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Abstract

We consider the task of evaluating a policy for

a Markov decision process (MDP). The standard

unbiased technique for evaluating a policy is to

deploy the policy and observe its performance.

We show that the data collected from deploying

a different policy, commonly called the behavior

policy, can be used to produce unbiased estimates

with lower mean squared error than this standard

technique. We derive an analytic expression for

the optimal behavior policy—the behavior pol-

icy that minimizes the mean squared error of the

resulting estimates. Because this expression de-

pends on terms that are unknown in practice, we

propose a novel policy evaluation sub-problem,

behavior policy search: searching for a behav-

ior policy that reduces mean squared error. We

present a behavior policy search algorithm and

empirically demonstrate its effectiveness in low-

ering the mean squared error of policy perfor-

mance estimates.

1. Introduction

Many sequential decision problems, including diabetes

treatment (Bastani, 2014), digital marketing (Theocharous

et al., 2015), and robot control (Lillicrap et al., 2015), are

modeled as Markov decision processes (MDPs) and solved

using reinforcement learning (RL) algorithms. One impor-

tant problem when applying RL to real problems is policy

evaluation. The goal in policy evaluation is to estimate the

expected return (sum of rewards) produced by a policy. We

refer to this policy as the evaluation policy, πe. The stan-

dard policy evaluation approach is to repeatedly deploy πe

and average the resulting returns. While this naı̈ve Monte

Carlo estimator is unbiased, it may have high variance.
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Methods that evaluate πe while selecting actions according

to πe are termed on-policy. Previous work has addressed

variance reduction for on-policy returns (Zinkevich et al.,

2006; White & Bowling, 2009; Veness et al., 2011). An

alternative approach is to estimate the performance of πe

while following a different, behavior policy, πb. Methods

that evaluate πe with data generated from πb are termed off-

policy. Importance sampling (IS) is one standard approach

for using off-policy data in RL. IS reweights returns ob-

served while executing πb such that they are unbiased esti-

mates of the performance of πe.

Presently, IS is usually used when off-policy data is already

available or when executing πe is impractical. If πb is not

chosen carefully, IS often has high variance (Thomas et al.,

2015). For this reason, an implicit assumption in the RL

community has generally been that on-policy evaluation is

more accurate when it is feasible. However, IS can also be

used for variance reduction when done with an appropri-

ately selected distribution of returns (Hammersley & Hand-

scomb, 1964). While IS-based variance reduction has been

explored in RL, this prior work has required knowledge of

the environment’s transition probabilities and remains on-

policy (Desai & Glynn, 2001; Frank et al., 2008; Ciosek

& Whiteson, 2017). In contrast to this earlier work, we

show how careful selection of the behavior policy can lead

to lower variance policy evaluation than using the evalua-

tion policy and do not require knowledge of the environ-

ment’s transition probabilities.

In this paper, we formalize the selection of πb as the behav-

ior policy search problem. We introduce a method for this

problem that adapts the policy parameters of πb with gradi-

ent descent on the variance of importance-sampling. Em-

pirically we demonstrate behavior policy search with our

method lowers the mean squared error of estimates com-

pared to on-policy estimates. To the best of our knowledge,

this work is the first to propose adapting the behavior pol-

icy to obtain better policy evaluation in RL. Furthermore

we present the first method to address this problem.

2. Preliminaries

This section details the policy evaluation problem setting,

the Monte Carlo and Advantage Sum on-policy methods,

and importance-sampling for off-policy evaluation.
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2.1. Background

We use notational standard MDPNv1 (Thomas, 2015), and

for simplicity, we assume that S,A, and R are finite.1 Let

H := (S0, A0, R0, S1, . . . , SL, AL, RL) be a trajectory

and g(H) :=
∑L

t=0 γ
tRt be the discounted return of tra-

jectory H . Let ρ(π) := E[g(H)|H ∼ π] be the expected

discounted return when the stochastic policy π is used from

S0 sampled from the initial state distribution. In this work,

we consider parameterized policies, πθ , where the distribu-

tion over actions is determined by the vector θ. We assume

that the transitions and reward function are unknown and

that L is finite.

We are given an evaluation policy, πe, for which we would

like to estimate ρ(πe). We assume there exists a policy

parameter vector θe such that πe = πθe
and that this vec-

tor is known. We consider an incremental setting where,

at iteration i, we sample a single trajectory Hi with a pol-

icy πθi
and add {Hi,θi} to a set D. We use Di to denote

the set at iteration i. Methods that always (i.e., ∀i) choose

θi = θe are on-policy; otherwise, the method is off-policy.

A policy evaluation method, PE, uses all trajectories in Di

to estimate ρ(πe). Our goal is to design a policy evalua-

tion algorithm that produces estimates of ρ(πe) that have

low mean squared error (MSE). Formally, the goal of pol-

icy evaluation with PE is to minimize (PE(Di)− ρ(πe))
2.

While other measures of policy evaluation accuracy could

be considered, we follow earlier work in using MSE (e.g.,

(Thomas & Brunskill, 2016; Precup et al., 2000)).

We focus on unbiased estimators of ρ(πe). While bi-

ased estimators (e.g., bootstrapping methods (Sutton &

Barto, 1998), approximate models (Kearns & Singh, 2002),

etc.) can sometimes produce lower MSE estimates they are

problematic for high risk applications requiring confidence

intervals. For unbiased estimators, minimizing variance is

equivalent to minimizing MSE.

2.2. Monte-Carlo Estimates

Perhaps the most commonly used policy evaluation method

is the on-policy Monte-Carlo (MC) estimator. The estimate

of ρ(πe) at iteration i is the average return:

MC(Di) :=
1

i+ 1

i∑

j=0

L∑

t=0

γtRt =
1

i+ 1

i∑

j=0

g(Hj).

This estimator is unbiased and strongly consistent given

mild assumptions.2 However, this method can have high

variance.

1The methods, and theoretical results discussed in this paper
are applicable to both finite and infinite S,A and R as well as
partially-observable Markov decision processes.

2Being a strongly consistent estimator of ρ(πe) means that

2.3. Advantage Sum Estimates

Like the Monte-Carlo estimator, the advantage sum (ASE)

estimator selects θi = θe for all i. However, it intro-

duces a control variate to reduce the variance without intro-

ducing bias. This control variate requires an approximate

model of the MDP to be provided. Let the reward func-

tion of this model be given as r̂(s, a). Let q̂πe(st, at) =

E[
∑L

t′=t γ
t′ r̂(st′ , at′)] and v̂πe(st) = E[q̂πe(st, at)|at ∼

πe], i.e., the action-value function and state-value function

of πe in this approximate model. Then, the advantage sum

estimator is given by:

AS(Di) :=
1

i+ 1

i∑

j=0

L∑

t=0

γt(Rt− q̂πe(St, At)+ v̂πe(St)).

Intuitively, ASE is replacing part of the randomness of the

Monte Carlo return with the known expected return under

the approximate model. Provided qπe(St, At)− v̂πe(St) is

sufficiently correlated with Rt, the variance of ASE is less

than that of MC.

Notice that, like the MC estimator, the ASE estimator is

on-policy, in that the behavior policy is always the policy

that we wish to evaluate. Intuitively it may seems like this

choice should be optimal. However, we will show that it is

not—selecting behavior policies that are different from the

evaluation policy can result in estimates of ρ(πe) that have

lower variance.

2.4. Importance Sampling

Importance Sampling is a method for reweighting returns

from a behavior policy, θ, such that they are unbiased re-

turns from the evaluation policy. In RL, the re-weighted IS

return of a trajectory, H , sampled from πθ is:

IS(H,θ) := g(H)

L∏

t=0

πe(St|At)

πθ(St|At)
.

The IS off-policy estimator is then a Monte Carlo estimate

of E [IS(H,θ)|H ∼ πθ]:

IS(Di) :=
1

i+ 1

i∑

j=0

IS(Hj ,θj).

In RL, importance sampling allows off-policy data to be

used as if it were on-policy. In this case the variance of

the IS estimate is often much worse than the variance of

on-policy MC estimates because the behavior policy is not

Pr
(

lim
i→∞

MC(Di) = ρ(πe)
)

= 1. If ρ(πe) exists, MC is

strongly consistent by the Khintchine Strong law of large num-
bers (Sen & Singer, 1993).



Data-Efficient Policy Evaluation Through Behavior Policy Search

chosen to minimize variance, but is a policy that is dictated

by circumstance.

3. Behavior Policy Search

Importance sampling was originally intended as a variance

reduction technique for Monte Carlo evaluation (Hammers-

ley & Handscomb, 1964). When an evaluation policy rarely

samples trajectories with high magnitude returns a Monte

Carlo evaluation will have high variance. If a behavior pol-

icy can increase the probability of observing such trajecto-

ries then the off-policy IS estimate will have lower variance

than an on-policy Monte Carlo estimate. In this section we

first describe the theoretical potential for variance reduction

with an appropriately selected behavior policy. In general

this policy will be unknown. Thus, we propose a policy

evaluation subproblem — the behavior policy search prob-

lem — solutions to which will adapt the behavior policy to

provide lower mean squared error policy performance es-

timates. To the best of our knowledge, we are the first to

propose behavior policy adaptation for policy evaluation.

3.1. The Optimal Behavior Policy

An appropriately selected behavior policy can lower vari-

ance to zero. While this fact is generally known for

importance-sampling, we show here that this policy exists

for any MDP and evaluation policy under two restrictive

assumptions: all returns are positive and the domain is de-

terministic. In the following section we describe how an

initial policy can be adapted towards the optimal behavior

policy even when these conditions fail to hold.

Let wπ(H) :=
∏L

t=0 π(At|St). Consider a behavior policy

π?
b such that for any trajectory, H:

ρ(πe) = IS(H,π?
b ) = g(H)

wπe
(H)

wπ?

b
(H)

.

Rearranging the terms of this expressions yields:

wπ?

b
(H) = g(H)

wπe
(H)

ρ(πe)
.

Thus, if we can select π?
b such that the probability of ob-

serving any H ∼ π?
b is

g(H)
ρ(πe)

times the likelihood of ob-

serving H ∼ πe then the IS estimate has zero MSE with

only a single sampled trajectory. Regardless of g(H), the

importance-sampled return will equal ρ(πe).

Furthermore, the policy π?
b exists within the space of all

feasible stochastic policies. Consider that a stochastic pol-

icy can be viewed as a mixture policy over time-dependent

(i.e., action selection depends on the current time-step) de-

terministic policies. For example, in an MDP with one

state, two actions and a horizon of L there are 2L possi-

ble time-dependent deterministic policies, each of which

defines a unique sequence of actions. We can express any

evaluation policy as a mixture of these deterministic poli-

cies. The optimal behavior policy π?
b can be expressed sim-

ilarly and thus the optimal behavior policy exists.

Unfortunately, the optimal behavior policy depends on the

unknown value ρ(πe) as well as the unknown reward func-

tion R (via g(H)). Thus, while there exists an optimal be-

havior policy for IS – which is not πe – in practice we can-

not analytically determine π?
b . Additionally, π?

b may not be

representable by any θ in our policy class.

3.2. The Behavior Policy Search Problem

Since the optimal behavior policy cannot be analytically

determined, we instead propose the behavior policy search

(BPS) problem for finding πb that lowers the MSE of esti-

mates of ρ(πe). A BPS problem is defined by the inputs:

1. An evaluation policy πe with policy parameters θe.

2. An off-policy policy evaluation algorithm,

OPE(H,θ), that takes a trajectory, H ∼ πθ , or,

alternatively, a set of trajectories, and returns an

estimate of ρ(πe).

A BPS solution is a policy, πθb
such that off-policy esti-

mates with OPE have lower MSE than on-policy estimates.

Methods for this problem are BPS algorithms.

Recall we have formalized policy evaluation within an in-

cremental setting where one trajectory for policy evaluation

is generated each iteration. At the ith iteration, a BPS algo-

rithm selects a behavior policy that will be used to generate

a trajectory, Hi. The policy evaluation algorithm, OPE,

then estimates ρ(πe) using trajectories in Di. Naturally,

the selection of the behavior policy depends on how OPE

estimates ρ(πe).

In a BPS problem, the ith iteration proceeds as follows.

First, given all of the past behavior policies, {θi}
i−1
i=0, and

the resulting trajectories, {Hi}
i−1
i=0, the BPS algorithm must

select θi. The policy πθi
is then run for one episode to

create the trajectory Hi. Then the BPS algorithm uses

OPE to estimate ρ(πe) given the available data, Di :=
{(θi, Hi)}

i
i=0. In this paper, we consider the one-step

problem of selecting θi and estimating ρ(πe) at iteration

i in a way that minimizes MSE. That is, we do not consider

how our selection of θi will impact our future ability to se-

lect an appropriate θj for j > i and thus to produce more

accurate estimates in the future.

One natural question is: if we are given a limit on the

number of trajectories that can be sampled, is it better to

“spend” some of our limited trajectories on BPS instead

of using on-policy estimates? Since each OPE(Hi,θi)
is an unbiased estimator of ρ(πe), we can use all sampled

trajectories to compute OPE(Di). Provided for all itera-
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tions, Var[OPE(H,θi)] ≤ V ar[MC] then, in expectation,

a BPS algorithm will always achieve lower MSE than MC,

showing that it is, in fact, worthwhile to do so. This claim

is supported by our empirical study.

4. Behavior Policy Gradient Theorem

We now introduce our primary contributions: an analytic

expression for the gradient of the mean squared error of

the IS estimator and a stochastic gradient descent algorithm

that adapts θ to minimize the MSE between the IS estimate

and ρ(πe). Our algorithm — Behavior Policy Gradient

(BPG) — begins with on-policy estimates and adapts the

behavior policy with gradient descent on the MSE with re-

spect to θ. The gradient of the MSE with respect to the

policy parameters is given by the following theorem:

Theorem 1.

∂

∂θ
MSE[IS(H,θ)] = E

[

− IS(H,θ)2
L
∑

t=0

∂

∂θ
log πθ(At|St)

]

where the expectation is taken over H ∼ πθ .

Proof. Proofs for all theoretical results are included in Ap-

pendix A.

BPG uses stochastic gradient descent in place of exact gra-

dient descent: replacing the intractable expectation in The-

orem 1 with an unbiased estimate of the true gradient. In

our experiments, we sample a batch, Bi, of k trajectories

with πθi
to lower the variance of the gradient estimate at

iteration i. In the BPS setting, sampling a batch of trajec-

tories is equivalent to holding θ fixed for k iterations and

then updating θ with the k most recent trajectories used to

compute the gradient estimate.

Full details of BPG are given in Algorithm 1. At itera-

tion i, BPG samples a batch, Bi, of k trajectories and adds

{(θi, Hi)
k
i=0} to a data set D (Lines 4-5). Then BPG up-

dates θ with an empirical estimate of Theorem 1 (Line 6).

After n iterations, the BPG estimate of ρ(πe) is IS(Dn) as

defined in Section 2.4.

Given that the step-size, αi, is consistent with standard gra-

dient descent convergence conditions, BPG will converge

to a behavior policy that locally minimizes the variance

(Bertsekas & Tsitsiklis, 2000). At best, BPG converges to

the globally optimal behavior policy within the parameter-

ization of πe. Since the parameterization of πe determines

the class of representable distributions it is possible that

the theoretically optimal behavior policy is unrepresentable

under this parameterization. Nevertheless, a suboptimal be-

havior policy still yields better estimates of ρ(πe), provided

it decreases variance compared to on-policy returns.

Algorithm 1 Behavior Policy Gradient

Input: Evaluation policy parameters, θe, batch size k, a

step-size for each iteration, αi, and number of iterations n.

Output: Final behavior policy parameters θn and the IS

estimate of ρ(πe) using all sampled trajectories.

1: θ0 ← θe

2: D0 = {}
3: for all i ∈ 0...n do
4: Bi = Sample k trajectories H ∼ πθi

5: Di+1 = Di ∪ Bi

6: θi+1 = θi +
αi

k

∑

H∈B

IS(H,θ)2
L
∑

t=0

∂

∂θ
log πθi

(At|St)

7: end for
8: Return θn, IS(Dn)

4.1. Control Variate Extension

In cases where an approximate model is available, we can

further lower variance adapting the behavior policy of the

doubly robust estimator (Jiang & Li, 2016; Thomas &

Brunskill, 2016). Based on a similar intuition as the Advan-

tage Sum estimator (Section 2.3), the Doubly Robust (DR)

estimator uses the value functions of an approximate model

as a control variate to lower the variance of importance-

sampling.3 We show here that we can adapt the behavior

policy to lower the mean squared error of DR estimates.

We denote this new method DR-BPG for Doubly Robust

Behavior Policy Gradient.

Let wπ,t(H) =
∏t

i=0 π(At|St) and recall that v̂πe and q̂πe

are the state and action value functions of πe in the approx-
imate model. The DR estimator is:

DR(H,θ) := v̂(S0)+
L
∑

t=0

wπe,t

wπθ ,t

(Rt−q̂
πe(St, At)+v̂

πe(St+1)).

We can reduce the mean squared error of DR with gradient

descent using unbiased estimates of the following corollary

to Theorem 1:

Corollary 1.

∂

∂θ
MSE [DR(H,θ)] = E[(DR(H,θ)2

L
∑

t=0

∂

∂θ
log πθ(At|St)

− 2DR(H,θ)(
L
∑

t=0

γ
t
δt
wπe,t

wθ,t

t
∑

i=0

∂

∂θ
log πθ(Ai|Si))]

where δt = Rt − q̂(St, At) + v̂(St+1) and the expectation

is taken over H ∼ πθ .

The first term of ∂
∂θ

MSE is analogous to the gradient of

the importance-sampling estimate with IS(H,θ) replaced

3DR lowers the variance of per-decision importance-sampling
which importance samples the per time-step reward.
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by DR(H,θ). The second term accounts for the covariance

of the DR terms.

AS and DR both assume access to a model, however, they

make no assumption about where the model comes from

except that it must be independent of the trajectories used to

compute the final estimate. In practice, AS and DR perform

best when all trajectories are used to estimate the model and

then used to estimate ρ(πe) (Thomas & Brunskill, 2016).

However, for DR-BPG, changes to the model change the

surface of the MSE objective we seek to minimize and thus

DR-BPG will only converge once the model stops chang-

ing. In our experiments, we consider both a changing and

a fixed model.

4.2. Connection to REINFORCE

BPG is closely related to existing work in policy gradi-

ent RL (c.f., (Sutton et al., 2000)) and we draw connec-

tions between one such method and BPG to illustrate how

BPG changes the distribution of trajectories. REINFORCE

(Williams, 1992) attempts to maximize ρ(πθ) through gra-

dient ascent on ρ(πθ) using the following unbiased gradient

of ρ(πθ):

∂

∂θ
ρ(πθ) = E

[

g(H)

L∑

t=0

∂

∂θ
log πθ(At|St)

∣
∣
∣
∣
∣
H ∼ πθ

]

.

Intuitively, REINFORCE increases the probability of all

actions taken during H as a function of g(H). This up-

date increases the probability of actions that lead to high

return trajectories. BPG can be interpreted as REIN-

FORCE where the return of a trajectory is the square of

its importance-sampled return. Thus BPG increases the

probability of all actions taken along H as a function of

IS(H,θ)2. The magnitude of IS(H,θ)2 depends on two

qualities of H:

1. g(H)2 is large (i.e., a high magnitude event).

2. H is rare relative to its probability under the evalua-

tion policy (i.e.,
∏L

t=0
πe(At|St)
πθ(At|St)

is large).

These two qualities demonstrate a balance in how BPG

changes trajectory probabilities. Increasing the probabil-

ity of a trajectory under πθ will decrease IS(H,θ)2 and so

BPG increases the probability of a trajectory when g(H)2

is large enough to offset the decrease in IS(H,θ)2 caused

by decreasing the importance weight.

5. Empirical Study

This section presents an empirical study of variance reduc-

tion through behavior policy search. We design our exper-

iments to answer the following questions:

• Can behavior policy search with BPG reduce policy

evaluation MSE compared to on-policy estimates in

both tabular and continuous domains?

• Does adapting the behavior policy of the Doubly Ro-

bust estimator with DR-BPG lower the MSE of the

Advantage Sum estimator?

• Does the rarety of actions that cause high magnitude

rewards affect the performance gap between BPG and

Monte Carlo estimates?

5.1. Experimental Set-up

We address our first experimental question by evaluating

BPG in three domains. We briefly describe each domain

here; full details are available in appendix C.

The first domain is a 4x4 Gridworld. We obtain two evalu-

ation policies by applying REINFORCE to this task, start-

ing from a policy that selects actions uniformly at random.

We then select one evaluation policy, π1, from the early

stages of learning – an improved policy but still far from

converged – and one after learning has converged, π2. We

run all experiments once with πe := π1 and a second time

with πe := π2.

Our second and third tasks are the continuous control Cart-

pole Swing Up and Acrobot tasks implemented within RL-

LAB (Duan et al., 2016). The evaluation policy in each do-

main is a neural network that maps the state to the mean of a

Gaussian distribution. Policies are partially optimized with

trust-region policy optimization (Schulman et al., 2015) ap-

plied to a randomly initialized policy.

5.2. Main Results

Gridworld Experiments Figure 1 compares BPG to

Monte Carlo for both Gridworld policies, π1 and π2. Our

main point of comparison is the mean squared error (MSE)

of both estimates at iteration i over 100 trials. For π1, BPG

significantly reduces the MSE of on-policy estimates (Fig-

ure 1a). For π2, BPG also reduces MSE, however, it is only

a marginal improvement.

At the end of each trial we used the final behavior pol-

icy to collect 100 more trajectories and estimate ρ(πe). In

comparison to a Monte Carlo estimate with 100 trajectories

from π1, MSE is 85.48 % lower with this improved behav-

ior policy. For π2, the MSE is 31.02 % lower. This result

demonstrates that BPG can find behavior policies that sub-

stantially lower MSE.

To understand the disparity in performance between these

two instances of policy evaluation, we plot the distribution

of g(H) under πe (Figures 1c and 1d). These plots show

the variance of π1 to be much higher; it sometimes samples

returns with twice the magnitude of any sampled by π2. To

quantify this difference, we also measure the variance of

IS(H,θi) as E
[
IS(H)2

∣
∣H ∼ πθi

]
−E [IS(H)|H ∼ πθi

]
2

where the expectations are estimated with 10,000 trajecto-
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the probability of simulated rare events so that policy im-

provement can learn an appropriate response. In contrast,

we address the problem of policy evaluation and differenti-

ate with respect to the (known) policy parameters.

The cross-entropy method (CEM) is a general method for

adaptive importance-sampling. CEM attempts to minimize

the Kullback-Leibler divergence between the current sam-

pling distribution and the optimal sampling distribution. As

discussed in Section 3.1, this optimal behavior policy only

exists under a set of restrictive conditions. In contrast we

adapt the behavior policy by minimizing variance.

Other methods exist for lowering the variance of on-policy

estimates. In addition to the control variate technique used

by the Advantage Sum estimator (Zinkevich et al., 2006;

White & Bowling, 2009), Veness et al. consider using com-

mon random numbers and antithetic variates to reduce the

variance of roll-outs in Monte Carlo Tree Search (MCTS)

(2011). These techniques require a model of the environ-

ment (as is typical for MCTS) and do not appear to be ap-

plicable to the general RL policy evaluation problem. BPG

could potentially be applied to find a lower variance roll-

out policy for MCTS.

In this work we have focused on unbiased policy evalua-

tion. When the goal is to minimize MSE it is often per-

missible to use biased methods such as temporal difference

learning (van Seijen & Sutton, 2014), model-based policy

evaluation (Kearns & Singh, 2002; Strehl et al., 2009), or

variants of weighted importance sampling (Precup et al.,

2000). It may be possible to use similar ideas to BPG to

reduce bias and variance although this appears to be dif-

ficult since the bias contribution to the mean squared er-

ror is squared and thus any gradient involving bias requires

knowledge of the estimator’s bias. We leave behavior pol-

icy search with biased off-policy methods to future work.

7. Discussion and Future Work

Our experiments demonstrate that behavior policy search

with BPG can lower the variance of policy evaluation. One

open question is characterizing the settings where adapting

the behavior policy substantially improves over on-policy

estimates. Towards answering this question, our Gridworld

experiment showed that when πe has little variance, BPG

can only offer marginal improvement. BPG increases the

probability of observing rare events with a high magnitude.

If the evaluation policy never sees such events then there

is little benefit to using BPG. However, in expectation and

with an appropriately selected step-size, BPG will never

lower the data-efficiency of policy evaluation.

It is also necessary that the evaluation policy contributes to

the variance of the returns. If all variance is due to the en-

vironment then it seems unlikely that BPG will offer much

improvement. For example, Ciosek and Whiteson (2017)

consider a variant of the Mountain Car task where the dy-

namics can trigger a rare event — independent of the action

— in which rewards are multiplied by 1000. No behavior

policy adaptation can lower the variance due to this event.

One limitation of gradient-based BPS methods is the neces-

sity of good step-size selection. In theory, BPG can never

lead to worse policy evaluation compared to on-policy esti-

mates. In practice, a poorly selected step-size may cause a

step to a worse behavior policy at step i which may increase

the variance of the gradient estimate at step i + 1. Future

work could consider methods for adaptive step-sizes, sec-

ond order methods, or natural behavior policy gradients.

One interesting direction for future work is incorporating

behavior policy search into policy improvement. A similar

idea was explored by Ciosek and Whiteson who explored

off-environment learning to improve the performance of

policy gradient methods (2017). The method presented in

that work is limited to simulated environments with differ-

ential dynamics. Adapting the behavior policy is a poten-

tially much more general approach.

8. Conclusion

We have introduced the behavior policy search problem

in order to improve estimation of ρ(πe) for an evaluation

policy πe. We present a solution — Behavior Policy Gra-

dient — for this problem which adapts the behavior pol-

icy with stochastic gradient descent on the variance of the

importance-sampling estimator. Experiments demonstrate

BPG lowers the mean squared error of estimates of ρ(πe)
compared to on-policy estimates. We also demonstrate

BPG can further decrease the MSE of estimates in conjunc-

tion with a model-based control variate method.
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A. Proof of Theorem 1

In Appendix A, we give the full derivation of our primary theoretical contribution — the importance-sampling (IS) variance

gradient. We also present the variance gradient for the doubly-robust (DR) estimator.

We first derive an analytic expression for the gradient of the variance of an arbitrary, unbiased off-policy policy evalua-

tion estimator, OPE(H,θ). Importance-sampling is one such off-policy policy evaluation estimator. From our general

derivation we derive the gradient of the variance of the IS estimator and then extend to the DR estimator.

A.1. Variance Gradient of an Unbiased Off-Policy Policy Evaluation Method

We first present a lemma from which ∂
∂θ

MSE[IS(H,θ)] and ∂
∂θ

MSE[DR(H,θ)] can both be derived.

Lemma 1 gives the gradient of the mean squared error (MSE) of an unbiased off-policy policy evaluation method.

Lemma 1.

∂

∂θ
MSE[OPE(H,θ)] = E

[

OPE(H,θ)2(

L∑

t=0

∂

∂θ
log πθ(At|St)) +

∂

∂θ
OPE(H,θ)2

∣
∣
∣
∣
∣
H ∼ πθ

]

Proof. We begin by decomposing Pr(H|π) into two components—one that depends on π and the other that does not. Let

wπ(H) :=
L∏

t=0

π(At|St),

and

p(H) := Pr(H|π)/wπ(H),

for any π such that H ∈ supp(π) (any such π will result in the same value of p(H)). These two definitions mean that

Pr(H|π) = p(H)wπ(H).

The MSE of the OPE estimator is given by:

MSE[OPE(H,θ)] = Var[OPE(H,θ)] + (E[OPE(H,θ)]− ρ(πe))
2

︸ ︷︷ ︸

bias2

.

Since the OPE estimator is unbiased, i.e., E[OPE(H,θ)] = ρ(πe), the second term is zero and so:

MSE(OPE(H,θ)) =Var(OPE(H,θ))

=E
[
OPE(H,θ)2

∣
∣H ∼ πθ

]
−E[OPE(H,θ)|H ∼ πθ]

2

=E
[
OPE(H,θ)2

∣
∣H ∼ πθ

]
− ρ(πe)

2

To obtain the MSE gradient, we differentiate MSE(OPE(H,θ)) with respect to θ:

∂

∂θ
MSE[OPE(H,θ)] =

∂

∂θ

[
E
[
OPE(H,θ)2

∣
∣H ∼ πθ

]
− ρ(πe)

2
]

=
∂

∂θ
EH∼πθ

[
OPE(H,θ)2

]

=
∂

∂θ

∑

H

Pr(H|θ)OPE(H,θ)2

=
∑

H

Pr(H|θ)
∂

∂θ
OPE(H,θ)2 +OPE(H,θ)2

∂

∂θ
Pr(H|θ)

=
∑

H

Pr(H|θ)
∂

∂θ
OPE(H,θ)2 +OPE(H,θ)2p(H)

∂

∂θ
wπθ

(H) (1)
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Consider the last factor of the last term in more detail:

∂

∂θ
wπθ

(H) =
∂

∂θ

L∏

t=0

πθ(At|St)

(a)
=

(
L∏

t=0

πθ(At|St)

)(
L∑

t=0

∂
∂θ

πθ(At|St)

πθ(At|St)

)

=wπθ
(H)

L∑

t=0

∂

∂θ
log (πθ(At|St)) ,

where (a) comes from the multi-factor product rule. Continuing from (A.1) we have that:

∂

∂θ
MSE(OPE(H,θ)) =E

[

OPE(H,θ)2
L∑

t=0

∂

∂θ
log (πθ(At|St)) +

∂

∂θ
OPE(H,θ)2

∣
∣
∣
∣
∣
H ∼ πθ

]

.

A.2. Behavior Policy Gradient Theorem

We now use Lemma 1 to prove the Behavior Policy Gradient Theorem which is our main theoretical contribution.

Theorem 2.

∂

∂θ
MSE[IS(H,θ)] = E

[

− IS(H,θ)2
L∑

t=0

∂

∂θ
log πθ(At|St)

∣
∣
∣
∣
∣
H ∼ πθ

]

where the expectation is taken over H ∼ πθ .

Proof. We first derive ∂
∂θ

IS(H,θ)2. Theorem 1 then follows directly from using ∂
∂θ

IS(H,θ)2 as ∂
∂θ

OPE(H,θ)2 in

Lemma 1.

IS(H,θ)2 =

(
wπe

wθ

g(H)

)2

∂

∂θ
IS(H,θ)2 =

∂

∂θ

(
wπe

(H)

wθ(H)
g(H)

)2

=2 · g(H)
wπe

(H)

wθ(H)

∂

∂θ

(

g(H)
wπe

(H)

wθ(H)

)

(a)
=− 2 · g(H)

wπe
(H)

wθ(H)

(

g(H)
wπe

(H)

wθ(H)

) L∑

t=0

∂

∂θ
log πθ(At|St)

=− 2 IS(H,θ)2
L∑

t=0

∂

∂θ
log πθ(At|St)

where (a) comes from the multi-factor product rule and using the likelihood-ratio trick (i.e.,
∂

∂θ
πθ(A|S)

πθ(A|S) = log πθ(A|S))

Substituting this expression into Lemma 1 completes the proof:

∂

∂θ
MSE[IS(H,θ)] = E

[

− IS(H,θ)2
L∑

t=0

∂

∂θ
log πθ(At|St)

∣
∣
∣
∣
∣
H ∼ πθ

]
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A.3. Doubly Robust Estimator

Our final theoretical result is a corollary to the Behavior Policy Gradient Theorem: an extension of the IS variance gradient

to the Doubly Robust (DR) estimator. Recall that for a single trajectory DR is given as:

DR(H,θ) := v̂πe(S0) +

L∑

t=0

γtwπe,t

wθ,t

(Rt − q̂πe(St, At) + v̂πe(St+1))

where v̂πe is the state-value function of πe under an approximate model, q̂πe is the action-value function of πe under the

model, and wπ,t :=
∏t

j=0 π(Aj |Sj).

The gradient of the mean squared error of the DR estimator is given by the following corollary to the Behavior Policy

Gradient Theorem:

Corollary 2.

∂

∂θ
MSE [DR(H,θ)] = E[(DR(H,θ)2

L
∑

t=0

∂

∂θ
log πθ(At|St) − 2DR(H,θ)(

L
∑

t=0

γ
t
δt
wπe,t

wθ,t

t
∑

i=0

∂

∂θ
log πθ(Ai|Si))]

where δt = Rt − q̂(St, At) + v̂(St+1) and the expectation is taken over H ∼ πθ .

Proof. As with Theorem 1, we first derive ∂
∂θ

DR(H,θ)2. Corollary 1 then follows directly from using ∂
∂θ

DR(H,θ)2 as
∂
∂θ

OPE(H,θ)2 in Lemma 1.

DR(H,θ)2 =

(

v̂πe(S0) +

L∑

t=0

γtwπe,t

wθ,t

(Rt − q̂πe(St, At) + v̂πe(St+1))

)2

∂

∂θ
DR(H,θ)2 =

∂

∂θ

(

v̂πe(S0) +

L∑

t=0

γtwπe,t

wθ,t

(Rt − q̂πe(St, At) + v̂πe(St+1))

)2

=2DR(H,θ)
∂

∂θ

(

v̂πe(S0) +

L∑

t=0

γtwπe,t

wθ,t

(Rt − q̂πe(St, At) + v̂πe(St+1))

)

=− 2DR(H,θ)(
L∑

t=0

γtwπe,t

wθ,t

(Rt − q̂πe(St, At) + v̂πe(St+1))
t∑

i=0

∂

∂θ
log πθ(Ai|Si))

Thus the DR(H,θ) gradient is:

= E

[

DR(H,θ)2
L
∑

t=0

∂

∂θ
log πθ(At|St)− 2DR(H,θ)(

L
∑

t=0

γ
twπe,t

wθ,t

(Rt − q̂
πe(St, At) + v̂

πe(St+1))

t
∑

i=0

∂

∂θ
log πθ(Ai|Si))

∣

∣

∣

∣

∣

H ∼ πθ

]

The expression for the DR behavior policy gradient is more complex than the expression for the IS behavior policy gradient.

Lowering the variance of DR involves accounting for the covariance of the sum of terms. Intuitively, accounting for the

covariance increases the complexity of the expression for the gradient.

B. BPG’s Off-Policy Estimates are Unbiased

This appendix proves that BPG’s estimate is an unbiased estimate of ρ(πe). If only trajectories from a single θi were used

then clearly IS(·,θi) is an unbiased estimate of ρ(πe). The difficulty is that the BPG’s estimate at iteration n depends on all

θi for i = 1 . . . n and each θi is not independent of the others. Nevertheless, we prove here that BPG produces an unbiased
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estimate of ρ(πe) at each iteration. Specifically, we will show that E [IS(Hn,θn)|θ0 = θe)] is an unbiased estimate of

ρ(πe), where the IS estimate is conditioned on θ0 = θe. To make the dependence of θi on θi−1 explicit, we will write

f(Hi−1) := θi where Hi−1 ∼ πθi−1
. We use Pr(h|θ) as shorthand for Pr(H = h|θ).

E [IS(Hn,θn)|θ = θe)] =
∑

h0

Pr(h0|θ0)
∑

h1

Pr(h1|f(h0)) · · ·
∑

hn

Pr(hn|f(hn−1)) IS(hn)

︸ ︷︷ ︸

ρ(πe)

=ρ(πe)
∑

h0

Pr(h0|θ0)
∑

h1

Pr(h1|f(h0)) · · ·

=ρ(πe)

Notice that, even though BPG’s off-policy estimates at each iteration are unbiased, they are not statistically independent.

This means that concentration inequalities, like Hoeffding’s inequality, cannot be applied directly. We conjecture that

the conditional independence properties of BPG (specifically that Hi is independent of Hi−1 given θi), are sufficient for

Hoeffding’s inequality to be applicable.

C. Supplemental Experiment Description

This appendix contains experimental details in addition to the details contained in Section 5 of the paper.

Gridworld: This domain is a 4x4 Gridworld with a terminal state with reward 10 at (3, 3), a state with reward −10 at

(1, 1), a state with reward 1 at (1, 3), and all other states having reward −1. The action set contains the four cardinal direc-

tions and actions move the agent in its intended direction (except when moving into a wall which produces no movement).

The agent begins in (0,0), γ = 1, and L = 100. All policies use softmax action selection with temperature 1 where the

probability of taking an action a in a state s is given by:

π(a|s) =
eθsa

∑

a′ eθsa′

We obtain two evaluation policies by applying REINFORCE to this task, starting from a policy that selects actions uni-

formly at random. We then select one evaluation policy from the early stages of learning – an improved policy but still far

from converged –, π1, and one after learning has converged, π2. We run our set of experiments once with πe := π1 and a

second time with πe := π2. The ground truth value of ρ(πe) is computed with value iteration for both πe.

Stochastic Gridworld: The layout of this Gridworld is identical to the deterministic Gridworld except the terminal state

is at (9, 9) and the +1 reward state is at (1, 9). When the agent moves, it moves in its intended direction with probability

0.9, otherwise it goes left or right with equal probability. Noise in the environment increases the difficulty of building an

accurate model from trajectories.

Continuous Control: We evaluate BPG on two continuous control tasks: Cart-pole Swing Up and Acrobot. Both tasks

are implemented within RLLAB (Duan et al., 2016) (full details of the tasks are given in Appendix 1.1). The single task

modification we make is that in Cart-pole Swing Up, when a trajectory terminates due to moving out of bounds we give

a penalty of −1000. This modification increases the variance of πe. We use γ = 1 and L = 50. Policies are represented

as conditional Gaussians with mean determined by a neural network with two hidden layers of 32 tanh units each and

a state-independent diagonal covariance matrix. In Cart-pole Swing Up, πe was learned with 10 iterations of the TRPO

algorithm (Schulman et al., 2015) applied to a randomly initialized policy. In Acrobot, πe was learned with 60 iterations.

The ground truth value of ρ(πe) in both domains is computed with 1,000,000 Monte Carlo roll-outs.

Domain Independent Details In all experiments we subtract a constant control variate (or baseline) in the gradient

estimate from Theorem 1. The baseline is bi = E
[
− IS(H)2

∣
∣H ∼ θi−1

]
and our new gradient estimate is:

E

[

(− IS2 −bi)

L∑

t=0

∂

∂θ
log πθ(At|St)

∣
∣
∣
∣
∣
H ∼ πθ

]
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Adding or subtracting a constant does not change the gradient in expectation since bi · E
[
∑L

t=0
∂
∂θ

log πθ(At|St)
]

= 0.

BPG with a baseline has lower variance so that the estimated gradient is closer in direction to the true gradient.

We use batch sizes of 100 trajectories per iteration for Gridworld experiments and size 500 for the continuous control tasks.

The step-size parameter was determined by a sweep over [10−2, 10−6]

Early Stopping Criterion In all experiments we run BPG for a fixed number of iterations. In general, BPS can

continue for a fixed number of iterations or until the variance of the IS estimator stops decreasing. The true variance

is unknown but can be estimated by sampling a set of k trajectories with θi and computing the uncentered variance:
1
k

∑k
j=0 OPE(Hj ,θj)

2. This measure can be used to empirically evaluate the quality of each θ or determine when a BPS

algorithm should terminate behavior policy improvement.


