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ABSTRACT

We provide a compressive-measurement based method to detect sus-
ceptible agents who may receive misinformation through their con-
tact with ‘stubborn agents’ whose goal is to influence the opinions
of agents in the network. We consider a DeGroot-type opinion dy-
namics model where regular agents revise their opinions by linearly
combining their neighbors’ opinions, but stubborn agents, while in-
fluencing others, do not change their opinions. Our proposed method
hinges on estimating the temporal difference vector of network-wide
opinions, computed at time instances when the stubborn agents in-
teract. We show that this temporal difference vector has approxi-
mately the same support as the locations of the susceptible agents.
Moreover, both the interaction instances and the temporal difference
vector can be estimated from a small number of aggregated opinions.
The performance of our method is studied both analytically and em-
pirically. We show that the detection error decreases when the social
network is better connected, or when the stubborn agents are ‘less
talkative’.

Index Terms— opinion dynamics, compressive sensing, stub-
born agents, malicious agents, spread of misinformation

1. INTRODUCTION

Online social media platforms such as Twitter, Facebook, are viewed
as the next generation source for news in lieu of the traditional TV
or newspaper media. In particular, news items are conveyed through
the ‘re-tweeting’ or ‘sharing’ actions and diffused to the other agents
on the online social networks (OSNs). Due to its decentralized struc-
ture, the OSNs are considered more effective in conveying informa-
tion than the traditional media. However, it is known that OSNs
are plagued by the injection of so-called ‘fake news’ or ‘alterna-
tive facts’ [1] by a variety of actors, and that false information can
spread across the network relatively easily. Needless to say, there is
widespread concern on how this can nefariously impact society.

In this paper, we consider a time varying opinion dynamics
model to approximate the spread of false information in OSNs, with
the goal of identifying agents who may be subject to such manipu-
lations. Our model is closely related to the DeGroot model [2] and
randomized gossiping model [3, 4]. Similar to [4], we model the
false information sources as stubborn agents (a.k.a. forceful agents)
whose opinions remain constant throughout the consensus process.
Under this setting, it is known that the opinions of all agents in
the social network will be shaped by those of the stubborn agents,
resulting in the spread of false information. We combat the spread
of false information by identifying the set of susceptible agents. The
latter are agents who are in direct contact with stubborn agents and
are the gateway for the stubborn agents to influence the rest of the

This work is supported by NSF CCF-BSF 1714672.

Stubborn agents Vs Regular agents Vr

Susceptible agents Vd

Fig. 1. Illustrating the agents of different roles in the social network.

social network. As observed from Fig. 1, if the links between these
susceptible agents and the stubborn agents are severed, we can iso-
late the stubborn agents and eliminate their influences on the social
network. This may be accomplished by incentivizing the suscepti-
ble agents to employ fact-checkers (e.g., http://snopes.com)
before ‘sharing’ or ‘retweeting’.

This paper proposes a compressive measurement-based method
for detecting the set of susceptible agents. Our development consists
of two parts. First, we demonstrate that the temporal difference of
the agents’ opinions is supported on the locations of the susceptible
agents. Second, when the number of susceptible agents is small, we
show that the temporal difference vector can be recovered from a
small number of measurements through solving a LASSO problem.
The set of susceptible agents can then be detected by identifying the
support of the recovered vector. We present analytical results with
insights on the detection performance. Interestingly, we show that
the detection performance improves as the stubborn agents becomes
less ‘talkative’ and the social network between regular agents forms
a closer knit, i.e., the regular agents have more links to each other
and trusts each other more. Numerical experiments are performed
to verify our claims. Our results shed light into how to engineer a
social network that is resilient to false information campaigns.

Related Work. Our work is related to a number of recent work
on data falsification detection in consensus networks [5–8]. Under
a wireless sensor network scenario, these work focus on design-
ing consensus protocols that are resilient to the data falsification
attacks launched by stubborn agents except for our previous work
in [6] which proposed a detection method for identifying stubborn
agents. We focus on the OSN scenario where the consensus protocol
is viewed as a fixed dynamics rule in the social network. Moreover,
this paper is related to the sparsity-based network anomaly detection
method in [9,10]. In comparison, we provide analysis that highlights
on the properties of a robust social network.

Last, it is worthwhile to mention that alternative models of at-
tacks on social networks opinion dynamics and of defense mecha-
nisms against such attacks can be found in [11–13].



Notations. For any natural number n ∈ N, we denote [n] as the set
{1, 2, ..., n}. Vectors (resp. matrices) are denoted by boldfaced let-
ters (resp. capital letters). We denote xi or [x]i as the ith element of
the vector x. Vector 1 is an all-one vector with compatible dimen-
sion. The superscript (·)> denotes matrix/vector transpose. ‖ · ‖2 is
the standard Euclidean norm and ‖ · ‖1 is the `1-norm.

2. TIME VARYING OPINION DYNAMICS MODEL

Consider a social network described by a time varying, directed
graph G(t) = (V,E(t)) with V = [n + S] := {1, ..., n + S}
and E(t) ⊆ V × V such that (i, i) ∈ E(t) for all i ∈ V . We use
(i, j) ∈ E(t) to denote an edge pointing from i to j in E(t). These
agents are divided into two groups — Vs := [S] is the set of stubborn
agents and Vr := V \ Vs is the set of regular agents. We also define
G := (V,E) with E := ∪∞t=0E(t) to collect all the selected edges.
The goal of the stubborn agents is to influence the other agents with
their opinions.

Formally, the initial opinion of each regular agent is given by
their perceived state-of-the-world such that xi(0) = θi. While each
stubborn agent holds an initial opinion xi(0) = αi which does not
change over time. Let x(t) ∈ Rn+S be the vector of opinions of
agents at time t ≥ 0. Similar to the DeGroot model [2], the opinions
evolve as:

x(t+1) = W (t)x(t) where W (t) =

(
I 0

B(t) D(t)

)
, (1)

where the sub-matrices B(t) ∈ Rn×S
+ , D(t) ∈ Rn×n

+ correspond
to the sub-graphs between stubborn and regular agents, regular and
regular agents, respectively. Note that W (t) is a weighted adjacency
matrix ofG(t). If we partition x(t) as (xs(t);xr(t)) where xs(t) ∈
RS and xr(t) ∈ Rn denote the opinions of the stubborn and regular
agents, respectively, then the above dynamics enforces xs(t+ 1) =
xs(t) for all t ≥ 0. Our assumptions on G(t), W (t) are:

H1. For all t ≥ 0, if (i, j) ∈ E(t), then Wji(t) ≥ η > 0.

H2. For all t ≥ 0, it holds that W (t) ≥ 0 and W (t)1 = 1.

H3. There exists an integerC1 such that for all t ≥ 0, the sub-graph
(Vr, E(Vr; t)∪ . . .∪E(Vr; t+C1−1)) is strongly connected. Note
that E(Vr; t) refers to the edge set E(t) restricted to Vr .

H4. There exists an integer C2 such that for all t ≥ 0, there exists
a pair i ∈ Vr , j ∈ Vs with (j, i) ∈ E(t) ∪ . . . ∪ E(t+ C2 − 1).

These assumptions are rather standard. H3 says that the regular net-
work is strongly connected infinitely often and H4 says that the stub-
born agents influence at least a regular agent infinitely often. Next,
we define

Tstub := {t ≥ 0 : [B(t)]ij 6= 0, for some i, j} (2)
as the time instances when a stubborn agent is active. Moreover,

H 5. For t /∈ Tstub, the matrix D(t) is doubly stochastic with
D(t)1 = D(t)>1 = 1.

H5 states that when the stubborn agents are inactive, the regular
agents always attempt to compute the average θ̄ = (1/n)

∑n
i=1 θi.

We remark that G(t),W (t) satisfying H1 to H5 are closely re-
lated to the time varying graphs taken from a randomized gossiping
model [3]. Moreover, the opinion dynamics is parameterized by:

L := max
`∈Z

` s.t. ` ≤ |ti − tj |, ∀ ti, tj ∈ Tstub, ti 6= tj , (3)

where 1 ≤ L ≤ C2 captures the ‘talkativeness’ of the stubborn
agents, i.e., ifL decreases, the stubborn agents influence others more
frequently and therefore ‘more talkative’.

Finally, let us comment on the asymptotic opinions resulting
from the opinion dynamics (1). There are two cases — when the
stubborn agents are coordinated, i.e., xs(0) = α1, then it can be
shown that limt→∞ x(t) = α1; when the stubborn agents are not
coordinated, i.e., xs(0) /∈ span{1}, then the sequence {x(t)}∞t=1

may not converge and the opinions may fluctuate. These observa-
tions are similar to those proven in [14] for a randomized gossiping
model.

Our goal is to prevent the stubborn agents from spreading false
information in the social network. To do so, we aim to identify the
set of susceptible agents, who are the regular agents in direct contact
with at least one stubborn agent [cf. Fig. 1], i.e., the set

Vd := {i ∈ Vr : (j, i) ∈ E, for some j ∈ Vs} . (4)

Note we can equivalently write as Vd = {i+ S : [
∑∞

t=0 B(t)1]i >
0}, i.e., the support of the non-negative vector

∑∞
t=0 B(t)1. Hence

detecting the susceptible agents can be cast as one of identifying the
support of the sum vector

∑∞
t=0 B(t)1.

3. DETECTING THE SUSCEPTIBLE AGENTS

We propose to detect the susceptible agents through observing the
transient states of the opinion dynamics. In this section, we first
analyze a temporal difference vector that reveals the locations of Vd,
then we present an estimation method which identifies Vd from com-
pressed measurements of the transient opinions.

3.1. Temporal Difference Vector

As the stubborn agents’ opinions must propagate through the sus-
ceptible agents before reaching the rest of the social network, it is
anticipiated that the temporal difference vector, defined as

∆x(t) := x(t+ 1)− x(t) , (5)

contain large values (or ‘spikes’) at the indices Vd when t ∈ Tstub
since stubborn agents’ opinions are typically different from the rest.
The intuition stems from the fact that ∆x(t) records the immediate
impact experienced by the susceptible agents due to the active stub-
born agents. To observe this, we rewrite the regular agents’ opinions
as:

xr(t+ 1) = D(t, 0)xr(0) + x̃r(t) , (6)

where

x̃r(t) := B(t)xs(0) +
∑t−1

s=0 D(t, s+ 1)B(s)xs(0) , (7)

and

D(t, s) :=

{
D(t)D(t− 1) · · ·D(s), if t ≥ s ,
I, if s > t .

(8)

Now, if we partition ∆x(t) = (∆xs(t); ∆xr(t)) in a similar fash-
ion as x(t), it can be shown that:(

∆xs(t)
∆xr(t)

)
=

(
0

B(t)xs(0) + (D(t)− I)w̃(t)

)
, (9)

where w̃(t) = x̃r(t − 1) + D(t − 1, 0)xr(0) is a residual term
related to the opinion mixing before the impact from stubborn agents



at t ∈ Tstub. Note that ∆xs(t) is always zero as the opinions of the
stubborn agents are constant.

When t ∈ Tstub, the first term B(t)xs(0) in (9) is supported
on the set of active susceptible agents as desired. Moreover, the
residual’s magnitude is controlled by the parameters C1 and L:

Proposition 1. If the opinion dynamics is initialized with xs(0) ≥
0, then for all t ∈ Tstub, we have

∆xr(t) = (1/n)‖α1− x̃r(t− L− 1)‖1
(
B(t)1 + w(t)

)
−B(t)x0

s + (D(t)− I)D(t− 1, 0)xr(0) ,
(10)

where α := ‖xs(0)‖∞, x0
s := α1− xs(0) ≥ 0 and

‖w(t)‖1 ≤ n2 ·M · λL (11)

such that

M := 2 · 1 + η−(n−1)C1

1− η(n−1)C1
, λ := (1− η(n−1)C1)

1
(n−1)C1 . (12)

The proof involves a careful analysis of (9) with the given assump-
tions and bounding the mixture of doubly stochastic matrices as
in [15], the details can be found in an online appendix.1 Note that
the condition xs(0) ≥ 0 can be satisfied without loss of generality if
we consider an equivalent opinion dynamics with the initializations
x′s(0) = xs(0) + β1,x′r(0) = xr(0) + β1 for some large β > 0.

Now, suppose that x0
s,xr(0) ≈ 0, from the proposition the

magnitude of ∆xr(t) is controlled by the envelope 1
n
‖α1− x̃r(t−

L− 1)‖1. In addition, ∆xr(t) has a signal component B(t)1 and a
residual component w(t). The residual w(t) can be reduced when:

• the regular-regular network is well connected, i.e., the joint con-
nectivity constant C1 is small;

• the stubborn agents are not ‘talkative’, i.e., the talkativeness pa-
rameter L is large [cf. (3)].

Intuitively, if the above conditions hold and we fix t ∈ Tstub, then the
set of social network’s opinions is in a neighborhood of the steady
state at t − 1, therefore any action of the stubborn agents applies
a ‘strong reset’ to the social network, causing a large spike on the
temporal difference vector. Crucially, these conditions give insight
into how a ‘robust’ social network should behave, where the spread
of false information can be easily detected from ∆x(t). Lastly, we
remark that our bound is based on a worst case analysis. It is loose
in general as it requires L � (n − 1)C1 to guarantee a low noise
power in w(t), yet the numerical experiments in Section 4 shows far
better performance than the bound.

3.2. Identifying Vd with Compressive Measurements

Proposition 1 suggests that when t ∈ Tstub and ‖xs(0)‖∞ −
xs(0),xr(0) are small, the active susceptible agents can be revealed
through detecting the locations of spikes in the temporal difference
vector ∆x(t). Similarly, the set Vd can be revealed through de-
tecting the locations of spikes in the sum vector

∑
t∈Tstub

∆x(t).
However, computing ∆x(t) requires accruing the opinions of all
agents, which may not be practical or possible; moreover, the set of
time instances when the stubborn agents are active is unknown.

To overcome the hurdles above, we assume that the number of
susceptible agents is small with |Vd| � n. This assumption can be
justified since the false information sources (stubborn agents) are not

1http://www.public.asu.edu/˜hwai2/pdf/sus_app.pdf.

mainstream sources and hence are typically in direct contact with a
few agents. Consequently, the temporal difference vector ∆x(t) is
the combination of a sparse vector supported on the active suscepti-
ble agents and a noise vector. This inspires us to apply a compressive
sensing approach as follows.

Let us begin by formally describing our observation model.
Over an observation period from time T0 to Tmax + 1, we observe m
linear measurements of the opinions with m� n+ S:

y(t) = Ax(t) + z(t), t ∈ {T0, ..., Tmax + 1} , (13)

where A ∈ Rm×(n+S) is a known measurement matrix and z(t) is a
zero-mean, additive noise. In practice, the observations y(t) can be
obtained by surveying m different groups of agents on the OSN and
the noise z(t) models the error of estimating the aggregated opinions
of each group. Asm� n+S, we do not need to exhaustively survey
the opinions of the agents one by one. Furthermore, we assume the
following on A:

H 6. The all-one vector is in the row span of A. In other words,
there exists c ∈ Rm such that 1> = c>A.

H6 implies that every agent’s opinions will be represented in the
aggregated group opinions given by y(t).

Detecting Tstub ∩ [T0, Tmax] from the observations. Under H6, it
is possible to detect the instances within the observation period in
which the stubborn agents are active, i.e., the set Tstub ∩ [T0, Tmax].
To see this, define ∆y(t) := y(t+ 1)− y(t) and consider:

c>∆y(t) = c>A∆x(t) + c>(z(t+ 1)− z(t))

= 1>∆x(t) + c>(z(t+ 1)− z(t)) .
(14)

When t /∈ Tstub, we have:

1>∆x(t) = 1>(W (t)− I)x(t) = 0 , (15)

since the W (t) in the above is a block diagonal matrix composed
of I and D(t), both matrices are doubly stochastic [cf. H5]. When
t ∈ Tstub, we have 1>∆x(t) 6= 0 in general. We can show:

Proposition 2. If the noise z(t) is i.i.d. and sub-Gaussian such that
E[exp(s · c>z(t)] ≤ exp(σ2

zs
2/2) for all s ∈ R, then the false-

alarm and missed detection rates are given as:

P
(
|c>∆y(t)| > δ|t /∈ Tstub

)
≤ 2 · exp(−δ2/(4σ2

z)) , (16)

P
(
|c>∆y(t)| ≤ δ|t ∈ Tstub

)
≤ exp(−(δ−|mt|)2/(4σ2

z)) , (17)

where mt := 1>∆x(t) is the sum of the temporal difference.

The proof, which is based on the standard Chernoff bound of sub-
Gaussian random variables, can be found in the online appendix.1

The above proposition suggests that Tstub ∩ [T0, Tmax] can be
estimated by thresholding on |c>∆y(t)|. Let δ > 0, we set

T̂stub = {t ∈ [T0, Tmax] : |c>∆y(t)| > δ} . (18)

We observe that the detection performance depends on the noise
variance σ2

z and the magnitude of mt. Let us comment on |mt|
whose analytical expression can be found in the online appendix.1

We consider the special case when xs(0) = α1. As limt→∞ x(t) =
α1, we have mt → 0. It implies that while a large Tmax allows for
including more samples to detect Vd, the detection performance for
Tstub may be degraded as the missed detection rate in (17) increases
with t. This suggests a tradeoff in designing the observation period.

http://www.public.asu.edu/~hwai2/pdf/sus_app.pdf


Identifying the set of susceptible agents. Now suppose that T̂stub ≈
Tstub ∩ [T0, Tmax], we apply Proposition 1 and observe that:∑

t∈T̂stub

∆y(t) ≈ A
∑

t∈T̂stub

(
B(t)(1 + x̃0

s) + w̃(t)
)

+ z̃(t) , (19)

where w̃(t), z̃(t) are additive noise depending on xr(0),z(t)
and x̃0

s is some vector that depends on x0
s. In the above, b =∑

t∈T̂stub
B(t)1 is the desired vector as it is supported on the lo-

cations of the susceptible agents. Since |Vd| � n, the vector b is
sparse. Naturally, we can recover b with the LASSO problem:

b? = arg min
b̃∈Rn+S

∥∥∥ 1

|T̂stub|

∑
t∈T̂stub

∆y(t)−Ab̃
∥∥∥2
2

+ ρ‖b̃‖1 , (20)

where ρ > 0 is a regularization parameter. Finally, we detect the
support of b?, i.e., let ε > 0 be a predefined threshold, by

V̂d = {i ∈ [n+ S] : |[b?]i| > ε} . (21)

The performance analysis of the LASSO detector is left for future
work. We remark that its performance depends on the design of A
and can be analyzed under the framework of [16]. In particular, we
expect a reasonable support recovery performance if m = Ω(|Vd|),
followed from standard compressive sensing theory.

4. NUMERICAL EXPERIMENTS

We present numerical results on the detection performance for sus-
ceptible agents using synthetic data. We consider a network with
n = 200 regular agents and S = 20 stubborn agents and eval-
uate the performance running 1000 Monte-Carlo trials. The sub-
graph of regular agents, G[Vr], is a random Erdos-Renyi (ER) graph
with connectivity of 2 logn/n, while the graph that connects the
stubborn-regular agents is generated by randomly choosing |Vd| =
10 regular agents in Vr and connecting them to 3 random stub-
born agents. We initialize the opinions as xs(0) = 10 · 1 and
xr(0) ∼ N (0, 0.5I). Emulating the design proposed in [17] which
generates an expander bipartite graph, the sensing matrix A has
d = 5 random entries of each column equal to 1, and the rest are
0. The measurement noise is z(t) ∼ N (0, 0.1I). The observa-
tions y(t) emulate a set of m surveys taking the average opinions of
agents. We set δ = 1 for the stubborn agents’ activity detection in
(18) and ρ = 0.5 for (20). The performance is measured by the area
under the ROC curve (AUROC) and the area under precision-recall
curve (AUPR), computed by sweeping a range of values for ε in
(21). A perfect detection is attained when AUROC = AUPR = 1.

We consider a randomized gossip protocol [3] with the following
modifications. At each time t, a regular agent is selected with proba-
bility (1−γ)/|Vr|while a stubborn agent is selected with probability
γ/|Vs|. Intuitively, reducing γ increases the constant L in (3) as the
stubborn agents become less ‘talkative’. When a regular agent is
selected, he/she exchanges opinion with R randomly chosen neigh-
boring regular agents with an influence weight of 1/(R + 1). In-
creasingR effectively reduces the constant C1 in H3 as the resulting
(union of) time varying graph(s) contains more edges, i.e., the reg-
ular agents are better connected with a large R. Lastly, we choose
T0 = 5× 103/R and Tmax = 5× 104/R.

In the first example in Fig. 2 we study the detection perfor-
mance of susceptible agents with different degrees of connectivity
for the regular-regular social network, by varying R. We compare
(1-AUROC) and (1-AUPR) against the number of measurements,
m, made per snapshot of the opinions. First, we observe from Fig. 2
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Fig. 2. (Detection performance with varying connectivity of
regular-regular social network R). Detection performance against
the number of measurements m made on each network snapshot.
Larger R implies better connectivity. The gossiping’s parameter α
is fixed at |Vs|/|Vr|, i.e., all agents are equally talkative.
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Fig. 3. (Detection performance with varying stubborn agents’
talkativeness level α). Detection performance against the number of
measurements m made on each network snapshot. The gossiping’s
parameter is set as R = 1, i.e., the pairwise gossip exchange.

that as the number of measurement increases, both AUROC and
AUPR approach 1, indicating that the detection performance im-
proves with larger m, and it is reasonably good when m ≈ 50.
Second, the detection performance improves when R increases, cor-
roborating our theoretical claim in Proposition 1. This shows that a
well connected social network can be better defended.

The second numerical example examines the effects of talkative-
ness of the stubborn agents [cf. (3)] by varying γ. Fig. 3 shows the
comparison of detection performance. As observed from the figure,
the detection performance worsens when γ increases, i.e., the stub-
born agents becomes more ‘talkative’. This corroborates with our
analysis in Proposition 1, which predicts that the detection perfor-
mance degrades as L decreases. Nevertheless, one can mitigate this
loss with a sufficient number of measurements.
Conclusions. In this paper, we proposed a detection method for
agents that are exposed directly to stubborn influencers. Isolat-
ing these susceptible agents is essential to defend a social network
against the influences of false information. Under the assumption
that the group is small in size, we show that the number of mea-
surements to monitor can be far less than the number of agents in
the network. Analytical results give insights on the detection perfor-
mance, which is shown to depend on the connectivity of the network
and the talkativeness of stubborn agents. Our results are verified
through numerical experiments.
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A. ASYMPTOTIC OPINIONS OF (1)

In the following, we prove the claim that when the consensus net-
work is initialized by xs(0) = α1 and xr(0) = x0

r , then we have
limt→∞ x(t) = α1 under the stated assumptions.

For any i ∈ Vr , we observe that

|xi(t+ 1)− α| =
∣∣∣∑n+S

j=1 Wij(t)
(
xj(t)− α

)∣∣∣
=
∣∣∣∑n+S

j=S+1Wij(t)
(
xj(t)− α

)∣∣∣ , (22)

where the equality is due to the fact that xj(t) = α for all j ∈ Vs.
Furthermore, let us define that:

W (t, s) :=

{
W (t)W (t− 1) · · ·W (s), if t ≥ s ,
I, if s > t .

(23)

Now, applying (22) recursively, we get

|xi(t+B+ 1)−α| =
∣∣∣∑j∈Vr

Wij(t+B, t)
(
xj(t)−α

)∣∣∣ (24)

for any B ≥ 0. To this end, we also state the following lemma,
whose proof can be found in Appendix A.1.

Lemma 1. Under H1, H2, H3, H4. Let C := (n − 1)C1 + C2, it
holds that:

maxi∈Vr

∑
j∈Vr

Wij(t+C, t+1) ≤ 1−ηC < 1, ∀ t ≥ 0 . (25)

Consequently, we let C = (n− 1)C1 + C2 and observe that:

max
i∈Vr

|xi((k + 1)C)− α|

= max
i∈Vr

∣∣∣ ∑
j∈Vr

Wij((k + 1)C − 1, kC)
(
xj(kC)− α

)∣∣∣
≤ max

i∈Vr

∑
j∈Vr

Wij((k + 1)C − 1, kC) ·max
j∈Vr

|xj(kC)− α|

≤ (1− ηC) ·max
j∈Vr

|xj(kC)− α|

≤ (1− ηC)k ·max
j∈Vr

|xj(0)− α| .

(26)

It shows that maxj∈Vr |xj(kC)− α| converges to zero as k →∞.
Moreover, the above analysis holds for maxi∈Vr |xi((k + 1)C +
τ) − α| for all τ ∈ {0, 1, ..., C − 1}. Our proof is thus completed
since we have limt→∞ xi(t) = α for all i ∈ V .

For the case when xs(0) /∈ span{1}, we can consider a sim-
ple case with only one regular agent labeled by {3}, which is con-
nected to two stubborn agents labeled by {1, 2}. In other words,
V = {1, 2, 3} and E = {(1, 3), (2, 3)}.

As xs(0) /∈ span{1}, we have x1(t) 6= x2(t). Suppose that
the time varying graph selects the edge (1, 3) and set W3,3(t) =
0.5,W3,1(t) = 0.5 at t = 0, 2, 4, ...; the edge (2, 3) and set
W3,3(t) = 0.5,W3,2(t) = 0.5 at t = 1, 3, 5, .... In this way, we
observe that H1 to H5 are satisfied by the above model. Now, if
x1(0) = 1, x2(0) = 0, x3(0) = 0.5, we have:

lim sup
t→∞

x3(t) =
2

3
6= lim inf

t→∞
x3(t) =

1

3
. (27)

A.1. Proof of Lemma 1

Notice that:

W (t, s) =

(
I 0∑t

`=s D(t, `+ 1)B(`) D(t, s)

)
. (28)

Under H1, H4, there exists t? ∈ [t+ 1, t+ C2] such that:∑
j∈Vr

Wj?,j(t
?, t+ 1) ≤ 1− η for some j? ∈ [n] . (29)

Since t+C − t? ≥ (n− 1)C1, under H3 and using [15, Lemma 2],
we can show

Wij(t+ C, t? + 1) ≥ ηt+C−t? , ∀ i, j ∈ Vr . (30)

For all i ∈ Vr , we have:∑
j∈Vr

Wij(t+ C, t+ 1)

=
∑
j∈Vr

∑
`∈Vr

Wi`(t+ C, t? + 1)W`,j(t
?, t+ 1)

≤ 1− η ·Wij?(t+ C, t? + 1) ≤ 1− ηC ,

(31)

where the first equality is due to the fact that the lower right sub-
block of W (t, s) is always obtained by its own self multiplication
[cf. (28)]; the second inequality used the observation in (29) and the
fact that

∑
`∈Vr

Wi`(t+C, t? +1) ≤ 1; and the last inequality used
the lower bound in (30). This concludes the proof of Lemma 1.

B. PROOF OF PROPOSITION 1

We remark that the expression (6) can be derived by simply expand-
ing the iterations with the opinion dynamics (1). Now, let us recall
that the temporal difference vector can be expressed as [cf. (9)]:

∆xr(t) = B(t)xs(0) + (D(t)− I)x̃r(t− 1)

+ (D(t)− I)D(t− 1, 0)xr(0) ,
(32)

Using t ∈ Tstub and the definition of L in (3), we know that B(t −
`) = 0 for ` = 1, ..., L. Using the fact that D(t−1, t−L) is doubly
stochastic [cf. H5], this implies the following decomposition:

x̃r(t− 1) = D(t− 1, t− L)x̃r(t− L− 1)

= (1/n)11>x̃r(t− L− 1)+

D(t− 1, t− L)(I − (1/n)11>)x̃r(t− L− 1) ,

(33)

Furthermore, H2 implies that (D(t) − I)1 = −B(t)1. Using the
definitions of α and x0

s, we have xs(0) = α1 − x0
s. Substituting

these into (32) yields:

∆xr(t) = B(t)
(
α1− 1

n
11>x̃r(t− L− 1)

)
+ (D(t)− I)

D(t− 1, t− L)(I − (1/n)11>)x̃r(t− L− 1)

−B(t)x0
s + (D(t)− I)D(t− 1, 0)x0

r . (34)

Under the given assumptions and observe that 1 = (1/n)11>1,
we can rewrite the first term in the right hand side of (34) as:

B(t)
( 1

n
11>

)
(α1− x̃r(t− L− 1))

=
(
B(t)1

) 1

n
1>(α1− x̃r(t− L− 1)) .

(35)



Observe that x̃r(t− L− 1) can be written as:

x̃r(t− L− 1) = α

t−L−1∑
s=0

D(t− L− 1, s+ 1)B(s)1

−
t−L−1∑
s=0

D(t− L− 1, s+ 1)B(s)x0
s ,

(36)

where the first term can be majorized by α1 since the matrix product
is part of a sub-stochastic matrix and the second term is negative.
Furthermore, x̃r(t−L− 1) is non-negative since α1−x0

s ≥ 0. As
a result, we have α1 ≥ x̃r(t− L− 1) ≥ 0 and

1>(α1− x̃r(t− L− 1)) = ‖α1− x̃r(t− L− 1)‖1 . (37)

This gives the first term in the expression (10).
Next, we consider bounding the `1 norm of the second term in

the right hand side of (34) as:

‖(D(t)− I)D(t− 1, t− L)(I − 1

n
11>)x̃r(t− L− 1)‖1

≤ ‖D(t− 1, t− L)(I − 1

n
11>)(x̃r(t− L− 1)− α1)‖1

≤ ‖D(t− 1, t− L)(I − 1

n
11>)‖1‖x̃r(t− L− 1)− α1‖1

(38)

where in the first inequality, we have used ‖D(t) − I‖1 ≤ 1 and
the fact that 1 is in the null space of I − 1

n
11>. Using the doubly

stochasticity of D(t− 1, t− L), we have

D(t− 1, t−L)(I − 1

n
11>) = D(t− 1, t−L)− 1

n
11> . (39)

The results from [15, Proposition 2(b)] yields∣∣∣[D(t− 1, t− L)]ij −
1

n

∣∣∣ ≤M · λL, ∀ i, j , (40)

where M,λ are defined in (11). Consequently, the matrix 1-norm
can be bounded as

‖D(t− 1, t− L)(I − 1

n
11>)‖1 ≤ n ·M · λL . (41)

This concludes the proof of Proposition 1.

C. PROOF OF PROPOSITION 2

We first prove the false alarm rate. As characterized by (14), if t /∈
Tstub, the inner product c>(y(t + 1) − y(t)) consists only of the
measurement noise term. In particular,

c>(z(t+ 1)− z(t)) (42)

is a sub-Gaussian r.v. with parameter 2σ2
z . Using the standard Cher-

noff bound, the desired probability can be bounded as

P (|c>(z(t+ 1)− z(t))| > δ) ≤ 2exp(−δ2/(4σ2
z)) . (43)

For the missed detection rate, if t ∈ Tstub, the inner product
c>(y(t+ 1)− y(t)) can be expressed as

mt + c>(z(t+ 1)− z(t)) . (44)

Consequently, the missed detection rate is bounded by

P (|mt + c>(z(t+ 1)− z(t))| < δ)

≤ P (mt + c>(z(t+ 1)− z(t)) < δ)

≤ exp(−(δ −mt)
2/(4σ2

z)) .

(45)

where the first inequality is due to the fact thatmt ≥ 0 and c>(z(t+
1)− z(t)) is zero-mean.

Lastly, the expression for mt is obtained by studying (34) and
using the simplification derived in (35), in particular:

mt = 1>∆x(t)

= −1>B(t)x0
s + (1>B(t))

( 1

n
11>

)
(α1− x̃r(t− L− 1))

+ 1>(D(t)− I)D(t− 1, 0)xr(0)

+ 1>(D(t)− I)(D(t− 1, t− L)− 1

n
11>)(x̃r(t− L− 1)− α1)

= −1>B(t)x0
s + 1>(I −D(t))

( 1

n
11>

)
(α1− x̃r(t− L− 1))

+ 1>(D(t)− I)D(t− 1, 0)xr(0)

+ 1>(D(t)− I)(D(t− 1, t− L)− 1

n
11>)(x̃r(t− L− 1)− α1)

= −1>B(t)x0
s + 1>(D(t)− I)D(t− 1, 0)xr(0)

+ 1>(D(t)− I)D(t− 1, t− L)(x̃r(t− L− 1)− α1) ,

(46)

where the first equality is due to 1 ∈ null(I − (1/n)11>) and the
second equality is due to B(t)1 = (I −D(t))1. We can further
decompose mt into:

mt = 1>∆x(t)

= 1>(I −D(t))
[
D(t− 1, t− L)

(
α1−

α

t−L+1∑
s=0

D(t− L+ 1, s+ 1)B(s)1
)

+ D(t− 1, 0)x0
r

]
+ 1>

( t−1∑
s=0

D(t− 1, s+ 1)B(s)x0
s −

t∑
s=0

D(t, s+ 1)B(s)x0
s

)
,

where we observe that the first three lines correspond to the temporal
difference under the initialization xs(0) = α1,xr(0) = x0

r and the
last line corresponds to the temporal difference under the initializa-
tion xs(0) = x0

s,xr(0) = 0.

D. ERROR ANALYSIS OF THE LASSO PROBLEM

We analyze the solution to the following modified form of the
LASSO problem (20): let η > 0 be some positive number,

min
b∈Rn+S

‖b‖1 s.t.
∥∥∥ 1

|T̂stub|

∑
t∈T̂stub

∆y(t)−Ab
∥∥∥
2
≤ η . (47)

Let us assume that T̂stub ⊆ Tstub ∩ [T0 + 1, Tmax], i.e., the active
instances of stubborn agents are successfully detected and use the
same set of assumptions in Proposition 1 under the simplified setting



when x0
s = 0,x0

r = 0. In this case, we can express the summation∑
t∈T̂stub

∆y(t) as∑
t∈T̂stub

∆y(t) =
∑

t∈T̂stub

(z(t+ 1)− z(t))

+ A

(
0∑

t∈T̂stub
ct(B(t)1 + w(t))

)
,

(48)

where ct := (1/n)‖α1−x̃r(t−L−1)‖1. To simplify our notations,
let us define

b :=

(
0∑

t∈T̂stub
ctB(t)1/T

)
, w :=

(
0∑

t∈T̂stub
ctw(t)/T

)
,

where T := |T̂stub| and z := (1/T )
∑

t∈T̂stub
(z(t+ 1)− z(t)). We

can thus write

1

T

∑
t∈T̂stub

∆y(t) = A(b + w) + z = Ab + z + Aw︸ ︷︷ ︸
:=v

. (49)

We remark that b is the signal with the desired support and v is
the observed noise. Applying Theorem 6.12 from [16] yields the
following result.

Fact 1. Set η = ‖v‖2 in (47) and let k = |Vd| = ‖
∑

t∈T̂stub
B(t)1‖0.

Suppose that the matrix A has an RIP constant satisfying

δ2k < 0.6246 , (50)

then a solution, b̂, to (47) must satisfy

‖b̂− b‖1 ≤ D
√
kη, ‖b̂− b‖2 ≤ Dη , (51)

where D is a constant that is only dependent on δ2k.

The above result is a direct consequence of the standard
compressive sensing theory and is presented merely for the self-
containedness of this paper. Nevertheless, it highlights the impor-
tance of designing a ‘good’ sensing matrix A as such matrix has to
satisfy the RIP property of order 2k. As an example, if we generate
A as a sub-Gaussian random matrix, then (1/

√
m)A has an RIP

constant of δ2k ≤ δ with probability at least 1− ε provided that:

m ≥ Cδ−2(2k log(e(n+ S)/(2k)) + log(2/ε)) , (52)

i.e., setting m = Ω(k) suffices to satisfy the requirement in the
above Fact and the recovery error will be dependent only on the noise
magnitude η = ‖v‖2. Finally, we note that this error can bounded
as

η = ‖v‖2 ≤ ‖z‖2 + ‖Aw‖2 , (53)

i.e., the recovery performance can be improved when the measure-
ment noise is small and the time varying consensus network satisfies
the requirement discussed in the remarks after Proposition 1.
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