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Abstract—In this paper, the distributed average consensus
problem in sensor networks with limited data rate communi-
cation is studied. Unlike standard average consensus, only quan-
tized signals with finite support are adopted for the communica-
tions among agents. To tackle this problem, a novel distributed
algorithm is proposed, where each agent iteratively updates a lo-
cal estimate based on quantized signals received by its neighbors.
The proposed algorithm differs from the existing schemes dealing
with limited data rate in the following key features: 1) each agent
is not required to have information on spectral properties of the
graph associated with the communication topology; 2) the initial
measurements are not required to be bounded within a known
interval; and 3) exact consensus to the average can be achieved
asymptotically for weight-balanced directed topology. Thus, it
is more favorable for practical implementations, especially for
large networks. The proposed algorithm is proved to achieve
average consensus asymptotically, almost surely and in mean
square sense. The analysis of convergence rate and generaliza-
tions to random weight-balanced directed topologies and time-
varying quantization are also provided. Finally, numerical results
validate our theoretical findings, and demonstrate the superior
performance of the proposed algorithm compared to existing
topology-agnostic consensus schemes with limited data rate.

I. INTRODUCTION

Distributed average consensus has attracted considerable
attention in recent years; some representative applications
include load balancing [1], vehicle formation [2], and sensor
networks [3]. Since the seminal paper [4], where the first
consensus scheme was proposed, several subsequent work
appeared in the literature (e.g. [5], [6]) studying variations
and extensions of the original protocol [4]. However, in most
work it is assumed that agents can exchange precise informa-
tion, which implies infinite channel capacity among agents.
In practice, however, agents can only exchange quantized
information, which motivates more recent research.

Distributed average consensus with quantized communica-
tions has been studied recently in [7}-[11]. Therein, each agent
has its initial value, and the goal is to reach consensus on the
average value through local quantized information exchanges.
In [7], [9], the agents’ local estimates are restricted to be
discrete and thus the consensus can only be reached on the
quantized value which is nearest to the average. In [8], the
dithered quantization is introduced, which is equivalent to the
probabilistic quantization, and consensus to a random variable
whose expected value is the desired average is shown to be
achieved almost surely. Almost sure and mean square sense
convergence was proved in [10] for a similar setting. In [11],
consensus to the desired average is proved both almost surely
and in mean square sense for directed graphs.
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The above works either assume that the number of quan-
tization levels is infinite [11], which is impractical due to
finite link capacities, or fail to converge to the average of
the initial measurements [7]-[10], which is not desirable. To
solve the distributed average consensus problem with finite
level quantization, several algorithms based on dynamic en-
coding/decoding have been proposed in recent years, e.g., [12],
[13]. In [12], a finite level deterministic dynamic quantizer is
proposed, and convergence to the desired average is proved.
In [13], a dynamic finite level quantizer is proposed which
progressively reduces the quantization range to speed up
consensus, but no performance guarantees are given.

However, the aforementioned dynamic encoding/decoding
based algorithms require each agent to have knowledge of
some spectral properties of the Laplacian matrix of the com-
munication graph. Furthermore, each agent is required to know
the bound on all initial measurements, which may not be the
case when large networks are considered, since the maximum
deviation of measurements will increase as the number of
measurements increases (for instance, under Gaussian noise).
Since the above information is used to design the quantizer
and control parameters, convergence of the dynamic encod-
ing/decoding based algorithms is no longer guaranteed without
the above information. To the best of our knowledge, the
distributed average consensus problem under directed topology
using finite level quantization, without the need of spectral
properties of the communication graph and uniform bound of
the measurements at each agent, is still an open problem.

In this paper, we fill the gap and propose an algorithm
for the distributed average consensus problem under weight-
balanced directed topology with limited data rate. In the
proposed algorithm, each agent is neither required to have
knowledge of the communication graph, nor of the uniform
bound of all measurements. We show that consensus to the
desired average can be achieved asymptotically, as long as (i)
the communication topology is strongly connected and weight-
balanced, and (ii) the average of the (initial) measurements
fall inside the quantization range. Clearly, strong connectivity
is required to reach consensus, and (ii) is a much milder
and more natural requirement than the uniform boundedness
of the measurements, typically assumed in most prior work
(e.g., see [10], [12], [14]). Note that the proposed algorithm
can be regarded as a generalization of the one in [14] to
weight-balanced directed graphs. However, our analysis covers
more generalizations (e.g., static and i.i.d. random weight-
balabced directed graphs) than [14], see [15]. The performance
superiority of the proposed algorithm stems from the fact that
we tackle saturation of the quantizer differently from dynamic
encoding/decoding based algorithms. The key idea therein is to
carefully scale the input to the quantizer, so that the latter will
never be saturated (or be saturated with small probability [13]).
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Fig. 1. System and signal model.

In contrast, our algorithm adopts a more intuitive approach:
when data fall outside the range, they are simply clipped
and then quantized. However, since clipping is a non-linear
operation, the analysis of the proposed scheme is much more
involved. Therefore, another major contribution of this work is
that we directly tackle such non-linearity and show that con-
sensus to the average can still be achieved almost surely and
in mean square sense. We show that the convergence results
also hold for two generalizations: i.i.d. random topologies and
time-varying quantization. Finally, we numerically evaluate the
effectiveness of the proposed algorithm.

The paper is organized as follows. In Section II, we in-
troduce the system model and the proposed algorithm. In
Section III, we elaborate the analytical results. In Section IV,
we numerically validate our theoretical findings, followed by
some final remarks in Section V. Due to the space limitations,
the proofs are provided in [15]. We denote the vector with all
components equal to 1, the one with all components equal to
0, and the ith canonical vector as 1, 0 and e;, respectively.

II. PROBLEM FORMULATION AND PROPOSED ALGORITHM

Consider a sensor network with N agents, depicted in Fig. 1.
Each agent i has its observation s; of a common unknown
parameter # € (fmin,Pmax), With boundaries fin < Omax
known at each agent. The goal of distributed average con-
sensus is to compute, at each agent, an average of the initial
measurements, that is,

1 X
F=rg Z; i M
using only local processing and information exchange among
neighbors. For instance, s; = # + w;, where w; denotes

Gaussian noise, so that 5 represents the sample average
measurement across the network. Clearly, s; is not bounded
since the Gaussian noise w; can take any value in R. The
measurements are said to be informative if § € (Omin, Omax)-

The communication network is modeled as a static directed
graph G = {V, £}, where V is the vertex set, with each vertex
corresponding to an agent, and £ C V x V is the edge set,
with each edge representing the communication link between
two agents. Let V.7, N~ be the out-neighbor and in-neighbor

set of agent i, ie., j € N;" and i € N, iff (i,j) € €. In

other words, agent j can receive the signal from agent i. Let
A = [a; j]nx N be the weight matrix associated with G, D be
the degree matrix and L the Laplacian matrix, defined as D =
diag{dy,--- ,dn}, with d; = ZjeN:r aj;, and L=D — A.
In the following, we state two assumptions on the graph and
its weight matrix.

Assumption 1: The graph G is connected, and does not
contain self loops, i.e., (i,i) & &,Vi.

Assumption 2: The graph is weight-balanced, ie.,
ZjEJV‘-+ a;q; = ZjEN; ai,j,Vi, with ajq > 0 iff (‘l'.,j) € 5,
and a;; = 0 iff (i,7) ¢ £.

Let y;(k) be the local estimate of the average of the initial
measurements 5, owned by agent i at iteration k. We assume
that communication occurs at finite rate, thus the local estimate
y;(k) needs to be quantized before transmission. Specifically,
at time k, each agent 1 first clips its local estimate y; (k) within
the quantization range [Gmin,Qmax|, generating the clipped
estimate ;(k) given by

'!;}é (k) == I[I_il’l{ ma‘x{yi{kjeqmin}v Qmax}- (2)

Then, it quantizes the clipped estimate 3;(k) with B bits,
building the quantized signal x;(k), given by

: ¥i(k)—gmin . oF y
zi(k)= qmm_l_{‘-(k)é . -|A, with pljobabxhly pi(k), 3)
Gmin+ | L5 mn | A otherwise,

where A = mgz—dmin j5 the quantization step size, [-|, |-| are

the ceiling and floor functions, respectively, and

gi(k) — Qmin g‘a(k) — Gmin

Pi (k) . A { A J
is the probability of the probabilistic quantizer, whose value is
such that E[z;(k)|7:(k)] = 9:(k). Finally, agent i broadcasts
such a quantized estimate to its neighbors N;". After receiving
the signal from its neighbors, each agent i will update its local
estimate y;(k) based on the received signal z;(k),j € N,
according to the following dynamics:

yi(k+1)=yi(k)+a(k) D ai;lz;(k) —z:(k)], ¥k > 1, 4)
JENT

where a(k) > 0 is the step-size and y;(1) = s; at initialization.
Remark 1: Since the input to the quantizer g;(k) always
falls within the range [gmin, ¢max|, the quantizer will never be
saturated. By doing so, the probabilistic quantizer is equivalent
to the dithered quantizer with dither noise being a random
variable, uniform in [-A/2, A/2) (cf. [8, Lemma 2]).
Remark 2: The update rule (4) has the following property:
the average of the local estimates is preserved with probability
1. In contrast, the topology-agnostic consensus algorithm with
limited data rate for undirected graph developed in [10], ie.,

yilk+1) =wik) +a(k) Y ai;lz;(k) —w(k)], )
JEN

does not have this property.! As we will show numerically in
Section IV, such property leads to better performance of the
proposed algorithm compared to [10].

ITo be precise, in [10], a;; = 1 if (i,7) € £ and a;; = 0 if (i,5) & &,
50 (5) can be regarded as a generalization of the algorithm in [10].
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ITI. ANALYTICAL RESULTS

In this section, we will first present the convergence result
of the proposed algorithm (cf. Theorems 1 and 2), and then
analyze its convergence rate. We will also generalize the pro-
posed algorithm to 1) iid. random weight-balanced directed
graphs, and 2) time-varying quantization.

A. Convergence to the average of the initial measurements

Let y(k) = [y1(k),--- ,yn (k)]T. The following two the-
orems state convergence in mean square sense (m.s.s.) and
almost sure (a.s.) convergence of the local estimate y; to the
average of the initial measurements.

Theorem 1 (Convergence to the Average of Initial Measure-
ments in m.s.s.): Given the quantized consensus protocol (4),
suppose that:

(i) The measurements are informative, § € (Gmin, §max)-
(i) c(k) satisfies

a(k) > 0,Yk > 1,>  a(k) = oo, Jim a(k) =0. (©)

E>1
Then,
. - 2 =
Jim E [lly(k) - 51]°] =0.
Proof: See [15]. |

Theorem 2 (A.s. Convergence to the Average of the Initial
Measurements): Given the quantized consensus protocol (4),
suppose that:

(1) 5€ (anin-; Qmax)-
(i1) e(k) satisfies

(6) and ) a(k)? < cc. @)

k>1
Then,

P {klirgoy(k) = 51} =1,

Proof: See [15]. [ |

Remark 3 (Selection of parameters): In practical implemen-
tation, we can SUDPIY set (Qmim Qmax) = (Emi.n: Bmax) By
doing so, if & € (Gmin, max), L€., if the measurements are
informative, the algorithm is guaranteed to converge to 3, as
desired. Herein, we are not interested in the case of non-
informative measurements § ¢ (Gmin;Jmax)» Which implies
that the sample average S is not a desired estimate of 6.

Conditions (6) and (7) ensure that y(k) is able to travel
far enough to reach the desired value (3", a(k) = o),
while not traveling too far (limp_ . a(k) = 0 in (6) and
Yo a(k)® < oo in (7)), so as to reach convergence. The
use of such sequences is a common technique in stochastic
optimization [16]. There are many choices of {a(k)}r>1
satisfying (7). For instance,
(@) a(k) = &.,Vk>1 with ¢ > 0,0.5 < g <1 [10], [17];
(b) a(k) = a(k —1)[1 — pa(k —1)],Vk > 2 with (1) €

(0, 1], € (0, 1) [171.

Note that (6) is a looser condition compared to (7), ie., all
sequences satisfying (7) also satisfy (6). A simple choice of
{a(k)}r>1 satisfying (6) is

a(k)=k%,Vk21, with¢>0, 0 <8< 1.

Remark 4 (Convergence with any communication rate): The
proposed algorithm does not require any condition on the
communication rate to guarantee the asymptotic convergence,
i.e., asymptotic convergence can be achieved with any non-
zero communication rate. In Section IV, we will show numer-
ically that, even with 1-bit communication, convergence to
the average of the initial measurements can still be achieved
asymptotically.

Remark 5 (Discussion on the informative measurements
condition (i)): In [12], [13], the algorithms need the initial
measurements to be bounded by a known constant. However,
our proposed algorithm requires only the following much
looser criterion: the average of the initial measurements must
be bounded, whereas the initial measurements need not be.
This criterion can be satisfied more broadly than the uniform
boundedness of the initial measurements, especially when the
number of agents is large. To explain this point, consider the
following simple signal model: s; = 8 + w;,¥Vi=1,--- | N,
where w; is white Gaussian noise. It is easy to see that, as
N gets larger, max{s;} increases, min{s;} decreases, and the
gap max{s;} —min{s;} increases, while the average of s;, 5,
tends to approach @, hence to be more informative.

B. Convergence rate

After showing the convergence to the average of the initial
measurements, the next interesting question is: how fast does
the algorithm converge to the average? Specifically, the conver-
gence rate of {y(k)}r>1 is given in the following proposition.

Proposition 1: E [|ly(k) — 51]||s] is upper bounded by

k—1

E [|ly(k) — 51]]s] < (H [1— a(t)cs]) s — 512

=1

k=1 [k—t;
+ (H [ a(tg)03]) cea(t1)?, (®)

t1=1 \ta=2

where ¢z is a function of Az(L), ¢g is a function of
AN (LTL):! A: Gmax ; Gmin (Cf- [151)-

Proof: See [15]. |
The upper bound (8) is obtained by considering the following
two cases: 1) saturation does not occur, i.e., y(k) = y(k) and
2) saturation does occur, i.e., y(k) # y(k). Since it is hard to
obtain the probability of saturation, the worst case among these
two is adopted for the derivation of (8). In most scenarios,
saturation (case 2) yields larger mean square error (MSE),
but, since the distance between y (k) and y(k) decreases as k
gets larger, saturation tends to occur less likely. Therefore, the
upper bound (8) is conservative in most scenarios.

Remark 6 (Parameters affecting convergence rate): From
(8), we can see that the asymptotic convergence rate of {y(k)}
is affected by Ag(L) and Ay (LTL), which depends on the
graph topology. In addition, the convergence rate also depends
on the sequence {a(k)} and the weight {a; ;}. Finally, the
effect of the number of bits used for quantization (i.e., B) on
the convergence rate is captured by (8). As B gets larger, the
quantization step size A becomes smaller, yielding a smaller
upper bound on the MSE, as expected.
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C. Generalization: random weight-balanced directed graphs

In our system model, we assume that the graph is static.
However, the proposed algorithm can also be applied to
random weight-balanced directed graph. In the following, we
will discuss this scenario.

Let G(k) = {V,&(k)},Vk > 1, with £(k) i.id. over time
(cf. [10]). In addition, we assume that £(k) is independent of
y(k), for all k > 1. Let A(k) = [a; ;(k)], L(k) = [l; ; (k)] be
the weight and Laplacian matrix associated with G(k). This
case models the random link failures and random connections.
For this model, we state the convergence results below.

Corollary 1 (a.s. and m.s.s. Convergence to The Average
Jor i.i.d Random Weight-Balanced Directed Graph): For the
random graph defined in Section III-C, suppose that the
assumptions of Theorem 1 hold, and As(L) > 0, where Ao(L)
is the second smallest eigenvalue of L = E [L(k)]. Then,

klim E [|ly(k) — 51]*] = 0 (m.s.s. convergence), (9)
—00

P {kli_m v(k) = .§1} = 1 (a.s. convergence). (10)
—+0o0
Proof: See [15]. |
It is easy to see that the results of convergence rate in Section
III-B can also be generalized to the i.i.d. random weight-
balanced directed graph, as (8).

Remark 7: Corollary 1 shows that, under the i.i.d. random
weight-balanced directed graph model, although the graph may
not be connected at some time instants, convergence to the
initial average can still be achieved as long as the graph is
strongly connected on average.

D. Generalization: time-varying quantization

In our system, we assume that the number of bits used for
quantization is fixed, and we have shown that consensus to the
average of the initial measurements can be achieved with 1-
bit quantization (cf. Remark 4). Because 1-bit quantization can
be regarded as the worst case scenario, intuitively, one may
think that the convergence results also hold for time-varying
quantization. The above conjecture is correct, as shown in the
following Corollary.

Corollary 2 (a.s. and m.s.s. Convergence to The Average for
Time-Varying Quantization): Let B;(k) be the number of bits
adopted for quantization at agent i and time k. Suppose the
assumption of Theorem 1 is satisfied, and B;(k) > 0,V4, k.
Then,

lim E [|ly(k) — 51[|*] =0 (m.s.s. convergence),  (11)
k—oo
P {k]im v(k) = 51} =1 (a.s. convergence). (12)
—+ 00
Proof: See [15]. [ |

IV. NUMERICAL RESULTS

In this section, numerical results are presented to validate
the theoretical findings. We adopt the 1-bit quantizer with
(Gmins @max) = (0, 1), i.e., each agent can only transmit O or
1 at each iteration. The 0-1 weight is adopted for the weight
matrix A, ie., a;; =1if j € N and a;; =0if j ¢ N
The graph adopted is undirected, which is a special case of

e T
2| -‘"-_,__—_
%10 \\
= i S—— T
103 e
——— _.‘.-___Tlh‘:_-
104 H—Proposed Algorithm) el
--[10]
105 =L : ; '
0 200 400 600 800 1000
Iteration

Fig. 2. MSE performance of distributed average consensus algorithms when
1-bit quantizer is adopted in the network of 6 agents, ring topology, with
(gmin, gmax) = (0, 1), s; ~ Uniform(qmin, gmax), Vi, and a(k) = 1/k.
weight-balanced directed graph. The initial measurements {s;}
are assumed to be i.i.d. random variables uniformly distributed
in (Gmin, Gmax )- We adopt the MSE with respect to the average
as performance metric, defined as

1 N

MSE =+ 3~ (wi(k) — 5%,

=1

(13)

with simulation results averaged over 100 iterations. We
also evaluate the performance of [10], which implements the
update rule (5). We adopt a(k) = 1/k,Vk > 1 for our
algorithm and (5). We also evaluate the performance of [12],
which is the state-of-the-art distributed average consensus
algorithm with finite level quantization which does need
the spectral properties of the topology, with the following
parameters: h = 0.99h%(e),e0 = 0.95,C, = C5 =
max{|gmax|, |gmin| }, go = 1.001go 1, where go 1, is the lower
bound of gy given by [12, Theorem 3.1].

Fig. 2 shows the performance of the distributed consensus
algorithms under ring topology. Clearly, consensus to the
average can be achieved with the proposed algorithm and [12],
consistently with the analytical results. In contrast, there is an
error between the final value of the algorithm in [10] and the
average of the initial measurements. From Remark 2, when
using the update rule (5), the average of y(k) can be regarded
as a random variable with mean § and non-zero variance. In
this way, the error floors of the algorithm in [10] in Fig. 2
is the variance of ¢, where J¢ is the limit of the average of
v(k) as k — oo.

Comparing the algorithm in [12] and the proposed al-
gorithm, it is shown in Fig. 2 that, initially, the proposed
algorithm converges faster. However, since the algorithm in
[12] has exponential convergence rate, it will eventually con-
verge faster. The performance superiority of the algorithm in
[12] comes from the facts that 1) it exploits information on
max;{s;}, A2, Ay to design the dynamic encoding/decoding
parameters, 2) it uses additional memory for each agent to
track the encoder and decoder states, and 3) the quantizer it
adopts can represent more values than the proposed algorithm
(3 instead of 2 in this specific case).

Fig. 3 shows the performance of the distributed consensus
algorithms under random undirected graphs. At time k, £(k)
is generated according to i.i.d. Bernoulli random variables
with probability p, which can be regarded as the level of
connectivity of the graph. Since the algorithm in [12] is
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Fig. 3. MSE performance of distributed average consensus algorithms
under random communication graph when 1-bit quantizer is adopted in
the network of 6 agents, with p = 0.1, (gmin,gmax) = (0,1),s8 ~
Uniform(gmin, gmax), V2. and a(k) = 1/k.

designed for fixed graph, we modify it such that the parameters
are determined by the average graph, i.e., A, L. In this case, it
is shown in Fig. 3 that the (modified) algorithm in [12] fails to
converge to the desired average, while the proposed algorithm
can still achieve average consensus.

Fig. 4 shows the performance when different number of bits
is adopted for the quantizer, under random communication
graph. Here, we adopt the same random graph model as in
Fig. 3 with p = 0.5. The communication cost is defined as
the product of the number of bits adopted for quantization
and the number of iterations, which is the total number of
bits transmitted by an agent. From the three solid curves, we
can see that the communication cost increases as the target
MSE decreases, as expected. In addition, this figure shows
that for a given network, there exists an optimum number of
bits for MSE minimization in terms of communication cost,
which depends on the target MSE. For instance, if the target
MSE is set as 0.01 (red solid curve), then two bits should be
adopted for quantization at each agent, in order to minimize
the communication cost. On the other hand, we can see that
the delay also increases as the target MSE decreases. Unlike
the communication cost, delay is a decreasing function of
the number of bits adopted for quantization, i.e., generally,
more bits adopted for quantization yield better performance.
However, the marginal improvement becomes smaller as the
number of bits increases. For instance, if the target MSE is
set as 0.001 (black dashed curve), then using more than four
bits for quantization yields negligible improvement.

V. CONCLUSION

In this paper, we have studied the distributed average
consensus problem in sensor networks with limited communi-
cation data rate, and proposed a simple but powerful algorithm
to solve this problem. Unlike existing schemes for limited data
rate, the proposed algorithm has three properties which makes
it more favorable for practical implementation: 1) each agent
is not required to have information oen th spectral properties
of the communication topology; 2) each agent does not need
to know the uniform bound on the initial measurements; 3)
exact consensus to the average can be achieved asymptot-
ically, both almost surely and in mean square sense. We
have proved the convergence results, provided the analysis
of convergence rate, and extended the analytical results to
1) iid. random weight-balanced directed networks and 2)

—MSE = 0.01
—MSE = 0.005| 40
—MSE = 0.001
F-MSE = 0.01

r-MSE = 0.005
r-MSE = 0.001

101

Communication Cost

10° . Lo i i 0
Number of Bits

Fig. 4. Communication cost and delay for different target MSE under random
communication graph when different number of bits is adopted for quantizer at
different agents in the network of 6 agents, with (gmin, gmax) = (0,1), s; ~
Uniform(gmin, gmax ), ¥i, and «(k) = 1/k. where solid and dashed curves
represent the communication costs and delay. respectively.

time-varying communication rate. Numerical result shows that
the proposed algorithm outperforms state-of-the-art topology-
agnostic consensus schemes with limited data rate.
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