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Gradual typing allows programs to enjoy the benefits of both static typing and dynamic typing. While it is often
desirable to migrate a program from more dynamically-typed to more statically-typed or vice versa, gradual
typing itself does not provide a way to facilitate this migration. This places the burden on programmers who
have to manually add or remove type annotations. Besides the general challenge of adding type annotations to
dynamically typed code, there are subtle interactions between these annotations in gradually typed code that
exacerbate the situation. For example, to migrate a program to be as static as possible, in general, all possible
combinations of adding or removing type annotations from parameters must be tried out and compared.

In this paper, we address this problem by developing migrational typing, which efficiently types all possible
ways of adding or removing type annotations from a gradually typed program. The typing result supports
automatically migrating a program to be as static as possible, or introducing the least number of dynamic
types necessary to remove a type error. The approach can be extended to support user-defined criteria about
which annotations to modify. We have implemented migrational typing and evaluated it on large programs.
The results show that migrational typing scales linearly with the size of the program and takes only 2ś4 times
longer than plain gradual typing.
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1 INTRODUCTION

Gradual typing promises to combine the benefits of static and dynamic typing in a single language.
In the original formulation by Siek and Taha [2006], the goal is to bring the documentation and
safety of static typing to a dynamically typed language. In their formalization, function parameters
have dynamic types by default but can be explicitly annotated with static types. The resulting type
system provides the same safety guarantees as static typing for expressions using type-annotated
variables, yet allows the flexibility of dynamic typing for expressions with unannotated variables.

Dually, one can start with a statically typed language with type inference (such as F#, SML, OCaml,
or Haskell) and allow the programmer to add annotations for dynamic types where needed [Garcia
and Cimini 2015; Siek and Vachharajani 2008]. A function parameter can be annotated with Dyn
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(the type of dynamic code) when dynamically typed behavior is needed or when the programmer
is unsure whether all definitions are type-correct but wants to test the runtime behavior.

1.1 Challenges Applying Gradual Typing

By integrating static and dynamic typing, gradual typing not only enjoys the benefits of both
typing disciplines, but also suffers from their respective shortcomings. For example, statically typed
parts of the code have more restricted expressiveness and may contain static type errors that yield
cryptic error messages [Tobin-Hochstadt et al. 2017], while dynamically typed parts of the code
may contain dynamic type errors that are not captured until after the software is deployed. More
interestingly, combining statically and dynamically typed code together can raise new challenges,
for example, Takikawa et al. [2016] address the challenge of performance degradation in sound
gradual typing at the boundaries between statically typed and dynamically typed code.

Therefore, to fully realize the benefits of gradual typing, we also need the ability to navigate along
a program’s dynamic-static typing spectrum, in order to make it more static or more dynamic when
and where the respective strengths of each are desired. Answering the following three questions
will help harness the full power of gradual typing.

Q1. Can we make a gradually typed program as static as possible, to maximize the advantages of
static typing, while maintaining its well-typedness to keep it executable?

Q2. Can we migrate a program to a more static state while keeping some user-indicated parts
dynamic? Such parts may be indicated, for example, to reduce the granularity of boundaries
between static and dynamic code during execution, in order to maintain performance.

Q3. Can we introduce as few dynamics types as possible to migrate an ill-typed program to a
type correct one while still enjoying the benefits of static typing for the well-typed parts?

The answers to these questions are not obvious. Furthermore, if the answers are yes, it is not clear
whether we can implement the operations suggested by the questions efficiently.

We illustrate the challenges regarding Q1 by considering the following program written in
the calculus by Garcia and Cimini [2015] extended with Haskell functions and notations, where
parameters annotated with Dyn have dynamic types and those without annotations are inferred
to have static types. In the rest of the paper, we say these parameters are dynamic and static,
respectively. This program is adapted from van Keeken [2006] for formatting rows of a table
according to a given width by trimming long rows and padding short rows with empty spaces.

rowAtI headOrFoot (fixed::Dyn) (widthFunc::Dyn) (table::Dyn) (border::Dyn) (i::Dyn) =

let widest = maximum (map length table)

row = table !! i

width = if fixed then widthFunc fixed else widthFunc widest

in if headOrFoot

then replicate (width + 2) border

else border ++ take width (row ++ replicate (width-length row) ' ') ++ border

The local variable width represents the width of the table and is computed by the argument
widthFunc, either by applying it to fixed if fixed is true, or to widest, the size of largest row in
the table. The argument border is added to the beginning and end of each row and also used to
generate the header or footer row when the Boolean argument headOrFoot is true. If we bind the
variable tbl to a list of strings, we can then call rowAtI in many ways, such as rowAtI False True

(const 3) tbl "_" 0, rowAtI False False id tbl "_" 1, and rowAtI True False id tbl ’_’ 0.
After some testing, suppose we want to migrate rowAtI to a version that is as static as possible by

removing Dyn annotations. Removing Dyn annotations turns out to be much trickier than we may
expect. First, if we remove all Dyn annotations, then type inference fails for rowAtI since it contains
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multiple static type errors, for example, the then branch requires border to have type Charwhile the
else branch requires it to have type [Char]. Second, if we remove Dyn annotations in a left-to-right
order, we will encounter a type error as soon as the annotation for widthFunc is removed. (In this
paper, we follow the spirit of Garcia and Cimini [2015] to infer static types only.) However, this
does not necessarily indicate that the error was solely caused by widthFunc being statically typed.
In fact, the type error involving widthFunc is due to the interaction with fixed when computing the
value of width. At this point, we can restore the well-typedness of rowAtI by either re-annotating
fixed or widthFunc with Dyn. Unfortunately, we cannot easily gauge which annotation is better for
typing the rest of the function. If we choose to re-annotate fixed, we will encounter another type
error when the Dyn annotation for border is removed. Does this type error go away if we instead
mark fixed as static and widthFunc as dynamic? The easiest way to tell is by trying it out.
The example illustrates that parameters give rise to complicated typing interactions. The type

error caused bymaking one parameter static may be avoided bymaking another parameter dynamic,
or the type error caused by making two parameters static can be fixed by making another dynamic,
and so on. In general, we must examine all possible combinations of static vs. dynamic parameters
to identify a program that is both well typed and as static as possible. We refer to all of the
potential programs produced by adding or removing Dyn annotations as a migration space. We say
a program in the migration space has a most static type if removing any Dyn from the program will
make it ill typed. We call a migration that yields a program with a most static type a most static

migration. Due to the nature of type interactions, the most static type, and thus the most static
migration, is not unique. Since every parameter can be either static or dynamic, the size of the
migration space is exponential in the number of parameters for all functions in the program. For
the program consisting of only rowAtI, which has six parameters, we would need to try out all
26 = 64 combinations to identify the most static migrations.
Questions Q2 and Q3 are similarly difficult for the same underlying reason that the typing of

different parameters are interrelated. This quality of type inference precludes the possibility of a
greedy algorithm that considers each parameter in turn, adding or removing Dyn annotations. In
general, we must conceptually explore all of the possibilities in the migration space.

The challenges posed by migration between more and less static programs may prevent program-
mers from fully realizing the potential of gradual type systems. As evidence for this, the CircleCI
project recently abandoned Typed Clojure mainly because the cost of adding type annotations to
Clojure programs was perceived to exceed the benefits.1 Similarly, Tobin-Hochstadt et al. [2017]
reported that migration of Racket modules to Typed Racked requires too much effort.

1.2 Migrating Gradual Types

In this paper, we address Q1 by: (1) developing a type system that efficiently types the entire
migration space and (2) designing a method to traverse the result of typing the migration space,
calculating which Dyn annotations can be removed. In this paper, we mainly consider the removal

of Dyn annotations to support migrating to a more statically typed program; that is, we make types
more precise [Siek and Taha 2006]. However, in Section 8, we describe how the approach can be
extended to support the addition of Dyn annotations, along with extensions to address Q2 and Q3.

As demonstrated in Section 1.1, in general, finding the most static migration requires exploring
the entire migration space, which is exponential in size. This rules out a simple brute-force approach
that type checks each possibility and compares the results to find the best one.

To illustrate how we can improve on a brute-force search, let us focus on a single parameter, say
i in the rowAtI function from Section 1.1. To decide whether we can remove the Dyn annotation, we

1https://circleci.com/blog/why-were-no-longer-using-core-typed/
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Program Dyn annotations Type for rowAtI

1 + + + + + Bool→ Dyn → Dyn → Dyn → Dyn→ Dyn→ [Char]
2 − + + + + Bool→ Bool→ Dyn → Dyn → Dyn→ Dyn→ [Char]
3 − + − + − Bool→ Bool→ Dyn → [[Char]]→ Dyn→ Int→ [Char]
4 + − + + + Bool→ Dyn → (Int→Int)→ Dyn → Dyn→ Dyn→ [Char]
5 + − − + − Bool→ Dyn → (Int→Int)→ [[Char]]→ Dyn→ Int→ [Char]
6 − − + + + ✗

7 + + + − + ✗

8 + + − − − ✗

Fig. 1. Types for a sample of the migration space for the rowAtI function. The second column contains a

sequence of + and − symbols, indicating whether the Dyn annotation is kept or removed, respectively, for

each of the five parameters annotated with Dyn in rowAtI. For example, for program 2, all parameters except

fixed keep their Dyn annotations. The ✗ entries denote that the corresponding program is ill typed.

need to type two programs: one where i is static and one where i is dynamic. Observe that the two
typing processes differ only slightly. Of the three let-bound variables, only the type of the second
(row) is affected by whether i is static or dynamic. The typing of the other two let-bound variables
is identical in both cases. Moreover, since the type of row is determined to be the same regardless
of whether i is static or dynamic, the typing of the body of the let-expression is also identical.
This observation suggests that we should reuse typing results while exploring the migration

space to determine which Dyn annotations can be removed. A systematic way to support this reuse
is provided by variational typing [Chen et al. 2012, 2014]. In this paper, we develop a type system
that integrates gradual types [Siek and Taha 2006] and variational types [Chen et al. 2014] to
support reuse when typing the migration space. This type system supports efficiently typing the
entire migration space, in roughly linear time, despite the presence of type errors.
After typing the migration space, we want to find the point in that space that is most static.

Although the number of results to be considered is large, this step can be made efficient by exploiting
several of relationships between the resulting types. To illustrate these relationships, we list a
subset of the migration space for the rowAtI example and their corresponding types in Figure 1.

The first observation is that some parameters, whether they are static or dynamic, do not affect
the type correctness of the program. In the example, the 3rd and 5th parameters (table and i,
respectively) are examples of such parameters. Given this knowledge and the fact that program 3
is well typed, we can deduce that program 2 is also well typed since they differ only in the Dyn

annotations of the 3rd and 5th parameters. Similarly, given that program 8 is type incorrect, we
can deduce that program 7 is also type incorrect for the same reason.

The second observation is that if a program is well typed after removing Dyn annotations from a
set of parameters P , then (1) removing Dyn annotations from a subset of P will also yield a well-
typed program (this corresponds to the static gradual guarantees of Siek et al. [2015]), and (2) the
program with all Dyn annotations removed from P is the most statically typed of these programs.
For example, program 3 has a more static type than program 2, which in turn has a more static
type than program 1. Similarly, this relation holds for the sequence of programs 5, 4, and 1. Note
that the number of removed Dyn annotations does not provide the same ordering. For example,
program 3 removes more Dyn annotations than program 4, but program 4 has a more static type.
The third observation is that, if removing all Dyn annotations for a set of parameters causes a

type error, then removing the Dyn annotations for any superset of those parameters must also cause
a type error. For example, given that making the 4th parameter (border) static in program 7 causes
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a type error, we can deduce that additionally making the 3rd (table) and 5th (i) parameters static
in program 8 will also cause a type error.
These three observations enable an efficient method for finding the most static program. For

rowAtI, we immediately discover that programs 3 and 5 are most static (neither one is more static
than the other). In this case, we can either pick one of the results or have a programmer specify
the preferable program. In Section 5, we show that these three observations hold for arbitrary
programs, which allows us to develop an efficient method for finding desired programs in general.
We make the following contributions in this paper:

(1) In Section 1.1, we identify three questions, Q1 through Q3, for migrating gradual program to
fully harness the benefits of gradual typing.

(2) In Section 4, we present a type system that integrates gradual types [Siek and Taha 2006],
variational types [Chen et al. 2014], and error tolerant typing [Chen et al. 2012]. The type
system is correct and efficiently types the whole migration space.

(3) In Section 5, we investigate the relationship between different candidate migrations and
develop a method for computing the most static migrations.

(4) In Sections 6 and 7, we generate and solve constraints to provide type inference for migrational
typing, and prove that the constraint solving algorithm is correct.

(5) In Section 8 we describe extensions to migrational typing to answer all of the questions
outlined in Section 1.1, and to support additional common language features.

(6) In Section 9, we study the performance of our implementation by applying it to synthesized
programs. The result shows that our approach scales linearly with program size.

To improve readability, the following table summarizes where important terms and operations
are introduced. In the łF | Pž column, F i and P i are shorthands for Figure i and Page i , respectively.

Term Notation F | P Operation Notation F | P
static types T F 3 selection ⌊·⌋d .1 P 7
gradual types G F 3 compatibility (M) ≈ F 4
variational types V F 3 constrained compatibility (M) ≈π F 5
migrational types M F 3 constrained operation (M) opπ F 5
statifier ω F 2 better ordering (G) ⪯ P 15
variational statifier Ω F 3 more static ordering (G) ⊑ P 15
choices d⟨, ⟩ P 7 stricter ordering (δ ) ≫ P 16
decisions/eliminators δ P 7/P 16 less defined ordering (π ) ≤ F 6
valid eliminators δv P 16 pattern meet (π ) ⊗ P 19
typing pattern π , ⊤, ⊥ F 5

2 BACKGROUND AND PREPARATION

In this section, we briefly introduce two areas of previous work that our type system for migrating
gradual types builds on. In Section 2.1, we present a simple gradually typed language that represents
the starting point for our work. This language is adapted fromGarcia and Cimini [2015], but includes
some minor differences to set up the presentation in Section 4. In Section 2.2, we introduce the
concept of variational typing [Chen et al. 2014], which is the key technique that allows us to
efficiently type the entire migration space.

2.1 Gradual Typing

Gradual typing allows the interoperability of statically typed and dynamically typed code. The
original formalization by Siek and Taha [2006] defined gradual typing for a simply typed lambda

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 15. Publication date: January 2018.



15:6 John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Syntax:

Expressions e ::= c | x | λx .e | λx : Dyn.e | e e | if e then e else e

Static types T ::= γ | α | T →T

Gradual types G ::= γ | α | G→G | Dyn

Type system: ω; Γ ⊢GC e : G

Con
c is of type γ

ω; Γ ⊢GC c : γ
Var

x : G ∈ Γ

ω; Γ ⊢GC x : G
Abs

ω; Γ,x 7→ T ⊢GC e : G

ω; Γ ⊢GC λx .e : T →G

AbsDyn

ω; Γ,x 7→ ω (x ) ⊢GC e : G ′

ω; Γ ⊢GC λx : Dyn.e : ω (x )→G ′

App

ω; Γ ⊢GC e1 : G ω; Γ ⊢GC e2 : G
′ dom (G ) ∼ G ′

ω; Γ ⊢GC e1 e2 : cod (G )

If
(ω; Γ ⊢GC ei : Gi )

i :1..3
Bool ∼ G1

ω; Γ ⊢GC if e1 then e2 else e3 : G2 ⊓G3

Gradual type consistency:

C1

G ∼ G

C2

G ∼ Dyn

C3

Dyn ∼ G
C4

G11 ∼ G21 G12 ∼ G22

G11→G12 ∼ G21→G22

Auxiliary definitions:

dom (G1→G2) = G1

dom (Dyn) = Dyn

cod (G1→G2) = G2

cod (Dyn) = Dyn

Dyn ⊓G = G

G ⊓ Dyn = G

G ⊓G = G

G11→G12 ⊓G21→G22 = (G11 ⊓G21)→(G12 ⊓G22)

Fig. 2. Syntax and type system of ITGL, an implicitly typed gradual language. The operations dom, cod, and

⊓ are undefined for cases that are not listed here.

calculus extended with dynamic types. Siek and Vachharajani [2008] and Garcia and Cimini [2015]
further investigated gradual typing in the presence of type inference.
In this paper, we consider the migration of programs in implicitly typed gradual languages. In

Figure 2, we present the syntax and type system of one such language, ITGL, which is adapted
from Garcia and Cimini [2015] and forms the basis for this work. In the syntax, c ranges over
constant values, x over variables, γ over constant types, and α over type variables. There are two
cases for abstraction expressions, one where the parameter is annotated by Dyn and one where it is
not. The rest of the cases are standard. The type system will be explained below.

The presentation of ITGL in Figure 2 differs from the original in Garcia and Cimini [2015] in two
ways. First, our syntax is more restrictive: we omit a case for explicit type ascription of expressions
and we do not allow arbitrary type annotations on abstraction parameters. We also don’t consider
let-polymorphism here. These restrictions are made to simplify our formalization later, but we show
in Section 8 how they can be lifted. Second, the typing rules are parameterized by a statifier, ω,
which is used in the full migrational type system later (Section 4). The statifier specifies what static
types to assign to parameters whose Dyn annotations will be removed. For simplicity, we assume
parameters have unique names. In the type system as defined in Figure 2, ω is always empty and
ω (x ) = Dyn for any parameter x , corresponding to the type system in Garcia and Cimini [2015].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 15. Publication date: January 2018.



Migrating Gradual Types 15:7

In the type system for ITGL in Figure 2, the typing rules for constants and variables are standard.
There are two rules for abstractions, Abs for unannotated parameters which must have static types,
and AbsDyn for annotated parameters which may have dynamic types. Typing applications is tricky
since dynamically typed arguments can be passed to functions with statically typed parameters
and vice versa. For example, assuming the function, succ, has static type Int→ Int, both of the
following programs in our Haskell-like notation should be accepted by gradual typing.

inc (num::Dyn) = succ num

foo (f::Dyn) = f True

The App rule accommodates this with the help of a consistency relation, ∼, that dictates when two
unequal types are compatible with each other. An application is well typed if the domain of the LHS
(i.e. the parameter type) is consistent with the RHS, and the type of the application is the codomain
of LHS. The auxiliary functions dom and cod return the domain and codomain of a function type,
respectively, or Dyn for a dynamic type (reflecting the fact that Dyn is equivalent to Dyn→ Dyn).
The gradual type consistency relation is defined in Figure 2 by four rules: C1 defines that

consistency is reflexive, C2 and C3 define that a dynamic type is consistent with any type, and C4
defines that two functions types are consistent if their respective argument and return types are
consistent. As a result, Int→ Int ∼ Int→ Dyn but not Int→ Int ∼ Bool→ Dyn, since the argument
types are not consistent in the latter case. Note that the consistency relation is not transitive. Due
to C2 and C3, transitivity would lead every static type to be consistent with every other static type,
which is clearly undesirable.

Typing conditional expressions relies on the meet operation, ⊓, on gradual types. Intuitively,
meet chooses the more static of two base types when one is Dyn. For two equal static types, meet is
idempotent. For two function types, meet is applied recursively to their respective argument and
return types. The meet operation helps assign types to conditionals when the two branches might
not have an identical type but still have consistent types. Intuitively, meet favors the type of the
more static branch of the conditional expression.

2.2 Variational Typing

Variational typing [Chen et al. 2012, 2014] enables efficiently inferring types for variational programs.
A variational program represents many different variant programs that share some parts amongst
each other and which can each be generated through a static process of selection.

The theoretical foundation for variational typing is the choice calculus [Erwig and Walkingshaw
2011], a formal language for representing variational programs. The essence of the choice calculus
is that static variability in programs can be locally captured in variation points called choices, as
demonstrated by the following example.

vfun = A⟨succ, even⟩ 1

This program contains a choice named A with two alternatives, succ and even. We write ⌊e⌋d .i to
indicate the selection of the ith alternative of each choice named d in e . So, ⌊vfun⌋A.1 yields the
program succ 1 and ⌊vfun⌋A.2 yields even 1. We call d .i a selector and use s to range over selectors.
A decision is a set of selectors; we use δ to range over decisions. The elimination of choices

extends naturally to decisions by selecting with each selector in the decision. An expression e is
called plain if it does not contain any choices and is called variational if it does contain choices. A
plain expression obtained by eliminating all choices in a variational expression is called a variant.
For example, succ 1 is a plain expression and a variant of the variational expression vfun.
A variational expression may contain several choices. Choices with the same name are syn-

chronized and independent otherwise. For example, the variational expression A⟨succ, even⟩ A⟨2, 3⟩

has two variants, succ 2 and even 3, obtained by the decisions {A.1} and {A.2}, respectively. The
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program succ 3 cannot be obtained through selection and so is not a variant of this expression.
On the other hand, the variational expression A⟨succ, even⟩ B⟨2, 3⟩ has four variants, and we can
obtain the variant succ 3 with the decision {A.1,B.2}.

In general, an expressionwithn distinct choice names can be configured in 2n differentways. Since
variational programs can easily contain hundreds or thousands of independent choice names [Apel
et al. 2016], checking the type correctness of all variants is intractable by a brute-force strategy
of generating all of the variants and typing each one individually [Thüm et al. 2014]. Variational
typing solves this problem by sharing the typing process across all variants, which is achieved by
defining and reasoning about variational types.
Variational types are types extended with choices. All concepts and operations on variational

expressions carry over to variational types. It is natural to assign variational types to variational ex-
pressions. For example, A⟨succ, even⟩ has type A⟨Int→ Int, Int→ Bool⟩. Similar to gradual typing,
typing applications in the presence of variation is complicated by the fact that łcompatiblež types
may not be syntactically equal. In particular, (1) the LHS is traditionally expected to be a function
type but in variational typing may be a (nested) choice of function types, and (2) when checking
whether the type of the argument matches the type of the parameter, we must take into account
that either or both may be variational. For example, the type of the function on the LHS of vfun is
A⟨Int→ Int, Int→ Bool⟩, which is not a function type directly, but both variants of vfun, succ 1

and even 1, are well typed.
Typing applications is supported in variational typing through the definition of a type equivalence

relation [Chen et al. 2014], which specifies when a type can be transformed into another without
affecting its semantics. The semantics of a variational type maps decisions to the variant plain types
obtained by selecting from the type using the decision. For example, A⟨Int→ Int, Int→ Bool⟩,
A⟨Int, Int⟩→A⟨Int, Bool⟩, and Int→A⟨Int, Bool⟩ are all equivalent because selecting from each
of them with {A.1} yields the same type Int→ Int and selecting from each of them with {A.2}
yields the same type Int→ Bool. As a result, we can say that vfun has the type Int→A⟨Int, Bool⟩,
which is a function type with the argument type Int matching the type of 1. We can thus assign
the type Vvfun = A⟨Int, Bool⟩ to vfun.
An important result of variational typing is that choice elimination preserves typing. More

specifically, if e has the type V , then ⌊e⌋δ has the type ⌊V ⌋δ for any decision δ . For example,
⌊vfun⌋A.1 yields succ 1, which has the type Int, the same as ⌊Vvfun⌋A.1. An implication of this result
is that the type of any variant can be easily obtained by making an appropriate selection into the
result type of the variational program. Another important result of variational typing is that it is
significantly faster than the brute-force approach.

3 ROAD MAP TO MIGRATING GRADUAL TYPES

In Section 1.1, we argued that the complexity of the tasks implied by the questions Q1śQ3, involving
the migration of gradual programs, is exponential. In Section 2.2, we have shown that variational
typing can efficiently type a set of similar programs. A main idea of this paper is to reduce the
problem of typing the migration space to variational typing. Specifically, we assign each parameter
with a Dyn annotation a choice type whose the first alternative is a Dyn and whose second alternative
is a static type. Consider, for example, the following function widthV that represents the variationally
typed version of the function width (also shown below) for computing the table width in rowAtI.

width (fixed::Dyn) (widthFunc::Dyn) = if fixed then widthFunc fixed else widthFunc 5

widthV (fixed::A⟨Dyn, Bool⟩) (widthFunc::B⟨Dyn, Int→ Int⟩) =

if fixed then widthFunc fixed else widthFunc 5
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The function widthV encodes all four possible migrations of width. If VwidthV is the type of widthV,
then ⌊VwidthV⌋{A.1,B .1} is the type for width with no Dyn annotations removed, ⌊VwidthV⌋{A.2,B .1} is
the type that replaces Dyn with Bool for fixed and keeps Dyn for widthFunc, ⌊VwidthV⌋{A.1,B .2} is the
type that keeps Dyn for fixed but replaces Dyn with Int→ Int for widthFunc, and ⌊VwidthV⌋{A.2,B .2}
is the type that removes both Dyn annotations.
In order to successfully employ variational typing to improve the performance of migrational

typing, several technical challenges must be addressed.

C1. In the presence of dynamic and variational types, we need to combine the type equivalence
relation and the consistency relation, which we refer to as the compatibility relation. After
introducing the syntax of the migrational type system in Section 4.1, we address this problem
in Section 4.2.

C2. In general, some variants of the variational program that encodes the migration space may
contain type errors. We need the typing process to continue even in the presence of type
errors to determine the types of all variants. In Section 4.3, we address this problem and give
a declarative specification of our type system.

C3. In widthV, we explicitly assigned static types to each parameter. One may wonder whether
these are the best types to assign. Maybe other static types could improve the typing result
and produce more general types or fewer type errors. After presenting the typing rules
in Section 4.4, we prove in Section 4.5 that in our type system, there exists a best typing
derivation that contains the fewest errors and yields most static and general result types.

C4. With the best migrational typing, we have to determine the combination of Dyn removals that
makes the program as static as possible. This may require the comparison of an exponential
number of result types for the migration space. In Section 5, we develop an efficient algorithm
for solving this problem.

C5. In challenge C3 we claimed that a best migrational typing exists, but how do we find it? We
answer this question by solving the type inference problem in Sections 6 and 7.

4 MIGRATIONAL TYPE SYSTEM

This section addresses the challenges C1śC3 from Section 3 to support efficient migrational typing.
After introducing the syntax of types and expressions in Section 4.1, the compatibility relation
is defined in Section 4.2, addressing C1. A pattern-constrained typing relation is introduced in
Section 4.3 and defined via typing rules in Section 4.4, addressing C2. Finally, the properties of this
type system are discussed in Section 4.5, addressing C3.

4.1 Syntax

The syntax of expressions, types, and environments is given in Figure 3. The metavariables we
use to range over the relevant symbol domains are listed at the top figure. For type variables, we
typically use β to denote the result type of a function application during constraint generation and
κ to denote fresh type variables generated during constraint generation and solving (see Sections 6
and 7). For choice names, we typically use A and B to denote arbitrary specific choices in examples
and d as a generic metavariable to range over choices names in definitions.

The syntax of expressions, static types, and gradual types are repeated from Section 2.1. To this,
we add variational types, which are static types extended with choices, and migrational types,
which are gradual types extended with choices. Note that each top-level parameter is assigned a
restricted form of migrational type, which is either a fully static type, a Dyn, or a choice of restricted
migrational types; however, the more general syntax defined in Figure 3 is needed during the typing
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Term variables x , y, z Value constants c Choice names A, B, d
Type variables α , β , κ Type constants γ Program locations l

Expressions e ::= c | x | λx .e | λx : Dyn.e | e e | if e then e else e

Static types T ::= γ | α | T →T

Gradual types G ::= γ | α | G→G | Dyn

Variational types V ::= γ | α | V →V | d⟨V ,V ⟩

Migrational types M ::= γ | α | M→M | Dyn | d⟨M,M⟩

Type environment Γ ::= ∅ | Γ,x 7→ M

Substitution θ ::= ∅ | θ ,α 7→ V

Variational statifier Ω ::= ∅ | Ω,x 7→ V

Fig. 3. Syntax of expressions, types, and environments.

process. In Section 8.2, we extend our framework to allow an arbitrary mix of Dyn and static types
for top-level parameters.
The type system relies on three kinds of environments: a type environment maps variables to

migrational types, a substitution maps type variables to variational types, and a variational statifier
maps variables to variational types. As described in Section 2.1, a statifier ω records one way of
making a program more static (by removing some subset of Dyn annotations). A variational statifier
Ω instead compactly encodes all possible statifiers for an expression. Since we want migration in
our formalization to assign static types to parameters whose Dyn annotations are removed, Ω maps
parameters to variational types, but not migrational types.

Substitutions map type variables to variational types rather than migrational types since substi-
tuting dynamic types is unsound. For example, suppose we have f 7→ α→α→α→α and x 7→ Dyn

in Γ. Now, when typing the application f x, we will substitute {α 7→ Dyn}, yielding Dyn→ Dyn→ Dyn

as the type of f x. However, this implies that f x 2 True is well typed, even though this violates
the initial static type of f. Type substitution, written as θ (M ), is defined in the conventional way.

4.2 Type Compatibility

In the rest of this section, we use the widthV example (Section 3) to motivate the technical de-
velopment of the migration type system and investigate the properties of the type system. The
motivating goal is to type the condition fixed and the application widthFunc 5 in widthV.

According to the annotation of widthV, the parameter fixed has type A⟨Dyn, Bool⟩. Since fixed is
used as a condition, it should have type Bool. Since both alternatives of the choice are consistent with
Bool, this use should be considered well typed. The variable widthFunc has type B⟨Dyn, Int→ Int⟩,
which can be considered equivalent to B⟨Dyn, Int⟩→B⟨Dyn, Int⟩ (in Section 4.4, we show how to
achieve this formally with dom and cod). The constant 5 has type Int. Since both alternatives of
B⟨Dyn, Int⟩ are consistent with Int, widthFunc 5 should also be considered well typed.

These two examples demonstrate that we need a notion of compatibility between two migrational
types to express that all of their variants are consistent. Intuitively, the compatibility relation
incorporates both type equivalence for variational types [Chen et al. 2014] and type consistency for
gradual types [Siek and Taha 2006]. The definition of compatibility (M1 ≈ M2) is given in Figure 4.
The relation is reflexive (T1) and symmetric (T2). The relation is transitive (T3) in the case that no
Dyns are present, which we indicate by using the metavariable for variational types (V ).
The rules T4 and T5 specify compatibility under choice type simplification. Rule T4 states that

a choice with identical alternatives is compatible with its alternatives. Rule T5 says that two
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T1
M ≈ M

T2
M1 ≈ M2

M2 ≈ M1
T3

V1 ≈ V2 V2 ≈ V3

V1 ≈ V3

T4 d⟨M,M⟩ ≈ M T5 d⟨M1,M2⟩ ≈ d⟨⌊M1⌋d .1, ⌊M2⌋d .2⟩

Cong
M1 ≈ M2

M[M1] ≈ M[M2]
DynIntro

M1 ≈ M2

M1 ≈ M2[Dyn]

Fig. 4. Rules defining type compatibility

types are compatible under elimination of dead alternatives. Note that the operation ⌊M1⌋d .1 in
the first alternative of d replaces each occurrence of a d choice in M1 with its first alternative
and thus removes the second alternative, which is unreachable due to choice synchronization.
For example, A⟨A⟨Int, Bool⟩, Int⟩ ≈ A⟨Int, Int⟩, since Bool is unreachable in A⟨A⟨Int, Bool⟩, Int⟩

because selection with either A.1 or A.2 yields Int. A corresponding relationship holds for ⌊M2⌋d .2.
The rule Cong defines that compatibility is a congruence relation. This rule allows us to replace

a type M1 in a context M[] with a compatible type M2. For example, since Bool ≈ B⟨Bool, Bool⟩,
we have A⟨Int, Bool⟩ ≈ A⟨Int,B⟨Bool, Bool⟩⟩ if we view A⟨Int, [ ]⟩ as the context. Finally, the rule
DynIntro states that if two types are compatible, replacing part of one type with Dyn preserves
compatibility. This rule holds because Dyn is compatible with anything. By choosing M to be an
empty context, this rule encodesM ≈ Dyn and thus Dyn ≈ M through T2.
To illustrate compatibility, we show A⟨Int, Dyn⟩ ≈ B⟨Dyn, Int⟩. This should hold, since both

choice types only produce Int or Dyn, which are consistent with each other and themselves. We can
start by A⟨Int, Int⟩ ≈ Int via T4 and Int ≈ B⟨Int, Int⟩ via T4 and T2. We can then use T3 to derive
A⟨Int, Int⟩ ≈ B⟨Int, Int⟩. After that, we can apply DynIntro to replace the first Int in B with a
Dyn, apply T2, and apply another DynIntro to replace the second Int in the choice A with a Dyn,
yielding B⟨Dyn, Int⟩ ≈ A⟨Int, Dyn⟩. By applying T2 one more time, we can derive the original goal.
We demonstrate the correctness of ≈ by establishing its connection with type equivalence (≡)

from [Chen et al. 2014] and type consistency (∼) from [Siek and Taha 2006] through the following
theorems. In the theorems we write ⌊M⌋δ ∈ V and ⌊M⌋δ ∈ G to denote that ⌊M⌋δ yields a
variational type (no Dyn) and a gradual type (no variations), respectively. The first two theorems
state the soundness of ≈; the third theorem states its completeness.

Theorem 4.1. IfM1 ≈ M2, then ∀δ .⌊M1⌋δ ∈ V ∧ ⌊M2⌋δ ∈ V ⇒ ⌊M1⌋δ ≡ ⌊M2⌋δ

Theorem 4.2. IfM1 ≈ M2, then ∀δ .⌊M1⌋δ ∈ G ∧ ⌊M2⌋δ ∈ G ⇒ ⌊M1⌋δ ∼ ⌊M2⌋δ .

Theorem 4.3. ∀δ ⌊M1⌋δ ≡ ⌊M2⌋δ ∨ ⌊M1⌋δ ∼ ⌊M2⌋δ ⇒ M1 ≈ M2

Proof. All theorems can be proved by structural induction over these three relations. □

With ≈, we can formalize the application rule as follows.

Γ ⊢ e1 : M1 Γ ⊢ e2 : M2 dom (M1) ≈ M2

Γ ⊢ e1 e2 : cod (M1)

Based on this rule and ≈, we can calculate the type B⟨Dyn, Int⟩ for widthFunc 5.
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π ::= ⊥ | ⊤ | d⟨π ,π ⟩

∀δ .⌊π ⌋δ = ⊤ ⇒ ⌊M1⌋δ ≈ ⌊M2⌋δ

M1 ≈π M2

∀δ .⌊π ⌋δ = ⊤ ⇒ ⌊Γ⌋δ ⊢ ⌊e⌋δ : ⌊M⌋δ

π ; Γ ⊢ e : M

∀δ .⌊π ⌋δ = ⊤ ⇒ op (⌊M1⌋δ ) is defined

opπ (M1) is defined

∀δ .⌊π ⌋δ = ⊤ ⇒ ⌊M1⌋δ op ⌊M2⌋δ is defined

M1 opπ M2 is defined

Fig. 5. Patterns and pattern-constrained relations and operations. op can be any unary or binary operation

on types. The is defined stipulations in the premise mean that the operations are defined on their input types,

as specified in Figure 2. The is defined in the conclusion indicates that the operation can be safely carried out

on the migrational type when constricted by π .

4.3 Pattern-Constrained Judgments

The goal in this subsection is to type the application widthFunc fixed in widthV, thus solving
challenge C2 for migrational typing. According to the type annotation of widthV, widthFunc has
type B⟨Dyn, Int→ Int⟩, and fixed has typeA⟨Dyn, Bool⟩. Since it is impossible to derive B⟨Dyn, Int⟩ ≈
A⟨Dyn, Bool⟩ (where the former is the domain of the function type and the latter is the type of the
argument), the application rule from Section 4.2 fails to assign a type to widthFunc fixed. If we
terminate the typing process, we will not be able to compute any type for widthV, failing to provide
support for program migration.
While the compatibility check between A⟨Dyn, Int⟩ and B⟨Dyn, Bool⟩ fails, we observe that Dyn,

the first alternative of A, is compatible with B⟨Dyn, Bool⟩ and Int, the second alternative of A is
compatible with Dyn, the first alternative of B. This suggests that we should describe compatibility
at a more fine-grained level than simply saying whether two migrational types are compatible or
not. We employ the idea of typing pattern (π ) [Chen et al. 2012] to formalize this idea (see Figure 5).
The patterns ⊤ and ⊥ denote that the compatibility check succeeds and fails, respectively, and the
choice pattern d⟨π1,π2⟩ describes the success or failure of compatibility checking within the context
of choice d . We can now express the partial compatibility between A⟨Dyn, Int⟩ and B⟨Dyn, Bool⟩ by
the typing pattern A⟨⊤,B⟨⊤,⊥⟩⟩.
In Figure 5 we define M1 ≈π M2 such that M1 and M2 are compatible for all variants of π

that are ⊤. In contrast, there is no requirement betweenM1 andM2 at other places. For example,
Int ≈A⟨⊥,⊤⟩ A⟨Bool, Int⟩, since Int ≈ Int at A.2 (and since we don’t care that Int and Bool are
incompatible at A.1).

The idea of constraining compatibility with patterns is quite powerful. We can even generalize it
to typing judgments. Specifically, the typing relation π ; Γ ⊢ e : M holds if ⌊Γ⌋δ ⊢ ⌊e⌋δ : ⌊M⌋δ for all
δ such that ⌊π ⌋δ = ⊤. The advantage is that we don’t need to worry about the typing in variants
where π has ⊥s. That also means that we should not use (or trust) the typing result at variants
where π has ⊥s. We formally define this relation in Figure 5. For example, since Γ ⊢ 1 : Int we have
A⟨⊤,⊥⟩; Γ ⊢ A⟨1, True⟩ : Int, even though True does not have the type Int. We can also generalize
this idea to other operations, such as dom and cod, again defined in Figure 5.

Based on the idea of pattern-constrained judgments, we can define the following rule for typing
function applications (where dom and cod will be formally defined in Figure 6):

π ; Γ ⊢ e1 : M1 π ; Γ ⊢ e2 : M2 domπ (M1) ≈π M2

π ; Γ ⊢ e1 e2 : codπ (M1)
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π ; Γ ⊢ e : M | Ω

Con
c is of type γ

π ; Γ ⊢ c : γ |∅
Var

x 7→ M ∈ Γ

π ; Γ ⊢ x : M |∅

Abs
π ; Γ,x 7→ V ⊢ e : M | Ω

π ; Γ ⊢ λx .e : V →M | Ω
AbsDyn

π ; Γ,x 7→ d⟨Dyn,V ⟩ ⊢ e : M | Ω d fresh

π ; Γ ⊢ λx : Dyn.e : d⟨Dyn,V ⟩→M | Ω ∪ {x 7→ V }

App
π ; Γ ⊢ e1 : M1 | Ω1 π ; Γ ⊢ e2 : M2 | Ω2 domπ (M1) ≈π M2

π ; Γ ⊢ e1 e2 : codπ (M1) | Ω1 ∪ Ω2

If
(π ; Γ ⊢ ej : Mj | Ωj )

j :1..3
Bool ≈π M1 M2 ≈π M3

π ; Γ ⊢ if e1 then e2 else e3 : M2 ⊓π M3 | Ω1 ∪ Ω2 ∪ Ω3

Weaken
π ; Γ ⊢ e : M | Ω π1 ≤ π M =π1 M1

π1; Γ ⊢ e : M1 | Ω

dom (M1→M2) =M1 cod (M1→M2) =M2

dom (Dyn) = Dyn cod (Dyn) = Dyn

dom (d⟨M1,M2⟩) = d⟨dom (M1), dom (M2)⟩ cod (d⟨M1,M2⟩) = d⟨cod (M1), cod (M2)⟩

M ⊓M =M M11→M12 ⊓M21→M22 = (M11 ⊓M21)→(M12 ⊓M22)

Dyn ⊓M =M d⟨M1,M2⟩ ⊓M = d⟨M1 ⊓M,M2 ⊓M⟩

M ⊓ Dyn =M G ⊓ d⟨M1,M2⟩ = d⟨G ⊓M1,G ⊓M2⟩

π ≤ ⊤ ⊥ ≤ π

π1 ≤ π2 π2 ≤ π3

π1 ≤ π3

π1 ≤ π2

π [π1] ≤ π [π2]

π1 ≈ π2

π1 ≤ π2

Fig. 6. Typing rules. The operations dom, cod, and ⊓ are undefined for cases that are not listed here. The

operations domπ , codπ , and ⊓π can be obtained from Figure 5.

With this new rule, which accounts for migrational types with type errors, we can revisit the
problem of typing widthFunc fixed. Let π = A⟨⊤,B⟨⊤,⊥⟩⟩. Since widthFunc 7→ A⟨Dyn, Int→ Int⟩

belongs to Γ, we have π ; Γ ⊢ widthFunc : M , where M = A⟨Dyn, Int→ Int⟩. Similarly, we have
π ; Γ ⊢ fixed : B⟨Dyn, Bool⟩. Next, domπ (M ) = A⟨Dyn, Int⟩. As we have seen earlier, A⟨Dyn, Int⟩ ≈π
B⟨Dyn, Bool⟩. Thus, all the premises of the application rule are satisfied, and we can derive
π ; Γ ⊢ widthFunc fixed : A⟨Dyn, Int⟩. Based on the result pattern, we should not trust the typing
information at the variant {A.2,B.2} since ⌊π ⌋{A.2,B .2} = ⊥.
While pattern-constrained judgments simplify the presentation, there is still the challenge of

how to find appropriate patterns, which are inputs to the typing relation. However, the pattern
is determined by the typing constraints among the subexpressions. For example, the type of the
argument must match the argument type of the function. The reason we use A⟨⊤,B⟨⊤,⊥⟩⟩ in
typing widthFunc fixed is that the application is ill typed at {A.2,B.2}. Therefore, in a language
with type inference, the pattern will be computed during the inference process (Sections 6 and 7).

4.4 Typing Rules

The typing rules are shown in Figure 6. They are based on the compatibility relation (Section 4.2)
and pattern-constrained judgments (Section 4.3). The typing judgment has the form π ; Γ ⊢ e : M | Ω

and expresses that e has typeM under environment Γ constrained by the pattern π . The mapping
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Ω collects the types that will be assigned to parameters if their Dyns are removed. We assume that
parameter names from different functions are uniquely identified in the domain of Ω. The goal
of Ω is to connect the typing rules here with those from Figure 2. We discuss this aspect in more
detail in Section 4.5 where we investigate the properties of the type system.
The rules for constants (Con) and variables (Var) are straightforward. They hold for arbitrary

patterns π because constants and bound variables are always well typed. Moreover, since the types
remain unchanged, Ω is always∅. The rule Abs for an abstraction whose parameter is not annotated
with Dyn is conventional. In rule AbsDyn for an abstraction whose parameter is annotated with Dyn,
we assign the parameter a choice type where the first alternative is Dyn implying that the Dyn is kept
and the second alternative can be any type for the body to be well typed. This change information
is recorded by extending the Ω returned from typing the body of the abstraction.

The App rule for applications is similar to the one in Section 4.3 except that we must combine the
variational statifiers from typing the two subexpressions. The rule If types conditionals; it relies on
an extended version of the meet operation (⊓) from Figure 2 that also handles choices.

The Weaken rule states that if a typing pattern can be used to derive a typing, then we can use a
less-defined pattern to derive the same typing. The operation =π1 in the premise specifies that its
arguments must be the same for places where π1 has ⊤s. A typing pattern π1 is less defined than π2
if it contains ⊥ values at least everywhere π2 does. The purpose of Weaken is to make the typing
process compositional. Without this rule, the whole typing derivation must use the same π . With
this rule, we can use different patterns for typing the children of a construct but adjust them to use
the same pattern when typing the construct itself.

The less-defined relation on patterns, written as π1 ≤ π2, is formally defined in Figure 6. The first
two rules defines that any pattern is less defined than ⊤ and more defined than ⊥. The third rule
defines that the relation is transitive. In the last two rules, we reuse the machineries defined for
types to simplify the definition of the relation. The fourth rule states that the less-defined relation
is a congruence. The fifth rule states that two compatible patterns satisfy the less-defined relation.
Since a pattern cannot contain Dyn, π1 ≈ π2 implies that π1 and π2 are equivalent.

4.5 Properties

This subsection investigates the properties of the type system. Specifically, we consider the rela-
tionship of the rules for migrational typing in Figure 6 and the original rules for gradual typing in
Figure 2. We also consider the relation between different typing derivations π ; Γ ⊢ e : M | Ω when
different πs andMs are used for the same Γ and e , which addresses challenge C3 from Section 3.

We start by introducing some notation. We say a decision δ is complete for an expression e if it
contains d .1 or d .2 for each d created while typing e . For π , a decision δ is complete if ⌊π ⌋δ yields
⊤ or ⊥. Note that a complete decision for π may not be complete for the expression since patterns
compactly represent where typing succeeds and where it fails. For instance, while typing rowAtI,
we created five choices A, B, D, E, and F for the dynamic parameters from left to right, respectively.
Thus, each complete decision for rowAtI contains five selectors. One typing pattern for rowAtI is:

πa = A⟨E⟨⊤,⊥⟩,B⟨E⟨⊤,⊥⟩,⊥⟩⟩

Both {A.1,E.1} and {A.2,B.2} are complete decisions for πa but not for rowAtI. In the case that
the whole migration space for an expression is well typed, then the pattern is simply ⊤ and the
complete decision is { }. We use the notation δ |2 to collect all of choice names d such that d .2 ∈ δ .
There is a close relation among δ , Ω (variational statifier), and ω (statifier). Specifically, during

typing, for each dynamic parameter x , Ω includes a mapping x 7→ V , where V is the type that will
be assigned to the parameter once its Dyn annotation is removed. Therefore, given Ω and δ , we can
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generate a statifier as follows, where chc(x ) returns the name of the choice created for x.

Ω(δ ) = {x 7→ ⌊V ⌋δ | x 7→ V ∈ Ω ∧ chc(x ) ∈ δ |2}

For example, let

Ωa = {fixed 7→ Bool, widthFunc 7→ Int→ Int} δa = {A.2,B.1}

then Ωa (δa ) = {fixed 7→ Bool}.
The notation G1 ⊑ G2 means that G2 is more static than G1; it is defined as follows.

T1 ⊑ T2 Dyn ⊑ G

G1 ⊑ G3 G2 ⊑ G4

G1→G2 ⊑ G3→G4

We further say thatG2 is better than G1, written as G1 ⪯ G2, if G2 is strictly more static than G1

or they are equally static but G2 is more general than G1. For example, Dyn→α ⪯ Int→ Int and
Int→ Int ⪯ Int→α .
We next demonstrate the correctness of our type system by showing that, at the places where

the typing pattern is valid, it assigns the same types to all the programs in the migration space as
the brute-force approach does.

Theorem 4.4 (Dyn removal soundess). If π ; Γ ⊢ e : M | Ω, then ∀δ .⌊π ⌋δ = ⊤ ⇒ Ω(δ ); Γ ⊢GC e :

⌊M⌋δ .

This theorem states that, for any removal of Dyn annotations, the typing result encoded in migra-
tional typing is the same as by typing the program with ITGL. For example, for π ′a = A⟨⊤,B⟨⊤,⊥⟩⟩

we get π ′a ; Γ ⊢ width : Ma | Ωa , where Ma = A⟨Dyn, Bool⟩→B⟨Dyn, Int→ Int⟩→B⟨Dyn, Int⟩ and
Ωa is as defined earlier. We can verify Ωa (δa ); Γ ⊢GC width : Bool→ Dyn→ Dyn and ⌊Ma⌋δa =

Bool→ Dyn→ Dyn, where δa is as defined earlier.
Conversely, any removal of Dyn that yields a well-typed program is encoded in some typing

derivation in migrational typing, as expressed in the following theorem.

Theorem 4.5 (Dyn removal completeness). If ω; Γ ⊢GC e : G, then there exists some typing

π ; Γ ⊢ e : M | Ω such that ⌊M⌋δ = G and Ω(δ ) = ω for some δ .

Theorem 4.4 can be proved by structural induction over the rules in Figure 6, and Theorem 4.5
can be proved by induction over the rules in Figure 2.
Next, we investigate the relation between different typings that can be derived for the same

expression and environment. We observe that different typings can be combined to make the result
as correct as possible (that is, to minimize ⊥s in the result pattern) and as good as possible (that
is, to make types more static and more general). Note that the typing process records all dynamic
parameters and corresponding variational types in Ω. As a result, the domain of Ωs in different
typings are the same.

Lemma 4.6. If π1; Γ ⊢ e : M | Ω and π2; Γ ⊢ e : M | Ω, then there is some typing π ; Γ ⊢ e : M | Ω such

that π1 ≤ π and π2 ≤ π .

Lemma 4.7. If π ; Γ ⊢ e : M1 | Ω1 and π ; Γ ⊢ e : M2 | Ω2, then there is some typing π ; Γ ⊢ e : M | Ω

such that ∀δ .⌊π ⌋δ = ⊤ ⇒ ⌊M1⌋δ ⪯ ⌊M⌋δ ∧ ⌊M2⌋δ ⪯ ⌊M⌋δ ∧ Ω1 (δ ) ⪯ Ω(δ ) ∧ Ω2 (δ ) ⪯ Ω(δ ).

In Lemma 4.7, we write ω1 ⪯ ω2 if they share the same domain and for any x in the domain
ω1 (x ) ⪯ ω2 (x ). The properties captured by the previous two lemmas can be combined to show that
for any expression there exists a typing that has the most defined pattern and the most static and
general result type. We refer to this typing as the most general static migrational typing, abbreviated
as the MGSM typing.
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Theorem 4.8 (MGSM Typing). For any e and Γ, there is a MGSM typing π ; Γ ⊢ e : M | Ω such that

for any π1; Γ ⊢ e : M1 | Ω1, ∀δ .⌊π1⌋δ = ⊤ ⇒ ⌊π ⌋δ = ⊤ ∧ ⌊M1⌋δ ⪯ ⌊M⌋δ .

Lemmas 4.6 and 4.7 and Theorem 4.8 can be proved by structural induction over the typing rules in
Figure 6. To illustrate the use of Theorem 4.8, the MGSM typing for width is πb ; Γ ⊢ width : Mb | Ωb ,
where

Ωb = {fixed 7→ Bool, widthFunc 7→ Int→ β } πb = A⟨⊤,B⟨⊤,⊥⟩⟩

Mb = A⟨Dyn, Bool⟩→B⟨Dyn, Int→ β⟩→B⟨Dyn, β⟩.

Theorem 4.8 implies that while an infinite number of typings may be derived (due to the ⊥ pattern),
we need only care about the MGSM typing since it encodes all the typings for the whole migration
space. Sections 6 and 7 investigate the problem of computing the MGSM typing.

5 FINDING THE BEST MIGRATION

This section addresses challenge C4 from Section 3, that is, given the MGSM typing, how can we
find the most static migrations? We address it by investigating the relationship between different
migrations in Section 5.1 and developing an algorithm for extracting the most static migration from
the typing pattern of a MGSM typing in Section 5.2.

We use the term eliminator to refer to complete decisions. We say that an eliminator δ2 is stricter
than an eliminator δ1, written δ1 ≫ δ2, if δ2 does not select the left alternative (corresponding to
Dyn) in more choices than δ1. Formally,

δ1 ≫ δ2 :⇔ ∀d .d .1 ∈ δ2 ⇒ d .1 ∈ δ1

We say an eliminator δ is valid if ⌊π ⌋δ = ⊤ where π should be clear from the context. We will
use δv to denote valid eliminators. For example, let

δva = {A.1,B.1} δvb = {A.1,B.2} δvc = {A.2,B.1} δd = {A.2,B.2}

then δva ≫ δv
b
and δv

b
≫ δd , but δvb ̸≫ δvc . The eliminators δva , δ

v
b
, and δvc are valid, while δd is not,

with respect to πb from Section 4.5.

5.1 Relationships Between Migrations

Since every migration can be identified by an eliminator for the MGSM typing, and since stricter
eliminators correspond to more static migrations, the problem of finding the most static migrations
can be reduced to the problem of finding the strictest valid eliminators.

Instead of considering all valid eliminators for an expression (which is exponential in the number
of dynamic parameters), we instead consider the valid eliminators of the typing pattern for the
MGSM typing of the expression. The reason is that typing patterns are usually small, yielding fewer
eliminators that we have to consider (in fact, later results will show that we don’t have to consider
even all of these). For example, the pattern πa from Section 4.5 for rowAtI has only 5 eliminators
while the expression itself has 32. As another example, from the pattern πb , also from Section 4.5,
we can see that δv

ab
= {A.1} compactly represents δva and δv

b
for width.

Our first question is whether any eliminator that is stricter than an invalid eliminator could be
valid. This question seems irrelevant for this example because the invalid eliminator δd is already
the strictest for πb . However, this is not the case in general, and knowing the answer to this question
helps us to prune the search space. For example, the eliminator {A.1,B.1,E.2} is invalid for πa ,
and we want to know whether any of the stricter eliminatorsÐ{A.1,B.2,E.2}, {A.2,B.1,E.2}, and
{A.2,B.2,E.2}Ðare valid. The following theorem addresses our question.

Theorem 5.1 (Error Irrecoverability). Let π ; Γ ⊢ e : M | Ω be an MGSM typing for e and Γ. If

⌊π ⌋δ = ⊥, then ∀δ1.δ ≫ δ1 ⇒ ⌊π ⌋δ1 = ⊥.
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This theorem implies that we can simply ignore invalid eliminators, and focus on valid ones,
since all invalid eliminators lead to ill-typed expressions. The theorem can be proved by structural
induction over the typing rules in Figure 6.

A valid eliminator for the typing pattern corresponds to potentially many valid eliminators for
the expression. We say that a valid pattern eliminator δ1 covers a valid expression eliminator δ2 if
δ1 ⊆ δ2. Among all the expression eliminators covered by a pattern eliminator, one is the strictest.
For example, the eliminator δv

ab
for pattern πb covers the eliminators δva and δv

b
for typing width,

and δv
b
is the strictest. As another example, the valid eliminator δvae = {A.1,E.1} for pattern πa

covers eight valid eliminators (two options for each of the three choice names that do not appear
in the pattern) for typing rowAtI, and {A.1,E.1,B.2,D.2, F .2} is the strictest among them.

Among all expression eliminators covered by a pattern eliminator, stricter ones yield better result
types. This is expressed by the following theorem.

Theorem 5.2. If π ; Γ ⊢ e : M | Ω is the MGSM typing for e and Γ, then δv1 ≫ δv2 ⇒ ⌊M⌋δv1 ⪯

⌊M⌋δv2 .

Based on Theorem 4.4, the result stated in Theorem 5.2 can be transformed into a property of
the original ITGL type system in Figure 2. The theorem can thus be proved through a structural
induction of the typing rules in Figure 2.
As an example illustrating Theorem 5.2, consider δva , δ

v
b
, and Mb , introduced in Section 4.5.

We can verify that both δva ≫ δv
b
and ⌊Mb ⌋δva ⪯ ⌊Mb ⌋δv

b
, where ⌊Mb ⌋δva = Dyn→ Dyn→ Dyn, and

⌊Mb ⌋δv
b
= Bool→ Dyn→ Dyn.

Theorem 5.2 provides a way to order the eliminators covered by a single pattern eliminator,
but how about ordering different valid eliminators of the typing pattern? Considering pattern πb ,
neither of the valid eliminators δv

b
or δvc is stricter than the other. Similarly, for pattern πa , neither

of the valid eliminators is stricter than the other. In fact, this property holds not only for these two
examples, but also for a class of typing patterns that are in pattern normal form. We say a pattern is
in normal form if it does not contain idempotent choices (choices with identical alternatives) and
does not nest a choice in another choice with the same name (no dead alternatives). We capture
this property in the following theorem.

Theorem 5.3 (Eliminator Incomparability). Let π ; Γ ⊢ e : M | Ω be MGSM typing for e and Γ

and π1 be a normal form for π . Then for any δv1 and δv2 for π1, δ
v
1 ̸≫ δv2 , δ

v
2 ̸≫ δv1 , and ∄δ

v
.δv1 ≫

δv ∧ δv2 ≫ δv .

Two eliminators that are incomparable with respect to≫ will remove Dyns for different parame-
ters for the same expression, leading to types that are incomparable by ⊑ (defined in Section 4),
and thus incomparable by ⪯. For example, since δv

b
̸≫ δvc and δvc ̸≫ δv

b
, we have Gb ̸⪯ Gc and

Gc ̸⪯ Gb , where Gb = ⌊Mb ⌋δv
b
= Dyn→(Int→ β )→ β and Gc = ⌊Mb ⌋δvc = Bool→ Dyn→ Dyn.

Combining Theorems 5.2 and 5.3, yields the following result about finding most static migrations.
We develop an algorithm for extracting such migrations in Section 5.2.

Theorem 5.4 (Uniqeness of most static migrations). Let π ; Γ ⊢ e : M | Ω be the MGSM typing

for e and Γ, and π1 be the normal form for π , then e has a unique most static migration if π1 has only

one valid eliminator. More generally, the number of most static migrations for e equals the number of

valid eliminators for π1.

5.2 Extracting Most Static Migrations

The most static migrations for a program are identified by valid eliminators that describe whether to
pick the Dyn annotation or the inferred type for each parameter. We compute this set of eliminators
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from an MGSM typing in three steps: (1) simplify the typing pattern to its normal form, (2) collect
the valid eliminators for the normal form, and (3) expand each valid eliminator into a strictest
eliminator for the corresponding expression.

Simplifying a typing pattern to its normal form has two advantages. First, the valid eliminators
are fewer and smaller. Second, we can use the result of Theorem 5.4 to find most static migrations.
We use the following rules to simplify patterns to normal forms.

d⟨π ,π ⟩ { π d⟨π1,π2⟩ { d⟨⌊π1⌋d .1, ⌊π2⌋d .2⟩
π1 { π2

π [π1] { π [π2]

The first two rules remove idempotent choices and dead alternatives. The third rule enables
simplifying parts of a larger pattern. For example, we can use the third and the first rule to simplify
the pattern πc = A⟨E⟨B⟨⊤,⊤⟩,⊥⟩,B⟨E⟨⊤,⊥⟩,⊥⟩⟩ to pattern πa from Section 4.5.
We use the function ve (π ) to build the set of valid eliminators for a pattern π in normal form.

ve (⊤) = {∅} ve (⊥) = ∅ ve (d⟨π1,π2⟩) = {{d .1} ∪ l | l ∈ ve (π1)} ∪ {{d .2} ∪ r | r ∈ ve (π2)}

For example, ve (πa ) yields {δvo ,δ
v
p }, where δ

v
o = {A.1,E.1} and δ

v
p = {A.2,B.1,E.1}.

Finally, we use the following function expand (δ ,D) to compute the strictest expression elimina-
tor from the given pattern eliminator δ and the set D of all choice names in the expression.

expand (δ ,D) = δ ∪ {d .2 | d ∈ D ∧ d .1 < δ }

For example, the set of choice names D for typing rowAtI is {A,B,D,E, F }, and expand (δvo ,D)

yields {A.1,E.1,B.2,D.2, F .2} and expand (δvp ,D) yields {A.2,B.1,E.1,D.2, F .2}.
Each expanded valid eliminator is a best eliminator that specifies how to migrate the program.

For example, the first best eliminator for rowAtI above removes the Dyn annotation for widthFunc,
table, and i, while the other best eliminator removes the Dyn annotation for fixed, table, and i.

Overall, these three steps provide a simple and efficient way to extract the most static migration
from an MGSM typing. Usually the normal form of a typing pattern is small, and so has only a few
valid eliminators. For example, if the program is still well typed after removing all Dyn annotations,
then the pattern will be ⊤, which has only one valid eliminator (the empty set). Similarly, if the
program is ill typed if any Dyn annotation is removed, then there is again just one valid eliminator.

Since normal forms are ideal, in Section 7, we will show how we can efficiently maintain patterns
to be in normal form throughout the type inference process.

6 CONSTRAINT GENERATION

A subset of the constraint generation rules is presented in Figure 7. The judgment Γ ⊢C e : M | C | π

states that under Γ, the expression e has type M when the constraint C is solved. Moreover, the
typeM is valid only for the variants described the ⊤ values of the typing pattern π . Accordingly, e
and Γ are inputs, while π ,M , andC are outputs. Note that we now omit the statifier Ω in constraint
judgments since it is not needed for type inference. The syntax of constraints are as follows:

C ::= M1 ≈
?
π M2 | C ∧C | d⟨C,C⟩ | ε

The first form represents type compatibility constraints. Often it is the case that two types are
only partially compatible. The pattern π in the constraint allows this fact to be recorded when
different constraints are combined. In some rules, the notation ≈?⊤ is used to denote that a generated
constraint will be solved successfully everywhere. The constraint α ≈?⊤ κ1→κ2 that forces α to be
a function type is such an example, where κ1 and κ2 are fresh type variables. The constraintC1 ∧C2

defines the conjunction of two constraintsC1 andC2, while the constraint d⟨C1,C2⟩ defines a choice
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ConC
c is of type γ

Γ ⊢C c : γ | ε | ⊤
VarC

x : M ∈ Γ

Γ ⊢C x : M | ε | ⊤
AbsC

Γ ⊢C e : M | C | π α fresh

Γ ⊢C λx .e : α→M | C | π

AbsDynC
Γ,x 7→ d⟨Dyn,α⟩ ⊢C e : M | C | π α fresh d fresh

Γ ⊢C λx : Dyn.e : d⟨Dyn,α⟩→M | C | π

DynAnnC
Γ ⊢C e : M | C | π d fresh

Γ ⊢C e :: Dyn : d⟨Dyn,M⟩ | C | π

AppC

Γ ⊢C e1 : M1 | C1 | π1 Γ ⊢C e2 : M2 | C2 | π2 cod (M1) →֒ (M3,C3,π3)

dom(M1,M2) →֒ (C4,π4) π = π1 ⊗ π2 ⊗ π3 ⊗ π4 C = C1 ∧C2 ∧C3 ∧C4

Γ ⊢C e1 e2 : M3 | C | π

Fig. 7. Constraint generation rules.

dom (Dyn,M ) →֒ (ε ,⊤) dom (α ,M ) →֒ (α ≈?⊤ κ1→κ2 ∧ κ1 ≈
?
π M2,π )

dom (M11→M12,M ) →֒ (M11 ≈
?
π M ,π ) dom (d⟨M1,M2⟩,M ) →֒ d⟨dom (M1,M ), dom (M2,M )⟩

dom (_, _) →֒ (ε , ⊥)

cod (Dyn) →֒ (Dyn, ε,⊤) cod (α ) →֒ (κ2,α ≈
?
⊤ κ1→κ2,π )

cod (M1→M2) →֒ (M2, ε,⊤) cod (d⟨M1,M2⟩) →֒ d⟨cod (M1), cod (M2)⟩

cod (_) →֒ (κ, ε,⊥)

Fig. 8. Auxiliary constraint generation functions. The notation d⟨(C1,π1), (C2,π2)⟩ is expanded to (d⟨C1,C2⟩,

d⟨π1,π2⟩). Default cases are indicated by _ parameters and define behavior when no other case applies.

between two constraints. Finally, ε represents an empty constraint. This is needed to represent a
judgment where no constraints are generated.
The rule AbsDynC generates constraints for abstractions with dynamic parameters. It helps

facilitate migration by creating a fresh choice type with a left alternative containing Dyn and a right
alternative containing a fresh type variable. The type variable is used to infer a new static type for
the parameter, if possible. The rule AppC is more involved because both constraints and patterns
from premises have to be combined. The typing pattern in the conclusion must be restricted enough
to create a valid judgment but well defined enough to give useful information about where the
judgment succeeds. The operation ⊗, defined below, can be viewed as a meet operation over the
less defined partial order on typing patterns in Figure 6. It creates the greatest lower bound of two
patterns, ensuring that the most defined pattern is used for an entire rule.

⊤ ⊗ π = π ⊥ ⊗ π = ⊥ d⟨π1,π2⟩ ⊗ d⟨π3,π4⟩ = d⟨π1 ⊗ π3,π2 ⊗ π4⟩

d⟨π1,π2⟩ ⊗ π = d⟨π1 ⊗ π ,π2 ⊗ π ⟩

We defer the rule for conditionals to the long version of this paper2 since it can be derived
systematically from the If rule in Figure 6, similarly as AppC is derived from App.
The rule AppC uses several auxiliary functions to generate constraints. These are defined in

Figure 8 and take the form: dom (M1,M2) →֒ (C,π ) and cod (M1) →֒ (M2,C,π ), where →֒ defines

2http://www.ucs.louisiana.edu/~sxc2311/ws/techreport/fullcgrules.pdf
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a mapping from inputs to outputs. These functions implement the dom and cod operations defined
for the declarative type system in Figure 6.
We illustrate dom by considering the example dom (A⟨Dyn,α⟩, Int). Since the first argument

is a choice type, dom is recursively called on each alternative of A, yielding two subproblems
dom (Dyn, Int) and dom (α , Int). The first subproblem is handled by the case for Dyn, which returns
(ε,⊤). The second subproblem is handled by the the case of dom for type variables. Since dom
expects a function type, the constraint α ≈?⊤ κ1→κ2 is generated. The argument type of the
function is constrained with κ1 ≈?π Int to express that it must be compatible with Int. As a result,
this subproblem returns (α ≈?⊤ κ1→κ2 ∧ κ1 ≈

?
π Int,π ), where π is created to collect the pattern

from κ1 ≈
?
π Int. The constraints and patterns for the subproblems are combined with the choice A,

yielding the final constraint A⟨ε,κ1→κ2 ∧ κ1 ≈
?
π Int⟩ and pattern A⟨⊤,π ⟩.

During constraint generation, a large pattern connecting symbolic patterns by ⊗ is generated.
These symbolic patterns are placeholders that will be updated once the corresponding constraints
are solved. For example, if the pattern π1⊗π2 and the constraints Dyn ≈?π1 Bool∧A⟨Int, Bool⟩ ≈?π2 Int

are generated, then the pattern will be updated to ⊤ ⊗ π2 once the first constraint is solved. This
update occurs because Dyn and Bool are compatible so π1 will be updated to ⊤.

The following soundness and completeness theorems state that the constraint generation rules
correspond to the declarative typing rules presented in Figure 6. In particular, Theorem 6.2 implies
that constraint generation finds the MGSM typing. Following the spirit of Vytiniotis et al. [2011], we
use the idea of sound and most-general solutions (θ ) for constraints (C) in the following theorems
(Vytiniotis et al. [2011] used the term guess-free). In Section 7, we provide a unification algorithm
that generates solutions with these desired properties.

Theorem 6.1 (Soundness of Constraint Generation). If Γ ⊢C e : M | C | π , then

π ;θ (Γ) ⊢ e : θ (M ) | Ω for some Ω, where θ is a sound and most-general solution for C .

Theorem 6.2 (Completeness of Constraint Generation). If π1;θ1 (Γ) ⊢ e : M1 | Ω then

Γ ⊢C e : M | C | π such that π1 ≤ π , ∀δ .⌊π1⌋δ = ⊤ ⇒ ⌊π ⌋δ = ⊤ ∧ ⌊M1⌋δ ⪯ ⌊θ (M )⌋δ , and

θ1 = θ
′ ◦ θ form some θ ′, where θ is a sound and most-general solution for C .

Both theorems can be proved by structural induction over the rules in Figures 6 and 7. Intuitively,
the rules in Figure 7 don’t forget any constraints and no extra constraints are generated with
respect to the declarative type system Figure 6.

7 UNIFICATION

This section presents a unification algorithm for solving the constraints generated in Section 6,
thus completing the roadmap presented in Section 3.

7.1 Solving Compatibility Constraints

We first motivate the structure and design of the algorithm by using the following examples.

(i) α ≈?π Dyn→ Int

(ii) A⟨Dyn, Bool⟩ ≈?π Int

Our solver must adhere to certain rules to ensure the correctness of type inference, including:

(I) Dyn is compatible with any type (Section 2.1).
(II) Type variables only substitute for static types (Section 4).
(III) The typing pattern produced must be as defined as possible (Section 4).

Problem (i) helps illustrate rule (II). Intuitively, α should substitute to a function type whose
codomain is Int, but what should the domain be? Essentially, the domain should be an unconstrained
type variable so that it can unify with a static type later, if necessary. As a result, we generate
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U : C→θ × π

(a)U (Dyn ≈?π M ) = (∅,⊤)

(a∗)U (M ≈?π Dyn) = U (Dyn ≈?π M )

(b)U (α ≈?π M )

| α < vars(M ) ∧ ¬hasDyn(M ) = ({α 7→ M,⊤)}

| d ∈ choices(M ) = U (d⟨α ,α⟩ ≈?π M )

| α < vars(M ) ∧M is of formM1→M2 =

let (θ1,π1) = U (α ≈?⊤ κ1→κ2); (θ2,π2) =U (κ1→κ2 ≈
?
π2

M1→M2) in (θ2 ◦ θ1,π2 ⊗ π1)

| otherwise = (∅,⊥)

(b∗)U (M ≈?π α ) = U (α ≈?π M )

(c)U (d⟨M1,M2⟩ ≈
?
π d⟨M3,M4⟩) =

let (θ1,π1) = U (M1 ≈
?
π1

M3); (θ2,π2) = U (M2 ≈
?
π2

M4); θ
′
=merдe (d,θ1,θ2)

in (θ ′,d⟨π1,π2⟩)

(d)U (d⟨M1,M2⟩ ≈
?
π M ) = U (d⟨M1,M2⟩ ≈

?
π d⟨⌊M⌋d .1, ⌊M⌋d .2⟩)

(d∗)U (M ≈?π d⟨M1,M2⟩) = U (d⟨M1,M2⟩ ≈
?
π M )

(e)U (T1 ≈
?
π T2) = if robinson(T1,T2) = θ ′ then (θ ′,⊤) else (∅,⊥)

(f)U (M11→M12 ≈
?
π M21→M22) =

let (θ1,π1) = U (M11 ≈
?
π1

M21); (θ2,π2) = U (θ1 (M12) ≈
?
π2

θ1 (M22)) in (θ2 ◦ θ1,π1 ⊗ π2)

(g)U (ε ) = (∅,⊤)

(h)U (d⟨C1,C2⟩) = let (θ1,π1) = U (C1); (θ2,π2) = U (C2); θ
′
=merдe (d,θ1,θ2) in (θ ′,d⟨π1,π2⟩)

(i)U (C1 ∧C2) = let (θ1,π1) = U (C1); (θ2,π2) = U (θ1 (C2)) in (θ2 ◦ θ1,π2 ⊗ π1)

Fig. 9. A unification algorithm.

the substitutions {κ2 7→ Int} ◦ {α 7→ κ1→κ2}. Since κ1 is a fresh type variable that is not mapped
to anything, it is unconstrained. In contrast, κ2 is mapped to Int. This substitution satisfies both
rules (I) and (II).

Problem (ii) demonstrates the need for error tolerance in solving constraints. The natural way to
solve a choice constraint is to decompose it into two constraints. Doing this on constraint (ii) yields
two subconstraints, Dyn ≈?π1 Int and Bool ≈?π2 Int, where π = A⟨π1,π2⟩. According to rule (I), the
first constraint is solved successfully and π1 is updated to ⊤. The second constraint, however, fails
to solve, since Bool cannot be made compatible with Int, so we update π2 to ⊥. Consequently, we
update π to A⟨⊤,⊥⟩ to reflect that constraint solving fails in A.2. Choosing instead ⊥ for π would
yield a consistent result but would violate rule (III).

7.2 A Unification Algorithm

Figure 9 presents a unification algorithmU , which takes in a constraint and produces a substitution
θ and a pattern π . As said in Section 6, constraint solving also updates the values of patterns that
are used as placeholders. The figure uses the following helper functions. The function choices(M)
returns the set of choice names inM ; vars (M ) returns the set of type variables in V . The predicate,
hasDyn(M), determines whether Dyn occurs anywhere in M . The function, merge, combines the
substitutions from solving the subproblems of a choice constraint. For example, given d , θ1 =
{α 7→ Int}, and θ2 = {α 7→ Bool}, we have merge(d,θ1,θ2) (α ) = {α 7→ d⟨Int, Bool⟩}. Formally, the
definition of merge (for each α in θ1 ∪ θ2) is:

merge(d,θ1,θ2) (α ) = d⟨get(α ,θ1), get(α ,θ2)⟩ where α ∈ dom (θ1) ∪ dom (θ2)

get(α ,θ ) =




M α 7→ M ∈ θ

κ otherwise
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We now briefly walk through each case ofU . Case (a) handles the trivial constraints involving
Dyn. Such constraints are simply discarded without generating any mapping. We return ⊤ as the
pattern since Dyn is compatible with any type. More importantly for α ≈?π Dyn, case (a) takes
priority over (b), ensuring that the substitution {α 7→ Dyn} is not generated. Case (b) unifies a
type variable α with a migrational type M . This case includes many subcases. First, if M does
not contain Dyn and α does not occur in M , then α is directly mapped to M . For example, given
α ≈?π A⟨Int, Bool⟩, the substitution {α 7→ A⟨Int, Bool⟩} is returned and the π is updated to ⊤.
Second, if M contains variation, the result is computed via case (d). For example, the problem
α ≈?π A⟨Dyn, Int⟩ is transformed into A⟨α ,α⟩ ≈?π A⟨Dyn, Int⟩. Next, if M is a function type that
contains Dyn and α does not occur inM , then we transform α into a function type by using fresh
type variables and delegate the solving to case (f). The problem (i) in Section 7.1 falls in this case. If
all previous cases fail, ⊥ is returned, indicating that the constraint failed to solve.
Case (c) handles constraints involving two choice types that share an outer choice name. It

decomposes the constraint into two smaller problems and solves them individually. For instance,
consider the constraint A⟨Dyn,α⟩ ≈?π A⟨Int, Bool⟩. This constraint will be decomposed into Dyn ≈?π1
Int and α ≈?π2 Bool, which will be solved by (a) and (b), respectively. Case (d) unifies a choice
type with another type not handled by case (c). This case is reduced to (c) but it turns the RHS
of the constraint into a choice type that shares the outer choice name with the LHS. One such
example is A⟨Dyn, Int⟩ ≈?π Int transforming into A⟨Dyn, Int⟩ ≈?π A⟨Int, Int⟩. Case (e) unifies two
static types and is delegated to the traditional Robinson’s algorithm. Case (f) unifies two function
types by unifying their respective argument and return types. Cases (g), (h), and (i) deal with
non-compatibility constraints.
To keep patterns in normal form, we also perform the following optimizations to prevent

idempotent choices patterns from being created. In cases (c) and (f) ofU , when creating the choice
pattern d⟨π1,π2⟩, we check if π1 and π2 are the same; if so, the choice pattern is replaced by π1. In
the last two cases of ⊗ in Section 6, we perform the same optimization. After this, the algorithm
maintains patterns in normal forms since additionally the generated constraints do not contain
dead alternatives and the case (d) ofU prevents dead alternatives from being introduced.

7.3 Properties

We now investigate the properties ofU . First,U is terminating.

Theorem 7.1 (Termination). Given C ,U (C ) terminates.

Next, we show thatU is correct by showing that it is both sound and complete. For simplicity, we
state the result for constraints of the formM1 ≈

?
π M2 only. In fact, we can transform other forms into

this form. For example, d⟨M11 ≈
?
π1

M12,M21 ≈
?
π2

M22⟩ can be transformed into d⟨M11,M21⟩ ≈
?
d⟨π1,π2⟩

d⟨M12,M22⟩. Note that π in the constraint is just a placeholder and will be updated when the
constraint solving finishes.

Theorem 7.2 (Soundness). IfU (M1 ≈
?
π M2) = (θ ,π ′), then θ (M1) ≈π ′ θ (M2).

Theorem 7.3 (Completeness). Given M1 ≈
?
π M2, if θ1 (M1) ≈π1 θ1 (M2), thenU (M1 ≈

?
π M2) =

(θ2,π2) such that π1 ≤ π2 and θ1 = θ ◦ θ2 for some θ .

All theorems can be proved by going through the cases ofU in Figure 9.

8 EXTENSIONS

In the previous sections we focused on making a gradually typed program as static as possible
while preserving type correctness. This corresponds to Q1 from Section 1.1. In Section 8.1, we
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describe how Q2 and Q3 can be addressed with small changes to our approach. Then, in Section 8.2,
we consider how to support additional language features in our migrational type system.

8.1 Flexible Migration of Gradual Programs

Question Q2 from Section 1.1 asks whether we can take user considerations into account when
migrating gradual programs. For example, the user should be able to indicate that a particular
parameter should remain dynamic even if it could be made static, or that a particular parameter
must be made static. This can be supported within our framework by using the user’s preferences
to override the inferred typing pattern before converting that typing pattern into a best migration
using the method in Section 5.2. Given an inferred pattern π , we override the typing pattern with
d1⟨π ,⊥⟩ to force the parameter associated with choice name d1 to be dynamic and override the
pattern with d2⟨⊥,π ⟩ to force the parameter associated with d2 to be static. Essentially, we take
the user’s preference into account by considering the alternative to be ill typed. After doing this
successively for each of the user’s preferences, we can renormalize the pattern and use the method
in Section 5.2 to compute the migration (i.e. determine which Dyn annotations to remove). Note
that forcing a parameter to be static could make a migration fail when otherwise it would not.
Question Q3 asks whether we can migrate an ill-typed program to a type-correct program by

adding as few Dyn annotations as possible. This can be supported in our framework by treating
both abstraction forms uniformly and typing all abstractions using the rule AbsDyn from Figure 6.
With this change, any parameter can be either dynamically or statically typed and our results from
Sections 4 and 5 ensure that we can migrate to a type correct result that is as static as possible.
The idea of adding Dyn annotations to remove static type errors is closely related to the idea of

deferring type errors by Vytiniotis et al. [2012]. However, our approach works at a more fine-grained
level since their approach does not allow type errors related to function parameters to be deferred.

8.2 Other Language Features

Our version of ITGL, given in Figure 6, restricts parameters to be either unannotated or annotated
by Dyn. The formulation of gradual typing by Garcia and Cimini [2015] allows arbitrary gradual
type annotations on parameters, and also supports type ascription, that is, asserting by e ::G that
expression e has type G.

We can extend our type system to support arbitrary gradual type annotations as follows. Given
an abstraction λx : G .e , ifG = Dyn orG is fully static, type the abstraction as usual; ifG is a complex
type containing Dyn types, replace G by a choice whose first alternative is G and whose second
alternative replaces all dynamic parts by arbitrary types. For example, ifG = Int→ Dyn→ Dyn, then
the type of the parameter is d⟨Int→ Dyn→ Dyn, Int→V1→V2⟩, where d is fresh. To generate the
corresponding constraint (Section 6), we replace V1 and V2 by fresh type variables.
We can extend our type system to support type ascription with the following typing rule.

π ; Γ ⊢ e : M | Ω G ≈π V M ≈π d⟨G,V ⟩

π ; Γ ⊢ (e ::G ) : d⟨G,V ⟩ | Ω ∪ {e 7→ V }

The second premise ensures that the static parts of the ascribed type G are copied to the second
alternative of the choice. The third premise ensures that the type of the expressionM is compatible
with the ascribed type and also a corresponding type V with all Dyn types removed. We can update
the the structure of Ω to accommodate this rule by defining its domain to be program locations
rather than parameter names. We use e here as shorthand for the location of e .
Finally, we can also add support for let-polymorphism. The approach is straightforward, but

the notations become heavier. We use α to denote a list of type variables and {α 7→ V } to denote a
set that includes α1 7→ V1, . . . , αn 7→ Vn . The function vars(·) returns the free type variables in its
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ID Size # Func. # Para. # Chg. # Best Gradual Brute Migrational

1 7 1 5 2 2 1.6e−3 4.4e−2 2.3e−3

2 17 8 9 5 11 3.6e−3 1.6 1.2e−2

3 24 9 14 5 3 6.4e−3 79.5 1.7e−2

4 126 8 10 10 17 1.9e−2 20.1 3.5e−2

5 237 86 139 20 9 4.5e−2 ś 0.1
6 2,110 420 576 5 7 0.38 ś 0.77
7 2,110 420 576 100 743 0.39 ś 0.75
8 8,460 2,750 2,946 50 83 2.7 ś 4.5

9⋆ 10,000 2,392 4,923 50 379 4.2 ś 13.3
10⋆ 20,000 7,630 9,364 100 894 12.0 ś 24.3

⋆: 100 programs of this size were generated. Results are the average of all programs.

Fig. 10. Running time (in seconds) of migrational typing on various programs. Times are measured on a

ThinkPad with 2.4GHz i7-5500U 4-core processor and 8GB memory running GHC 8.0.2 on Ubuntu 16.04. Each

time is an average of 10 runs. The symbol ś indicates that typing timed out after 1,000 seconds.

argument. The typing rules are standard except that when typing variable references (Var) we can
only instantiate type schemas with variational types (V ) and not migrational types (M).

Let

π ; Γ ⊢ e1 : M1 | Ω1 α = vars(M1) − vars(Γ)

π ; Γ,x 7→ ∀α .M ⊢ e2 : M2 | Ω2

π ; Γ ⊢ let x = e1 in e2 : M2 | Ω1 ∪ Ω2

Var
x 7→ ∀α .M ∈ Γ

π ; Γ ⊢ x : {α 7→ V }(M ) |∅

In support of all of these extensions, the other machinery of our approach, including constraint
generation, unification, and extracting the most static migration, can be reused.

9 EVALUATION

This section evaluates the performance of migrational typing. For this purpose, we have imple-
mented a prototype in Haskell. The prototype implements the techniques developed in this paper.
Besides the features presented in Sections 4.1 and 8.2, the prototype also supports recursive functions
and a built-in list type, which is needed to encode the examples described below.
We have created a suite of programs for performance evaluation since no public benchmarks

exist in this domain. We first took 10 well-typed programs from the student program database [van
Keeken 2006], whose sizes range from 17 LOC to 80 LOC (not including blank lines). We then
randomly combined and duplicated these programs to create several programs of various sizes,
from 17 to 20,000 LOC. The created programs are all well-typed by construction, so we seed errors
in the programs by randomly applying between 2 and 100 changes in each. Each change replaces
one leaf of the AST (a variable reference or constant) with another leaf. The generated programs
are summarized in columns 2ś5 of Figure 10, showing size in LOC, number of functions, number of
dynamic parameters, and the number of leaves that were changed. We generated 8 programs of
increasing size, then 100 programs each of 10,000 LOC and 20,000 LOC.
For each generated program, we compared the runtime of migrational typing with standard

gradual typing and with a brute-force strategy for most static migration for the program, shown in
the last three columns of the table. We also report the number of most static migrations in column
ł# Bestž, computed using the method in Section 5.2. The time for gradual typing can be considered
a baselineÐthis is the time to simply type the given program. The time for the brute-force strategy
represents a naive approach to migrational typing, generating 2n variants of a program with n
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dynamic parameters, and gradually typing all of them. We omit the time for computing the most
static migrations from the figure because the time is always within 0.05 seconds.

From the figure, we observe that the brute force approach is exponentially slower than gradual
typing, as expected, successfully typing only the first four programs. On the other hand, migrational
typing scales linearly with the size of the program and exhibits only a 2ś4 times overhead over
gradual typing. The figure also shows that the number of changed locations and the number of
most static migrations have a minor impact on the performance of the migrational typing process.
For example, while the programs 6 and 7 have very different values for these two columns, the
running times of migrational typing is almost the same.

It is interesting to note that the number of most static migrations seems to be independent of the
number of changes made to the program. For example, program 5 changes more leaves but has
fewer most static migrations than program 4. In fact, the kind and number of changes matters much
more than the raw number. For example, scattered changes (vs. localized changes) and changes
that directly affect types (e.g. changing not to succ) tend to create more most static migrations.
Many programs in our dataset have a large number of most static migrations. In practice, this

would make migration difficult since the user has to somehow compare them. However, examining
the results reveals that larger programs divide into clusters of interrelated functions, each with a
relatively small number of candidate migrations. The high number of migrations for the whole
program is caused by considering the product of possibilities for each cluster. For example, program
8 includes 3 clusters with 4, 4, and 5 most static migrations, respectively. The product of these three
decisions accounts for almost all of its 83 most static migrations. In a real programming language,
such clusters naturally correspond to modules, so migrating programs module-by-module is likely
to provide a much better user experience. We can also imagine other strategies for coping with large
numbers of potential migrations. Allowing the user to guide the migration process, as described in
Section 8.1, is one possibility. Or we can imagine querying the potential migrations to, say, find the
one that removes the largest number of Dyn annotations among all most static migrations.

10 RELATED WORK

10.1 Annotation Upgrading and Migratory Typing

Tansey and Tilevich [2008] studied the problem of automatically upgrading annotations (such
as types and access modifiers in Java) in legacy applications in response to the upgrading of, for
example, testing frameworks and libraries. This is similar to our work in that it tackles the problem
of migrating programs to a new version by changing annotations in the program. Their methodology
is quite different however, in that it needs two example programs illustrating how annotations
change between framework versions, so that their inference rules can learn the changes made in
the examples. In contrast our approach only needs to reason about how type annotations affect
the typing of the program, so migrating annotations requires only information attainable through
the type system. Moreover, the kind of migrations are orthogonal. Their goal is to upgrade an
entire codebase automatically to use a new framework, which means that they have one endpoint.
Migrational typing presents all of the ways a programmer might want to change the types of their
program by adjusting Dyn annotations, meaning that there are multiple endpoints.

Migratory typing [Tobin-Hochstadt et al. 2017] provides another approach to migrating dynami-
cally typed code to statically typed code by creating a statically-typed sister language that interfaces
seamlessly with the dynamically-typed language. While migration in migratory typing is manual,
migrational typing supports systematically typing the whole migration space and automatically
finding the best migrations. Migratory typing defined ideal migration units as parts of a system that
are small enough for easy migration but also large enough to be separately typed and to interface
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with untyped code without excessive runtime type checks. The idea of migration units could be
integrated into migrational typing as discussed at the end of Section 9.

10.2 Relation to Gradual Typing

Work on gradual typing can be broadly defined along three dimensions. The first investigates the
integration of gradual typing with advanced typing features, such as objects [Siek and Taha 2007],
ownership types [Sergey and Clarke 2012], refinement types [Jafery and Dunfield 2017; Lehmann
and Tanter 2017], session types [Igarashi et al. 2017], and union and intersection types [Castagna
and Lanvin 2017]. From this perspective, our type system studies the combination of variational
types and gradual types. Gradual languages with type inference [Garcia and Cimini 2015; Rastogi
et al. 2012; Siek and Vachharajani 2008] were a large influence on migrational typing. While ITGL
was used as the basis for formalizing our type system, we expect that our approach can be extended
to handle other features in this line of work. The reason is that the idea and manipulation of
variation is orthogonal to other type system features. In particular, the idea of type compatibility in
Section 4.2 and the handling of type errors in Section 4.3 can be easily extended.
The second dimension studies runtime error localization and performance issues with sound

gradual typing. The blame calculus [Wadler and Findler 2009] adapts a contract system that can
blame less precise parts of a program when cast errors occur in a gradually typed language. Ahmed
et al. [2011, 2017] extended that work to further handle polymorphic types. Takikawa et al. [2016]
showed that sound gradually typed languages suffer from performance issues as more interactions
between static code and dynamic code leads to frequent value casts. Confined Gradual Typing
[Allende et al. 2014] provides constructs to control the flow of values between static and dynamic
code, mitigating performance issues and making gradual typing more predictable.
Gradual type inference with flow-based typing [Rastogi et al. 2012] has been explored to make

programs in dynamic object-oriented languages more performant. Since our work is formalized
on ITGL, our work inherits the relations between ITGL and the flow-based inference [Garcia and
Cimini 2015]. Additionally, while flow-based inference ensures that inferred type annotations
do not cause runtime errors, our current formalization does not have this property because the
underlying ITGL does not have it. In contrast, while our approach finds the best way (according to
many criteria, such as adding as many annotations as possible) to add annotations, the flow-based
inference only considers one way of inferring types. Thus, it would be an interesting future direction
to combine migrational typing and flow-based inference to combine their benefits.

The final dimension studies the production of gradual type systems from specifications of static
type systems. For example, Garcia et al. [2016] presented a way to create gradual type systems from
static ones using techniques from abstract interpretation. The Gradualizer [Cimini and Siek 2016,
2017] can produce a gradual type system and dynamic semantics for a statically-typed language
given its formal semantics. It is thus interesting to investigate how these approaches interact with
variations in the future. Siek et al. [2015] discussed the criteria for gradual typing. We employed
the criteria of the underlying ITGL to prove Theorem 5.1.

10.3 Variational Typing

This work reuses much machinery from variational typing [Chen et al. 2012, 2014] to support
reuse when typing the whole migration space. Thus, migrational typing can be viewed as an
application of variational typing. Variational typing has been employed to improve type inference
of generalized algebraic data types [Chen and Erwig 2016], which uses variation types to represent
potentially many types for a single expression. Variational typing has also been used to improve
error locating in functional programs using counter-factual typing (CFT) [Chen and Erwig 2014a,b].
Both migrational typing and CFT use variational types to efficiently explore a large number of
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hypothetical situations. A technical difference between CFT and migrational typing is that CFT
tries to find a minimal change that would make an ill-typed program type correct. In contrast,
migrational typing tries to remove Dyn annotations from as many parameters as possible. The
process of extracting the maximum change for migrational typing (as described in Section 5.2) is
well defined while finding the minimum change in CFT has to rely on heuristics due to the nature
of type error debugging. Another difference is that migrational typing considers the interaction
between variational types and gradual types. The idea of using pattern-constrained judgments in
Section 4.3 yields a declarative specification for handling type errors, while previous applications
of variational typing have had to explicitly track the introduction and propagation of type errors.

Variational typing is defined in terms of the choice calculus [Erwig andWalkingshaw 2011]. Other
applications of the choice calculus include the development of variational data structures [Meng
et al. 2017; Smeltzer and Erwig 2017; Walkingshaw et al. 2014] to support variational program
execution [Chen et al. 2016; Erwig and Walkingshaw 2013; Nguyen et al. 2014], and view-based
editing of variational programs [Stănciulescu et al. 2016; Walkingshaw and Ostermann 2014].

11 CONCLUSION

We have presented migrational typing, a type system that allows programs in an implicitly typed
gradual language to be assigned a new type based on the possible removals of dynamic type
annotations in the original program. Migrational typing conceptually types the whole migration
space, marking where type errors occur so that it can safely present the possible migrations for
the program. We have shown that the system can infer the most static possible types that can
be assigned to a program and that this process can be constrained according to user defined
criteria. Moreover, the migrational type system is sound and complete with respect to removing
dynamic annotations in ITGL, and its constraint generation and unification algorithms are sound
and complete. We have also shown that this approach is scalable, performing nearly exponentially
better than the brute force approach of generating and typing the migration space separately.
Migrational typing solves an important unaddressed problem in gradual typing, namely having a
safe and efficient way to move around in the possible dynamic-static typing space for a program.
In future work, we plan to investigate whether migrational typing can statically reason about

the number of dynamic casts that will be generated by different points in the migration space so
that we can pick the program with the fewest generated casts to minimize performance overhead.
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