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ABSTRACT

This paper considers the problem of inferring the topology of a graph
from noisy outputs of an unknown graph filter excited by low-rank
signals. Limited by this low-rank structure, we focus on the com-
munity detection problem, whose aim is to partition the node set of
the unknown graph into subsets with high edge densities. We pro-
pose to detect the communities by applying spectral clustering on
the low-rank output covariance matrix. To analyze the performance,
we show that the low-rank covariance yields a sketch of the eigen-
vectors of the unknown graph. Importantly, we provide theoretical
bounds on the error introduced by this sketching procedure based on
spectral features of the graph filter involved. Finally, our theoretical
findings are validated via numerical experiments in both synthetic
and real-world graphs.

Index Terms— graph signal processing, graph filter, topology
identification, low rank excitation, community detection

1. INTRODUCTION

The emergence of new fields of knowledge such as Network Science
and Big Data has generated a pressing need to broaden the scope
beyond classical signal processing, to also accommodate signals de-
fined on graphs [1–3]. Under the assumption that the signal proper-
ties are related to the topology of the graph where they are supported,
the goal of graph signal processing (GSP) is to develop algorithms
that leverage this relational structure, and can make inferences about
these relationships when they are only partially observed [3]. A suit-
able way to accomplish these objectives is to rely on the so-called
graph-shift operator (GSO), which is a matrix that reflects the local
connectivity of the graph [2]. Most GSP works assume that the GSO
(hence the graph) is known, and then analyze how the algebraic and
spectral characteristics of the GSO impact the properties of the sig-
nals and filters defined on such a graph. This approach has been
successfully implemented in the extension of classical problems to
the realm of graphs such as sampling [4,5] and reconstruction [6,7].
By contrast, here we take the reverse path and investigate how to use
information available from graph signals to infer aspects of the un-
derlying topology. In particular, in this paper we focus on inferring
the community structure [8] of the underlying graph.

Network topology inference from a set of (graph-signal) obser-
vations is a prominent problem in Network Science [3] with clas-
sical approaches for its solution including partial correlations [9],
Gaussian graphical models [10], and structural equation models [11,
12], among others. Differently, recent GSP-based network infer-
ence frameworks postulate that the network exists as a latent un-
derlying structure, and that observations are generated as a result
of a network process defined in such a graph [13–21]. However,
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Fig. 1. Overview of the proposed approach. The observed graph signals are
the outputs of a low-pass graph filter subject to a low-rank excitation, such
as sparse inputs or inputs residing in a low-dimensional subspace. We show
that spectral clustering can still recover the communities of the unknown un-
derlying graph from these limited observations.

in order to infer the graph topology from the observed graph sig-
nals, the mentioned approaches rely on different assumptions such
as smoothness of the observed signals [13–15], richness of the in-
put signals [16–18], or partial knowledge of the involved filter or
dynamic on the graph [19–21].

In the current paper, we model the observed graph signals as the
outputs of an unknown graph filter subject to low-rank excitation,
such as inputs that belong to a low-dimensional space or that are
sparse. Under this weaker set of assumptions, exact inference of the
underlying graph is in general infeasible. Nonetheless, we show that
the community structure of this unknown graph can be recovered in
this laxer setting. To show this result, we rely on the concept of
sketching and, more specifically, on the theory behind recent appli-
cations of it for speeding up spectral clustering algorithms [22, 23].
Our contributions are twofold. First, we show that the covariance
matrix of the observed graph signals retains a sketch of the princi-
pal eigenvectors of the unknown underlying GSO. Second and more
importantly, we provide a theoretical characterization of the perfor-
mance of spectral clustering when applied to the output covariance
matrix. Precisely, using as a benchmark the communities that spec-
tral clustering would output when perfect knowledge of the underly-
ing graph is available, we bound the error in the detection of commu-
nities in terms of the spectral properties of the graph filter involved.
Consequently, this bound can be used to identify linear network dy-
namics – modeled as graph filters – that are amenable to the problem
of community detection. Fig. 1 overviews the proposed approach.

Notation. We use boldfaced lower-case (resp. upper-cased) letters
to denote vectors (resp. matrices). For a vector x, the notation xi

denotes its ith element. For a matrix X , the notation Xij denotes
its (i, j)th element whereas [X]i,: denotes its ith row vector. Also,
R(X) ⊆ R

N denotes the range space of X ∈ R
N×M . For a sym-

metric matrix E, βi(E) denotes its ith largest eigenvalue. For a ma-



trix M ∈ RP×N , it admits the partition M = [MK MN−K ] with
MK (resp. MN−K ) denotes the matrix consisting of the left-most
K (resp. right-most N − K) columns of M . Similarly, m ∈ RN

is partitioned intom = [mK ;mN−K ], wheremK (resp.mN−K )
consists of its top K (resp. bottom N −K) elements.

2. GRAPH SIGNALS AND COMMUNITY DETECTION

We formally introduce GSP terminology that will be used throughout
the paper and we briefly present the classical approach of spectral
clustering for community detection.

Graph signals and graph filters. Let G = (V,E) denote an undi-
rected graph with a set of nodes V := {1, ..., N} and a set of
links E ⊆ V × V , such that if node i is connected to j, then
both (i, j) and (j, i) belong to E. We define the adjacency matrix
A ∈ RN×N as a matrix with non-zero elements Aij = Aji if and
only if (i, j) ∈ E. The adjacency matrix can be used to define the
degree matrix D := diag(A1) and the (combinatorial) Laplacian
matrix as L := D − A. Graph signals defined on the nodes of
G are functions f : V → R, equivalently represented as vectors
x = [x1, ..., xN ]> ∈ RN , where xi denotes the signal value at node
i. The graph G is endowed with the so-called graph shift operator
S ∈ RN×N , a matrix whose entry Sij can be non-zero only if i = j
or if (i, j) ∈ E. In this paper, we consider the case in which the
GSO is given by the graph Laplacian, i.e. S = L, and has an eigen-
value decomposition given by S = V ΛV > where Λ = diag(λ)
and λi is sorted in an ascending order 0 = λ1 ≤ λ2 ≤ . . . ≤ λN .

The shift S can be used to define linear graph-signal operators
denominated graph filters that have the form

H(S) :=
∑L−1

`=0 h`S
` = V

(∑L−1
`=0 h`Λ

`
)
V > . (1)

For a given input z, the output of the filter is simply x = H(S)z.
The coefficients of the filter are collected intoh := [h0, . . . , hL−1]>.
Graph filters are of particular interest because they represent linear
transformations that can be implemented locally and, thus, can be
used to model linear network dynamics. Leveraging the spectral
decomposition of S, graph filters and signals can be represented in
the frequency domain. To be precise, let us use the eigenvalues of S
to define theN×LVandermonde matrix Ψ, where Ψij := (λi)

j−1.
Then, the frequency representations of a signal z and of a filter h
are defined as z̃ := V >z and h̃ := Ψh. Exploiting such repre-
sentations and with � denoting the elementwise product, the filter’s
output x=H(S)z in the frequency domain is given by

x̃ = diag
(
Ψh
)
V >z = h̃� z̃ . (2)

This is analogous to the convolution theorem for temporal signals.

Low-pass graph filters. Out of all possible filters, low-pass graph
filters play a fundamental role for community detection. Formally,
we say that a graph filter is low-pass and (K, η)-separable if

h̃K+1/h̃K ≤ η < 1, h̃N ≥ 0 and h̃i ≥ h̃i+1 , (3)

for all i = 1, . . . , N − 1. Notice that since h̃i ≥ h̃i+1, the eigen-
vectors of H(S) corresponding to the largest K eigenvalues are the
left-most K vectors in V , denoted by VK . Common examples of
low-pass and (K, η)-separable graph filters (for all K) [15, 16] in-
clude H1(S) = (I + S)−1, H2(S) = exp(−S), and H3(S) =
(I − αS)L−1 for 0 < α < 1/λN .

Observe that if η ≈ 0, i.e., the frequency response declines
sharply from the Kth to the (K+1)th frequency, then H(S) is ap-
proximately rank-K. In fact, Section 3 reveals that a small value of

η is essential to obtain a tight theoretical guarantee on detecting K
communities from the unknown graph. We remark that a small value
of η can be achieved by increasing the graph filter order L.

Community detection via spectral clustering. For an undirected
graph G = (V,E), a community is intuitively a set of nodes with
higher edge density among themselves than to nodes outside the set.
Thus, the problem of K-community detection amounts to finding K
such disjoint communities C1, . . . , CK such that V = C1∪· · ·∪CK .
A well-known way to establish a sense of optimal partition of the
node sets into communities is that of minimizing the ratio cut [24].
Formally, defining the cut weight between two node sets as the sum
of edge weights between them, i.e., ACi,Cj :=

∑
k∈Ci,k′∈Cj Akk′ .

The ratio cut of a given partition is defined as

RatioCut(C1, . . . , CK) := (1/2)
∑K

i=1ACi,Ci/|Ci| , (4)

where Ci is the complement of Ci. Unfortunately, the ratio-cut min-
imization problem is hard due to its combinatorial nature. As a rem-
edy, a widely used heuristic is the spectral clustering method [25]
which can be seen as a convex relaxation of the ratio-cut minimiza-
tion problem. Spectral clustering can be described as a two-step
process1. First, every node is projected onto RK , where the coordi-
nates of node i are given by [Vi1, . . . , ViK ], i.e., the ith row vector
of the left-mostK columns of V . Secondly, theK-means clustering
method [26] is applied to the resulting projected space to obtain the
sought K communities.

3. COMMUNITY DETECTION FROM LOW-RANK DATA

Our goal is to detect communities in a graph when we do not have
access to the graph itself – nor, equivalently, the GSO S – but rather
to a set of graph signals defined on it. Formally, we observe a set of
graph signals yt ∈ RN , t = 1, ..., T . Each graph signal is a noisy
observation of the output of a low-pass and (K, η)-separable graph
filter (1):

yt = xt +wt and xt := H(S)zt , (5)

where the observation noise is wt ∼ N (0, σ2I) and the excitation
signal zt ∈ RN is zero mean.

Unlike previous works [16] that tackle the problem of identify-
ing S from a full-rank excitation model where E[zt(zt)>] = I , this
paper focuses on low-rank excitation in which

Cz = E[zt(zt)>] = BB>, (6)

whereB ∈ RN×R with R < N . Practical scenarios that lead to (6)
include the cases where the input signal zt is applied on only a subset
of R nodes and where the number of variations in the excitation
signal is limited to R modes. Under this low-rank excitation model,
the covariance matrix of a general output signal xt is given by

Cx = E[xt(xt)>] = H(S)BB>H(S)>, (7)

whose rank is at mostR. Inferring S fromCx is challenging for two
reasons: i) we do not assume perfect knowledge of the specific filter
coefficients h defining H, and ii) information is in general lost due
to the low-rank nature ofBB>. Nevertheless, we show that we can
recover the community structure inS by applying spectral clustering
directly onCx, or an estimated version Ĉx of it.

1Minor variations to the method presented here co-exist in the literature.



Algorithm 1 Community detection from low-rank excitation.

1: Input: Graph signals {yt}Tt=1; desired number of clusters K.
2: Use {yt}Tt=1 to compute the sample covariance Ĉx as in (8).
3: Find the K eigenvectors to Ĉx associated with the largest K

eigenvalues. Denote the set of eigenvectors as P̂K ∈ RN×K .
4: Perform K-means clustering (e.g., [26]), which optimizes:

min
C1,...,CK

K∑
i=1

∑
j∈Ci

∥∥∥p̂j −
1

|Ci|
∑
q∈Ci

p̂q

∥∥∥2
2

s.t. Ci ⊆ V , (9)

where p̂i := [P̂K ]i,: ∈ RK . Let the solution be Ĉ1, ..., ĈK .
5: Output: Partition of V into K communities, Ĉ1, ..., ĈK .

3.1. Community detection algorithm

From the observed graph signals {yt}Tt=1 [cf. (5)] we construct the
empirical sample covariance

Ĉx = (1/T )
∑T

t=1 y
t(yt)>, (8)

and apply the spectral clustering procedure presented in Section 2
but based on the eigenvectors of Ĉx associated to the K largest
eigenvalues. This algorithm is summarized in Algorithm 1.

We first discuss the intuitive motivation of the proposed algo-
rithm. First notice that the filterH(S), being a matrix polynomial on
the symmetric matrix S [cf. (1)], preserves its eigenvectors. More-
over, since R < N , the matrix H(S)B ∈ RN×R is a ‘sketch’ of
H(S) with B being the sketching matrix. On the other hand, if
R ≥ K, the information of the top-K eigenvectors of H(S) can be
preserved in the sketched version. Indeed, when R(B) = R(VK),
it is easy to observe thatR(H(S)B) = R(VK). In this case, apply-
ing Algorithm 1 based on the covarianceCx = H(S)BB>H(S)>

yields the same output as applying spectral clustering on S.
In most cases, however, Algorithm 1 will not return the same

communities as those obtained by spectral clustering on the GSO
S. There are two sources for this discrepancy. First, the sketching
matrix B does not share the range of VK in general, thus distorting
the eigenvectors in H(S). Second, having access to a finite set of
graph signals, we do not get to observe Cx perfectly but rather an
estimate Ĉx of it. In the next section we bound the error introduced
by these two sources of uncertainty.

3.2. Main Theoretical Guarantees

Denote by {Ĉ1, . . . , ĈK} the community structure obtained from Al-
gorithm 1. Our goal is to find out how close these communities are
to the ones obtained when S is available. To do so, we measure
the optimality of the clustering result by comparing the following
objective — let C1, ..., CK be any partition of V ,

F (C1, ..., CK) :=

K∑
i=1

∑
j∈Ci

∥∥∥vj − 1

|Ci|
∑
q∈Ci

vq

∥∥∥2
2
, (10)

where vi := [VK ]i,:, i = 1, ..., N . Notice that (10) is the same
objective function used in step 4 of Algorithm 1 but applied to the
eigenvectors of the GSO S instead. In general, F (C1, ..., CK) can
only be minimized when S is known perfectly.

Let us introduce the following definitions. The singular value
decomposition of H(S)B is given by H(S)B := PΣQ> with
σ1 ≥ σ2 ≥ . . ., the difference between the covariance and the sam-
ple covariance is ∆x := Ĉx −Cx. We have:

Theorem 1 If the following conditions hold:

1. H(S) is a low-pass and (K, η)-separable filter [cf. (3)],

2. Step 4 of Algorithm 1 finds a solution Ĉ1, ..., ĈK that exactly
minimizes the problem (9),

3. rank(VKdiag(λK)V >K BQK) = K,

4. σK > 0,

5. ∃ δ > 0 such that β1(∆x) + δ ≤ βK(Cx)− βK+1(Cx),

then, denoting by F ? := minC1,...,CK⊆V F (C1, ..., CK) as the opti-
mal cost associated with spectral clustering with perfect knowledge
of S, we have that

F (Ĉ1, ..., ĈK)− F ? ≤
√

8K

(√
γ2

1 + γ2
+
|β1(∆x)|

δ

)
, (11)

where γ is bounded by

γ ≤ η · ‖V >N−KBQK‖2‖(V >K BQK)−1‖2 . (12)

The proof of Theorem 1 – partially inspired by [22] – is omitted here
due to space limitations but can be found in an online appendix2.

As wanted, (11) bounds the difference between the optimal cost
F ? associated with running spectral clustering when perfect knowl-
edge of the graph is available and the cost achieved by the com-
munities {Ĉ1, ..., ĈK} obtained from our algorithm. This optimality
gap consists of the two summands on the right-hand side of (11).
The first summand, which depends on γ, captures the distortion in-
troduced by the sketching operation. From (12) it follows that this
optimality gap depends on the parameter η of the low pass graph
filter, which might be improved for higher filter order L, as dis-
cussed in Section 2. Furthermore, expression (12) reveals that γ
depends on the angle betweenR(BQK) andR(VK). In particular,
ifR(BQK) = R(VK), then ‖V >N−KBQK‖2 = 0 and γ = 0.

The second summand in the right-hand side of (11) bounds the
error resulting from the fact that we have access to a finite number
of signals. This bound follows from applying the classical Weyl’s
inequality combined with Davis-Kahan theorem [27]. Theorem 1
shows that when the largest eigenvalue of the error ∆x is small com-
pared to the relevant spectral gap of Cx [cf. Condition 5], then the
additive error introduced will simply be proportional to the largest
eigenvalue of ∆x. Moreover, using standard results from concentra-
tion inequalities and under mild assumptions on the statistics of zt,
the error |β1(∆x)| decays at the rate of O(1/

√
T ) with high prob-

ability. Overall, Theorem 1 shows that when the graph filter has a
favorable frequency response, and the number of collected samples
is sufficient, we expect Algorithm 1 to produce communities com-
parable to those obtained by applying spectral clustering on S.

4. NUMERICAL EXAMPLES

This section presents numerical results to illustrate the performance
of our low-rank community detection approach. We first focus on
a controlled setting where the GSO and the associated graph sig-
nals are generated synthetically. More precisely, we consider an
undirected graph G generated according to a stochastic block model
(SBM) with K communities, i.e. G ∼ SBM(N,K, a, b) such that
a and b are the probabilities that an edge is formed within a com-
munity and between the communities, respectively, and we have that

2See http://xxx (For convenience, I am including the proof in the last
page for now.)
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Fig. 2. (Effect of filter order L and observation rank R). Matrix
S is adjacency matrix of SBM graphs with N = 150 nodes and
K = 3 communities, and H(S) = (I −αS)L−1, under a noiseless

observation setting with Ĉx = Cx.
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Fig. 3. (Effect of sample size T ). Similar settings as in Fig. 2 with
R = 15. We consider noisy observations and only a finite number
of samples are observed T .

a > b. The graph filter takes the form H(S) = (I − αS)L−1 for
α = 1/(2dmax) where dmax = maxi di and di is the degree of node
i. The filter order is given by L. It is immediate to check that the
graph filter is low-pass and (K, η)-separable. The corresponding η
is given as:

η =
(1− αλK+1

1− αλK

)L−1

. (13)

Since α < 1/λN , we have 1−αλK+1 < 1−αλK if λK+1 > λK .
Therefore, we anticipate η to decrease to zero as L increases. Fur-
thermore, the low-rank excitation signal is generated as zt = Bz̃t

where z̃t ∈ R
R satisfies z̃t ∼ N (0, I), B is a row-sparse binary

matrix with only R non-zero rows, chosen at random, and each row
has only �(R/N)di� ones, also chosen at random. This corresponds
to the setting when the graph is excited only on R nodes and each is
driven by a few independent sources. The results reported here corre-
spond to the average of 1000 Monte-Carlo simulations. To compute
step 4 of Algorithm 1 we use the kmeans function in MATLAB.

The first example considers a noiseless setting where the algo-

rithm has access to Ĉx = Cx. We compare the average error rate
(compared to the ground truth communities of the SBM) when ap-
plying Algorithm 1 for different filter orders L and ranks R of the
sketching matrix B. The SBM graph has N = 150 nodes, K = 3
communities and the parameters are set as a = 8 logN/N and
b = logN/N ; see Fig. 2. We observe that the error rate decays
as we increase the filter order L. This is consistent with our result
in Theorem 1. Indeed, for larger values of L, we have that η in (12)
decreases, thus leading to better performance. Furthermore, the per-
formance improves with the observation rank R and approaches that
of applying spectral clustering on the original S. With a filter or-
der of L = 21 and observation rank R ≈ 15, the proposed method

  1

  2

  3

  4

  5

  6
  7

  8

  9

  10

  11

  12

  13

  14

  15
  16

  17

  18

  19

  20

  21

  22

  23

  24

  25

  26

  27

  28
  29

  30

  31
  32

  33
  34

  1

  2

  3

  4

  5

  6
  7

  8

  9

  10

  11

  12

  13

  14

  15
  16

  17

  18

  19

  20

  21

  22

  23

  24

  25

  26

  27

  28
  29

  30

  31
  32

  33
  34

Fig. 4. (Community Detection on Real Network). The Zachary
Karate Club network with N = 34 nodes. (Left) Highlighted nodes
are the locations of the non-zero rows of B. (Right) Snapshot of
the detected communities by proposed method with rank R = 8
observations and filter order L = 8.

achieves a performance comparable to that of having perfect knowl-
edge of the graph.

The second example considers the finite sample setting and com-
pares the error rate against the number of samples observed T . We
focus on the same simulation settings as in the previous example and

we fix R = 15, yet only a sample covariance Ĉx is observed and the
observation noise has a standard deviation of σ = 10−1 [cf. (5)
and (8)]. From Fig. 3, we observe that the error rate generally de-
creases as the number of samples increases. This is as predicted by
Theorem 1, and the performance is ultimately limited by the filter
order L. Interestingly, we observe that to achieve the same error
rate, more samples are also required when the filter order L is high.
This is because for higher filter orders, the magnitude of the eigen-
value βK(Cx) decreases, which forces δ in Theorem 1 to decrease
[cf. Condition 5].

The last example deals with detecting communities in a real net-
work, namely Zachary’s Karate Club [28]. The graph consists of
N = 34 nodes and is depicted in Fig. 4 (Left). For the proposed
method, we set K = 2 and the graph filter is the same as in the
previous examples with L = 8. The low-rank excitation matrix
B has rank R = 8 with a row-sparsity pattern given by the active
nodes in Fig. 4 (Left). We consider the noisy observation setting
with T = 103 and σ = 10−1. For this case, we have an average er-
ror rate ≈ 8.8% when compared to the communities recovered using
spectral clustering on the original S. An example of the recovered
communities is depicted in Fig. 4 (Right).

Conclusions. We studied a practical method for recovering commu-
nity structures from the outputs of a low-pass graph filter subject to
low-rank excitation. The proposed method relies on applying spec-
tral clustering on the output (sample) covariance matrix. We charac-
terized the error of such procedure compared to the case where the
true graph shift operator is available. Our analysis shows that the
performance hinges on the spectral gap property of the graph filter
involved. Numerical experiments were performed on synthetic and
real networks to verify our results.
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Fig. 5. (Effect of sample size T without noise). Similar settings as
in Fig. 2 withR = 15 and the exception of having noisy observations
and only a finite number of samples observed T .

6. PROOF OF THEOREM 1

To simplify the notations while proving the theorem, let us define the
following indicator matrices for the communities structures found.
Firstly, the matrix X̂ ∈ RN×K is associated with the communities
{Ĉ1, ..., ĈK} found with Algorithm 1 such that

X̂ij :=

{
1/|Ĉj |, if i ∈ Ĉj
0, otherwise.

(14)

Moreover, let υ? = F (C?1 , . . . , C?K) be the optimal set of commu-
nity found by minimizing F (C1, ..., CK) [cf. (10)], similarly we can
defineX? ∈ RN×R such that:

X?
ij :=

{
1/|C?j |, if i ∈ C?j
0, otherwise.

(15)

If we define by X the set of all possible indicator matrices over all
the combinations of communities, it can be verified that:

‖P̂K − X̂X̂>P̂K‖F = min
X∈X

‖P̂K −X(X)>P̂K‖F

= min
C1,...,CK

K∑
i=1

∑
j∈Ci

∥∥∥p̂j −
1

|Ci|
∑
q∈Ci

p̂q

∥∥∥2
2

s.t. Ci ⊆ V ,
(16)

and similarly

‖VK −X?(X?)>VK‖F = min
X∈X

‖VK −X(X)>VK‖F

= min
C1,...,CK

F (C1, ..., CK) = F ? ,
(17)

furthermore, we have

‖VK − X̂X̂>VK‖F = F (Ĉ1, ..., ĈK) . (18)

Let us begin the proof of Theorem 1. Define an error matrix as
E = VKV

>
K − P̂KP̂

>
K . We observe the following chain:

F (Ĉ1, ..., ĈK) = ‖VK − X̂X̂>VK‖F
= ‖(I − X̂X̂>)VKV

>
K ‖F = ‖(I − X̂X̂>)(P̂KP̂

>
K +E)‖F

≤ ‖(I − X̂X̂>)P̂KP̂
>
K ‖F + ‖(I − X̂X̂>)E‖F

≤ ‖(I − X̂X̂>)P̂KP̂
>
K ‖F + ‖E‖F ,

where the second equality is due to the orthogonality of V >K and the
last inequality is due to the fact that (I − X̂X̂>) is a projection

matrix. Using (16), we proceed as

F (Ĉ1, ..., ĈK) ≤ ‖(I − X̂X̂>)P̂KP̂
>
K ‖F + ‖E‖F

≤ ‖(I −X?(X?)>)P̂KP̂
>
K ‖F + ‖E‖F

= ‖(I −X?(X?)>)(VKV
>
K −E)‖F + ‖E‖F

≤ ‖(I −X?(X?)>)VKV
>
K ‖F + 2‖E‖F

= F ? + 2‖E‖F .

(19)

To bound ‖E‖F = ‖VKV
>
K − P̂KP̂

>
K ‖F, we invoke the following

lemma:

Lemma 1 [22] For anyA,B ∈ Rm×n with m ≥ n andA>A =
B>B = I , it holds that:

‖AA> −BB>‖2F ≤ 2n‖AA> −BB>‖22 . (20)

As a result, we obtain the bound that:

‖E‖F ≤
√

2K‖VKV
>
K − P̂KP̂

>
K ‖2 , (21)

which can be further bounded using the following propositions —

Proposition 1 Under Condition 1, 3 and 4 in Theorem 1, we have

‖PKP
>
K − VKV

>
K ‖22 =

γ2

1 + γ2
, (22)

where the columns of PK is the top K eigenvectors of Cx and γ is
bounded as stated in (12).

Proposition 2 Under Condition 5 in Theorem 1, it holds that

‖PKP
>
K − P̂KP̂

>
K ‖2 ≤

|β1(∆x)|
δ

. (23)

Obviously, combining (22), (23) and using the triangular inequality
yields the desired result in expression (11). The proof is thus con-
cluded.

6.1. Proof of Proposition 1

Denote the rank-K approximation toS as [S]K := VKdiag(λK)V >K
and define the shorthand notation B̃ := BQK , we observe that

R([S]K) = R([H(S)]K) = R([H(S)]KB̃) , (24)

where the second equality is due to the assumption that H(S) is a
low-pass and separable graph filter, the last equality is due to con-
dition 3 of Theorem 1, such that the linear transformation on the
right does not modify the range space of [H(S)]K (or equivalently
[S]K ). If we denote the columns of ṼK as the top K left singular
vectors of [H(S)]KB̃, the above shows that the two products are
equal VKV

>
K = ṼKṼ

>
K .

Similarly, we define [Cx]K := PKdiag(σK)2P>K as the rank
K approximation toCx and observe that

R([Cx]K) = R([H(S)B]K) = R(H(S)B̃) (25)

where the last equality is due to the fact thatH(S)B̃ = H(S)BQK =
PKdiag(σK) as the columns of QK are the top K right singular
vectors. Likewise, if the columns of P̃K are the top K left singular
vectors ofH(S)B̃, then PKP

>
K = P̃KP̃

>
K .



Furthermore, we observe that

R([H(S)]KB̃)⊥R((H(S)− [H(S)]K)B̃) . (26)

Invoking [22, Lemma 8] through setting D = H(S)B̃, C =

[H(S)]KB̃ and E = [H(S)]N−KB̃ therein, shows the following:

‖ṼKṼ
>
K − P̃KP̃

>
K ‖22

= 1− βK
(

[H(S)]KB̃
(
(H(S)B̃)>H(S)B̃

)†
([H(S)]KB̃)>

)
.

Denote the matrix in the middle of the expression above as Π :=
(H(S)B̃)>H(S)B̃. Now, under condition 4 of Theorem 1 that
σK > 0, the K ×K matrix Π is non-singular. We can observe the
following chain:

βK
(

[H(S)]KB̃Π−1([H(S)]KB̃)>
)

= βK
(

diag(h̃K)V >K B̃Π−1(diag(h̃K)V >K B̃)>
)

=
1

β1
(

(diag(h̃K)V >K B̃)−>Π(diag(h̃K)V >K B̃)−1
) , (27)

where the first equality is due to βK(V AV >) = βK(A) for any
V ∈ RN×K with orthogonal columns. Moreover, observe that Π
has the following decomposition:

Π = (H(S)BQK)>H(S)BQK

= (diag(h̃K)V >K BQK)>(diag(h̃K)V >K BQK)

+Q>KB
>VN−Kdiag(h̃N−K)2V >N−KBQK .

(28)

This yields:

βK
(

[H(S)]KB̃Π−1([H(S)]KB̃)>
)

=
(

1 + β1
(

(diag(h̃K)V >K B̃)−>B̃>VN−K

diag(h̃N−K)2V >N−KB̃(diag(h̃K)V >K B̃)−1
))−1

=
1

1 + ‖diag(h̃N−K)V >N−KB̃(diag(h̃K)V >K B̃)−1‖22

=
(

1 + γ2
)−1

,

(29)

where we have defined γ such that:

γ := ‖diag(h̃N−K)V >N−KB̃(diag(h̃K)V >K B̃)−1‖2

≤
(
h̃K+1

h̃K

)
· ‖V >N−KBQK‖2‖(V >K BQK)−1‖2 ,

(30)

as desired. This concludes the proof of our claim.

6.2. Proof of Proposition 2

Observe that the left hand side of (23) can be written as:

‖PKP
>
K − P̂KP̂

>
K ‖2 = ‖P̂>N−KPK‖2 , (31)

where the last equality is due to [?, Theorem 2.6.1].
Now, observe that Condition 5 of Theorem 1 implies that the

largest eigenvalue in Σ̂N−K will never exceed βK(Cx)− δ since

βmax(Σ̂N−K) = βK+1(Ĉx) ≤ βK+1(Cx) + β1(∆x) , (32)

where the last inequality is due to the Weyl’s inequality. The per-
turbed matrix Ĉx thus satisfies the requirement of the the Davis-
Kahan’s sin(Θ) theorem3 [27], which gives:

‖P̂>N−KPK‖2 ≤
‖P̂>N−K∆xPK‖2

δ
. (33)

The last inequality in (23) is obtained by observing that bothPK and
P̂N−K are orthogonal matrices.

3I have used the form given in http://www.cs.columbia.edu/∼djhsu/coms4772-f16/lectures/davis-kahan.pdf.
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