.
To resolve the partial observation, we construct a game structure called the Energy Insertion
Structure (or EIS) that provably embeds insertion functions solving the proposed problem.

Keywords: Privacy, opacity enforcement, insertion function, partial observation, energy game

1. INTRODUCTION

Opacity is an information-flow property that characterizes
whether the secrets of a system can be inferred by an
outside intruder with malicious goals. The outside intruder
is typically modeled as an observer with knowledge of the
structure of the system whose intention is to infer system
secrets when observing the system outputs. The system is
called opaque if the intruder is never able to determine any
of the system secrets unambiguously from its observations.

Since the work by Bryans et al. [2005], opacity has re-
ceived significant attention for systems modeled as Dis-
crete Event Systems (DES). Several opacity notions have
been defined and studied for finite state automata mod-
els, e.g., language-based opacity [Lin 2011], current-state
opacity [Saboori and Hadjicostis 2007], initial-state opac-
ity [Saboori and Hadjicostis 2013], K-step opacity, and
infinite-step opacity [Yin and Lafortune 2017]. Opacity has
also been evaluated quantitatively in stochastic settings,
e.g., [Keroglou and Hadjicostis 2017], and timed settings,
e.g., [Cassez 2009]. The survey paper Jacob et al. [2016]
provides a comprehensive review of opacity results in DES.

Violations of opacity give rise to the opacity enforcement
problem [Falcone and Marchand 2015], which has been
investigated under various mechanisms. Supervisory con-
trol can be used to disable non-opaque behaviors, thereby
preventing disclosure of secrets [Dubreil et al. 2010, Tong
et al. 2017, Takai and Oka 2008, Yin and Lafortune 2016].
Another method is sensor activation [Cassez et al. 2012,
Yin and Lafortune 2015], which dynamically changes the
observability of certain events but does not intervene with
the system’s operation. Opacity enforcement using inser-

* Research supported in part by the US National Science Foundation
under grants CNS-1421122 and CNS-1738103.

tion functions was proposed by Wu and Lafortune [2014]
and extended in Ji and Lafortune [2017] to a more general
method called edit functions. An edit function may insert
fictitious events into the system’s output or erase events
from the system’s output to obfuscate the intruder. In this
paper, we consider obfuscation by event insertion alone.

In many applications, the execution of system events as
well as the obfuscation method may consume quantitative
resources of the system, which we refer to as energy. We
assume that the system may only have a limited amount of
energy for its operation and for the defense of its secrets.
Motivated by this practical situation, we investigate for
the first time opacity enforcement by insertion functions
under energy constraints, which require that the energy
of the system should never be depleted. Furthermore, we
assume that the insertion function is only aware of the
occurrence of observable events.

We formulate this problem as opacity enforcement with
a quantitative objective and imperfect information. The
insertion function aims to enforce opacity under the con-
straint that the energy of the system should never drop
below zero, for all possible system behaviors (worst-case
analysis). Then we reduce this problem to a game with
perfect information and solve it by constructing a discrete
structure called Energy Insertion Structure (EIS). The in-
sertion function plays by inserting events, which consumes
energy, while the system plays by executing events, which
consumes or gains energy. Therefore the system’s energy
level dynamically changes. The EIS is a game graph in-
cluding winning strategies of the insertion function under
both qualitative and quantitative requirements.

Our approach is inspired by recent work on energy games,
which are two-player quantitative games on weighted

graphs, where the weights represent energy gain or con-
sumption. The objective of the first player is to keep the
energy above zero, while the other player intends to do
the opposite. A special type of energy game is a fixed-
initial-credit energy game, where the system has a certain
amount of initial energy. In some cases, the first player
may have imperfect information about the game [Degorre
et al. 2010]. Under certain assumptions, such games are
decidable but they are ACK-complete [Pérez 2017]. They
are solved by reducing them to reachability games [Degorre
et al. 2010, de Alfaro et al. 2007]. The above works have
also inspired the work Pruekprasert and Ushio [2017],
which studies supervisory control for DES using energy
games with partial observation. We adapt some of the
methodology in Pruekprasert and Ushio [2017] to the
different problem of opacity enforcement by obfuscation,
leveraging the approach of Wu and Lafortune [2014]. We
believe this paper is the first to investigate opacity enforce-
ment under such types of quantitative energy constraints.

This paper is organized as follows. Section 2 describes our
system model. Section 3 formulates the opacity enforce-
ment problem under energy constraints discussed in this
paper. Section 4 introduces the Energy Insertion Struc-
ture (EIS). Section 5 uses the EIS to solve the proposed
problem. And Section 6 concludes the paper.

2. SYSTEM MODEL

We consider opacity in a quantitative DES modeled as a
weighted finite-state automaton:
G: (X,E7f,$0,OJ)

where X is the finite set of states, F is the finite set of
events, f : X x E — X is the partial state transition
function, and xzg € X is the unique initial state. We
denote by Xg C X the set of secret states that should
remain opaque. The transition function is extended to
domain X x E* in the standard manner [Cassandras and
Lafortune 2008] and we still denote it by f. The language
generated by G is defined as L(G) = {s € E* : f(xo,s)!}
where | means “is defined”. The function w : E — Z
assigns a weight to each event in E. The value of the
weight reflects the energy gain or cost associated with the
occurrence of the event. The function w is additive and
its domain can be extended to E* by letting w(e) = 0,
w(se) = w(s) + w(e) where s € E*, e € E. An ezecution
in GG is a sequence of states and events: xpegzier - - - e, xy,
where x; = f(z;-1,¢€;),1 < ¢ < n. An execution contains
acycleif3i,7 €N, 0<i<j<n, stz =x;.

The system has initial-credit energy vg € NT and its en-
ergy changes with the occurrence of events. Given a string
s = egey--en_1 € L(G), the energy level of the system
after s is defined as V' : L(G) — Z where V(s) = vg +
n—1

Z w(e;). In this work, we make the important assumption
i=0

that the energy level should always be nonnegative.

Assumption 1. Vs € L(G), V(s) > 0.

We assume that G is partially observable, i.e., E = E, U
FE.o, where FE, is the set of observable events and FE,,
is the set of unobservable events. Given t = t'e € E*,
its natural projection under P : E* — E} is recursively

defined as P(t) = P(te) = P(t')P(e) where t' € E*
and e € E. The projection of an event is P(e) = e
if e € E, and P(e) = ¢ if e € E,, U {e}, where € is
the empty string. Then the observer of G is defined as
Obs(G) = (Xobs, Eo, 0, Tobs,0, Wobs) and is obtained follow-
ing the standard technique in Cassandras and Lafortune
[2008]. Here X, is the state space, § is the transition
function, zps,0 is the initial state and weps is the same as
w over the restricted domain E,. We call the observer state
as the current state estimate (estimate) of the system.

3. OPACITY AND INSERTION MECHANISM

In this section, we formulate the opacity enforcement
problem under energy constraints. We start by reviewing
the concept of current-state opacity and then discuss the
insertion mechanism for its enforcement.

Definition 1. (Current-State Opacity (CSO)). Given sys-
tem G, projection P, and secret states Xg, G is CSO if
Vte Lg := {t S £(G) : f(l‘o,t) S Xs}, It e Lyg = {t S
L(G) : f(zo,t) € (X \ Xg)} such that P(t) = P(¢).

A system is current-state opaque if for every string reach-
ing a secret state, there exists another string reaching a
non-secret state which shares the same projection, thereby
providing deniability of the secret. CSO can be verified
by building the observer and checking whether an ob-
server state contains solely secret states. Based on CSO,
we define the safe language, which is the prefix-closure
of the projected non-secret strings: Lsore = [P[L(G)] \
[PIL(G)]\ P(Lns)||E:. We also define the unsafe lan-
guage Lypsafe = P[L(G)]\ Lsafe. The desired observer
Obsq(G) = (X4,E,,04,%4,0) is obtained by deleting all
the observer states composed of only secret states and then
taking the accessible part, see Wu and Lafortune [2014].
It generates Ls,¢. and we omit the weight function.

Opacity may not always hold and an insertion function
may be used to enforce it. The insertion function is an
interface between the system’s output and the external
environment including the intruder. It may insert fictitious
events into the output stream of the system to obfuscate
the intruder, see Wu and Lafortune [2014] for more details.

Definition 2. (Insertion Function). An insertion function
is defined as: f; : E¥ x E, — E}FE, such that for [€ E
and e, € F,, fi(l,e,) = sre, where sy € EX,

By definition, sy is the inserted string and may be € when
nothing is inserted. With a slight abuse of notation, we also
define f; in a string-based manner: f;(e) = e and f;(le,) =
fi(l,e0) fi(1). An insertion function inserts strings based on
the observable behavior. However, unobservable events do
occur between two observable events; as a convention, we
assume that the inserted string is placed right before the
next observable event in an unprojected string.
Convention 1. Given s = &pep---&no1en-1&n € L(G
whereVi <n, & € E’ ande; € E,, if fi(eper ---€;—1,€;) =
0;e; where Vi < n, §; € E*, then s is mapped to s’ =
&oboeo - - - &ibie; - - - Enbpe, where P(s') € P[L(G)].

Here it is possible that s’ ¢ £(G) but only P(s") € P[L(G)]
since the intruder only observes strings in P[L(G)].

Based on Lgqyfe, we define private safety of the insertion
function, which characterizes its performance.

Definition 3. (Private Safety). Consider system G with P,
and Lg,¢.. Insertion function f; is privately safe if Vs &
P[E(G)]a fl(s) € Lsafe-

Event insertion always costs energy and we define the
insertion cost function w; : E, — 7Z \ N, which assigns
a negative weight to each inserted event. Function w; is
additive and its domain is extended to E} by letting
wi(€) = 0 and w;(se,) = w;i(s)+w;(e,) for s € EX, e, € E,,.

Next, we define the system’s energy level after insertion as
Vin : L(G) x E* — Z. Given s = §yepérer -+ €n—16n—1&, €
L(G) where Vj < n, & € E!, and e; € E,, suppose
s is mapped to s = 509060519161 e 'gn—len—len—lfn
by Convention 1 under some insertion function, then

n—1
Vin(s,s') = V(s) + Zwi(ﬁj). We will denote s’ by sy,
=0

i=
if s is mapped to s’ by f;. We call V,,,(s, sy,) as the energy
level of the system by string s under insertion function f;.

Given a non-opaque system G and initial energy vy, we aim
to design an insertion function f; which enforces opacity
but never makes the system’s energy level below zero at
any time. Thus the operation of the insertion function
is constrained by the energy level of the system, i.e.,
Vs € P[L(G)], Vin(s,syf,) > 0. Since insertion costs energy,
we make Assumption 1 to guarantee an energy margin for
the insertion function. We can now formally formulate the
opacity enforcement problem under energy constraints.

Problem 1. (Opacity Enforcement with Energy Constraints). formation state is: ¢® =

Given system G with initial-credit energy vg, the opacity
enforcement under energy constraints problem is to find
an insertion function f; such that: (1) f; is privately safe;
(2) Vs € L(G), Vin(s,sy5,) > 0.

Due to the partial observation of the system, we need
to properly estimate both the system’s current state and
the energy level so that the insertion function may make
decisions. We will discuss this issue in the next section.

4. ENERGY INSERTION STRUCTURE

In this section, we propose energy information states
and a bipartite game structure called “Energy Insertion
Structure” (EIS). In this way, Problem 1 is transformed
into a reachability game of perfect information between the
insertion function and the environment. The construction
is of the EIS a three-step process: (1) build the verifier;
(2) build the safe energy verifier; (3) build the EIS.

4.1 Build the Safe Energy Verifier

Step (1) was first presented in Wu and Lafortune [2014]
and we briefly repeat it here. We first build the desired es-
timator and the feasible estimator. The feasible estimator
is obtained by adding self-loops at each state in Obs(G)
for all observable events. We denote the feasible estimator
Obsy(G) = (Xy, E,, 0,04, 250) where dg(zf,e,) = x5 for
every y € Xy and every e, € E,. Thus at a state x ¢, there
may be two e, defined, one is for the normal transition §
and the other is for self-loop transition d;, where ¢ stands
for the event execution in the observer while d4; stands for
the occurrence of inserted fictitious events.

Then we synchronize Obsq(G) and Obsy(G) by the veri-
fier parallel composition to obtain the wverifier, defined as

Gy = (Xu, Eo, 6vd, 0uvs, Too). Here X, € Xg x Xy is the
state space, F, is the set of observable events, d,s : X, X
E, — X, is the transition function corresponding to
normal transitions in both Obsq(G) and Obs¢(G), 6ya :
X, x E, — X, is the transition function corresponding
to normal transitions in Obsg(G) with added self-loop
transitions in Obsy(G), and x,0 is the initial state. A state
zy = (x4, 27) € X, has two components: the left one is the
intruder’s estimate and the right one is the (true) system’s
estimate. By construction (see Wu and Lafortune [2014]),
rgq is not a subset of secret states and does not reveal
the system’s secrets to the intruder. The two transition
functions 6, and 9,4 work as follows from the verifier par-
allel composition: d,s((zq, xs),e0) = (dq(Ta,€0),0(zy,€0))
if d4(zq,e,)! in Obsg(G) and (xy,e,)! in Obsy(G);
ova((za,zp),€) = (da(xa,€),00(zy,€)) = (da(za,e),2y)
if dg(xq,e)! in Obsqa(G). We set dyq(zy,€) = x, for any
z, € X,. Intuitively, d,4 indicates potential event insertion
and ¢, indicates system’s observable event execution.

Next, we come to step (2). Before building the safe
energy verifier, we first introduce a measure on vectors.
Given two vectors v; = [v1(1),v1(2), - ,v1(n)], va =
[v2(1),v2(2), -+ ,va(n)] € Z™, we denote by v; < v
(respectively vy > wg) if VI < i < n,vi(i) < wa(i)
(respectively v1(i) > v2(i)). In order to cope with partial
observation as well as to track the system’s energy level,
we define the Energy Information State as follows.

Definition 4. (Energy Information State). An energy in-
(g, @p), [v(1), -~ v(lzg])]) €
X, x ZI#s1. Let I(g°) and Ep(q°) denote the verifier state
and energy level components; hence, ¢¢ = (I(¢¢), Fr(q%)).

Denote by QF the set of energy information states, which
tracks the system’s estimate, the intruder’s estimate, and
the system’s energy level. Each ¢¢ € Q¥ induces a belief
function hge : X — 7Z. Specifically, for ¢ € QF where
I(¢°) = (zq,25) € Xy, Er(q°) = {hge(z) : ¢ € x5} We
usually put Er(g°) in vector form: [hge (1), hge (2|4, |)]-
By convention, elements in Fy,(¢°) are placed in an in-
creasing order w.r.t. state names in x¢. Our definition is
inspired by the belief function in Degorre et al. [2010] and
the observation function in Pruekprasert and Ushio [2017].

An energy information state ¢¢ € QF is energy safe (or
simply safe) if Er(¢°) > 0 in the point-wise sense. We
define an order < over QF: for ¢f,q¢5 € QF, ¢f < ¢5 if
I(q§) = I(¢5) and Er(¢f) < Er(¢5). We also say that g5
subsumes qf if ¢f < ¢5, i.e., ¢f and ¢5 share the same
verifier state component but the energy level of ¢5 is no
less than that of ¢ at every possible current state in (g5).
By Dickson’s lemma (see Levy [2002]), the order < on
N* is a well-quasi-ordering for any k € N. We further
argue that < on safe energy information states is also a
well-quasi-ordering, i.e., for any infinite sequence of states
4%, q5 - € QF there exists i, j € N, s.t. i < j and ¢f < qs-

For e, € E,, we say ¢5 is a (e,,dyq) successor of ¢f if:
o I(¢5) = (waz,x51) = 6va(l(qf),e0) where I(qf) =

(g1, 51
o Vr € w1, hyg () = hye () +wileo)

When e, is inserted, the energy information state is
updated from ¢f to ¢5. Meanwhile, the system’s estimate

21 does not change and the intruder’s estimate changes
from z41 to z42. Besides, the value of hye () decreases by
the absolute value of w;(e,) for every & € x4 since the
insertion of e, costs energy w;(e,). We also extend this
definition to (0, 0,4) successor for 6 € EX: ¢5 is a (0, d,q)
successor of ¢f if I(¢5) = (za2,2f1) = 0va(I(g7),0) and
Vo € zf1, heg(z) = hyg () + wi(0).

Similarly, we say ¢5 is a (eo, dys) successor of gf if:

o I(q5) = (waz,wp2) = dus(I(q]),e0) Where I(qf) =
(g1, f1)

o Vo' € wyahog(v) = uin {hy (v) + wleo) + w(€) :

Jz € xp1,€ € Ej,, s.t. f(z,e,8) =2’}

When e, is executed by the system, the energy information
state is updated from g¢.1 to ¢5. Meanwhile, both the
system’s and the intruder’s estimates may change. A
possible current state ' in z ;o may be reached through
different strings from some state(s) x in zf;. In this case,
hqg (2') indicates the system’s worst case energy at ' with
the occurrence of observable event e, and unobservable
string £ from some = € xf1 s.t. 2’ = f(z, €,8).

Then we define the safe energy verifier that only contains
safe energy information states following Algorithm 1. It
is denoted by G2, = (Xev, Eo, devs, Ocvd, Tewvo, Vo) Where
Xeo € QF is the state space, Seps : Xew X By — Xep is the
observable event insertion transition function, deyq @ Xey X
E, — X., is the event execution transition function, ..
is the initial state, and vy is the initial energy. Procedure
Energy — Unfold builds the state space recursively until
an unsafe energy information state is reached or an energy
information state subsumes an existing one.

Algorithm 1 Construct the Safe Energy Verifier
Input: G,, vg, Obs(G)
Output: va = (Xem Es, bcvsy Oevds Tevo, UO)
1: Xe'u = {xevO}j I(-'EevO) = (xobsikO»xob&O)a Vo € Lobs,0
hxev()(x) = ernEH*l {v(§) € e E., f(x0,8) = a};

2: G2, = Energy — Unfold(xewo, Gv);
3: procedure ENERGY-UNFOLD(Zy, Gy)
4: for e € E,, s.t. dya(I(Zev),€0)! OF dps(I(Tew), €0)!
where I(2e,) = (2q4,2) do
5: if 0pa(I(xey),€0)! then
6: let state x., be an (e,, dyq) successor of Zey;
“p . €,
7: add transition xe, — ., t0 depd;
8: else
9: let state a., be an (e,, d,5) successor of Zey;
o . €
10: add transition z., — ., t0 Geps;
11: if o/, ¢ X5, and x%v is energy safe then
12: :)(Sv : ng U {mev}; . .
13: if 3j < n, s.t. Tev,j < ., in execution
Lev0€0Tev1€1 """ Levn—16n—1T¢y then
14: merge z., and Ze, ; in GY,: remove .,

and let all transitions reaching x,, reach xe,,;;
15: else
16: Energy — Unfold(xl,,G,);

An execution in G%, is of the form zep0€0Zevi€1 - - - €n—1Tevn
where Tev,i+1 = 5evs(mev,i76i) Or Tey,i+1 = 5evd(xev,iaei)
for some e; € E,. If 3xcy j < Tew,n for j < n, then a cycle
is formed in the verifier and the system’s energy level is

nondecreasing when the cycle is traversed. We merge x¢, ;
and Z,,, by making all transitions reaching ., end in
Zev,; instead since the energy level would forever remain
nonnegative on the current branch. Then the following
result holds. Similar results are in Degorre et al. [2010],
Pruekprasert and Ushio [2017] for different problems.

Theorem 1. The state space of G, is finite.

Proof. Proof by contradiction. Suppose G2, is infinite.
Since X, E, and X, are all finite, the number of outgoing
transitions at each state in G, is also finite. By Konig’s
lemma (see e.g., Levy [2002]), there exists an infinite
execution Ze,0€0Tep1€1 - -+, Where Xey, 41 is a (e, 0yq) OF
(s, 0ys) successor of T, ;. From Algorithm 1, any ., ;
is energy safe and it is never the case that 3@ < j, s.t.
Tev,i = Tew,j. However, this contradicts with well quasi-
ordering < on safe energy information states. a

Given an execution Tey0€0Tev1€1 " €n—1Tey,n and Vi <
n let I(ev;) = (xaiTr;), there exists an execution
Tdo€oTdie1 - - €n—1Td,n in the desired estimator by defi-
nition, which implies ege; --- e, € L[Obsq(G)] = Lsafe-
Thus £(G%,) C Lg,ye and private safety is not violated.
When we merge states in G,, we do not change the
language of the logical part (i.e., disregarding energy) since
the logical parts of the states are the same, hence they have
the same future logical behavior. Actually, considering en-
ergy will only restrict the logical behavior, so £(G%,) may
be smaller than Lg,¢.. Next, the belief function indicates
the minimum energy level of the system by strings with the
same observation reaching a state under certain insertion.

Theorem 2. Given x., € X, in the energy verifier, if
I(zey) = (zq,2¢) and 3l € P[L(G)], s.t. (Tops,0,l) =

zy, then Vo € zy, hy (z) = SEP_rlr(lli)l}w(a){Vm(s,s’)

f(zo,8) = 2,8(xobs,0, P(3)) = 2, 0a(Tops,0, P(s)) = x4}

The formal proof is omitted here, we give some inter-
pretation instead. Since both d.,q and d.,s transitions
track the minimum possible energy level by event insertion
or occurrence, we can show this theorem by induction
on the length of | € P[L(G)]. Given z., € X, with
I(zey) = (x4, xs), we locate string pairs {(s,s’) € L(G) x
E* : 6(xops,0, P(s)) = x5,04(xobs,0, P(s')) = xq}. That is,
s is the original string that reaches state z in G and s
is mapped to s’ after insertion; P(s) reaches the system’s
estimate ¢ in Obs(G) and P(s’) reaches the intruder’s
estimate x4 in Obsy(G). Let P(s) = [, then Theorem 2
shows that h,,_, (z) returns the system’s worst case en-
ergy level by strings in S(l,z;) = {s € L(G) : s €
P~Y(1), 6(obs,0,1) = x4} Those strings have the same pro-
jection [but potentially different unobservable substrings
and energy levels. Besides, if the minimum energy level
by some strings with the same projection is nonnegative,
it is true that the energy level by those strings is always
nonnegative. It justifies how we update energy information
states by (e, dyq) successor and (e,, d,5) successor.

Ezample 1. This example presents a safe energy verifier.
Consider the system G in Fig. 1, with E, = {a,b, ¢}, E,, =
{uy, u2, us, ug, ug, us, ug} and secret states Xg = {z7,29}.
Let w(a) = =8, w(b) = 1, w(c) = 2 and w;(a) = =3,
w;(b) = =2, w;i(c) = —1. Also, let w(u1) = 2, w(ug) = 1,
w(us) = =3, w(ug) = -1, w(us) = —2 and w(ug) = —1.
Finally, let vg = 9 be the system’s initial energy.

The observer Obs(G) is shown in Fig. 2 with renamed
states: A = {xg,z3, 24,28}, B = {x1}, C = {a2}, D =
{zs5,z6}, E = {x7}, F = {x9}. The system is obviously not
opaque and we apply insertion functions to enforce opacity.
The desired estimator is obtained by removing F and F
from Obs(G), while the feasible estimator is obtained by
adding self-loops for every event in E, at every state in
Obs(G). We omit them here due to space limitations.

Next we build the verifier in Fig. 3, where dashed lines
indicate 9,4 transitions and solid lines indicate ¢, tran-
sitions. Then we build the safe energy verifier in Fig. 4.
States (D, A) and (C, F') are ignored in building G%,, since
by insertion mechanism, every dashed transition should
be followed by some solid transition, i.e., a valid string
is inserted before observable events. The energy informa-
tion states are as follows: z.,0 = ((4,A),]9,10,7,10]),
Tevy1 = ((B,A),[6,7,4,7)]),

Tev3z = (B F) 6) Levd = (((BaA)a[3747134])a Levs =
(((C,4)),[1,2,-1,2]), zevs = ((C,D),[2,0]), Tewr =

BaE)a2)7 Tevg = ((aE)7O)a Tev9 = ((BaE)72a
Lev1o = ((B,D),[l,*l]), Tevll = ((C’D)>[573])a Levi2 =
((B;E 75); Tevl3 ((3 73)7 Tevld = ((B7E>a57
Tevls — ((BaD a[472D7 Levle — ((Ca D)7[2a0])7 Levl? —
(B, E),2), Teis = ((C,E),0), Tev1o = ((B,E),2),
Tev20 = ((D7D7[836])7 Tev21 = ((B;B)71)7 Tev22 =
((Oa0)72)7 LTev23 = ((BvB)a4)a Tev24 = ((B7)71a
Tey25 — ((07 C), 71) and Tev26 — ((C,B), 71)

Ep(@ev0) = [haeyo(T0)s hao (¥3), P,y (4), P, o (28)] =
[9,10,7,10] since the elements in Ep(x.,0) are placed
in an increasing order w.r.t. state names. For example,
ha.oo(®0) = vo = 9, ha,,o(23) = min{vo + w(ui),vo +
w(uz)y = 10, hy, (z4) = min{vy + w(uius),vo +
w(ugus)} = 7, hy () = vo + wlug) = 10. Tep1 is
a (a,0,q) successor of .y in Figure 4 and Vax € A,
haep () = ho.,(2) + wi(a). Also @ey11 is a (b, dys)
successor of Zep1, 80 hg,,,, (T5) = min{hmwl(u) +
w(b), zev1 (3) +w(b)} =5, ha,, 1 (w) = min{hy - (a) +
() + (u1a), by (1) + 0(B) F (15), Py, () T o (b) +
w(ua), by, (3) + w(b) + w(us)} = 3. All the other states
are obtained in a similar way. Among them, h,_ (2x4) =
-1, hﬁ?ev,lo(xﬁ) = -1, hxev,zs(xQ) = —1 and hxev,26(z1) =
—1. Thus Teys, Tev,10; Zev,25 and Zey 26 are not safe, they
are not included in GY,. Also, we merge the states con-
nected with green lines in Fig. 4 since ZTey7, Tev,125 Tev,175
Tev,21 subsume Lev9s Lev,14y Lev,19; Lev,23s respectively.

Fig. 1. The original system G

4.2 Build the Energy Insertion Structure

We come to step (3) and construct the Energy Insertion
Structure (EIS) from the safe energy verifier. By building
the EIS, we form a game with perfect information between
the insertion function and the environment.

Fig. 2. Observer Obs(G) where A = {xg,x3, x4, 28}, B =
{xl}v C = {fEQ}, D = {IE5,(E6}7 E= {$7}’ F= {ng}

‘p c b ¢ b\l
BB
[of

(without red states, merge

Fig. 4. Safe energy verifier G2,
states connected with green lines)

Given system G with initial energy vg, the Energy Inser-
tion Structure (EIS) is a bipartite structure described by
a tuple (Q)€7 Q§7 EO7 97 fsz7 szyJ Yo, UO) where Q)Ei g QE
is the set of energy information states; Q5 C QF x E,
is the set of energy information states augmented with
observable events; ffz : QY x E, — QF is the transition
function from Q¥ to Q%; fZ oy 1 Q% x© — QF is the tran-
sition function from QZ to QF; E,, is the set of observable
events; © C E* is the set of insertion decisions; yo € QXB;
is the initial state where yg = Zevo; vo € NT is the initial
energy. The EIS is formally defined by Algorithm 2.

In the EIS, the environment plays at QZ states (Y-states)
and the insertion function plays at Q% states (Z-states).
We call z € Qg a deadlocking state if A0 € O, s.t.
5(2,0)!. Also y € QF is called a terminating state if
fe, € E,, s.t. fy%(y,eo)!. Deadlocking states are not
allowed and will be pruned away in constructing the EIS.

Next, we construct the EIS from G%, in Algorithm 2.
In sz, we define its unmodified language, denoted by

L,(G%), as the language generated by G%, if we view

all dcyq transitions as e-transitions. If £,(G%,) = P[L(G)]
does not hold, then we return) and claim that we cannot
find privately safe insertion functions from the EIS, since
a privately safe insertion function should be able to map
every string in P[L(G)] to some safe string. On the other
hand, if the preceding equality holds, then we may obtain
insertion functions from the EIS to solve Problem 1.

Algorithm 2 Construction of the EIS
Input: G%,, Obs(G)

ev?

Output: EIS or ()

1 if £,(G2,) # P[L(G)] then

2: Return 0;

3: else

4: Q}l; = {y()} - {zev()}a Qg = mv

5: DoDFS(yo, G%,,Obs(Q));

6: while 3z € Qé, s.t. z is deadlocking do

7 Remove z and all preceding states y € QF, s.t.
flfz(y, €o) = z for some ¢, € E,;

8: Take the accessible part of the structure;

9: procedure DODFS(y, G, Obs(G))

10: for e, € E,, s.t. §(xy,e,)! in Obs(G) where
I(y) =Ty = (xdaxf) do

11: 2= (y,e0) = fl(y, e0);

12: add transition y =% z to yBZ;

13: if 2 ¢ QF then

14: QL =Q5 u{z};

15: for § € O, sit. IFey = Oevaly,d) and
Oevs(Tev, €0)! do

16: Y = evs(Tew, €0) = ffy(z,ﬁ);

17: add transition z y' to Z;

18: if ¥ ¢ QF then

19: QY = Q7 U{y'}::

20: DoDFS(y',G:,, Obs(Q));

Procedure DoDF'S is a depth-first search process, which
adds states and transitions to the EIS. In line 15, 8 is
a valid insertion choice if string fe, is well defined in
G3,. DoDFS may cause deadlocking Z-states and we
prune them away and remove their preceding Y -states
in a recursive manner until no state is to be removed,
thus the EIS terminates only at terminating states. If the
initial state is pruned, the algorithm also returns nothing.
Since G, is finite, Algorithm 2 converges in finite number
of steps. The algorithm is similar with the algorithm of
building the All Insertion Structure in Wu and Lafortune
[2014]. In the following discussion, we assume the EIS is
not empty so that it can be used to solve Problem 1.

Ezample 2. We revisit Example 1 and construct the EIS
in Fig. 5 following Algorithm 2. Since £,,(G%,) = P[L(G)],
the EIS is not empty. There are two types of states in the
EIS: the square Y-states and the oval Z-states. The tran-
sitions from Y-states are events executed by the system
and the transitions from Z-states are insertion function’s
choices. The game is initialized at yy = x¢,9 Where events
a, b, c are the system’s observable outputs. After b is ob-
served, the game reaches state (zey0,b) and the insertion
function begins to play by inserting a or abc before b,
where w;(a) = —3 and w;(abc) = —6. All transitions in
the structure are interpreted in a similar manner. After
DoDFS, there is a deadlocking Z-state (zey,20,¢), which

is pruned together with its preceding Y-state ¢y 20. In
the EIS, each time Y-states Zey7, Tev,12; Tev,17, Tev,21 aTe
visited, the energy level of the system will increase or stay
the same, thus remain nonnegative forever.

Fig. 5. Energy insertion structure (without the dashed
transitions and states)

5. SOLVING OPACITY ENFORCEMENT PROBLEM

In this section, we discuss some properties of the EIS and
solve Problem 1 by finding insertion functions in the EIS.
Intuitively, since all energy information states in the EIS
are safe and every string in P[£(G)] is mapped to some safe
strings under some insertion decisions, then any insertion
function obtained from the EIS solves Problem 1.

Definition 5. (Run). A run in the EIS is a sequence of al-

ternating states, observable events and insertion decisions:
€o 00 el 07,,_1
=Y — 2 —7 Y1 — " Yn-1 Zn—1 Yn

where n € N, yq is the initial state of the EIS, Vi < n,
e; € E, and 0; € ©(z;). Denote the set of runs by Run.

en_1

Given a run r as defined above, the edit projection P, :
Run — P[L(G)] is such that P.(r) = egey - - - e, and the
generated string l,(r) returns fpegbfier - Op_1en_1.
Definition 6. (Insertion function embedded in the EIS).
An insertion function f; is embedded in the EIS if VI €
P[L(G)], 3r € Run, s.t. P.(r) =1 and ly(r) = f;(1).

If insertion function f; is embedded in the EIS, given a
string [= egey---ep—1 € P[L(G)], suppose [is edited
to Opegbier - - -0y _1€,_1, then there is a unique run r =

e 0o el en—1 0r_1

Yo —> 20 —> Y1 —> Yn—1 — Zn—1 — Yn €
Run where each 6; is defined at a Z-state in the run.
Specifically, we denote a run r by 7y, (I) if P.(r) = [and
ly(r) = fi(l). fi works by specifying an outgoing transition
at each Z state in the EIS. Insertion functions can be
extracted from the EIS and represented as I/O automata,
similarly with Algorithm 5 in Wu and Lafortune [2014];
the readers are referred to that work for more details. The
following theorem shows the soundness of Algorithm 2.

Theorem 3. Any insertion function embedded in the EIS
solves Problem 1.

Proof. Suppose f; is embedded in the EIS. By the defi-
nition of the verifier, X, C Xpsq X Xops and the intruder

only observes states in X,psq. Since the state estimate
component of each state in the EIS is from X,, f; maps
every string to a safe one, thus is privately safe.

Besides, for s € L(G) with P(s) = 1 = ege1---ep—1,
suppose that f;(I) = 6pegbrer--0p_1€,—1, then there
exists a run r = Yy, - zo o, Y1 e Yp1 Lty
Zn—1 On, Y in the EIS. Denote this run by 7, (). Since
each y; in 7y, (1) is energy safe and each energy information
state contains the worst case energy level of the system by
strings under certain insertions, then from Theorem 2, we
know that Vs € P~1(1) N L(G), Vin(s,s5,) > 0. Also by
Algorithm 2 and Definition 6, we know V,,(s,s5,) > 0
holds Vs € P[L(G)], therefore f; solves Problem 1. O

Thus Theorem 3 proves the soundness of Algorithm 2.
However, its completeness is still an open problem.

Example 3. We reconsider the EIS in Fig. 5 and obtain
an embedded insertion function f; as follows: f;(c) = abe,
fi(b) = ab and b is inserted as soon as it observes event ¢
occurring from state E in Fig. 2; no other insertions are
made. It is easy to verify that f; and any other insertion
function embedded in the EIS solve Problem 1.

6. CONCLUSION

We investigated opacity enforcement by insertion func-
tions in a partially-observed discrete event system under
initial energy constraint. To the best of our knowledge,
this work is the first one to investigate opacity enforcement
under such quantitative constraints. The system’s energy
level changes dynamically according to event insertion and
execution. Our goal is to synthesize an insertion function
that enforces opacity as well as guarantees that the sys-
tem’s energy level is never below zero. A bipartite tran-
sition structure called Energy Insertion Structure (EIS)
was proposed, in order to capture information states and
their associated worst-case energy level vectors. The EIS
characterizes the game between the insertion functions and
the environment. We showed that the EIS embeds inser-
tion functions that solve our proposed problem, thereby
providing a valid characterization of the solution space.

ACKNOWLEDGEMENTS

We thank all the reviewers for their useful suggestions for
improvement. We are especially indebted to an anonymous
reviewer for pointing out an incomplete proof in the sub-
mitted version of Theorem 3; at present, the completeness
of Algorithm 2 remains an open problem.

REFERENCES

Bryans, J.W., Koutny, M., and Ryan, P. (2005). Modelling
opacity using Petri nets. Flectronic Notes in Theoretical
Computer Science, 121, 101-115.

Cassandras, C.G. and Lafortune, S. (2008). Introduction
to discrete event systems — 2nd Edition. Springer.

Cassez, F. (2009). The dark side of timed opacity. In
International Conference on Information Security and
Assurance, 21-30. Springer.

Cassez, F., Dubreil, J., and Marchand, H. (2012). Synthe-
sis of opaque systems with static and dynamic masks.
Formal Methods in System Design, 40(1), 88-115.

de Alfaro, L., Henzinger, T.A., and Kupferman, O. (2007).
Concurrent reachability games. Theoretical Computer
Science, 386(3), 188-217.

Degorre, A., Doyen, L., Gentilini, R., Raskin, J.F., and
Toruticzyk, S. (2010). Energy and mean-payoff games
with imperfect information. In Computer Science Logic,
260-274. Springer.

Dubreil, J., Darondeau, P., and Marchand, H. (2010).
Supervisory control for opacity. IEFEE Transactions on
Automatic Control, 55(5), 1089-1100.

Falcone, Y. and Marchand, H. (2015). Enforcement and
validation (at runtime) of various notions of opacity.
Discrete Event Dynamic Systems: Theory and Applica-
tions, 25(4), 531-570.

Jacob, R., Lesage, J.J., and Faure, J.M. (2016). Overview
of discrete event systems opacity: Models, validation,
and quantification. Annual Reviews in Control.

Ji, Y. and Lafortune, S. (2017). Enforcing opacity by
publicly known edit functions. In Proceedings of the 56th
IEEE Conference on Decision and Control, 4866—4871.

Keroglou, C. and Hadjicostis, C.N. (2017). Probabilistic
system opacity in discrete event systems. Discrete Fvent
Dynamic Systems: Theory and Applications.

Levy, A. (2002). Basic set theory. Courier Corporation.

Lin, F. (2011). Opacity of discrete event systems and its
applications. Automatica, 47(3), 496-503.

Pérez, G.A. (2017). The fixed initial credit problem
for partial-observation energy games is ack-complete.
Information Processing Letters, 118, 91-99.

Pruekprasert, S. and Ushio, T. (2017). Supervisory control
of partially observed quantitative discrete event systems
for fixed-initial-credit energy problem. IEICE transac-
tions on Information and Systems, 100(6), 1166-1171.

Saboori, A. and Hadjicostis, C.N. (2007). Notions of
security and opacity in discrete event systems. In
Proceedings of the 46th IEEE Conference on Decision
and Control, 5056-5061. IEEE.

Saboori, A. and Hadjicostis, C.N. (2013). Verification of
initial-state opacity in security applications of discrete
event systems. Information Sciences, 246, 115-132.

Takai, S. and Oka, Y. (2008). A formula for the supremal
controllable and opaque sublanguage arising in supervi-
sory control. SICE Journal of Control, Measurement,
and System Integration, 1(4), 307-311.

Tong, Y., Li, Z., Seatzu, C., and Giua, A. (2017). Current-
state opacity enforcement in discrete event systems un-
der incomparable observations. Discrete Event Dynamic
Systems: Theory and Applications, 1-22.

Wu, Y.C. and Lafortune, S. (2014). Synthesis of insertion
functions for enforcement of opacity security properties.
Automatica, 50(5), 1336-1348.

Yin, X. and Lafortune, S. (2015). A general approach for
solving dynamic sensor activation problems for a class of
properties. In Proceedings of the 54th IEEE Conference
on Decision and Control, 3610-3615.

Yin, X. and Lafortune, S. (2016). A uniform ap-
proach for synthesizing property-enforcing supervisors
for partially-observed discrete-event systems. IEEFE
Transactions on Automatic Control, 61(8), 2140-2154.

Yin, X. and Lafortune, S. (2017). A new approach for
the verification of infinite-step and K-step opacity using
two-way observers. Automatica, 80, 162-171.

