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ABSTRACT

Constructing a joint representation invariant across different modal-
ities (e.g., video, language) is of significant importance in many mul-
timedia applications. While there are a number of recent successes
in developing effective image-text retrieval methods by learning
joint representations, the video-text retrieval task, however, has
not been explored to its fullest extent. In this paper, we study how
to effectively utilize available multimodal cues from videos for the
cross-modal video-text retrieval task. Based on our analysis, we pro-
pose a novel framework that simultaneously utilizes multi-modal
features (different visual characteristics, audio inputs, and text) by
a fusion strategy for efficient retrieval. Furthermore, we explore
several loss functions in training the embedding and propose a mod-
ified pairwise ranking loss for the task. Experiments on MSVD and
MSR-VTT datasets demonstrate that our method achieves signifi-
cant performance gain compared to the state-of-the-art approaches.
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1 INTRODUCTION

Cross-modal retrieval between visual data and natural language
description remains a long-standing challenge in multimedia [12,
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Figure 1: Illustration of Cross-Modal Video-Text retrieval

task: given a text query, retrieve and rank videos from the
database based on how well they depict the text or vice versa.

41]. Joint visual-semantic embeddings [9, 15, 20, 26, 35] underpin
the building of most cross-modal retrieval methods as they can
bridge the gap between different modalities. In this joint space,
the similarity of different points reflects the semantic closeness
between their corresponding original inputs. In this work, we focus
on learning effective joint embedding models for the cross-modal
video-text retrieval task (See Fig. 1).

Recently, a few methods have been proposed for learning visual-
semantic embeddings for the video-language matching task [6, 24,
25, 30, 37]. Most of these existing approaches are very similar to the
image-text retrieval methods by design and focus mainly on the loss
functions. We observe that simple adaptation of a state-of-the-art
image-text embedding method [7] by mean-pooling features from
video frames provides a better result than most existing video-text
retrieval approaches [6, 24]. Image-text retrieval is a relatively ma-
ture field of study, and one might think that directly applying such
techniques to video-text retrieval may give optimal performance.
However, such methods fail to take advantage of the supplementary
information such as the temporal dynamics and sounds, which are
already included in the videos. This limits the robustness of the
systems; for instance, it may be very difficult to distinguish a video
with the caption “a dog is barking" apart from another “a dog is
playing" based only on visual appearance. Associating video motion
content and sound can give supplementary cues in this scenario and
improve the chance of correct prediction. Similarly, to understand a
video described by “gunshot broke out at the concert" may require
analysis of both visual and audio modalities simultaneously.



Developing a practical system for video-text retrieval without
considering most available cues in the video content is unlikely to
be comprehensive. However, an inappropriate fusion of comple-
mentary features may increase ambiguity and degrade performance.
In this regard, we study how to judiciously utilize different cues
from videos to develop a successful video-text retrieval system. We
propose a novel framework, which is tailored towards achieving
high performance in the task of cross-modal video-text retrieval.
Compared to the existing methods, our framework fuses four types
of feature (object, action, text and, audio) for efficient retrieval.
Furthermore, we propose a modified pairwise ranking loss for the
retrieval task that emphasizes on hard negatives and relative rank-
ing of positive labels. Our approach shows significant performance
improvement compared to previous approaches and baselines.

1.1 Overview of the Proposed Approach

In the cross-modal video-text retrieval task, an embedding network
is learned to project video features and text features into the same
joint space, and then retrieval is performed by searching the nearest
neighbor in the latent space. Utilizing multiple characteristics of
video (e.g., objects, actions, place, time) is evidently crucial for
efficient retrieval [39] and has become a common practice. In the
closely related task of video captioning, dynamic information from
video along with static appearance features has been shown to be
effective [27, 42]. Methods have been developed to extract features
from videos that focus on different characteristics. For example,
ResNet feature focuses on identifying objects in the frames, whereas
I3D feature focuses on identifying the activities. Since in this work
we are looking at videos in general, detecting both objects and
activities from the video is very important for higher performance.
Therefore, we need to develop a strategy that fuses information
from different video features efficiently for the target task.

In this work, we propose to leverage the capability of neural
networks to learn a deep representation first and fuse the video
features in the latent spaces so that we can develop expert networks
focusing on specific subtasks (e.g. detecting activities, detecting
objects). We propose to learn two joint video-text embedding net-
works as shown in Fig. 2. One model learns a joint space (Object-
Text Space in Fig. 2) between text features and visual appearance
features. Another model learns a joint space (Activity-Text Space
in Fig. 2) between text feature and a combination of activity and
audio features. Here, Object-Text space is the expert in solving
ambiguity between objects in a video, whereas Activity-Text space
is the expert in solving ambiguity between actions/events in the
video. Given a query sentence, we calculate the sentence’s similar-
ity scores with each one of the videos in the entire dataset in both
Object-Text and Activity-Text embedding spaces and use the sum
of similarity scores for final ranking.

We follow network architecture proposed in [18] that learns the
embedding model using a two-branch network using image-text
pair. One of the branches in this network takes text feature as input
and the other branch takes in a video feature. We propose a modified
bi-directional pairwise ranking loss to train the embedding. Inspired
by the success of ranking loss proposed in [7] in image-text retrieval
task, we emphasize on hard negatives. We also apply a weight-based
penalty on the loss according to the relative ranking of the correct
match in the retrieved result.

Contributions: The main contributions of this work can be sum-
marized as follows.

e The success of video-text retrieval depends on more robust
video understanding. This paper studies how to achieve the goal by
utilizing multimodal features from a video (different visual features
and audio inputs.).

e Our proposed framework uses action, object, text and audio
features by a fusion strategy for efficient retrieval. We also present
a modified pairwise loss to better learn the joint embedding.

e We demonstrate a clear improvement over the state-of-the-art
methods in the video to text retrieval tasks with the MSR-VTT
dataset [36] and MSVD dataset [4].

2 RELATED WORK

Image-Text Retrieval. Recently, there has been significant inter-
est in learning robust visual-semantic embeddings for image-text
retrieval [12, 16]. Based on a triplet of object, action and, scene, a
method for projecting text and image to a joint space was proposed
in early work [8]. Canonical Correlation Analysis (CCA) was used
in several previous works for learning joint embeddings for the
retrieval task [10, 13, 29, 38]. However, CCA based methods have
been reported to be unstable and incur a high memory cost due to
the covariance matrix calculation [34].

Most recent works relating to text and image modality are trained
with ranking loss [7, 9, 18, 23, 32, 34]. In [9], authors proposed a
method for projecting words and visual content to a joint space
utilizing ranking loss that applies a penalty when a non-matching
word is ranked higher than the matching one. A cross-modal image-
text retrieval method has been presented in [18] that utilizes triplet
ranking loss to project image feature and RNN based sentence de-
scription to a common latent space. Several image-text retrieval
methods have adopted a similar approach with slight modifications
in input feature representations [23], similarity score calculation
[34], or loss function [7]. VSEPP model [7] modified the pair-wise
ranking loss based on violations caused by the hard-negatives (i.e.,
non-matching query closest to each training query) and has been
shown to be effective in the retrieval task. For image-sentence
matching, a LSTM based network is presented in [14] that recur-
rently selects pairwise instances from image and sentence descrip-
tions, and aggregates local similarity. In [23], authors proposed a
multimodal attention mechanism to attend to sentence fragments
and image regions selectively for similarity calculation. Our method
complements these works that learns joint image-text embedding
using a ranking loss (e.g., [7, 18, 32]). The framework can be applied
to most of these approaches for improved video-text retrieval.

Video-Text Retrieval. Most relevant to our work are the meth-
ods that relate video and language modalities. Two major tasks
in computer vision related to connecting these two modalities are
video-text retrieval and video captioning. In this work, we only fo-
cus on the retrieval task. Similar to image-text retrieval approaches,
most video-text retrieval methods employ a shared subspace. In [37],
authors vectorize each subject-verb-object triplet extracted from
a given sentence by word2vec model [22] and then aggregate the
Subject, Verb, Object (SVO) vector into a sentence level vector using
RNN. The video feature vector is obtained by mean pooling over
frame-level features. Then a joint embedding is trained using a
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Figure 2: An overview of the proposed retrieval process. Please see Section 1.1 for an overview and Section 3 for details.

least squares loss to project the sentence representation and the
video representation into a joint space. Web image search results
of input text have been exploited by [24], which focused on word
disambiguation. In [33], a stacked GRU is utilized to associate se-
quence of video frames to a sequence of words. In [25], authors
propose an LSTM with visual-semantic embedding method that
jointly minimizes a contextual loss to estimate relationships among
the words in the sentence and a relevance loss to reflect the distance
between video and sentence vectors in the shared space. A method
named Word2VisualVec is proposed in [6] for the video to sentence
matching task that projects vectorized sentence into visual feature
space using mean squared loss. A shared space across image, text
and sound modality is proposed in [2] utilizing ranking loss, which
can also be applied to video-text retrieval task.

Most of these video-text retrieval approaches are very similar
to the image-text retrieval methods by design and fail to utilize
video dynamics for retrieval. In contrast to the existing works, our
approach is capable of utilizing different visual cues and audio (if
available) concurrently for more efficient retrieval.

3 APPROACH

In this section, we first describe the input feature representation for
video and text (Section 3.1). Then, we describe the basic framework
for learning visual-semantic embedding using pair-wise ranking
loss (Section 3.2). Next, we present our modification on the loss
function to improve the basic framework to achieve better recall
(Section 3.3). Finally. we present the proposed fusion step for video-
text matching (Section 3.4).

3.1 Input Feature Representation

Text Feature. For encoding sentences, we use Gated Recurrent
Units (GRU) [5]. We set the dimensionality of the joint embedding
space, D, to 1024. The dimensionality of the word embeddings that

are input to the GRU is 300. Note that the word embedding model
and the GRU are trained end-to-end in this work.

Object Feature. For encoding image appearance, we adopt deep
pre-trained convolutional neural network (CNN) model trained on
ImageNet dataset as the encoder. Specifically, we utilize state-of-
the-art 152 layer ResNet model ResNet152 [11]. We extract image
features directly from the penultimate fully connected layer. We
first rescale the image to 224x224 and feed into CNN as inputs. The
dimension of the image embedding is 2048.

Activity Feature. The ResNet CNN can efficiently capture vi-
sual concepts in static frames. However, an effective approach to
learning temporal dynamics in videos was proposed by inflating
a 2-D CNN to a deep 3-D CNN named I3D in [3]. We use 13D
model to encode activities in videos. In this work, we utilize the
pre-trained RGB-I3D model and extract 1024 dimensional feature
utilizing continuous 16 frames of video as the input.

Audio Feature. We believe that by associating audio, we can get
important cues to the real-life events, which would help us remove
ambiguity in many cases. We extract audio feature using state-
of-the-art SoundNet CNN [1], which provides 1024 dimensional
feature from audio. Note that, we only utilize the audio sound which
is readily available with the videos.

3.2 Learning Joint Embedding

In this section, we describe the basic framework for learning joint
embedding based on bi-directional pairwise ranking loss.

Given a video feature representation (e.g., appearance feature,
or a combination of action and audio features) T (v € RY), the
projection for a video feature on the joint space can be derived as
v = W®3 (v € RD). In the same way, the projection of input text
embedding #(z € RT) to joint space is t = W(t)f(t € RD). Here,
W®) € RPXV is the transformation matrix that projects the video
content into the joint embedding and D is the dimensionality of the



joint space. Similarly, w(t) ¢ RDXT maps input sentence/caption
embedding to the joint space. Given feature representation for
words in a sentence, the sentence embedding ? is found from the
hidden state of the GRU. Here, given the feature representation
of both videos and corresponding text, the goal is to learn a joint
embedding characterized by 0 (i.e., w®), W) and GRU weights)
such that the video content and semantic content are projected into
the joint embedding space. We keep image encoder (e.g., pre-trained
CNN) fixed in this work.

In the embedding space, it is expected that the similarity between
a video and text pair to be more reflective of semantic closeness be-
tween videos and their corresponding texts. Many prior approaches
have utilized pairwise ranking loss for learning joint embedding be-
tween visual input and textual input. They minimize a hinge based
triplet ranking loss combining bi-directional ranking terms in order
to learn to maximize the similarity between a video embedding and
corresponding text embedding and minimize similarity to all other
non-matching ones. The optimization problem can be written as,

min Z Z[a —S(v, t) + S(v, )]s + Z Z[a —S(t, v) + S(t, v7)]+
vt t o~
(1)

where, [f]+ = max(0, f). t~ is a non-matching text embedding,
and ¢ is the matching text embedding. This is the same for video
embedding v. « is the margin value for the pairwise ranking loss.
The scoring function S(v, t) is defined as the similarity function
to measure the similarity between the videos and text in the joint
embedded space. We use cosine similarity as it is easy to compute
and shown to be very effective in learning joint embedding [7, 18].

In Eq. (1), in the first term, for each pair (v, t), the sum is taken
over all non-matching text embedding ¢™. It attempts to ensure
that for each visual feature, corresponding/matching text features
should be closer than non-matching ones in the joint space. Simi-
larly, the second term attempts to ensure that text embedding that
corresponds to the video embedding should be closer in the joint
space to each other than non-matching video embeddings.

3.3 Proposed Ranking Loss

Recently, focusing on hard-negatives has been shown to be effec-
tive in many embedding tasks [7, 21, 28]. Inspired by this, we focus
on hard negatives (i.e., the negative video/text sample closest to
a positive/matching (v, t) pair) instead of summing over all neg-
atives in our formulation. For a positive pair (v, t), the hardest
negative sample can be identified using 0 = arg max S(t,v™) and

f=arg max S(v,t7). The optimization problem can be written as

following to focus on hard-negatives,

min Zy:[a — S(v, t) + S(v, D]+ + Zt:[a =St )+ SE O ()

The loss in Eq. 2 is similar to the loss in Eq. 1 but it is specified in
terms of the hardest negatives [7]. We start with the loss function
in Eq. 2 and modify the loss function following the idea of weighted
ranking [31] to weight the loss based on the relative ranking of
positive labels.

m;n; L(ro)[a = S(v, t) + S(v, )]+ + Z L(rs)[e = S(t, v) + S(t, D)+
(3)

where L(.) is a weighting function for different ranks. For a video
embedding v, ry, is the rank of matching sentence ¢ among all
compared sentences. Similarly, for a text embedding t, r; is the rank

of matching video embedding v among all compared videos in the
batch. We define the weighting function as L(r) = (1+1/(N—r+1)),
where N is the number of compared videos.

It is very common, in practice, to only compare samples within
a mini-batch at each iteration rather than comparing the whole
training set for computational efficiency [15, 21, 28]. This is known
as semi-hard negative mining [21, 28]. Moreover, selecting the
hardest negatives in practice may often lead to a collapsed model
and semi-hard negative mining helps to mitigate this issue [21, 28].
We utilize a batch-size of 128 in our experiment.

It is evident from Eq. 3 that the loss applies a weight-based
penalty based on the relative ranking of the correct match in re-
trieved result. If a positive match is ranked top in the list, then
L(.) will assign a small weight to the loss and will not cost the loss
too much. However, if a positive match is not ranked top, L(.) will
assign a much larger weight to the loss, which ultimately try to
push the positive matching pair to the top of rank.

3.4 Matching and Ranking

The video-text retrieval task focuses on returning for each query
video, a ranked list of the most likely text description from a dataset
and vice versa. We believe, we need to understand two main aspects
of each video: (1) the salient objects of the video and (2) the action
and events in the video. To achieve this, we learn two joint video-
text embedding spaces as shown in Fig. 2.

The Object-Text embedding space is the common space where
both appearance features and text are mapped to. Hence, this space
can link video and sentences focusing on the objects. On the other
hand, the Activity-Text embedding space focuses on linking video
and language description which emphasizes more on the events
in the video. Action features and audio features both provide im-
portant cues for understanding different events in a video. We fuse
action and audio features by concatenation, and map the concate-
nated feature and text feature into a common space, namely, the
Activity-Text space. If the audio feature is absent from a video, we
only use the action feature as the video representation for learning
the Activity-Text embeddings. We utilize the same loss functions
described in Sec. 3.3 for training both the Object-Text and Activity-
Text embedding models.

At the time of retrieval, given a query sentence, we compute the
similarity score of the query sentence with each one of the videos in
the dataset in both Object-Text and Activity-Text embedding spaces
and use a sum of similarity scores for the final ranking. Conversely,
given a query video, we calculate its similarity scores with all the
sentences in the dataset in both embedding spaces and use a sum
of similarity scores for final ranking. It may be desired to use a
weighted sum when it is necessary in a task to put more emphasis
on one of the facets of the video (objects or captions). In this work,
we put equal importance to both facets in ranking.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metric

We present experiments on two benchmark datasets: Microsoft Re-
search Video to Text (MSR-VTT) Dataset [36] and Microsoft Video
Description dataset (MSVD) [4] to evaluate the performance of our



Table 1: Video-to-Text and Text-to-Video Retrieval Results on MSR-VTT Dataset.

# | Method Video-to-Text Retrieval Text-to-Video Retrieval

R@1 R@5 R@10 MedR MeanR Recall [ R@1 R@5 R@10 MedR MeanR Recall
a1 VSE-ResNet 7.7 203 312 28.0 185.8 19.7 5.0 16.4 246 470 215.1 15.3
VSEPP ResNet 102 254 351 25.0 228.1 235 5.7 17.1 24.8 65.0 300.8 15.8
ResNet 105 267 359 25.0 266.6 244 58 17.6 252 61.0 296.6 16.2

3.2 | Audio 0.4 1.1 1.9 1051 2634.9 1.1 0.2 0.9 L5 1292 1300 0.8
13D 84 222 323 30.3 2299 210 4.6 15.3 227 710 303.7 14.2

313 CON(ResNet-I3D) 9.1 246  36.0 23.0 1814 232 5.5 17.6 259 510 243.4 16.3
CON(ResNet-I13D-Audio) 9.3 27.8 380 22.0 1623 25.0 5.7 18.4 26.8 48.0 242.5 16.9

3.4 | Joint Image-Text-Audio Embedding 8.7 224 321 31.0 2258 210 4.8 153 229 73.0 313.6 14.3
35 Fusion [ResNet & 13D] 123 313 429 16.0 1454 289 6.8 20.7 29.5 39.0 224.7 19.0
Fusion [ResNet & CON(13d-Audio)] 125 321 424 16.0 1340  29.0 7.0 20.9 29.7  38.0 213.8 19.2

proposed framework. We adopt rank-based metric for quantitative 4.3 Results on MSR-VTT Dataset

performance evaluation.

MSR-VTT. The MSR-VTT is a large-scale video description
dataset. This dataset contains 10,000 video clips. The dataset is
split into 6513 videos for training, 2990 videos for testing and 497
videos for the validation set. Each video has 20-sentence descrip-
tions. This is one of the largest video captioning dataset in terms
of the quantity of sentences and the size of the vocabulary.

MSVD. The MSVD dataset contains 1970 Youtube clips, and
each video is annotated with around 40 sentences. We use only
the English descriptions. For a fair comparison, we used the same
splits utilized in prior works [33], with 1200 videos for training,
100 videos for validation, and 670 videos for testing. The MSVD
dataset is also used in [24] for video-text retrieval task, where they
randomly chose 5 ground-truth sentences per video. We use the
same setting when we compare with that approach.

Evaluation Metric. We use the standard evaluation criteria
used in most prior work on image-text retrieval and video-text
retrieval task [6, 18, 24]. We measure rank-based performance by
R@K, Median Rank(MedR) and Mean Rank (MeanR). R@K (Recall
at K) calculates the percentage of test samples for which the correct
result is found in the top-K retrieved points to the query sample.
We report results for R@1, R@5 and R@10. Median Rank calculates
the median of the ground-truth results in the ranking. Similarly,
Mean Rank calculates the mean rank of all correct results. We also
report the average of R@1, R@5 and R@10 as Recall in the tables.

4.2 Training Details

We used two GTX 1080 Ti GPUs for this work. We implemented
the network using PyTorch following [7]. We start training with
a learning rate of 0.002 and keep the learning rate fixed for 15
epochs. Then the learning rate is lowered by a factor of 10 and the
training continued for another 15 epochs. We use a batch-size of
128 in all the experiments. The embedding networks are trained
using ADAM optimizer [17]. When the L2 norm of the gradients for
the entire layer exceeds 2, gradients are clipped. We tried different
values for margin « in training and empirically choose « as 0.2. The
embedding model was evaluated on the validation set after every
epoch. The model with the best sum of recalls on the validation set
is chosen finally.

We report the result on MSR-VTT dataset [36] in Table 1. We im-
plement several baselines to analyze different components of the
proposed approach. To understand the effect of different loss func-
tions, features, effect of feature concatenation and proposed fusion
method, we divide the table into 5 rows (1.1-1.5). In row-1.1, we
report the results on applying two different variants of pair-wise
ranking loss. VSE[18] is based on the basic triplet ranking loss
similar to Eq. 1 and VSEPP[7] is based on the loss function that
emphasizes on hard-negatives as shown in Eq. 2. Note that, all
other reported results in Table. 1 is based on the modified pairwise
ranking loss proposed in Eq. 3. In row-1.2, we provide the perfor-
mance of different features in learning the embedding using the
proposed loss. In row-1.3, we present results for embedding learned
utilizing video feature that is a direct concatenation of different
video features. In row-1.4, we provide the result when a shared
representation between image, text and audio modality is learned
using proposed loss following the idea in [2] and used for video-text
retrieval task. Finally, in row-1.5, we provide the result based on the
proposed approach that employs two video-text space for retrieval.

Loss Function. For evaluating the performance of different rank-
ing loss in the task, we can compare results reported in row-1.1
and row-1.2. We can choose only ResNet feature based method
from these two rows for a fair comparison. We see that VSEPP loss
function and proposed loss function performs significantly better
than the traditional VSE loss function in R@1, R@5, R@10, and
recall. However, VSE loss function has better performance in terms
of mean rank. This phenomenon is expected based on the charac-
teristics of the loss functions. As higher R@1, R@5 and R@10 are
more desirable for a efficient video-text retrieval system than the
mean rank, we see that our proposed loss function performs better
than other loss functions in this task.

Video Features. We can compare the performance of different
video features in learning the embedding using the proposed loss
from row-1.2. We observe that ResNet feature and I3D feature
performs reasonably well. The performance is very low when only
audio feature is used for learning the embedding. It can be expected
that the natural sound associated in a video alone does not contain
as much information as videos. However, utilizing audio along with
other feature provides a boost in performance as shown in row-1.3
and row-1.4.



Table 2: Video-to-Text Retrieval Results on MSVD Dataset.
We highlight the proposed method. The methods which has
’Ours’ keyword in name are trained with the proposed loss.

Method | R@1 R@5 R@10 | MedR | MeanR | Recall
Results Using Partition used by JIMET and JIMDV
CCA 2453
IMET 208.5
JMDV 224.1
W2VV-ResNet 16.3 44.8 14.0 1102
VSE-ResNet 15.8 30.2 414 12.0 848 345
VSEPP-ResNet 21.2 43.4 522 9.0 79.2 39.0
Ours-ResNet 23.4 45.4 53.0 8.0 759 40.6
Ours-13D 213 43.7 533 9.0 722 39.5

Ours-(ResNet-13d Fusion) | 31.5 51.0 61.5 5.0 41.7 48.0
Results Using Partition used by LJRV

ST 2.99 10.9 17.5 77.0  241.0 10.5
LIRV 9.85 27.1 384 19.0 752 25.1
W2VV-ResNet 17.9 494 11.0 576

Ours-ResNet 20.9 43.7 54.9 7.0 56.1 39.9
Ours-13D 17.5 39.6 51.3 10.0 548 36.1
Ours-(ResNet-13d Fusion) | 25.5 51.3 61.9 5.0 32.5 46.3

Feature Concatenation for Representing Video. Rather than train-
ing multiple video-semantic spaces, one can argue that we can
simply concatenate all the available video features and learn a sin-
gle video-text space using this concatenated video feature [6, 36].
However, we observe from row-1.3 that integrating complementary
features by static concatenation based fusion strategy fails to utilize
the full potential of different video features for the task. Comparing
row-1.2 and row-1.3, we observe that a concatenation of ResNet
feature, I3D feature and Audio feature performs even worse than
utilizing only ResNet feature in R@1. Although we see some im-
provement in other evaluation metrics, overall the improvement is
very limited. We believe that both appearance feature and action
feature gets suppressed in such concatenation as they focus on
representing different entities of a video.

Learning a Shared Space across Image, Text and Audio. Learning

a shared space across image, text and sound modality is proposed
for cross-modal retrieval task in [2]. Following the idea, we trained
a shared space across image-text-sound modality using the pair-
wise ranking loss by utilizing image-text and image-sound pairs.
The result is reported in row-1.4. We observe that performance in
video-text retrieval task degrades after training such an aligned
representation across 3 modalities. Training such a shared repre-
sentation gives the flexibility to transfer across multiple modalities.
Nevertheless, we believe it is not tailored towards achieving high
performance in a specific task. Moreover, aligning across 3 modal-
ities is a more computationally difficult task and requires many
more examples to train.

Fusion. The best result in Table. 1 is achieved by our proposed
fusion approach as shown in row-1.5. We see that the proposed
method achieves 19.5% improvement in R@1 for text retrieval
and 20.68% improvement for video retrieval in R@1 compared to
ResNet(row-1.2), which is the best among the other methods which
use a single embedding space for the retrieval task. In row-1.5,
Fusion[Resnet & CON (I3D-Audio)] differs from Fusion[ResNet &
I13d] in the feature used in learning the activity-text space. We see
that utilizing audio in learning the embedding improves the result

Table 3: Text-to-Video Retrieval Results on MSVD Dataset.
We highlight the proposed method.

Method R@1 | R@5 | R@10 | MedR | MeanR | Recall
Results Using Partition used by JMET and JMDV

CCA 251.3

JMDV 236.3
VSE-ResNet 123 30.1 423 14.0 57.7 30.2
VSEPP-ResNet 154 396 53.0 9.0 43.8 36.0
Ours-ResNet 16.1 41.1 53.5 9.0 42.7 36.9
Ours-13D 154 392 514 10.0 43.2 353
Ours-(ResNet-13d Fusion) 203 478 61.1 6.0 28.3 43.1

Results Using Partition used by LIRV

ST 2.6 11.6 19.3 51.0 106.0 11.2
LIRV 7.7 234 35.0 21.0 49.1 22.0
Ours-ResNet 15.0 402 51.9 9.0 45.3 35.7
Ours-13D 14.6 389 51.0 10.0 45.1 34.8
Ours-(ResNet-13d Fusion) 202 475 60.7 6.0 29.0 42.8

slightly. However, as the retrieval performance of individual audio
feature is very low (shown in row-1.2), we did not utilize audio-text
space separately in fusion as we found it degrade the performance
significantly.

4.4 Results on MSVD Dataset

We report the results of Video-to-Text retrieval task on MSVD
dataset [4] in Table 2 and the results for Text-to-Video retrieval in
Table 3. We compare our approach with existing video-text retrieval
approaches, CCA[29], ST [19], JMDV [37], LJRV [24], JMET [25],
and W2VV [6]. For these approaches, we directly cite scores from
respective papers when available. We report score for JMET from
[6]. The score of CCA is reported from [37] and the score of ST
is reported from [24]. If the score for multiple models is reported,
we select the score of the best performing method from the paper.
We could not compare with method [40] which focuses on movie
retrieval task and results are not available on our experimented
datasets. We did not re-implement this method in our setting as
their method is based on an ensemble of several models and it is
very difficult to exactly emulate the implementation details.

We also implement and compare results with state-of-the-art
image-embedding approach VSE[18] and VSEPP[7] using ResNet152
feature as the video feature following publicly available code [7].
Our proposed fusion method is named as Ours-(ResNet-I3D Fu-
sion) in the Table. 2 and Table. 3. Our method utilizes the proposed
loss and employs two embedding spaces for calculating similarity
between video and text. We use ResNet-152 feature as the appear-
ance feature in training Object-Text space. As the audio is muted
in this dataset, we train the Activity-Text space utilizing only I3D
feature from videos. To show the impact of only using the proposed
loss in retrieval, we also report results based on each of these two
embedding space (Ours-ResNet and Ours-I3D) in the tables.

From Table 2 and Table 3, it is evident that our proposed ap-
proach performs significantly better than existing ones. The result
is improved significantly by utilizing the fusion proposed in this
paper that utilizes both the video-text spaces in calculating the final
ranking. Moreover, utilizing the proposed loss improves the result
over previous state-of-the-art methods. It can also be identified
that our loss function is not only useful for learning embedding
independently, but also it is useful for the proposed fusion.



GT: A man is petting two dogs while holding a guitar.

holding a violin in one hand and a violin bow in the other.
13D: (6) A couple of slow lorises are eating fruit.

Proposed: (1) A man pets a couple of dogs.

ResNet: (24) a man is standing in front of a microphone

GT: A man is riding a motorcycle in the water at the edge
of a beach.

ResNet: (1) A man is riding a bike across the waves by the
beachside.

13D: (6) A man on a motorcycle falls into a pool of mud.
Proposed: (1) A person is driving a motorcycle through
waves on the shore.

GT: Someone wearing blue rubber gloves is slicing a
tomato with a large knife.

ResNet: (58) A woman is chopping a red bell pepper into
small pieces.

13D: (18) A cat is eating a small wedge of watermelon.
Proposed: (2) A woman is chopping a red bell pepper
into small pieces.

GT: A man and a woman are having a phone conversation.
ResNet: (9) A small man is drinking a large goblet of beer.
I3D: (6) The lady tried to wake up the man in costume.

Proposed: (2) The boy hugged the girl.

GT: A woman is riding a horse on an open ground.
ResNet: (13) A guy is riding a horse.

I3D: (1) The girl rode her brown horse.

Proposed: (1) The girl rode her brown horse.

GT: A man is drying off a woman with a towel.
ResNet: (2) Two women are wrestling each other.

13D: (118) A young woman is putting stickers all over
her face.

Proposed: (7) Women are dancing.

GT: A man slicing a bun in half with a knife appears to cut
himself.

ResNet: (141) Man chops meat and puts it in a plate.
I3D: (7) A man is cutting vegetables.

Proposed: (3) A man slicing the roasted duck.

GT: A man pours a plate of shredded cheese in a pot of sauce.

ResNet: (4) Someone is mixing up chocolate batter in a bowl.

13D: (8) Someone has picked up a handful of white substance
from mixing bowl and squeezing it in a lump.

Proposed: (2) A person mixes flour and water in a bowl.

GT: Several people are dancing on the patio.

ResNet: (44) A man persuades two ladies standing by the
beach to come with him and then the three of them run to
join some other people.

13D: (1) People are dancing together near a house.

Proposed: (3) Many men and women are dancing in street.

Figure 3: Examples of 9 test videos from MSVD dataset and the top 1 retrieved captions for Ours-ResNet, Ours-I3D, and the
proposed method as shown in Table. 2. The value in brackets is the rank of the highest ranked ground-truth caption. Ground
Truth (GT) is a sample from the ground-truth captions. Among the approaches, ResNet and I3D are methods where single
video-text space is used for retrieval (ResNet is trained using ResNet feature as video feature and I3D is trained using the I3D
feature). We also report result for the proposed fusion approaches where both video-text spaces are used for retrieval.

4.5 Qualitative Results

MSVD Dataset. In Fig. 3, we show examples of few test videos from
MSVD dataset and the top 1 retrieved captions for the proposed
approach. We also show the retrieval result when only one of the
embeddings is used for retrieval. Additionally, we report the rank
of the highest ranked ground-truth caption in the figure. We can
observe from the figure that in most of the cases, utilizing cue
from both video-text spaces helps to match the correct caption. It
can be easily identified from the top-1 retrieved caption that the
projection learned between video and text by utilizing appearance
feature (ResNet) is significantly different from that learned using
Activity feature (I3D). The variation between the rank of the highest
matching caption further strengthens this observation. We also
cannot claim that one video feature is better than others for this
task. ResNet feature performs better than the I3D feature in retrieval
for some videos. For other videos, the I3D feature achieves higher
performance. However, combining knowledge from two video-text
spaces, we have consistently better performance than utilizing one
of the features. We see from Fig. 3 that, among 9 videos, the retrieval

performance is improved or higher recall is retained for 7 videos.

Video-6 and video-9 show two of our failure cases, where utilizing
multiple video-text spaces degrades the performance slightly than
ResNet in Video-6 and I3D in Video-9.

MSR-VTT Dataset. Similar to Fig. 3, we also show qualitative
results for a few test videos from MSR-VTT dataset in Fig. 4. Video
1-6 in Fig. 4 shows a few examples where utilizing cue from both
video-text spaces helps to match the correct caption compared to
using only one of the video-text space. Moreover, we also see the
result was improved after utilizing audio in learning the second
video-text space (Activity-text space). We observe this improvement
for most of the videos, as we also observe from Table. 1.

Video 7-9 shows some failure cases for our fusion approach in
Fig. 4. Video 7 shows a case, where utilizing multiple video-text
spaces for retrieval degrades the performance slightly compared to
utilizing only one of the video-text space. For Video-8 and video-9
in Fig. 4, we observe that the performance improves after fusion
overall, but the performance is better when the audio is not used
in learning video-text space. On the other hand, video 1-6 includes
cases where utilizing audio helped improving the result. Since we
did not exploit the structure of the audio and analyze the structural



GT: A guy driving a car during sunset.
ResNet: (63) A black car is zoomed in on.

I3D-Audio: (82) A man in a car is giving a review on a
volkswagen car the car is red with what seems to be a leather
interior.

Fusion-No Audio: (33) A black car speeds down the highway.

Proposed Fusion Fusion: (7) A car is driving at high rate
of speed and avoids hitting another car.

GT: A woman waits at a table in a restaurant and cheers after
aman passes her.
ResNet: (161) Guy walking alone on road.

13D-Audio: (16) A girl is talking on the phone and a woman
attacks her.

Fusion (No Audio): (14) A girl sitting on a sofa talking.
Proposed Fusion: (1) A young girl is laughing while the
young man looks concerned.

GT: A group of school children are playing in a gym.
ResNet: (22) A black and white movie clip.

I13D-Audio: (12) The celebrations are held in the disnep
channel.

Fusion (No Audio): (2) A black and white film from the past
many people are engaging in many activities.

Proposed Fusion : (1) A vintage scene of children running
in a gym.

GT: A baseball team runs together as they celebrate a victory
after a game winning homerun.

ResNet: (25) A baseball player is being interviewed as
players play on the field behind him.

13D-Audio: (2) Awesome baseball and basketball plays.
Fusion-No Audio: (6) Men are running and cheering on a
baseball field.

Proposed Fusion Fusion: (1) A baseball team celebrates after
a homerun.

GT: Two men and a boy are on a show playing with a
science experiment.

ResNet: (4) A man is doing a candle experiment.
I3D-Audio: (66) A baseball player is interviewed with a
baseball field behind him.

Fusion (No Audio): (6) Man and woman stand behind water
bottles.

Proposed Fusion Fusion: (2) Two people are talking in
front of bottles of water.

GT: A man is commentating while playing minecraft.
ResNet: (4) a minecraft video shows a character climbing a
staircase.

I3D-Audio: (52) Someone playing mine craft while giving
commentary.

Fusion (No Audio): (14) A video game character is
exploring a castle.

Proposed Fusion Fusion: (1) A man narrates a game of
minecraft while running through a pink house.

GT: A man is talking about satellites in space.

ResNet: (1) A man explaining about a space device.
I3D-Audio: (39) Hyenas are walking around a lion waiting
for scraps.

Fusion-No Audio: (5) Characters from minecraft floating in
space talking about going to the moon.

Proposed Fusion: (3) A man is talking about the first

GT: A group of people looking through ammunition.

ResNet: (15) Military police is pointing a gun at a person on

the ground.

I3D-Audio: (7) Man describes difference between two steaks.

Fusion-No Audio: (1) Soldiers are getting ready with their
weapons.

Proposed Fusion: (7) In this video there are some soldiers

9

GT: A woman demonstrating the functions of a baby stroller.

ResNet: (3) A quick motion clips scene of a blue stroller and
it s details.

13D-Audio: (8) A woman is giving demo for baby trolley.
Fusion-No Audio: (1) An advertisement for a jogger stroller
a woman in black is using the stroller.

Proposed Fusion: (3) An advertisement about the stroller

getting ready for war.

manned space flight.

baby jogger.

Figure 4: A snapshot of 9 test videos from MSR-VTT dataset with success and failure cases, the top 1 retrieved captions for four
approaches based on the proposed loss function and the rank of the highest ranked ground-truth caption inside the bracket.
Among the approaches, ResNet and I3D-Audio are methods where single video-text space is used for retrieval (ResNet is
trained using ResNet feature as video feature and I3D-Audio is trained using the concatenated I3D feature and Audio feature
as video feature). We also report results for two fusion approaches where two video-text spaces are used for retrieval. Both
fusion approaches use a object-text space trained with ResNet feature, while in our proposed approach, the activity-text space
is trained using audio along with I3D feature. Fusion (No Audio) uses activity-text space that is trained with only I3D feature.

alignment between audio and video, it is difficult to determine
whether audio is always helpful. For instance, audio can come from
different things (persons, animals or objects) in a video, and it
might shift our attention away from the main subject. Moreover,
the captions are provided mostly based on the visual aspects. We
observe that using audio is crucial in many cases where there is deep
semantic relation between visual content and audio (e.g., the audio
is from the third person narration of the video, the audio is music or
song) and it gives important cues in reducing description ambiguity
(e.g., video-2, video-5 and video-6). We see an overall improvement
in the quantitative result (Table 1) which also supports our idea
of using audio. These failure cases provide future directions of
this work focusing on developing more sophisticated algorithms to
combine similarity scores from multiple joint spaces and further
analyze the role of associated audio for video-text retrieval.

5 CONCLUSIONS

We propose an approach for efficient cross-modal video-text re-
trieval using joint embeddings by effectively including features from
different visual entities and features from audio. We also propose
a new loss function that further exploits the multimodal correla-
tion. Experiments on two benchmark datasets demonstrate that our
proposed loss function learns better embeddings for the video-text
retrieval task than existing ones. Moreover, our overall framework
achieves significant performance improvement compared to several
state-of-the-art approaches.
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