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Abstract

Designing algorithms for an optimization model often amounts to maintaining a balance
between the degree of information to request from the model on the one hand, and the compu-
tational speed to expect on the other hand. Naturally, the more information is available, the
faster one can expect the algorithm to converge. The popular algorithm of ADMM demands
that objective function is easy to optimize once the coupled constraints are shifted to the ob-
jective with multipliers. However, in many applications this assumption does not hold; instead,
only some noisy estimations of the gradient of the objective — or even only the objective itself —
are available. This paper aims to bridge this gap. We present a suite of variants of the ADMM,
where the trade-offs between the required information on the objective and the computational
complexity are explicitly given. The new variants allow the method to be applicable on a much
broader class of problems where only noisy estimations of the gradient or the function values
are accessible, yet the flexibility is achieved without sacrificing the computational complexity
bounds.
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1 Introduction

In this paper, we consider the following constrained convex optimization model

min  f(z) + g(y)
st. Ax+ By =b, (1)
reX,ye)y

where z € R™, y € R™, A € R™" B e R™" bec R™ and X C R"™, )Y C R™ are closed
convex sets; f is a smooth convex function, and g is a convex function and possibly nonsmooth.
We further assume that the gradient of f is Lipschitz continuous:

IVf(x) = Vil < Lz —yl, Yo,y € X, (2)

where L is a Lipschitz constant.

An intensive recent research attention for solving problem (1) has been devoted to the so-called
Alternating Direction Method of Multipliers (abbreviated as ADMM), which is known to be a form
of the operator splitting method (cf. [6, 7] and the references therein). Large-scale optimization
problems in the form of (1) can be found in many application domains including compressed sensing,
imaging processing, and statistical learning. Due to the large-scale nature, it is often impossible
to inquire the second order information (such as the Hessian of the objective function) or invoke
any second order operations (such as inverting a full-scale matrix) in the solution process. In this
context, the ADMM as a first order method is an attractive approach; see [2]. Specifically, a typical
iteration of ADMM for solving (1) runs as follows:

Pl = arg mingey L (z, y*, AF)

yk+1 = arg minyey C’Y(xk+17 Y, Ak) (3)
Aetl — \k 7(A33k+1 + Byk-i-l _ b),

where L, (x,y, A) is the augmented Lagrangian function for problem (1) defined as:
Lo(@,9,3) = f(2) +9(y) = AT (Az + By — b) + 1| Az + By — b|]*. (4)

The convergence of the ADMM for (1) is actually a consequence of the convergence of the so-
called Douglas-Rachford operator splitting method (see [15, 7]). However, the rate of convergence
for ADMM was established only very recently: [18, 25] show that for problem (1) the ADMM
converges at the rate of O(1/N) where N is the number of total iterations. Furthermore, by
imposing additional conditions on the objective function or constraints, the ADMM can be shown
to converge linearly; see [5, 19, 1, 22]. The ADMM can be naturally extended to solve problems with
more than 2 blocks of variables. In spite of its excellent performance in practice, [3] demonstrates
that in general the ADMM may diverge even for 3 blocks of variables. However, by imposing various
additional conditions or by modifying the original ADMM, [4, 17, 16, 21] show that an O(1/N)
convergence rate can still be achieved.



In this paper, we take a different stance towards the applicability of the ADMM, which is dependent
on the available informational structure of the problem. Observe that to implement (3), it is
necessary that arg mingex £, (x, y*, A\¥) and arg mingey L., (1 y, A¥) can be solved efficiently at
each iteration. While this is indeed the case for some classes of the problems (e.g. the lasso
problem), it may also fail for many other applications. This triggers a natural question: Given
the informational structure of the objective functions in the minimization subroutines, can the
multipliers’ method be adapted accordingly? In this paper we shall propose some variants of the
ADMM to account for this informational structure of the objective functions. To bring out the
hierarchy regarding the available information of the functions in question, let us first introduce the
following definition.

Definition 1.1 We call a function f(x) to be easy to minimize with respect to x (f is hence said to
be MinE as an abbreviation) if the prozimal mapping argmin, f(z) + 5|z — 2|/} can be computed
easily for any fired z and H = 0.

Some remarks are in order here. If both f and g are MinE, then the original ADMM is readily
applicable. In case that £, (z,y,A) is MinE in  but not in y, Ma and Zhang [24] recently proposed
an extra-gradient ADMM (EGADM) and showed an O(1/N) iteration bound; in [24], it was posed
as an unsolved problem to determine the iteration complexity bound for the following procedure
(known as the GADM):

y*T = argmingey £ (2%, y, AF) + 3 lly — v* 1%
$k+1 — [xk _ Vmﬁfy(l’k,ykJrl, )\k)]X (5)

MNetl — \F ,.Y(Axk+1 4 Byk+1 _ b),

where [z]x denotes the projection of x onto X'. In this paper we prove that the GADM also has
an iteration bound of O(1/N).

In stochastic programming (SP), the objective function is often in the form of expectation. In this
case, even requesting its full gradient information is impractical. In [29], a stochastic version of
problem (1) is considered. Historically, Robbins and Monro [32] introduced the so-called stochastic
approximation (SA) approach to tackle this problem. Polyak and Juditsky [30, 31] proposed an SA
method in which larger step-sizes are adopted and the asymptotical optimal rate of convergence is
achieved; cf. [8, 9, 34, 33] for more details. Recently, there has been a renewed interest in SA, in
the context of computational complexity analysis for convex optimization [27], which has focussed
primarily on bounding the number of iterations required by the SA-type algorithms to ensure the
expectation of the objective to be € away from optimality. For instance, Nemirovski et al. [26]
proposed a mirror descent SA method for the general nonsmooth convex stochastic programming
problem attaining the optimal convergence rate of O(1/v/N); Lan and his coauthors [11, 12, 10, 13,
20, 14] proposed various first-order methods for SP problems under suitable convex or non-convex
settings. In this paper we also consider (5) in the SP framework. We assume that a noisy gradient
information of VL, via the so called stochastic first order oracle (SFQO) is available. Specifically,



for a given z, instead of computing V f(x) we actually only get a stochastic gradient G(z,¢) from
the SFO, where £ is a random variable following a certain distribution. Formally we introduce:

Definition 1.2 We call a function f(x) to be easy for gradient estimation — denoted as GraE
— if there is an SFO for f, which returns a stochastic gradient estimation G(x,§) for Vf at x,
satisfying

E[G(x,8)] = V[(2), (6)
and

E[|G(z,6) = Vf(2)]*] < o*. (7)

If the exact gradient information is available then the SFO is deterministic. When L, (z,y, A) is
MinE with respect to y, and f(z) in (4) is GraE, we will then propose a stochastic gradient AD-
MM (SGADM), which alternates through one exact minimization step ADMM (3), one stochastic
approximation iteration, and an update on the dual variables (multipliers). It is clear that the
SGADM in the deterministic case is exactly GADM (5), and we will show that the rate of conver-
gence of GADM and SGADM would be O(1/N) and O(1/+/N) respectively. Moreover, if f(x) and
g(y) in (4) are both GraE, then we propose a stochastic gradient augmented Lagrangian method
(SGALM), and show that it admits a similar iteration complexity bound.

Furthermore, we are also interested in another class of stochastic problems, where even the noisy
gradient information is not available; instead we assume that we can only get the noisy estimation
of f via the so-called stochastic zeroth-order oracle (SZ0). Specifically, for any input z, by calling
SZ0O once it returns a quantity F(x, &), which is a noisy approximation of the true function value
f(x). More specifically,

Definition 1.3 We call a function f(x) to be easy for function evaluation — denoted as ValE — if
there is an SZO for f, which returns a stochastic estimation for f at x if SZO is called, satisfying

E[F(z,8)] = f(z), (8)
E[VF(z,8)] = Vf(z), 9)

and
E[|VF(z,¢) — V()| < o (10)

Inspired by the work of Nesterov [28] for gradient-free minimization, in this paper we will propose a
zeroth-order (gradient-free, a.k.a. direct) smoothing method for (1). Instead of using the Gaussian
smoothing scheme as in [28], which has an unbounded support set, we apply another smoothing
scheme based on the SZO of f. To be specific, when L. (z,y, ) is MinE with respect to y, and
f(x) in (4) is ValE, we will propose a zeroth-order gradient augmented Lagrangian method (zeroth-
order GADM) and analyze its complexity. To summarize, according to the available informational
structure of the objective functions, in this paper we propose suitable variants of the ADMM to
account for the available information. In a nutshell, the details are in the following Table 1.



Block =

MinE GraE ValE
MinE ADMM SGADM zeroth-order GADM
Block y | GraE SGADM SGALM zeroth-order SGADM
ValE | zeroth-order GADM | zeroth-order SGADM | zeroth-order GALM

Table 1: A summary of informational-hierarchic alternating direction of multiplier methods.

The rest of the paper is organized as follows. In Section 2, we propose the stochastic gradient
ADMM (SGADM) algorithm, and analyze its complexity. In Section 3, we present our stochastic
gradient augmented Lagrangian method (SGALM) which uses gradient projection in both block
variables, and analyze its convergence rate. In Section 4, we propose a zeroth-order GADM through
a new smoothing scheme, and present a complexity result. In Section 5, we present the numerical
performance of the SGADM for large-scale convex quadratic programming and the fused logistic
regression.

2 The Stochastic Gradient Alternating Direction of Multipliers

In this section, we assume L. (z,y, \) to be MinE with respect to y, and f(z) to be GraE. (We will
discuss applications of such model in Section 5). That is, for a given x, whenever we need V f(z),
we can actually get a stochastic gradient G(z,¢) from the SFO, where £ is a random variable
following a certain distribution. Moreover, G(z,§) satisfies (6) and (7). By the definition of the
augmented Lagrangian £ (z,y, ), an SFO for L(x,y, \) can be constructed accordingly:

Definition 2.1 Denote the SFO of VL (z,y,\) as Gr(x,y, ), which is defined as:

Gr(w,y, A, €) = G(z,) — ATA+~vAT (Az + By — b). (11)

Our first algorithm to be introduced, SGADM, works as follows:

The Stochastic Gradient ADMM (SGADM)
Initialize 2° € X,4° € Y and \°
for k=0,1,---, do

yk+1 = arg minyey ,C,y(.fk, Y, Ak) + %Hy - ka%-Ia
2P = [2F — g G (2, BT NF Ry
AL K ’)/(AIIH_I 4 Bykﬂ _ b)

end for

In the above notation, [z]x denotes the projection of = onto X, H is a pre-specified positive
semidefinite matrix, «a; is the stepsize for the k-th iteration. It is easy to see that the deterministic
version of SGADM is exactly GADM (5). In the following subsection, we will show that the
complexity of SGADM is O(1/v/N) and the complexity of GADM is O(1/N).



2.1 Convergence Rate Analysis of the SGADM

In this subsection, we shall analyze the convergence rate of SGADM algorithm. First, some nota-
tions and preliminaries are introduced to facilitate the discussion.

2.1.1 Preliminaries and Notations

Denote
Y —BTA
_ [ Y _ _ T
u= ( >, w=| z |, Flw)= —A'\ ) (12)
o A Ax+ By —b
h(u) = f(z) + g(y), and
H 0 0 I,, 0 0 H 0 0
Qr=| 0 &L, 0 |, P=| 0 I, 0 |, My=| 0 LI, O
0 -A %Im 0 —yA I, 0 0 %Im

(13)
Clearly, Q) = M P. In addition to the sequence {w*} generated by the SGADM, we introduce an
auxiliary sequence:

g yk—H
= @ | = k1 : (14)
2k Ak ’Y(A{Ek + Byk-‘rl _ b)

Based on (14) and (13), the relationship between the new sequence {w*} and the original {w*} is
wh ™t = wk — P(w® — k). (15)

We denote 6, = G(2zF1,&F) — Vf(2*~1), which is the error of the noisy gradient generated by
SFO. The following lemma is straightforward.

Lemma 2.1 For any w®, w',--- ,w™N™1, let F be defined in (12) and i k. then it holds
| Nl
(0 —w)' F(w) = N (W —w) " F(w").
k=0
0 0 -B y 0
Proof. Since F(w)=1 0 0 -A x | —| 0 |, for any w; and we we have
A B 0 A b
(w1 — U]Q)T(F(wl) - F(wz)) =0. (16)



Therefore,

as) 1 (w* —w) " F(w"). (17)

2.1.2 The Complexity of SGADM

We now present the rate of convergence result for SGADM, which is O(1/v'N). Denote Zj =
(&1,&2, ..., &k). In fact, the convergence rate is in the sense of the expectation taken over Z.

Theorem 2.2 Suppose that L (x,y,\) is MinE with respect to y, and f(x) is GraE. Let wk be
the sequence generated by the SGADM, m, = Vk + 1, C > 0 be a constant such that CI,,, —yAT A—
LI, =0, and ap = Let

77k+C
L
= Z (18)

k=0

where W* is defined in (14). Then the following holds

o? D? 1
E=y [h(un) — h(u*) + pl|AZn + Byn — b + D; + D+CD2> 19
o) = )+ plday + By — bl < T+ D oL (D24 13 (19
where Dy = sup  ||zq—xp||, Dy = sup ||ya—usllm, and Dy = sup [A=A%112, B, = {X: | Al < p}-
ZTa,TpEX Ya,YpEY AEB

As in [18], we first present a bound regarding the sequence {@*} in (14).

Proposition 2.3 Let {w*} be defined by (14), and the matrices Qi, My, and P be given in (13).
For any w € ), we have

h(u) — h(@*) + (w — %) T F(a")

_ _ St ||? + L N
> (w B wk)TQk(wk B wk) B (I‘ . Ik)T5k+1 B || ;-”;;H Tk 5 ka . ka2’ (20)




where n, > 0 is any constant. Moreover, for any w € Q, the term (w — wF) T Qp(w* — @*) on the
RHS of (20) can be further bounded below as follows

k)TQk(wk . wk)
1

(w
1 - 1 -
> 5 (o= PRy o= ot1Bg) + e = 8T (S, - 4TA) @ (2

The proof of Proposition 2.3 involves several steps. In order not to distract the flow of presentation,
we delegate its proof to the appendix.
Proof of Theorem 2.2

Proof. Recall that CI,,, —yAT A — LI,, = 0 and o}, = nk% By (20) and (21),

h(u) = h(a") + (w — @*) T F(a¥)

1 1 1
> 5 (= 0P = o= wbfR) + 5 - 4T (- 9aTA) (- 3
Qg
Ik+1l*  me+ L .
(=) Ty — o = Tk
1 k+112 k2 1 k k\T 1 T k ~k
= 5 (lo =" R — o = wfl3y) + 5 =T (o h, =y ATA= (0t D), ) (2~ )
kT H6k+1”2
—(r — Suyq — oLl
(. —2%) Oks1 M
1 k+12 k2 k\NT ”519—1—1”2
L e A e T R L (22)

Using the definition of Mj, from (22) we have
W) = h(u) + (@" — w) " P (")

1
< 5 (=¥ = o =1 1) + 5 (1A= 2412 = 1A = A1)

lz — 2*? — [z — 2"

_l’_

kT 104111
— 4] . 23
20, + (. —2%) Ops1 + 2 (23)

Summing up the inequalities (23) for £k =0,1,..., N — 1 we have

htn) — h(u) + (o — w) " F(oy)
1 N-1 1 N-1
~k; ~k T~k
< NZh(u)—h(uHN (wF — w) " F(a")
k=0 k=0
—1 N-1
1 |z — 2> — [z — 221 kT ||5k+1||
< — — 297§ s
- 2N Qg +N Z (.’L‘ .T) k1 2n
k=0 k=0
1 02
— - 4
Fan (=W + 2= 2 ). (24)



where the first inequality is due to the convexity of A and Lemma 2.1.

Note the above inequality is true for all x € X, y € Y, and A € R™, hence it is also true for the
optimal solution z*, y*, and B, = {\ : || A|| < p}. As a result,

sup |h(ay) — h(u*) + (@y —w*) T Flay)
xeB, L
=:gghwm—Mwﬂwm—ﬁfeAﬁm+@N—ffGBﬁm+@N—MWMW+BW—M
€eB, t
- mq)lKaN)—lqu—%X;(Ax*+—By*—b)—uVKAiN—%BgN——M]
xeB, b
= sup |h(an) — h(u") = AT (AZy + By — b)]
xeB, b
= h(un) — h(u") + pl|[AZn + Byn — b||. (25)

Combining (24) and (25), we have
han) = h(u”) + pl|AZx + Byn — ]|

N—1| 4 N -1
R R i & i 9%+
< 5 N 1+ 5
k=0 Xk —1 Mk
1
fa (07—l sup A A°||2> (26)
. _ 1 _
Moreover, since oy, = e = \/WJr ol it follows that
Z [ — a®|]* = fJz* — a2
k=0 %
N—-1
= (VE+1+O) (" —a|* — la* — 2" T1)
k=0
N-1
< Clla* =2 + Z VE+1([Ja* = a®|? — [|lz* — 212
< Cf=* - °||2+ZH93 IP(VE+1-Vk)
gmwﬂW+ZmWM—MB
k=0
= C|z* — 2>+ VND2. (27)
Plugging (27) into (26) we have
h(un) — h(u”) + pl|AZNn + Bijy — b
1
1 kT [0k D} 1 (e 2
< = — 0 Dy D CD; 28
= N 0|:(x J?) k+1+ 277k +2\/>+ + )\+ ( )



Recall that f(z)is GraE, so (6) and (7) hold. Consequently, E[6,1] = E[G(2F, 1)~V f(2F)] = 0.
In addition, xj, is independent of &;y1. Hence,

Es,,, [(z — 2") "] = 0. (29)
Now, taking expectation over (28), and applying (7), we have

Ezy [M(un) — h(u®) + pl|AZN + Byn — bl]]

< 1 N 1(( M TS + ||5k+1u2) N D? N 1 D24 1D2+CD2
=~ | = T - — —

>~ =N N par k+1 277k 2\/N IN Y v A T
N—1 2 N-1 2

m 1 £ kT i I O R S ) B S5

< N =N [k_o(x .f) k+1 +2N rat nk+2f+ y+7 AT T

2 N-1 2
29y O 1 Dz 1 < 2 2)
o= + +-—(D; + D +CD
2N E+1 2N 2N \'Y A

2 Dy 1
- \"ﬁ =t (D2 +-D}+ CDQ) (30)
This completes the proof. O

Before concluding this section, some comments are in order here. Denote 4y = Ez,[un]. By
Jensen’s inequality, an immediate consequence is that we have

2 D? 1
h(an) — h(u*) + pl| Ady + Bjy — b < % = (p? ey 0D2)

In the above theorem, we see that SGADM has a convergence rate of O(1/v/N) when f(z) is GraE.
As we mentioned before, it is easy to slightly modify the proof for (19) to improve the complexity
of GADM (i.e. the deterministic SGADM) to O(1/N). In fact, when the exact gradient of f is
available, o in (7) will be 0, and we can let 7 = 1 and constant stepsize oy = %ﬂ As a result, a

ok |2 fla* gkt 2

N-1,,
sharper bound for the term > == would follow:

k=0 o
N-1, &« k2 « _ _k+1y2  N-1
Z Hl’ £ ” ”JZ € H _ Z(l + C) <H3«"* N ka2 - Hx* N xk+1H2)
=0 Ok k=0

< (C+1)lz" —2°? < (C+1)D3 (31)
Similar to the proof of Theorem 2.2, but now we can improve the iteration bound to:

1

() — h(u") + pll Ady + B — b < 5

(D2 +-Di+(C+ 1)D2> : (32)

10



where D, = sup ||zq—ap||, Dy = sup ||ya—usllH, and Dy = sup [A=X)1%,B, = {\: |\l < p},
ZTa,TpEX Ya,Yp €Y AeB
and this indeed proves the O(1/N) complexity of the SGADM for the deterministic case.

To further assess the feasibility violation of the possibly infeasible solution @y as in (32), similar
to Lemma 6 in [20] we introduce the following bound.

Lemma 2.4 Assume that p > 0, and & € X is an approrimate solution of the problem f* :=
inf{f(z): Az — b= 0,2 € X} where f is convez, satisfying

f(@) = 7+ pll Az = b < 6. (33)

Then, we have

A%~ b] < and (&) - f* < 6

)
p =y
where y* is an optimal Lagrange multiplier associated with the problem inf{f(x) : Ax—b =0,z € X}
satisfying |ly*[| < p.

Proof. Define v(u) := inf{f(z) : Ar —b = u,x € X}, which is convex. Let y* be such that
—y* € 0v(0). Thus, we have

v(u) —v(0) > (—y*,u) YueR™. (34)
Let u := Az — b. Since v(u) < f(Z) and v(0) = f*, we have
=My llull + pllull < (=y*, w) + pllull < v(w) = v(0) + pllull < f(Z) = F* + pllul <6.

Thus, A% - b]| = Jull < and f(z) - f* < 6. O

p— ||y I
Lemma 2.4 suggests that, when p is sufficiently large, h(iyx) — h(u*) + p||AZn + Byn — b|| < €
implies

(i) = h(u")] < O(e) and Ay + Bix — b]| < O(e).

3 The Stochastic Gradient Augmented Lagrangian Method

SGADM uses gradient projection in one block of variables. It is natural to relax the exact mini-
mization procedure of the other block variables to be replaced by gradient projection too. In this
section, we assume both f(z) and ¢g(y) in (4) are GraE; that is, we can only get stochastic gradients
S¢(x,€) and Sy(y,() from the SFO for Vf(x) and Vg(y) respectively, where £ and ¢ are certain
random variables. Recall the assumptions on GrakE:

E[Sf(, )] = Vf(x), E[Sy(y; ] = Vg(y), (35)

11



and
E[l[Sf(z, &) = VF(@)[*) < of, E[llS(y,¢) = Vg(»)l’] < 3. (36)

We now propose a stochastic gradient augmented Lagrangian method (SGALM). Given SFO for
f and g, the SFO for V,L,(x,y,\) and V,L,(x,y, ) can be constructed as:

S¢(x,6) — ATAN+ AT (Az + By — b), (37)
Sy(y,¢) — B"A\+~B"(Az + By — b). (38)

ST (x,y, A, €) -
S%(.’E, ya )\7 C) :

Our next algorithm, SGALM, works as follows:

The Stochastic Gradient Augmented Lagrangian Method (SGALM)
Initialize 20 € X,4° € Y and \°
for k=0,1,---, do

yk+1 — [yk _ Bksg(xk7yk’ )\k’ Ck+1)]y;

ol — [ k_ ak5£($k,yk+1,)\k,£k+1)]x;
Al — \F 'y(A{L‘kH—l + Byk—i-l _ b)
end for

Denote
5[{+1 = Sf(xk7£k+1) - Vf(xk)7 61€+1 = Sg(yka <k+1) - vg(yk)

Throughout this section, we assume that the gradient Vg is also Lipschitz continuous. For no-
tational simplicity, we assume its Lipschitz constant is also L. Then, we are able to analyze the
convergence rate of SGALM. Denote

H;, 0 0 H;, 0 0
Qr=| 0 FL, 0 |, My=| 0 LI, 0 (39)
0 -4 Iy 0 0 ln

where Hy, = B%c["y —~BTB. The identity Q; = M;,P still holds where P is given according to (13).

Similar to Proposition 2.3, we have the following bounds regarding the sequence {w*} defined
n (14), the proof of which is also delegated to the appendix.

Proposition 3.1 Suppose that {@W*} is given as in (14), and the matrices Qr and M, are given
as in (39). For any w € Q, we have

h(u) — h(@*) + (w — %) T F(a")
> (w— ") T Qu(wk — @) — (w— ) T8, — (y— ") oY,

R e ] )
- B (e = P - )

(40)

12



where m > 0 is any prescribed sequence. Moreover, the term (w — w*) T Qp(w* — @*) on the RHS
can be further bounded as follows

(w — %) T My, P(w® — @)

1 k+1,2 k2 1 k ~k\T 1 T k ~k
> 5 (o =y — o = b, ) + 5t =T, —yATA) (@F - )
1 . 1 .
+5 " —=75)" <ﬁkfny —~ WBTB> " =), Yweq, (41)

where by abusing the notation a bit we denote ||z||} := v Az with A being a symmetric matriz but

not necessarily positive semidefinite.

Now, we are in a position to present our main convergence rate result for the SGALM algorithm.
Let us recycle the notation and denote =y = (&1, &2, ..., &k, (1, (2, - - -, Ck); the convergence rate will
be in the expectation over =j.

Theorem 3.2 Suppose both f(x) and g(y) in (4) are GraE. Let w* be the sequence generated by
the SGALM, n, = Vk+ 1, and C is a constant satisfying

CI,, —yA"A—LI,, =0 and CI,, —yB' B — LI, = 0,

and B = o, = For any integer n > 0, let

Wk+C

where WF is defined in (14). Then

E=y [h(un) — h(u") + p||AZN + Byn — 0]
0?4023 D? D2

< U8 Taun Taun

where Dy = sup  ||zg—ap||, Dy = sup ||ya—wl, and Dy = sup IA=XO)2,B, = {\: |\ < p}.
Tq,TpEX Ya,yp €Y AeB

<CD2 +CD2 + DA> (43)

Proof. Similar to (22), by (40) and (41) we have

h(u) — h(@*) + (w — @) T F (")
f 2 g 2
1 k12 k2 Tof T g 0517+ llog 4|l
L A L ) R N R B
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Following a similar line of arguments as in Theorem 2.2, we derive that

h(iun) — h(u*) + p|AZn + Byn — b||
* k|2 * k+112 N-1

— "7 — ||z — 2" ( * k2 * k+1 )
5N - + o ly* = y"lla, =y — 1%,

k=0 k=0
1541117 + 1157, +1|!2]

1 . « T
"‘N [(33 —x) 51{+1 + W =) 5IZ+1+ 2k

=0

k

1 1
+— [ = sup ||X = X2 44
2N<w€p\ H (44)

Compared to (26), the term Z (ly* ka%Ik —[ly* —y"”’“”%lk) is new. Since [ = nk-lFC = \/ﬁ+c’

we have Hg = ClI,,, — WBTB > 0. Thus,

N—-1
(ly = 13, =y = 113,
k=0
N-1 N-1
= S VEFL(ly = 1P =y =y ) + X (It = W, — =y )
k=0 k=0
N-1
<y =0, + > VEFT (Il = 12 = Dy -y R)
k=0
N-1
< Ol = - (VE+1-Vk)
<

Clly =" + ZD?(W—W)
= Cly* yIIQJr\ﬁD2 (45)

*7ka27”x*7xk+1”2

N-1

Moreover, according to (27), the term e
k=0

V' ND?. Consequently, we can further upper bound (44) as follows:

is bounded above by C||z* — 2°||? +

(o35

AEN) — h(u") + pllAZ + B |
—1 2 g 2
1 ENT of * \T ||5k 1|| + ||5k:+l”
< ~ 2 [(x —a") S+ (W —yT) 0+ * 0
D2 D?
A e - CD;+CD; + D2> 46
2vN 2N < ( )
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Recall that 5{;_1 = Sp(ah, 5 =V f(ak), 67, = Sy(y*, (M) — Vg(y*) and (35) holds. Since
is independent of &1 and y is independent of (i1, we have

=, [0 =20, =0, Bz, [w—9M)Tot ] =0 (47)
Now, taking the expectation over (46), and applying (36), one has

)+ pllAzy + By — bll]

o2 g 2
« kT eg 107 1%+ 1107l
P — 1) +
[N e ( k+1 + W = y") 0y M

IA

D Dy
Q\F 2\F
o?+o03 D2 D2 1

VN Tavw Taun T

<CD2 +CD2 + ! DA>

(CD2 +CD2 + ! DA) (48)
O

Before concluding this section, some comments are in order here. The complexity of O(1/v/N)
for SGALM algorithm is the same order of magnitude as that of SGADM. In view of (43), it is
easy to see that the complexity of SGALM for the deterministic setting would be O(1/N), since in
that case o1 and o9 in (36) are 0, and we can let 7 = 1 in Theorem 3.2. Then, following similar
argument after Theorem 2.2, the following complexity bound is achieved:

1 1
han) = )+ pllAdy + Biw ~ b < g (C+ 0@+ DY +207), (a9

where D, = sup ||zq—apl|, Dy = sup ||ya—usll, and Dy = sup [|[A=X0|%,B, = {\: |A|| < p},
Ta,TpEX Ya,YpEY XEB,
and uyn = Ez,, [un], which shows an O(1/N) complexity bound for the SGALM in the deterministic

case.

4 The Stochastic Zeroth-Order GADM

In this section, we consider another setting, where even the noisy gradient of f(z) is not available.
To be specific, we assume that £, (z,y, A) is MinE with respect to y, and f(z) is ValE. In other
words, for any given x we can get a noisy approximation of the true function value f(x) by calling
an SZ0O, which returns a quantity F'(x, ) with £ being a certain random variable.

Now that we can access the SZO, we shall use the smoothing scheme proposed in [28] to approx-
imate the first order information of a given function f. The smoothing technique is to utilize the
integration operator to promote the differentiability. More specifically, suppose that v is a random

15



vector in R™ with density function p. A smooth approximation of f with the smoothing parameter
w is defined as:

@) = [ £+ poip(o)de (50)

Theoretically, one can choose to use any pre-specified smoothing distribution p(v). For instance,
in [28] Nesterov adopted the Gaussian distribution to simplify the computation. However, the
Gaussian distribution has a support set of the whole space R, which cannot be implemented for
problems with constraints. To avoid using the entire space as the sample space, in this paper we
shall use the smoothing scheme based on the uniform distribution over a (scalable) ball in R"™ as
introduced in [35].

Definition 4.1 Let Uy be the uniform distribution over the unit Fuclidean ball and B be the unit
ball. Given pn > 0, the smoothing function f,, is defined as

i) = Eqaip o+ 1)) = = [ fla oo 51)
where a(n) is the volume of the unit ball in R™.

Some properties of the smoothing function are shown in the lemma below, which will be used in
our forthcoming discussion; the proof of the lemma can be found in the appendix.

Lemma 4.1 Suppose that f € C](R™). Let Ug, be the uniform distribution over the unit Euclidean
sphere, and S, be the unit sphere in R™. Then we have:

(a) The smoothing function f,, is continuously differentiable, and its gradient is Lipschitz continuous
with constant L, < L and

Vhu0) = Eumarg | 2o+ 0| = i [ Bk ) - fo]ae (52)

€s, M

where S(n) is the surface area of the unit sphere in R™.

(b) For any x € R"™, we have
Ly?
[fu(z) = f(2)| < =, (53)
2
unL

IV /ue) = V(@) < 222, (54)

€ [HZW T ) — f(@)lo

2 2
] < 20|V f(2)|* + 5 Ln. (55)
(c) If f is convexz, then f, is also convex.
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We remark that the bounds in Part (b) are slightly sharper (up to some constant factor) than that
of Gaussian smoothing scheme in [28]. Now based on (52) we define the zeroth-order stochastic
gradient of f at point z*:

Gﬂ(xku §k+17 ’U) = % F(xk + M, €k+1) - F(xk7 §k+1):| v, (56)

where v is the random vector uniformly distributed over the unit sphere in R™. The zeroth-order
GADM algorithm is described as follows:

The Zeroth-Order GADM

Initialize 2° € X,4° € Y and \°
for k=0,1,---, do
Yt = argmingey £, (2%, y, M) + §ly — v |13
At the k-th iteration, we call the SZO my, times to obtain G (xk, kt1,i Vk+1,i),% =1, , my,.

mg

Then set G, = Gu(ack,gk_ku, Uk+1,i), and compute
1

1
my
P = (2% — (G — AT+ yAT (A2 + ByF ! — b)) x;
)\k+1 _ )\k _ ’y(AQ?k—H + Byk‘-i-l _ b)

end for

Before conducting the complexity analysis for the algorithm above, we present some properties of
the function G(2*,&,y 1) := Vo F(2F,&.41). Note that function f is ValE, i.e. (8) and (9) hold.
This fact together with Lemma 4.1(a) leads to:

Lemma 4.2 Suppose that G, (2", €11, v) is defined as in (56), and f is ValE, i.c. (8), (9) and (10)
hold. Then

EU7§k+1 [G# (xkv gk-‘rla U)] = vf# (:Ck) (57)
If we further assume |V f(z)|| < M, Vx € X, then the following holds
Ev s [IGu(@®, G, 0) = Vu(@®)|?] < 62, (58)

where 52 = 2n,[M? + 0% + u?L?n,).

Proof. The first statement is easy to verify. We shall focus on the second statement. Applying (55)
and (10) to F(2*,&x11) and G(a*,&,y1), we have

Euern [[Gu(a® hin, )]

Bt [Eo [IGu(at, s 0]

o, (B [16(, 60 )lP]| + 1202

<
< 2n, {Bq VS P + Ee, [IGGE 60) = VFENIP] |+ p2L202
< 20, {IIVS") |2 + 02} + p2 L0l (59)
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Then from (59), (57), and |V f(z*)|| < M, we have
Euer [1Ga(a", €11, 0) = V()]

= Eugen [1Gu(@ &ir, 0)12] = 19 £u(@)?
< 2n, [M? + 0% + p°LPn,)| = 6°. (60)

4.1 Convergence Rate of Zeroth-Order GADM

To establish the convergence rate, we refer the sequence w* to be the sequence defined in (14)
with the corresponding iterates =¥, y*, \* obtained from the zeroth-order GADM. We let Ok =
Gk — V fu(xr), which plays a similar role as ¢, in SGADM. We have the following proposition,
whose proof is almost identical to that of (40) in Proposition 3.1 except that i1 is now replaced
by 0,k

Proposition 4.3 Suppose that L,(x,y,A) is MinE with respect to y, and f(x) is ValE. Let z",
y*, Ak be obtained in the zeroth-order GADM, @* be specified as in (14), and hy(u) = f.(z)+g(y).
Then for any w € 0, we have

Sukll? L
) =) (0= P() > (0)T Q=) — (=)o, Lt Lo
Mk
(61)
where i, > 0 can be any positive constant to be specified in the analysis later.

Now, we are ready to present the following theorem which leads to the convergence rate of the
zeroth-order GADM. In the rest of this section, we denote ,, = (&4, vk,i) for k =1,2,...,n and
i=1,2,...,myg, the convergence rate will be considered in the expectation taken on .

Theorem 4.4 Let wk be the sequence generated by the zeroth-order GADM, and C be a constant
such that C1,,, — yATA — LI, =0, and ap = nk—ler

. For any integer n > 0, let
W, (62)

where W* is defined in (14). Then the following holds

Eay [h(un) — h(u™) + p||AZN + Byn — bl]]

N
1 * k * k
ﬁznkww — 2P flo* = 2*H)2)

IN

52 Y
ey

k=1

192 + DA + CD2) + Ly?, (63)

mknk
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where Dy = sup  ||xg—xp||, Dy = sup ||Yya—ullm, and Dy = Sup IA— )\1H2,Bp ={X: ||\ < p},
Ta,TpEX Ya ,YpEY \eB
and {n > 0} can be constants.

Proof. By (61) and (21), it follows that
h(w) = hy(@*) + (w — @) TF (@)

1 1 .
> 9 (Hw — wk+1|ﬁ\/lk — |lw — wkH%\/[k) + §($k _ jk)‘r (Inz B ’YATA> (ajk B jk)
ag
N 16,0,k m+L, & pio
—(x—a") Ok — e - |a* — 2|
1 k4112 k2 1, v T /( 1 . R
= §(Hw—w HMk_||w—w||Mk)+§(l‘ — ") aik[nm_,yA A= (o + D)L, ) (@ — 3%)
k\NT Hé,u,k
( ) o 21
> 1<||w—wk+1H2 o -ty - - BT  16ell?
T2 M My ok 21,

In similar vein as the proof of (26) in Theorem 2.2 (except that 0y is replaced by d,, 1), we obtain:

hu(in) = hu(u*) + pl| Ay + By — ||
1 =2 |z* -
<
< vy

l
N
k=
ly* —y HH+ J A — A0H2> (64)

19,11

2Nk

-1
ka2 Hx* k+1H2 [
u,k +

e}
k 0

1
2N

/—\%

Recall that 6, = G, — V fu(xk), which combined with (57) implies
Eeiirone Onk] = Egppy s [Guk = V()] = 0.
In addition, since £;,1 and viy1 are independent to zj, we have the following identity
Eqy,. [(z" = 2%) T6,] = 0. (65)
Now, taking expectation over (64), and applying (58), we have

Eay [hu(un) — hu(u®) + pl|AZn + Byn — b|[]
1

S 18,611
* kNT M,
N S (e )
k=0

1 = 1 1

* k|12 * k+1)12 2 2
+2N;nk(|yx — k|2 = fla* - ) + N (D + DA+C’D>
N—-1 N—1

~9 N—
(58) 9 1 RS ( o KN2 (ko ktl 2) D2 D CD?
< N 2 2N D> e (fla” = afIP — fla® = o 2N T

(66)

b
Il
o
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By (53), we have |(hy(un) — hu(u*)) — (h(in) — h(u*))| < Lp?, and so
E (i) — h(u")] < E () — by ()] + Ly

Finally, combining (66) and (67) yields the desired result.

(67)

0

In Theorem 4.4, 1, and the batch sizes my are generic. It is possible to provide one choice of the

parameters so as to yield an overall simpler iteration complexity bound.

Corollary 4.5 Under the same assumptions as in Theorem 4.4, we let ny

1,2,..., N, and the batch sizes mi =m for allk =1,2,...,N. Then

D% ny(M?+0?)

prL*ng

Eqy [h(in) = h(u’) + pll Az + By — bl]] < 322 + "5

Proof. Tt follows from (63), with the specified parameters, that

Eay [h(an) — h(u®) + pl|AZy + Byn — bll]

1 1 &2
< — D>+ =D?+(C+1)D? — + Lu?
< 2N< y+7 A+ (C+1)D; +o o+ Lp
D% 52 5
= w4 _ 4L
oN T om T K
B D712U+2nx(M2—|—02—|—u2L2nx)+L )
Y om H
_ Diunz (M2+02+u2L2nx)+Lu2
2N m
— %_,_"ﬂf (M2+‘72)+M2L2”§+LH2
2N m m

where we denote D2 = D; + %Di +(C+1)D2.

m

+ Ly

1 for all k =

0

In the corollary above, the complexity bound is dependent on the sample size m, and the smoothing

parameter p. We shall further choose m and p to obtain an explicit iteration bound.

Corollary 4.6 Under the same assumptions as in Theorem 4.4 and Corollary 4.5, we have:

(a) Given a fized number of iteration N, if the smoothing parameter is chosen to be p <

the number of calls to SZO at each iteration is m = N, then we have

1 [ D?
Eqay [h(ian) — h(u*) + p||AZx + By —b|]] < — (w +n(M? +0%) + L

N\ 2

20
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2,2
L*n;

1
N>’

N2~
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(b) Given a fized number of calls to SZO to be N, if the smoothing parameter is chosen to be

uw< 1/%, and the number of calls to the SZO at each iteration is

m = \‘min{max{ 'nI(M%—FéQ)N n{L} N}J

D "D

for some D > 0. Then, N = L%j and

Z * . _ L nL(~ D3 ng(M2+62) (~ D2
Eqy (M) — h(u") + pll Azx + By — bl < +7% (D92+ L )+$ ~ (D91+ )
where
0, = Y o d 6y = 1, ==L 68
' max{ DVN e ) (68)

Proof. Part (a). Since we have m = N, pu < /&

Eay [h(un) — h(u”) + pl| ATy + By — b]l]
D? n nz(M? +0?)  p?L?n?

- 2N m + m +
- Di“r ng(M? + o?) N L*n? N L
- 2N N N2 N

1 (D? 5 o L*n?
= N<2w+nx(M +0)+L>+ sz.

Part (b). The total number of SZO calls is now fixed to be N. Under the assumption that at each
iteration m times of SZO are called, we have N/2m < N < N/m, and so

Eay [h(un) — h(u”) + pl|Azy + Byn — b]l]
D2 ny(M?+0%)  p*L*n2
+ +

- 2N m A

< D]%m n nm(M;—i- o?) n I:LZ_; %

< Dum  ne(MP4o%)  Liep L (69)
N m mN N

Now noting the definitions of 61, 65 in (68), we equivalently write m as

o {max{ Ve (M2 +62)N n,L }J

)

Do, Do,
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Finally,

Di( ne QPN | gL

T De Da) /ne (M2 + 02)D6 <LDO, L
RHS of (69) < 1_ ’ +" L, nalDO L

N N
_ 5 /1N M2 + 62) D2 nyL \/nx M2 + 02) Db, nxLDHQ N L
- D N N N
nyL [ - D2 nge (M? + 52) ( D2)
= =+ DOy + 22 ) + 70
( D ) VN D (70)

O

Remark that the complexity bound of O(1/N) in Part (a) of Corollary 4.6 is in terms of the iteration
N. However, in the zeroth-order GADM algorithm we need to call SZ0O multiple times at each
iteration. The complexity in terms of the total number of calls to SZO in Part (b) of Corollary 4.6
is denoted as N, and this gives us a bound on the accuracy of O(1/ VN ).

5 Numerical Experiments

In this section, we test the performance of our SGADM (GADM) algorithm by solving two test
problems: large-scale convex quadratic program and the fused logistic regression. Specifically, we
use GADM, i.e. iteration scheme (5), to solve convex quadratic program, and apply SGADM to the
fused logistic regression. More details of those two experiments will be presented in the following
subsections separately.

5.1 Convex Quadratic Problem (QP)

The convex quadratic program considered in this subsection is given by

1T T
mnel%{l" 3 Qr+p'x
st. Axr=0b (71)

x>0,

where @@ € R™*" is positive semidefinite, and A € R™*" b € R™. To fit (71) into the framework,
we reformulate it as

: 1T T
min v Qr+p'x

z,yeR"™
s.t. A.T =b (72)
r—y=20
y=>0.
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Indeed, (72) is a special case of (1), with f(z) = 227Qz + p'z, g(y) = 0; the equality constraints
Arx—b=0and x—y = 0, and finally X = R" and J = R'}.. In this case, the augmented Lagrangian
function £, (x,y, A, 1) can be specified as

1
L@y ) =52 Qu+ple = AT (Ax —b) = (& —y) + Sl Ar = b* + Sl —yl®. (73)

Notice that L(z,y, A, pu) is MinE with respect to both x and y, thus the standard ADMM
scheme (3) should work. However, to minimize the convex quadratic function involves inverting a
matrix which is not exactly a first-order operation. Instead, we shall apply the GADM iteration
scheme (5). In this particular case, we choose the predetermined matrix H in SGADM to be g1,
and the iterative process runs as follows:

Y = g [ ek ByR]
gl = pF — Qg (ka +p— ATNE — 'uk 4 ’yAT(Axk _ b) 4 'y(:vk _ yk+1))
Aetl — 2k ,.Y(Axk+1 _ b)

MkJrl — Mk o ,y(karl _ yk+1)_

(74)

For this convex quadratic program, we perform some preliminary experiments where we set dimen-
sion n to be 50 and 100. Recall we also shown how to choose stepsize for deterministic problem in
previous section, we set the oy to be 1/C, where C is a constant that is predetermined by problem
itself. As a result, we will report the objective value %QTQQ +p' & where # solution given by (74).
Since the size of the problem is small, this allows us to compare our solution with the solution
obtained from CVX. The test results can be found in Table 2, where “GADM” represents the
objective value we discussed above with “time” being the CPU time (in seconds) of GADM, and
“CVX” represents the objective value returned by CVX. The results suggest that our algorithm
indeed returns with compatible good solutions in fairly quick computational time. For the size
n = 2000, CVX stops working on our PC while the GADM still returns a solution in time roughly
proportional to the size.

Inst. ‘ time ‘ GADM H CVX
Dimension n = 50
1 0.33 | 2.916e4003 | 2.928e+003
2 0.20 | 3.082e+4003 || 3.118e+003
3 1.21 | 2.388e+003 || 2.399e+003
4 0.80 | 3.226e4-003 || 3.242e4-003
5 0.38 | 2.851e+003 || 2.862e+003
Dimension n = 100
1 2.86 | 2.145e+004 || 2.147e+4004
2 3.57 | 1.759e+4004 || 1.761e+004
3 1.54 | 2.005e+004 || 2.006e+004
4 1.10 | 1.610e+004 || 1.614e+004
5 1.64 | 2.235e+004 || 2.238e+004

Table 2: GADM for Convex QP
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5.2 Fused Logistic Regression

In this subsection, we show how to use SGADM to solve the fused logistic regression problem in a
stochastic setting. As suggested in [24], fused logistic regression, which incorporates a certain order-
ing information, is derived from the fused lasso problem and sparse logistic regression. Specifically,
the sparse logistic regression problem (see [23]) is given by:

pmmin_ Uz, c)+ Bz, (75)

log(1 + exp(—b;(a, z + ¢))), and {(a;,b;), i = 1,...,m} is a given training set

s

where {(z,¢) = 1
=1

with m samples a1, a2, ...,a, and b; € {+1},7 = 1,...,m as the binary class labels. Combining

requirements from the fused lasso [36] and the sparse logistic regression (75), the fused logistic
regression that incorporates certain existed natural ordering features can be formulated as:

n
1 l C— oz
eftin g 1)+ Bl 0 35 Iy~ (76)
Note that the function I(x, ¢) in the above formula involves the sample points {a;,b;},i =1,...,m.

Without specifying samples, the corresponding stochastic version is

n
: T
pepin o Bupllog(l+exp(—v(u’a + )] + S|zl + PEZ |2 — i1l (77)
Similar to the above generalization, the stochastic version of the lasso problem was studied in [29].
Moreover, if we denote f(z,c) = E, ,[log(1+exp(—v(u'z+c)))], by adding two additional variables
Yy, z, problem (77) can be rewritten as follows, for which our SGADM algorithm can be applied:

min o) + Bzl + pllz
IEGR",ZGR"*17y€Rn’C€R f(y ) B” ||1 p” ||1

z= My,

where M is a (n — 1) x n dimensional matrix with all ones in the diagonal and negative ones in the
super-diagonal and zeros elsewhere. The augmented Lagrangian function of (78) is

E’y(xvz7y) c, )\17)‘2)
Y Y
= [y o)+ Blall + pllzl = M (& —y) = Ay (2 — My) + Sllz = yll> + 5|

— Muyl?.
2!z yl|

Based on the definition of f(y,c), we can easily define the SFOs: Gi(y,u,v) and Ga(c,u,v) of
fly;c) as

{Q@WWMZWMﬁHfm@MME+@D=—ﬂ—®w7 (79

Ga(c,u,v) := Vlog(1l +exp(—v(u'z +¢))) = —(1 — d)v,
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where u, v are the underlying random variables, and d = 1/(1 + exp(—v(u 'z + ¢))). Consequently,
the SGADM iteration scheme of (78) can be specified as

(zFF1, A1) = arg min, , £ (z, 2, TaNCOLIPYY

dF = 1/(1+ exp(—vk((uk)Tx +0)))

Yt = yf — (= (1= d ) (uf) + AT+ MTAS +y(y° — 24 M T (My* = 224
k+1 _ k kN, k

" =" — ap(—(1 —d¥)v")

ALY (a4 )

AT = 2 (2R My,

(80)

The first operation in (80) has closed form solutions:
2P+ = Shrink(y* + AF /v, B/7)
and
21 = Shrink(My* + s /v, /),

where the shrinkage operator Shrink(x, ) is defined as

Shrink(z, 7) := sign(z) o max{|z| — 7,0}.

In the tests, we assume that v and v are drawn from normal distribution A(0,1) and sign(N (0, 1))
respectively. Following the rule stated in Theorem 2.2, the stepsize ay is set to be 1/(vk+ 1+ C),
where C' > 0 is a constant.

For each instance, we assess the expected performance via 10 independent trials. In each trial, we
run the algorithm 10 times, and take the average to approximate the expectation. After we obtain
the solution £, ¢ from (80), 50 random samples of (a*,b%),i = 1,2..., 50, are generated from A/(0,1)

50 o
and sign(N(0,1)) respectively, and we use = > log(1 + exp(—b'((a’)"# + ¢))) to approximate the

true objective. Besides, we also report the Hil llo and [[MZ||o values which reflect the sparsity and
the ordering of the solutions. The results can be found in Table 3, where problem dimensions are
chosen from 50 to 1000, “obj” represents the approximate objective value, and “time” refers to
the CPU time (in seconds) of SGADM. As we can see, SGADM indeed returns sparse solutions in
terms of ||z||o and | Mz||o fairly quickly.
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6 Appendix

6.1 Proof of Proposition 2.3

Here we will prove Proposition 2.3. Before that, we present some technical lemmas as preparation.

Lemma 6.1 Suppose function f is smooth and its gradient is Lipschitz continuous, i.e. (2) holds,
then we have

L
flz) < f(y)+Vf(y)T($—y)+§||$—yH2- (81)
As a result, for a gradient Lipschitz continuous function, we also have the following result.

Lemma 6.2 Suppose function f is smooth and convex, and its gradient is Lipschitz continuous
with the constant L, i.e. (2) holds, then we have

(o~ ) V) < F@)~ 1) + 2=~y (52)

Proof. Since the f is convex, we have

(@ —=y) ' Vf(2) = (&= 2)"Vf(z) + (2 —y) V(=)
< fl@) = f(z) = (y—2) Vi(2). (83)

Based on (81), we have
Fw) ~ £G) — gz~ < (v~ ) V(). (51)
Combining (83) and (84), we have

f&)~ 1)~ (v =) V()
F@) ~ 5(2) ~ (F) — F(2) ~ 21z = lP)

£(2) ~ 1)+ Sz~ ol )

(x—y)"Vf(2)

IN

IN

Proof of (20) in Proposition 2.3

Proof. First, by the optimality condition of the two subproblems in SGADM, we have

(y—y"H7T (39(1/““) -B' (A’“ — y(Az" + Byt — b)) —H(y" - y’““)) >0, Vye,
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and
(z —ahHT (azkH — (:1:]g — oy (G(xk,fkﬂ) — AT(O\F — y(Azk + By — b))))) >0, Vxed,

where dg(y) is a subgradient of g at y. Using M= Nk — v(Az* 4+ By**1 —b) and the definition of

@F in (14), the above two inequalities are equivalent to

—7"" (99"~ BTN —HyF =) 0, vyeV, (86)
and
(z — &7 <ak (G(:r’“,&k“) - ATS\’“) ~(zF — jk)) >0, Vred. (87)
Moreover,
(AZ* + Bg* —b) — ( Afah — a4 + = (Ak - A’“)) =0
5
Thus

) o T a1 -
(A — )T (A7* + B —b) = <)\ - )\’“) <—A (a:k - :ck) e ()\k - )\k)> . (88)

By the convexity of g(y) and (86),

9(v) — 9@ + =" (-BTN) = (y— ") THW ~ ), wye. (89)
Since g1 = G(zF, ") — Vf(2*), and by (87) we have

(z— )T (ak(Vf(:ck) — AT 4 gl — (2 — xk)> >0, VzedX
which leads to

(- )T <ak(Vf(3:k) - ATS\’“)) > (z — )T (g;k - xk> —ay (g; - :z«’f)T Sps1, V€ X

Using (82), the above further leads to

ar(f(z) = f@) + (z = 7)) T (— ATA)

> (o) (o - 2) oy (2 xk> Spit — %H E_H2 Vrex.  (90)
Furthermore,
(=)o = (2—2") Tk + @" =) 0rp
< (o= o + 2 - e Lo (1)

Substituting (91) in (90), and dividing both sides by ax, we get

fl@) = F@) + (= )T (-ATHY)
(2 — )T (aF — ) 66l et L
> o (=) Th — P BT (o)
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Finally, (20) follows by summing (92), (89), and (88).

Now we show the second statement in Proposition 2.3.
Proof of (21) in Proposition 2.3

Proof. First, by (15), we have P(w* — @w*) = (wF — w**1), and so

(w — %) T Qp(w* — %) = (w — &%) T M P(w* — %) = (w — &%) T My, (w* — ).

Applying the identity

1
(a=0)" My(c—d) =5 (lla = dliy, = lla = i) + 5 (e = bllis = lld = bl3s,)

N

to the term (w — @*) T M (w* — w**1), we obtain
w— ’lI)k)TMk(wk _ wk—l—l)

(
1 k k 1 k ~k k ~k
5 (Il = w13y = o = w3y, ) + 5 (I = @3, = ! = a3, ) -

Using (15) again, we have

k

~k k ~k
lw" — "3, — ™ —@®|I3,

k _ wk—i—l)

k_ o~k k_ ~k
= Jw® =@y, — (@" —a") = (w I3,

E o~k kE .~k kE o~k
lw* — "3y, — (" — @) = P(w® —a@")|[3,

= (w* — ") @2MP — PT M, P)(w® — @").

Note that Qi = M P and the definition of those matrices (see (13)), we have

H 0 0
2MP — P MP=2Qx —P'Qr=| 0 I, —yATA AT
0 —A %Im

As a result,
(wk —@®) T (2M, P — PT M P)(w® — &")
- 1 < - 1 -
= I U - R T (akznz _ WATA) (o _ &)

(aF — )T ((jkln - VATA> (a — 7).

v

Combining (95), (94), and (93), the desired inequality (21) follows.
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6.2 Proof of Proposition 3.1

We first show the first part of Proposition 3.1.
Proof of (40) in Proposition 3.1
Proof. by the optimality condition of the two subproblems in SGALM, we have
(y—y**HT (y’““ — 4"+ Br (Sg(y’“, ¢ = BT (W — y(Ad* + By — b)))) >0, Vye,
and also
(z — 2"t T (azkH — 2 4y (Sf(:ck,ka) — AT — y(Azk + ByFt — b)))) >0, VxedX.

Using A\ = A\F — v(Az* + By**t — b) and the definition of ¥, the above two inequalities are
equivalent to

(= )7 (B (Sy" 1) = BTA) = (I, = ByBTB)(W" — %)) 20, Wyey,  (96)
and
(@ — )T <ak(sf( LRy L ATRRY  (gk :z’ﬂ)) >0, Vied. (97)
Also,
(A= XY T(AF* + B —b) = (A= A9)T <A(:ck _ 4 i(Ak - X’f)) . (98)
Since 5,{“ = Sy(ak, 81 — V f(2*) and using (97), similar to (90) and (91) we have
f@) = @) + (@ —2) T (=ATNF)
. fo2
> ( J:k)—r(xk k) B ($ )T(;f Hék-‘rl” B Nk + Lka . jk||2 (99)

ay R+l 2ng 2

Similarly, since 67, = Sy(yk, ¢FH) — Vg(y*) and using (96), we also have
9(y) = 9(§") + (y = §") T (=BT
. 1 _
> (y—3")" (Iny — ’YBTB> (v" - ")

Bk
g 2
Teg 100 1ll® me+L, o
—(y — ) — — . 100
(y—vy ) k+1 2k 9 |y 7| (100)
Finally, (40) follows by summing (100), (99), and (98). O
Notice that Qk = MkP and
Hy, 0 0 aiklnz —~yB'B 0 0
2MP-P MP=| 0 I, —7ATA AT |= 0 alp, —7ATA AT
0 —A S 0 —A S

Inequality (41) in Proposition 3.1 follows similarly as the derivation of (21) in Proposition 2.3.
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6.3 Properties of the Smoothing Function

In this subsection, we will prove Lemma 4.1. Before that, we need some technical preparations
which are summarized in the following lemma.

Lemma 6.3 Let a(n) be the volume of the unit ball in R™, and S(n) be the surface area of the
unit sphere in R"™. We also denote B, and Sp, to be the unit ball and unit sphere respectively.

(a) If M, is defined as M, = — Joer Ivl[Pdv, we have

a(n)

n

My = . (101)
n-—p
(b) Let I be the identity matriz in R"*", then
/ ooy =2 (102)
Sp n

Proof. For (a), we can directly compute M, by using the polar coordinates,

1 1 1 1
Mp=/llvllpdv=/ / v tdpdg — L P _
a(n) Jp a(n) Jo Js, n+pa(n) n+p

For (b), Let V = vv', then we know that V;; = v;v;. Therefore, if i # j, by the symmetry of the
unit sphere S, (i.e. if v € Sy, v = (v1,v2,...,v,), then w € S, for all w = (fv1, £vo,...,£vy)), we

/ Vijdv:/ vivjdv:/
S, S, S,

P p P

Thus, we obtain fSp Vijdv = 0.

have
—vivjdv:/ —Vijdv.
Sp

If ¢ = j, we know that V;; = v? . Since we already know that

J

P

(W2 4024t v2)dy = /S o]2dv = B(n).
D

Then, by symmetry, we have

/v%dvz/ v%dv:---:/ Uid?}:@.
Sp s, Sp n

P

Thus we also have fSp Vido = B for i =1,2,...,n. Therefore, fsp oo dy =80T, O

n n

By the next three propositions, the part (b) of Lemma 4.1 is shown; for part (a) and (c¢) of Lem-
ma 4.1, the proof can be found in [35].
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Proposition 6.4 If f € C1(R"), then
[fulz) = fo)] < = (103)
Proof. Since f € C}(R™), we have

[fulz) = fo)] =

2 n+27 2
]
Proposition 6.5 If f € Ci(R"), then
L
IV fula) - V@) < 5= (104)
Proof.
||Vfu z) = Vf(z
= [n f(z+ pv)vdv| — V f(x)
uls,
(102) ﬁ _ _ n
= [M f(z + pv)vdo / —f(z)vdv /Sp M(Vf(x),/wwdv]
< [+ ) — f(z) = (Vf(x), po)l[[v]ldv
< / R
(]

Proposition 6.6 If f € CL(R"), and the SZO defined as g,(z) = ilf (@ + ) — f(z)]v, then we
have

2
Eu [llgu(@)I?] < 2]V f(2)]* + %L%?- (105)
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Proof.

n2
M@ = 5o [ i) = @) Pl
n2
IO /s [f(z 4+ ) — f(z) — (Vf(x), po) + (V f(z), w)]? dv
n2
< g [ [2UG ) = @) = (V@) ) +2 (@) p0))] o
n? Lu? 2
< 6(”)#2 [/Sp 2 <2H@”2> dv + 2M2 /Sp vf(x)T’UUTVf(x)d’U]
n2 2,4 n
2 Bln)u? [L;L 6(”)"‘2#2/851)”Vf(1')‘2]

2
= 2|V (z)|* + 7L2n2.
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Trial Num. time [ llz]lo [ | Mz|o [ obj
Dimension n = 50
1 0.93 4 5 7.117e-001
2 0.91 5 6 7.143e-001
3 0.94 5 7 7.123e-001
4 0.91 4 6 7.118e-001
5 0.90 5 5 7.149e-001
6 0.87 4 5 7.097e-001
7 0.90 5 5 7.116e-001
8 0.90 4 5 7.128e-001
9 0.90 4 6 7.128e-001
10 0.93 4 5 7.107e-001
Dimension n = 100
1 1.43 15 19 7.025e-001
2 1.34 15 18 7.058e-001
3 1.39 14 18 7.036e-001
4 1.25 14 18 7.072e-001
5 1.52 16 19 7.051e-001
6 1.63 15 19 7.035e-001
7 2.46 13 16 7.066e-001
8 1.52 15 18 7.048e-001
9 1.51 14 18 7.049e-001
10 1.53 16 21 7.052e-001
Dimension n = 200
1 1.96 28 33 6.676e-001
2 1.96 30 35 6.677e-001
3 1.86 33 39 6.705e-001
4 1.91 28 34 6.666e-001
5 2.09 30 36 6.696e-001
6 4.91 30 35 6.715e-001
7 2.31 29 35 6.662e-001
8 1.84 26 31 6.688e-001
9 1.85 29 35 6.666e-001
10 2.39 26 32 6.673e-001
Dimension n = 500
1 10.60 33 39 8.251e-001
2 9.29 33 38 8.316e-001
3 9.17 34 41 8.181e-001
4 10.00 32 38 8.385e-001
5 9.58 29 34 8.259e-001
6 10.09 31 37 8.247e-001
7 12.05 37 41 8.252e-001
8 10.41 33 37 8.282e-001
9 13.24 31 35 8.260e-001
10 11.00 32 39 8.341e-001
Dimension n = 1000
1 62.85 50 57 8.034e-001
2 63.75 53 59 8.010e-001
3 64.20 48 53 8.268e-001
4 64.70 54 63 8.239e-001
5 73.68 54 60 8.129e-001
6 66.00 52 56 8.228e-001
7 74.10 55 61 8.126e-001
8 66.56 57 64 8.055e-001
9 65.94 55 64 8.130e-001
10 61.35 49 54 8.122e-001

Table 3: SGADM for Fused Logistic Regression
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