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Gradual typing allows programs to enjoy the benefits of both static typing and dynamic typing. While it is often
desirable to migrate a program from more dynamically-typed to more statically-typed or vice versa, gradual
typing itself does not provide a way to facilitate this migration. This places the burden on programmers who
have to manually add or remove type annotations. Besides the general challenge of adding type annotations to
dynamically typed code, there are subtle interactions between these annotations in gradually typed code that
exacerbate the situation. For example, to migrate a program to be as static as possible, in general, all possible
combinations of adding or removing type annotations from parameters must be tried out and compared.

In this paper, we address this problem by developing migrational typing, which efficiently types all possible
ways of adding or removing type annotations from a gradually typed program. The typing result supports
automatically migrating a program to be as static as possible, or introducing the least number of dynamic
types necessary to remove a type error. The approach can be extended to support user-defined criteria about
which annotations to modify. We have implemented migrational typing and evaluated it on large programs.
The results show that migrational typing scales linearly with the size of the program and takes only 2-4 times
longer than plain gradual typing.
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1 INTRODUCTION

Gradual typing promises to combine the benefits of static and dynamic typing in a single language.
In the original formulation by Siek and Taha [2006], the goal is to bring the documentation and
safety of static typing to a dynamically typed language. In their formalization, function parameters
have dynamic types by default but can be explicitly annotated with static types. The resulting type
system provides the same safety guarantees as static typing for expressions using type-annotated
variables, yet allows the flexibility of dynamic typing for expressions with unannotated variables.

Dually, one can start with a statically typed language with type inference (such as F#, SML, OCaml,
or Haskell) and allow the programmer to add annotations for dynamic types where needed [Garcia
and Cimini 2015; Siek and Vachharajani 2008]. A function parameter can be annotated with Dyn
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(the type of dynamic code) when dynamically typed behavior is needed or when the programmer
is unsure whether all definitions are type-correct but wants to test the runtime behavior.

1.1 Challenges Applying Gradual Typing

By integrating static and dynamic typing, gradual typing not only enjoys the benefits of both
typing disciplines, but also suffers from their respective shortcomings. For example, statically typed
parts of the code have more restricted expressiveness and may contain static type errors that yield
cryptic error messages [Tobin-Hochstadt et al. 2017], while dynamically typed parts of the code
may contain dynamic type errors that are not captured until after the software is deployed. More
interestingly, combining statically and dynamically typed code together can raise new challenges,
for example, Takikawa et al. [2016] address the challenge of performance degradation in sound
gradual typing at the boundaries between statically typed and dynamically typed code.

Therefore, to fully realize the benefits of gradual typing, we also need the ability to navigate along
a program’s dynamic-static typing spectrum, in order to make it more static or more dynamic when
and where the respective strengths of each are desired. Answering the following three questions
will help harness the full power of gradual typing.

Q1. Can we make a gradually typed program as static as possible, to maximize the advantages of
static typing, while maintaining its well-typedness to keep it executable?

Q2. Can we migrate a program to a more static state while keeping some user-indicated parts
dynamic? Such parts may be indicated, for example, to reduce the granularity of boundaries
between static and dynamic code during execution, in order to maintain performance.

Q3. Can we introduce as few dynamics types as possible to migrate an ill-typed program to a
type correct one while still enjoying the benefits of static typing for the well-typed parts?

The answers to these questions are not obvious. Furthermore, if the answers are yes, it is not clear
whether we can implement the operations suggested by the questions efficiently.

We illustrate the challenges regarding Q1 by considering the following program written in
the calculus by Garcia and Cimini [2015] extended with Haskell functions and notations, where
parameters annotated with Dyn have dynamic types and those without annotations are inferred
to have static types. In the rest of the paper, we say these parameters are dynamic and static,
respectively. This program is adapted from van Keeken [2006] for formatting rows of a table
according to a given width by trimming long rows and padding short rows with empty spaces.
rowAtI headOrFoot (fixed::Dyn) (widthFunc::Dyn) (table::Dyn) (border::Dyn) (i::Dyn) =

let widest = maximum (map length table)
row = table !! i
width = if fixed then widthFunc fixed else widthFunc widest
in if headOrFoot
then replicate (width + 2) border
else border ++ take width (row ++ replicate (width-length row) ' ') ++ border

The local variable width represents the width of the table and is computed by the argument
widthFunc, either by applying it to fixed if fixed is true, or to widest, the size of largest row in
the table. The argument border is added to the beginning and end of each row and also used to
generate the header or footer row when the Boolean argument headOrFoot is true. If we bind the
variable tbl to a list of strings, we can then call rowAtI in many ways, such as rowAtI False True
(const 3) tbl "_" 0, rowAtI False False id tbl "_" 1, and rowAtI True False id tbl ’_’ .
After some testing, suppose we want to migrate rowAtI to a version that is as static as possible by
removing Dyn annotations. Removing Dyn annotations turns out to be much trickier than we may
expect. First, if we remove all Dyn annotations, then type inference fails for rowAtI since it contains
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multiple static type errors, for example, the then branch requires border to have type Char while the
else branch requires it to have type [Char]. Second, if we remove Dyn annotations in a left-to-right
order, we will encounter a type error as soon as the annotation for widthFunc is removed. (In this
paper, we follow the spirit of Garcia and Cimini [2015] to infer static types only.) However, this
does not necessarily indicate that the error was solely caused by widthFunc being statically typed.
In fact, the type error involving widthFunc is due to the interaction with fixed when computing the
value of width. At this point, we can restore the well-typedness of rowAtI by either re-annotating
fixed or widthFunc with Dyn. Unfortunately, we cannot easily gauge which annotation is better for
typing the rest of the function. If we choose to re-annotate fixed, we will encounter another type
error when the Dyn annotation for border is removed. Does this type error go away if we instead
mark fixed as static and widthFunc as dynamic? The easiest way to tell is by trying it out.

The example illustrates that parameters give rise to complicated typing interactions. The type
error caused by making one parameter static may be avoided by making another parameter dynamic,
or the type error caused by making two parameters static can be fixed by making another dynamic,
and so on. In general, we must examine all possible combinations of static vs. dynamic parameters
to identify a program that is both well typed and as static as possible. We refer to all of the
potential programs produced by adding or removing Dyn annotations as a migration space. We say
a program in the migration space has a most static type if removing any Dyn from the program will
make it ill typed. We call a migration that yields a program with a most static type a most static
migration. Due to the nature of type interactions, the most static type, and thus the most static
migration, is not unique. Since every parameter can be either static or dynamic, the size of the
migration space is exponential in the number of parameters for all functions in the program. For
the program consisting of only rowAtI, which has six parameters, we would need to try out all
2° = 64 combinations to identify the most static migrations.

Questions Q2 and Q3 are similarly difficult for the same underlying reason that the typing of
different parameters are interrelated. This quality of type inference precludes the possibility of a
greedy algorithm that considers each parameter in turn, adding or removing Dyn annotations. In
general, we must conceptually explore all of the possibilities in the migration space.

The challenges posed by migration between more and less static programs may prevent program-
mers from fully realizing the potential of gradual type systems. As evidence for this, the CircleCI
project recently abandoned Typed Clojure mainly because the cost of adding type annotations to
Clojure programs was perceived to exceed the benefits.! Similarly, Tobin-Hochstadt et al. [2017]
reported that migration of Racket modules to Typed Racked requires too much effort.

1.2 Migrating Gradual Types

In this paper, we address Q1 by: (1) developing a type system that efficiently types the entire
migration space and (2) designing a method to traverse the result of typing the migration space,
calculating which Dyn annotations can be removed. In this paper, we mainly consider the removal
of Dyn annotations to support migrating to a more statically typed program; that is, we make types
more precise [Siek and Taha 2006]. However, in Section 8, we describe how the approach can be
extended to support the addition of Dyn annotations, along with extensions to address Q2 and Q3.

As demonstrated in Section 1.1, in general, finding the most static migration requires exploring
the entire migration space, which is exponential in size. This rules out a simple brute-force approach
that type checks each possibility and compares the results to find the best one.

To illustrate how we can improve on a brute-force search, let us focus on a single parameter, say
i in the rowAtI function from Section 1.1. To decide whether we can remove the Dyn annotation, we

https://circleci.com/blog/why-were-no-longer-using-core-typed/
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Program | Dyn annotations ‘ Type for rowAtI
1 + + + + + Bool — Dyn — Dyn — Dyn — Dyn — Dyn — [Char]
2 - 4+ + 4+ + | Bool — Bool — Dyn — Dyn — Dyn — Dyn — [Char]
3 — + — + — | Bool — Bool — Dyn — [[Char]] — Dyn — Int — [Char]
4 + — + + + |Bool »Dyn — (Int—Int)—>Dyn  — Dyn — Dyn — [Char]
5 + - — 4+ — Bool — Dyn — (Int—Int) — [[Char]] — Dyn — Int — [Char]
6 - —+ + + X
7 ++ + -+ X
8 ++ - - - X

Fig. 1. Types for a sample of the migration space for the rowAtI function. The second column contains a
sequence of + and — symbols, indicating whether the Dyn annotation is kept or removed, respectively, for
each of the five parameters annotated with Dyn in rowAtI. For example, for program 2, all parameters except
fixed keep their Dyn annotations. The X entries denote that the corresponding program is ill typed.

need to type two programs: one where i is static and one where i is dynamic. Observe that the two
typing processes differ only slightly. Of the three let-bound variables, only the type of the second
(row) is affected by whether i is static or dynamic. The typing of the other two let-bound variables
is identical in both cases. Moreover, since the type of row is determined to be the same regardless
of whether i is static or dynamic, the typing of the body of the let-expression is also identical.

This observation suggests that we should reuse typing results while exploring the migration
space to determine which Dyn annotations can be removed. A systematic way to support this reuse
is provided by variational typing [Chen et al. 2012, 2014]. In this paper, we develop a type system
that integrates gradual types [Siek and Taha 2006] and variational types [Chen et al. 2014] to
support reuse when typing the migration space. This type system supports efficiently typing the
entire migration space, in roughly linear time, despite the presence of type errors.

After typing the migration space, we want to find the point in that space that is most static.
Although the number of results to be considered is large, this step can be made efficient by exploiting
several of relationships between the resulting types. To illustrate these relationships, we list a
subset of the migration space for the rowAtI example and their corresponding types in Figure 1.

The first observation is that some parameters, whether they are static or dynamic, do not affect
the type correctness of the program. In the example, the 3rd and 5th parameters (table and i,
respectively) are examples of such parameters. Given this knowledge and the fact that program 3
is well typed, we can deduce that program 2 is also well typed since they differ only in the Dyn
annotations of the 3rd and 5th parameters. Similarly, given that program 8 is type incorrect, we
can deduce that program 7 is also type incorrect for the same reason.

The second observation is that if a program is well typed after removing Dyn annotations from a
set of parameters P, then (1) removing Dyn annotations from a subset of P will also yield a well-
typed program (this corresponds to the static gradual guarantees of Siek et al. [2015]), and (2) the
program with all Dyn annotations removed from P is the most statically typed of these programs.
For example, program 3 has a more static type than program 2, which in turn has a more static
type than program 1. Similarly, this relation holds for the sequence of programs 5, 4, and 1. Note
that the number of removed Dyn annotations does not provide the same ordering. For example,
program 3 removes more Dyn annotations than program 4, but program 4 has a more static type.

The third observation is that, if removing all Dyn annotations for a set of parameters causes a
type error, then removing the Dyn annotations for any superset of those parameters must also cause
a type error. For example, given that making the 4th parameter (border) static in program 7 causes
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a type error, we can deduce that additionally making the 3rd (table) and 5th (i) parameters static
in program 8 will also cause a type error.

These three observations enable an efficient method for finding the most static program. For
rowAtI, we immediately discover that programs 3 and 5 are most static (neither one is more static
than the other). In this case, we can either pick one of the results or have a programmer specify
the preferable program. In Section 5, we show that these three observations hold for arbitrary
programs, which allows us to develop an efficient method for finding desired programs in general.

We make the following contributions in this paper:

(1) In Section 1.1, we identify three questions, Q1 through Q3, for migrating gradual program to
fully harness the benefits of gradual typing.

(2) In Section 4, we present a type system that integrates gradual types [Siek and Taha 2006],
variational types [Chen et al. 2014], and error tolerant typing [Chen et al. 2012]. The type
system is correct and efficiently types the whole migration space.

(3) In Section 5, we investigate the relationship between different candidate migrations and
develop a method for computing the most static migrations.

(4) In Sections 6 and 7, we generate and solve constraints to provide type inference for migrational
typing, and prove that the constraint solving algorithm is correct.

(5) In Section 8 we describe extensions to migrational typing to answer all of the questions
outlined in Section 1.1, and to support additional common language features.

(6) In Section 9, we study the performance of our implementation by applying it to synthesized
programs. The result shows that our approach scales linearly with program size.

To improve readability, the following table summarizes where important terms and operations
are introduced. In the “F | P” column, F i and P i are shorthands for Figure i and Page i, respectively.

Term Notation F|P Operation Notation F|P
static types T F3 selection L-]a1 P7
gradual types G F3 compatibility (M) x F4
variational types Vv F3 constrained compatibility (M) =, F5
migrational types M F3 constrained operation (M) opr F5
statifier 1) F2 better ordering (G) < P15
variational statifier Q F3 more static ordering (G) c P15
choices d(, P7 stricter ordering (5) > P16
decisions/eliminators & P 7/P 16 | less defined ordering (i) < Fo
valid eliminators lokd P16 pattern meet (i) ® P19
typing pattern m, T,L F5

2 BACKGROUND AND PREPARATION

In this section, we briefly introduce two areas of previous work that our type system for migrating
gradual types builds on. In Section 2.1, we present a simple gradually typed language that represents
the starting point for our work. This language is adapted from Garcia and Cimini [2015], but includes
some minor differences to set up the presentation in Section 4. In Section 2.2, we introduce the
concept of variational typing [Chen et al. 2014], which is the key technique that allows us to
efficiently type the entire migration space.

2.1 Gradual Typing

Gradual typing allows the interoperability of statically typed and dynamically typed code. The
original formalization by Siek and Taha [2006] defined gradual typing for a simply typed lambda
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Syntax:
Expressions e == c|x|Ax.e|Ax:Dyn.e|ee]if etheneelsee
Static types T 2= yla|T->T
Gradualtypes G == y|a|G—G|Dyn

-
cisof typey x:GeT 0T, x> Treee:G

CoN —— VAR —M8M ABs

w;Fl—Gcc:y ;T kgex: G w;kac/lx.e:T—>G

ABsDYN App

;T,x = w(x) rgece: G ;T krgee : G ;T koo ey : G dom (G) ~ G’
;T ke Ax : Dyn.e : w(x) > G’ ;T koo e; e 2 cod (G)

(w;T ko€ : Gi)i:l"3 Bool ~ Gy

IF
w;T koo if e; then e, else e3 : G, M1 G3
Gradual type consistency:
C1 C2 C3 ca G ~ Gz Gz ~ G2
G~G G~Dyn Dyn~G G11—>Glg~621—>G22

Auxiliary definitions:

dom (Gy — Gy) = G, DynmG=G
dom (Dyn) = Dyn Gnbyn=G
GnG=aG

cod (G1 — Gy) =G,
cod (Dyn) = Dyn G11 = G12 MGy = Gz = (G11 M Ga1) =(G12 M Gyz)

Fig. 2. Syntax and type system of ITGL, an implicitly typed gradual language. The operations dom, cod, and
M are undefined for cases that are not listed here.

calculus extended with dynamic types. Siek and Vachharajani [2008] and Garcia and Cimini [2015]
further investigated gradual typing in the presence of type inference.

In this paper, we consider the migration of programs in implicitly typed gradual languages. In
Figure 2, we present the syntax and type system of one such language, ITGL, which is adapted
from Garcia and Cimini [2015] and forms the basis for this work. In the syntax, ¢ ranges over
constant values, x over variables, y over constant types, and « over type variables. There are two
cases for abstraction expressions, one where the parameter is annotated by Dyn and one where it is
not. The rest of the cases are standard. The type system will be explained below.

The presentation of ITGL in Figure 2 differs from the original in Garcia and Cimini [2015] in two
ways. First, our syntax is more restrictive: we omit a case for explicit type ascription of expressions
and we do not allow arbitrary type annotations on abstraction parameters. We also don’t consider
let-polymorphism here. These restrictions are made to simplify our formalization later, but we show
in Section 8 how they can be lifted. Second, the typing rules are parameterized by a statifier, w,
which is used in the full migrational type system later (Section 4). The statifier specifies what static
types to assign to parameters whose Dyn annotations will be removed. For simplicity, we assume
parameters have unique names. In the type system as defined in Figure 2, w is always empty and
w(x) = Dyn for any parameter x, corresponding to the type system in Garcia and Cimini [2015].
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In the type system for ITGL in Figure 2, the typing rules for constants and variables are standard.
There are two rules for abstractions, Ass for unannotated parameters which must have static types,
and AssDyn for annotated parameters which may have dynamic types. Typing applications is tricky
since dynamically typed arguments can be passed to functions with statically typed parameters
and vice versa. For example, assuming the function, succ, has static type Int — Int, both of the
following programs in our Haskell-like notation should be accepted by gradual typing.
inc (num::Dyn) = succ num
foo (f::Dyn) = f True
The Arp rule accommodates this with the help of a consistency relation, ~, that dictates when two
unequal types are compatible with each other. An application is well typed if the domain of the LHS
(i.e. the parameter type) is consistent with the RHS, and the type of the application is the codomain
of LHS. The auxiliary functions dom and cod return the domain and codomain of a function type,
respectively, or Dyn for a dynamic type (reflecting the fact that Dyn is equivalent to Dyn — Dyn).

The gradual type consistency relation is defined in Figure 2 by four rules: C1 defines that
consistency is reflexive, C2 and C3 define that a dynamic type is consistent with any type, and C4
defines that two functions types are consistent if their respective argument and return types are
consistent. As a result, Int — Int ~ Int — Dyn but not Int — Int ~ Bool — Dyn, since the argument
types are not consistent in the latter case. Note that the consistency relation is not transitive. Due
to C2 and C3, transitivity would lead every static type to be consistent with every other static type,
which is clearly undesirable.

Typing conditional expressions relies on the meet operation, I, on gradual types. Intuitively,
meet chooses the more static of two base types when one is Dyn. For two equal static types, meet is
idempotent. For two function types, meet is applied recursively to their respective argument and
return types. The meet operation helps assign types to conditionals when the two branches might
not have an identical type but still have consistent types. Intuitively, meet favors the type of the
more static branch of the conditional expression.

2.2 Variational Typing

Variational typing [Chen et al. 2012, 2014] enables efficiently inferring types for variational programs.
A variational program represents many different variant programs that share some parts amongst
each other and which can each be generated through a static process of selection.

The theoretical foundation for variational typing is the choice calculus [Erwig and Walkingshaw
2011], a formal language for representing variational programs. The essence of the choice calculus
is that static variability in programs can be locally captured in variation points called choices, as
demonstrated by the following example.

vfun = A(succ,even) 1

This program contains a choice named A with two alternatives, succ and even. We write | ey ; to
indicate the selection of the ith alternative of each choice named d in e. So, [vfun]a.; yields the
program succ 1and |vfun]4 , yields even 1. We call d.i a selector and use s to range over selectors.

A decision is a set of selectors; we use § to range over decisions. The elimination of choices
extends naturally to decisions by selecting with each selector in the decision. An expression e is
called plain if it does not contain any choices and is called variational if it does contain choices. A
plain expression obtained by eliminating all choices in a variational expression is called a variant.
For example, succ 1 is a plain expression and a variant of the variational expression vfun.

A variational expression may contain several choices. Choices with the same name are syn-
chronized and independent otherwise. For example, the variational expression A(succ, even) A(2,3)
has two variants, succ 2 and even 3, obtained by the decisions {A.1} and {A.2}, respectively. The
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program succ 3 cannot be obtained through selection and so is not a variant of this expression.
On the other hand, the variational expression A(succ, even) B(2,3) has four variants, and we can
obtain the variant succ 3 with the decision {A.1, B.2}.

In general, an expression with n distinct choice names can be configured in 2" different ways. Since
variational programs can easily contain hundreds or thousands of independent choice names [Apel
et al. 2016], checking the type correctness of all variants is intractable by a brute-force strategy
of generating all of the variants and typing each one individually [Thiim et al. 2014]. Variational
typing solves this problem by sharing the typing process across all variants, which is achieved by
defining and reasoning about variational types.

Variational types are types extended with choices. All concepts and operations on variational
expressions carry over to variational types. It is natural to assign variational types to variational ex-
pressions. For example, A(succ, even) has type A(Int — Int, Int — Bool). Similar to gradual typing,
typing applications in the presence of variation is complicated by the fact that “compatible” types
may not be syntactically equal. In particular, (1) the LHS is traditionally expected to be a function
type but in variational typing may be a (nested) choice of function types, and (2) when checking
whether the type of the argument matches the type of the parameter, we must take into account
that either or both may be variational. For example, the type of the function on the LHS of vfun is
A(Int — Int, Int — Bool), which is not a function type directly, but both variants of vfun, succ 1
and even 1, are well typed.

Typing applications is supported in variational typing through the definition of a type equivalence
relation [Chen et al. 2014], which specifies when a type can be transformed into another without
affecting its semantics. The semantics of a variational type maps decisions to the variant plain types
obtained by selecting from the type using the decision. For example, A(Int — Int, Int — Bool),
A(Int, Int) = A(Int,Bool), and Int — A(Int,Bool) are all equivalent because selecting from each
of them with {A.1} yields the same type Int — Int and selecting from each of them with {A.2}
yields the same type Int — Bool. As a result, we can say that vfun has the type Int — A(Int,Bool),
which is a function type with the argument type Int matching the type of 1. We can thus assign
the type Vyfun = A(Int,Bool) to vfun.

An important result of variational typing is that choice elimination preserves typing. More
specifically, if e has the type V, then |e|s has the type |V ]s for any decision . For example,
[vfun]a.; yields succ 1, which has the type Int, the same as [ Vyfun]a.1. An implication of this result
is that the type of any variant can be easily obtained by making an appropriate selection into the
result type of the variational program. Another important result of variational typing is that it is
significantly faster than the brute-force approach.

3 ROAD MAP TO MIGRATING GRADUAL TYPES

In Section 1.1, we argued that the complexity of the tasks implied by the questions Q1-Q3, involving
the migration of gradual programs, is exponential. In Section 2.2, we have shown that variational
typing can efficiently type a set of similar programs. A main idea of this paper is to reduce the
problem of typing the migration space to variational typing. Specifically, we assign each parameter
with a Dyn annotation a choice type whose the first alternative is a Dyn and whose second alternative
is a static type. Consider, for example, the following function widthv that represents the variationally
typed version of the function width (also shown below) for computing the table width in rowAtI.

width (fixed::Dyn) (widthFunc::Dyn) = if fixed then widthFunc fixed else widthFunc 5

widthV (fixed::A{Dyn,Bool)) (widthFunc::B{Dyn,Int— Int)) =
if fixed then widthFunc fixed else widthFunc 5
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The function widthV encodes all four possible migrations of width. If Vi 4thy is the type of widthv,
then | Vyidthvl{a.1,B.1} is the type for width with no Dyn annotations removed, | Vyidthvl{a.2,B.1} is
the type that replaces Dyn with Bool for fixed and keeps Dyn for widthFunc, [ Viyidthvlia.1,B.2) is the
type that keeps Dyn for fixed but replaces Dyn with Int — Int for widthFunc, and | Vyidthvl{a.2,B.2)
is the type that removes both Dyn annotations.

In order to successfully employ variational typing to improve the performance of migrational
typing, several technical challenges must be addressed.

C1. In the presence of dynamic and variational types, we need to combine the type equivalence
relation and the consistency relation, which we refer to as the compatibility relation. After
introducing the syntax of the migrational type system in Section 4.1, we address this problem
in Section 4.2.

C2. In general, some variants of the variational program that encodes the migration space may
contain type errors. We need the typing process to continue even in the presence of type
errors to determine the types of all variants. In Section 4.3, we address this problem and give
a declarative specification of our type system.

C3. In widthv, we explicitly assigned static types to each parameter. One may wonder whether
these are the best types to assign. Maybe other static types could improve the typing result
and produce more general types or fewer type errors. After presenting the typing rules
in Section 4.4, we prove in Section 4.5 that in our type system, there exists a best typing
derivation that contains the fewest errors and yields most static and general result types.

C4. With the best migrational typing, we have to determine the combination of Dyn removals that
makes the program as static as possible. This may require the comparison of an exponential
number of result types for the migration space. In Section 5, we develop an efficient algorithm
for solving this problem.

C5. In challenge C3 we claimed that a best migrational typing exists, but how do we find it? We
answer this question by solving the type inference problem in Sections 6 and 7.

4 MIGRATIONAL TYPE SYSTEM

This section addresses the challenges C1-C3 from Section 3 to support efficient migrational typing.
After introducing the syntax of types and expressions in Section 4.1, the compatibility relation
is defined in Section 4.2, addressing C1. A pattern-constrained typing relation is introduced in
Section 4.3 and defined via typing rules in Section 4.4, addressing C2. Finally, the properties of this
type system are discussed in Section 4.5, addressing C3.

4.1 Syntax

The syntax of expressions, types, and environments is given in Figure 3. The metavariables we
use to range over the relevant symbol domains are listed at the top figure. For type variables, we
typically use f to denote the result type of a function application during constraint generation and
k to denote fresh type variables generated during constraint generation and solving (see Sections 6
and 7). For choice names, we typically use A and B to denote arbitrary specific choices in examples
and d as a generic metavariable to range over choices names in definitions.

The syntax of expressions, static types, and gradual types are repeated from Section 2.1. To this,
we add variational types, which are static types extended with choices, and migrational types,
which are gradual types extended with choices. Note that each top-level parameter is assigned a
restricted form of migrational type, which is either a fully static type, a Dyn, or a choice of restricted
migrational types; however, the more general syntax defined in Figure 3 is needed during the typing
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Term variables x,y, z Value constants ¢ Choice names A B, d
Type variables «, f, Type constants y Program locations [
Expressions e == c|x|Ax.e|Ax:Dyn.e|ee]|if etheneelsee
Static types T 2= yla|T->T
Gradual types G == y|la|G—G]|Dyn
Variational types V = yla|V->V]dV,V
Migrational types M == y|a|M—-M|Dyn|dM M
Type environment T’ 2|, x> M
Substitution 0 = 2|0,a—V
Variational statifier Q = @|Q,x+—V

Fig. 3. Syntax of expressions, types, and environments.

process. In Section 8.2, we extend our framework to allow an arbitrary mix of Dyn and static types
for top-level parameters.

The type system relies on three kinds of environments: a type environment maps variables to
migrational types, a substitution maps type variables to variational types, and a variational statifier
maps variables to variational types. As described in Section 2.1, a statifier w records one way of
making a program more static (by removing some subset of Dyn annotations). A variational statifier
Q instead compactly encodes all possible statifiers for an expression. Since we want migration in
our formalization to assign static types to parameters whose Dyn annotations are removed, Q maps
parameters to variational types, but not migrational types.

Substitutions map type variables to variational types rather than migrational types since substi-
tuting dynamic types is unsound. For example, suppose we have f = @ - a — a@ — a and x — Dyn
in T'. Now, when typing the application f x, we will substitute {a + Dyn}, yielding Dyn — Dyn — Dyn
as the type of f x. However, this implies that f x 2 True is well typed, even though this violates
the initial static type of f. Type substitution, written as (M), is defined in the conventional way.

4.2 Type Compatibility

In the rest of this section, we use the widthV example (Section 3) to motivate the technical de-
velopment of the migration type system and investigate the properties of the type system. The
motivating goal is to type the condition fixed and the application widthFunc 5 in widthV.

According to the annotation of widthV, the parameter fixed has type A(Dyn,Bool). Since fixed is
used as a condition, it should have type Bool. Since both alternatives of the choice are consistent with
Bool, this use should be considered well typed. The variable widthFunc has type B(Dyn, Int — Int),
which can be considered equivalent to B{Dyn, Int) — B(Dyn, Int) (in Section 4.4, we show how to
achieve this formally with dom and cod). The constant 5 has type Int. Since both alternatives of
B(Dyn, Int) are consistent with Int, widthFunc 5 should also be considered well typed.

These two examples demonstrate that we need a notion of compatibility between two migrational
types to express that all of their variants are consistent. Intuitively, the compatibility relation
incorporates both type equivalence for variational types [Chen et al. 2014] and type consistency for
gradual types [Siek and Taha 2006]. The definition of compatibility (M; ~ M) is given in Figure 4.
The relation is reflexive (T1) and symmetric (T2). The relation is transitive (T3) in the case that no
Dyns are present, which we indicate by using the metavariable for variational types (V).

The rules T4 and T5 specify compatibility under choice type simplification. Rule T4 states that
a choice with identical alternatives is compatible with its alternatives. Rule T5 says that two
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T1 Ml ~ Mz V1 =~ Vz Vz = V3
T2 —— T3
M=~M M, = M, VizVs
T4 dM,M) =M T5 d{My, My) =~ d([Mila.1, [ M2la.z
M; = M, My = M
CoNg —— ™ DyNINTRO ———
M[M;] ~ M[M,] M; =~ Mj[Dyn]

Fig. 4. Rules defining type compatibility

types are compatible under elimination of dead alternatives. Note that the operation [M;]4 1 in
the first alternative of d replaces each occurrence of a d choice in M; with its first alternative
and thus removes the second alternative, which is unreachable due to choice synchronization.
For example, A(A(Int,Bool), Int) ~ A(Int, Int), since Bool is unreachable in A(A(Int,Bool), Int)
because selection with either A.1 or A.2 yields Int. A corresponding relationship holds for | M;]4 2.

The rule Conc defines that compatibility is a congruence relation. This rule allows us to replace
a type M; in a context M[] with a compatible type M,. For example, since Bool ~ B{Bool, Bool),
we have A(Int,Bool) ~ A(Int, B(Bool,Bool)) if we view A(Int, []) as the context. Finally, the rule
DynINTRO states that if two types are compatible, replacing part of one type with Dyn preserves
compatibility. This rule holds because Dyn is compatible with anything. By choosing M to be an
empty context, this rule encodes M = Dyn and thus Dyn = M through T2.

To illustrate compatibility, we show A(Int,Dyn) ~ B(Dyn,Int). This should hold, since both
choice types only produce Int or Dyn, which are consistent with each other and themselves. We can
start by A(Int, Int) ~ Int via T4 and Int & B(Int, Int) via T4 and T2. We can then use T3 to derive
A(Int, Int) = B(Int, Int). After that, we can apply DynINTRO to replace the first Int in B with a
Dyn, apply T2, and apply another DynINTRO to replace the second Int in the choice A with a Dyn,
yielding B(Dyn, Int) ~ A(Int,Dyn). By applying T2 one more time, we can derive the original goal.

We demonstrate the correctness of ~ by establishing its connection with type equivalence (=)
from [Chen et al. 2014] and type consistency (~) from [Siek and Taha 2006] through the following
theorems. In the theorems we write [M|s € V and |[M]s € G to denote that [M]s yields a
variational type (no Dyn) and a gradual type (no variations), respectively. The first two theorems
state the soundness of =; the third theorem states its completeness.

THEOREM 4.1. IfM; =~ My, then V5. [Mils € VA [Myls €V = [ Mi]s = [ Mz]s
THEOREM 4.2. If My =~ M, then V.| My]s € GA [ Mzls € G= [Myls ~ [Mz]s.
THEOREM 4.3. V8I_M1J5 = | Myls V IMils ~ [Mals = My = My

Proor. All theorems can be proved by structural induction over these three relations. O

With =, we can formalize the application rule as follows.

ke : M Ikey: M dom (My) = M,
I+ e ey : cod(Mp)

Based on this rule and ~, we can calculate the type B(Dyn, Int) for widthFunc 5.
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mu=L|T|dm,x

Vé.lnls =T = [Mils = | Mz]s Vé.lmls =T = [Tls+ lels : [M]s
My =,; M, T T're: M
Vé.lrls =T = op(LM1]s) is defined Vé.lrls = T = [Mils op LMz]s is defined
op, (M) is defined M, op,, M, is defined

Fig. 5. Patterns and pattern-constrained relations and operations. op can be any unary or binary operation
on types. The is defined stipulations in the premise mean that the operations are defined on their input types,
as specified in Figure 2. The is defined in the conclusion indicates that the operation can be safely carried out
on the migrational type when constricted by 7.

4.3 Pattern-Constrained Judgments

The goal in this subsection is to type the application widthFunc fixed in widthv, thus solving
challenge C2 for migrational typing. According to the type annotation of widthv, widthFunc has
type B{Dyn, Int — Int), and fixed has type A(Dyn, Bool). Since it is impossible to derive B{Dyn, Int) ~
A(Dyn, Bool) (where the former is the domain of the function type and the latter is the type of the
argument), the application rule from Section 4.2 fails to assign a type to widthFunc fixed. If we
terminate the typing process, we will not be able to compute any type for widthv, failing to provide
support for program migration.

While the compatibility check between A(Dyn, Int) and B(Dyn,Bool) fails, we observe that Dyn,
the first alternative of A, is compatible with B(Dyn,Bool) and Int, the second alternative of A is
compatible with Dyn, the first alternative of B. This suggests that we should describe compatibility
at a more fine-grained level than simply saying whether two migrational types are compatible or
not. We employ the idea of typing pattern (r) [Chen et al. 2012] to formalize this idea (see Figure 5).
The patterns T and L denote that the compatibility check succeeds and fails, respectively, and the
choice pattern d(ry, 7r2) describes the success or failure of compatibility checking within the context
of choice d. We can now express the partial compatibility between A(Dyn, Int) and B(Dyn, Bool) by
the typing pattern A(T, B(T, 1)).

In Figure 5 we define M; =, M, such that M; and M, are compatible for all variants of x
that are T. In contrast, there is no requirement between M; and M, at other places. For example,
Int =4¢1, 1) A(Bool,Int), since Int = Int at A.2 (and since we don’t care that Int and Bool are
incompatible at A.1).

The idea of constraining compatibility with patterns is quite powerful. We can even generalize it
to typing judgments. Specifically, the typing relation 7; T + e : M holds if [T']s + |els : [M]s for all
d such that [7]s = T. The advantage is that we don’t need to worry about the typing in variants
where 7 has Ls. That also means that we should not use (or trust) the typing result at variants
where 7 has Ls. We formally define this relation in Figure 5. For example, since I' 1 : Int we have
A(T, L);T F A(1,True) : Int, even though True does not have the type Int. We can also generalize
this idea to other operations, such as dom and cod, again defined in Figure 5.

Based on the idea of pattern-constrained judgments, we can define the following rule for typing
function applications (where dom and cod will be formally defined in Figure 6):

T ke M ;T ke : My dom,,(Ml) X M,
;T + e1 es : cod, (M)
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T ke: M|Q

cisof typey x> MeT
CoN ——— VAR ——M8MM
T Tre:y|l@ mlex:M|@
ml,x—>Vike:M|Q T, x> dDyn,V)re: M|Q d fresh
ABs ABsDyYN
T FAxe: VoM|Q ;T F Ax : Dyn.e : d(Dyn, V) > M| QU {x > V}
ol ke s M| @ T bkey: My | Qy dom; (M) ~; M,
Arp
;T Fepes:cody (M) Q1 UQ,
(ﬂ;Fl—ej Mlej)j13 Bool =, M1 M2 7 M3
Ir
71';I“I-ife1 thenez elseegzMz My M3 | QU QU Q3
mTre: M|Q TS M =, M;
WEAKEN
a;; T ke : M| Q
dom (M; —» M) = M; cod (M; = M;) = M,
dom (Dyn) = Dyn cod (Dyn) = Dyn
dom (d(My, M3)) = d(dom (M), dom (M)) cod (d(My, M3)) = d{cod (M), cod (M)
MnM=M My — M1z M My — Maz = (Mg M May) —(Myz 1 Mao)
DynMM=M dMy,My) MM =d(M; MM, M, MM
MnmMDyn=M GndM;,My)=d(GNM;,GN M,
T < T Ty < 713 m < Ty 1 R Ty
T<T 1< m < 73 n[m] < 7w T < 1My

Fig. 6. Typing rules. The operations dom, cod, and M are undefined for cases that are not listed here. The
operations domy, cody,;, and My, can be obtained from Figure 5.

With this new rule, which accounts for migrational types with type errors, we can revisit the
problem of typing widthFunc fixed. Let & = A(T, B(T, L)). Since widthFunc > A(Dyn, Int — Int)
belongs to I', we have ;T + widthFunc : M, where M = A(Dyn, Int — Int). Similarly, we have
7;T + fixed : B{Dyn,Bool). Next, dom, (M) = A(Dyn, Int). As we have seen earlier, A(Dyn, Int) =,
B(Dyn,Bool). Thus, all the premises of the application rule are satisfied, and we can derive
;T F widthFunc fixed : A(Dyn, Int). Based on the result pattern, we should not trust the typing
information at the variant {A.2, B.2} since |7 |{a.2B.2) = L.

While pattern-constrained judgments simplify the presentation, there is still the challenge of
how to find appropriate patterns, which are inputs to the typing relation. However, the pattern
is determined by the typing constraints among the subexpressions. For example, the type of the
argument must match the argument type of the function. The reason we use A(T,B(T, L)) in
typing widthFunc fixed is that the application is ill typed at {A.2, B.2}. Therefore, in a language
with type inference, the pattern will be computed during the inference process (Sections 6 and 7).

4.4 Typing Rules

The typing rules are shown in Figure 6. They are based on the compatibility relation (Section 4.2)
and pattern-constrained judgments (Section 4.3). The typing judgment has the form ;T e : M| Q
and expresses that e has type M under environment I' constrained by the pattern z. The mapping
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Q collects the types that will be assigned to parameters if their Dyns are removed. We assume that
parameter names from different functions are uniquely identified in the domain of Q. The goal
of Q is to connect the typing rules here with those from Figure 2. We discuss this aspect in more
detail in Section 4.5 where we investigate the properties of the type system.

The rules for constants (Con) and variables (Var) are straightforward. They hold for arbitrary
patterns 7 because constants and bound variables are always well typed. Moreover, since the types
remain unchanged, Q is always @. The rule Ass for an abstraction whose parameter is not annotated
with Dyn is conventional. In rule ABsDyn for an abstraction whose parameter is annotated with Dyn,
we assign the parameter a choice type where the first alternative is Dyn implying that the Dyn is kept
and the second alternative can be any type for the body to be well typed. This change information
is recorded by extending the Q returned from typing the body of the abstraction.

The Arp rule for applications is similar to the one in Section 4.3 except that we must combine the
variational statifiers from typing the two subexpressions. The rule Ir types conditionals; it relies on
an extended version of the meet operation () from Figure 2 that also handles choices.

The WEeakeN rule states that if a typing pattern can be used to derive a typing, then we can use a
less-defined pattern to derive the same typing. The operation =,, in the premise specifies that its
arguments must be the same for places where 71 has Ts. A typing pattern 7 is less defined than m,
if it contains L values at least everywhere 7, does. The purpose of Weaxken is to make the typing
process compositional. Without this rule, the whole typing derivation must use the same 7. With
this rule, we can use different patterns for typing the children of a construct but adjust them to use
the same pattern when typing the construct itself.

The less-defined relation on patterns, written as 7; < 7, is formally defined in Figure 6. The first
two rules defines that any pattern is less defined than T and more defined than L. The third rule
defines that the relation is transitive. In the last two rules, we reuse the machineries defined for
types to simplify the definition of the relation. The fourth rule states that the less-defined relation
is a congruence. The fifth rule states that two compatible patterns satisfy the less-defined relation.
Since a pattern cannot contain Dyn, m; = m, implies that 7; and 7, are equivalent.

4.5 Properties

This subsection investigates the properties of the type system. Specifically, we consider the rela-
tionship of the rules for migrational typing in Figure 6 and the original rules for gradual typing in
Figure 2. We also consider the relation between different typing derivations ;T e : M | Q when
different s and Ms are used for the same I" and e, which addresses challenge C3 from Section 3.
We start by introducing some notation. We say a decision § is complete for an expression e if it
contains d.1 or d.2 for each d created while typing e. For 7, a decision § is complete if | z]s yields
T or L. Note that a complete decision for 7 may not be complete for the expression since patterns
compactly represent where typing succeeds and where it fails. For instance, while typing rowAtI,
we created five choices A, B, D, E, and F for the dynamic parameters from left to right, respectively.
Thus, each complete decision for rowAtI contains five selectors. One typing pattern for rowAtI is:

g =AE T,L,BET,L,1))

Both {A.1,E.1} and {A.2, B.2} are complete decisions for z, but not for rowAtI. In the case that
the whole migration space for an expression is well typed, then the pattern is simply T and the
complete decision is { }. We use the notation §|, to collect all of choice names d such thatd.2 € §.

There is a close relation among 8, Q (variational statifier), and w (statifier). Specifically, during
typing, for each dynamic parameter x, Q includes a mapping x — V, where V is the type that will
be assigned to the parameter once its Dyn annotation is removed. Therefore, given Q and §, we can
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generate a statifier as follows, where che(x) returns the name of the choice created for x.
Q) ={x |V]s| x>V e QA chc(x) € 5|5}
For example, let
Q. = {fixed  Bool,widthFunc + Int — Int} 6, = {A.2,B.1}

then Q,(8,) = {fixed — Bool}.
The notation G; C G, means that G, is more static than Gy; it is defined as follows.

G CGs Gy E Gy
T]ETZ DynEG Gl—)G2;G3—>G4

We further say that G; is better than Gy, written as G; < Gy, if G, is strictly more static than G,
or they are equally static but G, is more general than G;. For example, Dyn = & < Int — Int and
Int = Int < Int—a.

We next demonstrate the correctness of our type system by showing that, at the places where
the typing pattern is valid, it assigns the same types to all the programs in the migration space as
the brute-force approach does.

THEOREM 4.4 (Dyn REMOVAL SOUNDESS). If ;T Fe: M| Q, thenV¥d.ln|s = T = Q(5);T Fgce:
[M]s.

This theorem states that, for any removal of Dyn annotations, the typing result encoded in migra-
tional typing is the same as by typing the program with ITGL. For example, for 7, = A(T,B(T, L))
we get ;' F width : M, | Q,, where M, = A(Dyn,Bool) — B(Dyn, Int — Int) — B(Dyn, Int) and
Q, is as defined earlier. We can verify Q,(8,);T Fgc width : Bool = Dyn —Dyn and [M,]s, =
Bool — Dyn — Dyn, where §, is as defined earlier.

Conversely, any removal of Dyn that yields a well-typed program is encoded in some typing
derivation in migrational typing, as expressed in the following theorem.

THEOREM 4.5 (Dyn REMOVAL COMPLETENESS). If w;I Fgc e : G, then there exists some typing
;T Fe: M| Q such that [IM]s = G and Q(5) = w for some §.

Theorem 4.4 can be proved by structural induction over the rules in Figure 6, and Theorem 4.5
can be proved by induction over the rules in Figure 2.

Next, we investigate the relation between different typings that can be derived for the same
expression and environment. We observe that different typings can be combined to make the result
as correct as possible (that is, to minimize Ls in the result pattern) and as good as possible (that
is, to make types more static and more general). Note that the typing process records all dynamic
parameters and corresponding variational types in Q. As a result, the domain of Qs in different
typings are the same.

LEmMA 4.6. If ;T Fe: M| Qandmy; T+ e : M| Q, then there is some typing ;T F e : M| Q such
that my < mand my < 7.

LEmMMA 4.7. If m;T ke : My | Qp and ;T + e : My | Qj, then there is some typing m;T +e: M| Q
such thatV¥é.|mls = T = [Mils < [Mls A LMals < [Mls A Q1(8) < Q) A Q(6) < Q(6).

In Lemma 4.7, we write w; < w; if they share the same domain and for any x in the domain
w1(x) < wy(x). The properties captured by the previous two lemmas can be combined to show that
for any expression there exists a typing that has the most defined pattern and the most static and
general result type. W