JFP 28, €2, 48 pages, 2018. (© Cambridge University Press 2018 1
doi:10.1017/S095679681700020X

Systematic identification and communication
of type errors*

SHENG CHEN

UL Lafayette
(e-mail: chen@louisiana.edu)

MARTIN ERWIG

Oregon State University
(e-mail: erwig@oregonstate.edu)

Abstract

When type inference fails, it is often difficult to pinpoint the cause of the type error among
many potential candidates. Generating informative messages to remove the type error is
another difficult task due to the limited availability of type information. Over the last three
decades many approaches have been developed to help debug type errors. However, most
of these methods suffer from one or more of the following problems: (1) Being incomplete,
they miss the real cause. (2) They cover many potential causes without distinguishing them.
(3) They provide little or no information for how to remove the type error. Any one of this
problems can turn the type-error debugging process into a tedious and ineffective endeavor.
To address this issue, we have developed a method named counter-factual typing, which (1)
finds a comprehensive set of error causes in AST leaves, (2) computes an informative message
on how to get rid of the type error for each error cause, and (3) ranks all messages and
iteratively presents the message for the most likely error cause. The biggest technical challenge
is the efficient generation of all error messages, which seems to be exponential in the size of
the expression. We address this challenge by employing the idea of variational typing that
systematically reuses computations for shared parts and generates all messages by typing the
whole ill-typed expression only once. We have evaluated our approach over a large set of
examples collected from previous publications in the literature. The evaluation result shows
that our approach outperforms previous approaches and is computationally feasible.

1 Introduction

Static typing is one of the most widely used formal methods. A type system is an
effective, but not too intrusive, method to catch a wide range of programming errors.
Type inference increases the usability of type systems by allowing programmers to
omit type annotations.

However, when type inference fails, it is often difficult to precisely locate the
erroneous code and produce a suggestion to fix the error. This problem was

* This work is supported by the National Science Foundation under the grants 11S-1314384, CCF-
1717300, and CCF-1750886. We thank the anonymous POPL and JFP reviewers, whose feedback has
improved both the content and the presentation of the paper.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

2 S. Chen and M. Erwig

recognized by researchers (Johnson & Walz, 1986; Wand, 1986) soon after the inven-
tion of the algorithm %" (Damas & Milner, 1982), the classic type inference algorithm
underlying many modern type checkers for functional languages. Many researchers
view fixing type errors in response to obscure and misleading error messages as one
of the biggest obstacles to beginners to functional programming (Heeren et al., 2003;
Neubauer & Thiemann, 2003). Recent studies have confirmed this view (Chambers
et al.,, 2012; Tirronen et al., 2015; Wu & Chen, 2017).

1.1 The difficulty of debugging type errors

In the last three decades, numerous approaches have been developed to assist the
type error debugging process (Lee & Yi, 1998; Lee & Yi, 2000; Tip & Dinesh, 2001;
Yang, 2001; Choppella, 2002; McAdam, 2002a; McAdam, 2002b; Haack & Wells,
2003; Heeren, 2005; Wazny, 2006; Lerner et al., 2007; Schilling, 2012; Zhang &
Myers, 2014; Loncaric et al., 2016; Chen et al., 2017; Wu et al., 2017). Although
considerable progress has been made, generating informative and helpful type error
messages is still a challenge. In particular, there is still no single method that
consistently produces satisfactory results. Most of the existing approaches perform
poorly in certain cases.

As an example, consider the following Haskell function palin, which checks
whether a list is a palindrome (Stuckey et al, 2003). The first equation for fold
contains a type error and should return z instead of [z].

fold f z [] = [z]
fold f z (x:xs8) = fold f (f z x) xs

flipf xy=1fyx
rev = fold (flip (:)) []

palin Xs = rev Xxs == Xs

Existing tools have difficulties in finding this error. For example, the Glasgow Haskell
Compiler (GHC) 7.8' produces the following error message.’

Occurs check: cannot construct the infinite type: t ~ [t]
Expected type: [[t]]
Actual type: [t]
Relevant bindings include
xs :: [t] (bound at Palin.hs:5:7)
palin :: [t] -> Bool (bound at Palin.hs:5:1)
In the second argument of (==), namely ‘xs’
In the expression: rev xs == Xs

GHC 8.0.2, the latest version of GHC at the time of writing, produces the same
message. Hugs98,? another modern Haskell compiler, displays the following message:

! www.haskell.org/ghc/

2 For presentation purposes, we have slightly edited the outputs of some tools by changing their
indentation and line breaks.
3 http://www.haskell.org/hugs/

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 3

*** Expression ! rev xs == XS

**x Term : rev xs

*** Type ¢ [[all

*x*x* Does not match : [al]

***x Because : unification would give infinite type

We observe similar error messages from both compilers. While technically accurate,
the error messages do not directly point to the source of the error, and they do
not tell the user how the type error could be fixed either. The use of compiler
jargon makes the error messages difficult to understand for many programmers.
While giving reasons for the failure of unification might be useful for experienced
programmers and type system experts, such error messages still require efforts to
manually reconstruct some of the types and solve unification problems.

In general, compilers perform type inference by traversing the expression from left
to right and generating and solving typing constraints at each node.* This approach
suffers from three problems as far as error debugging is concerned. First, it tends to
locate the type error to the right of the real cause in the AST (right bias). Second, it
attributes each type error to a single subexpression (single-error limitation). In many
cases, such reported locations are incorrect, since the program text does not contain
enough information to confidently make the right decision about the correct error
location. Third, it reports type errors in terms of unification failures and does not
suggest changes to fix the type error (lack of suggestions).

In addition to the fixed order of traversing expressions, the principality of type
inference also contributes to the right bias problem. In type inference, the types for
all subexpressions should be as general as possible, captured in principal types. For
example, the function id should have the type a -> a, rather than a more specific
type, to make both id 1 and id True well typed. In general, principality implies that,
in e; e, any subexpression in e; should not be blamed as an error cause as long as
ey is well-typed, even though the real cause may be that some subexpression inside
eq 1s too restrictive. This is exactly why both GHC and Hugs98 identify the error in
the body of palin rather than in fold.

Many approaches have been proposed to address the right bias problem with the
standard type inference model. They all share the idea of traversing the expression in
a different order to eliminate the bias (Lee & Yi, 2000; Yang et al., 2000; McAdam,
2002b; Eo et al., 2004). However, while eliminating right bias, they introduce other
biases. In fact, based on our analysis in the last paragraph, biases cannot be fully
eliminated unless we forgo principality, the principle underlying type inference.

The right bias and single-error limitation problems with the standard type
inference model have been tackled by a number of program slicing approaches.
These try to identify a set of possible error locations rather than commit to a single
location. The basic idea is to find all program positions that contribute to a type
error and exclude those that do not. For example, the Skalpel® type error slicer for
SML (Haack & Wells, 2003) produces the following result. (We have translated the

4 Our discussion applies even when constraint generating and solving are separated into two phases.
5 www.macs.hw.ac.uk/ultra/skalpel/

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

4 S. Chen and M. Erwig

above program into ML for Skalpel to work.) All the parts that contribute to the
type error are shaded.

fun fold f z [] [z] ;
| fold £ z (x::xs) fold £ (f (z,x)) xs ;
fun flip £ (x,y) = £ (y, %) ;
fun rev xs = fold ((£flip op ::)) [xs ;
fun palin Xs = rev xs = xs ;

Skalpel finds type error slices in two steps. First, it generates labeled constraints
for programs such that constraint solving failure can be linked back to programs.
Second, it finds a minimal unsolvable constraint set if the generated constraints
could not be solved successfully. A significant difference of its constraint generation
process compared to other inference algorithms is that to represent the result type
of a subexpression, it creates a fresh variable and a constraint equating that fresh
variable and the result type. This ensures that all subexpressions involved in the
type error will be included in the slice. However, this strategy also causes the slice to
include unnecessary subexpressions. For example, the variables defined for passing
around an erroneous expression will be included in the slice. As we can see from
the example, Skalpel includes most program parts in the slice.

Showing too many program locations involved in the type error diminishes the
value of the slicing approach because of the cognitive burden put on the programmer
to work through all marked code and to single out the proper error location. To
address this problem, techniques have been developed that try to minimize the
possible locations contributing to a type error. An example is the Chameleon Type
Debugger,® which produces the following output:

fold f z [] = [z] ;

fold £ z (x:xs)= fold f (f z X) xs ;
flipf xy=1%fyx;

rev = fold (flip :)) [1 ;

palin Xs = rev Xs == XS ;

Chameleon is based on constraint handling rules and identifies a minimal set
of unsatisfiable constraints, from which the corresponding places in the program
contributing to the type error are derived.

Following this idea of showing fewer locations, a more aggressive strategy is taken
by SHErrLoc,” which analyzes all the constraints and identifies the constraint that
is most likely to cause the error based on a simple Bayesian model (Zhang & Myers,
2014; Zhang et al., 2015). For the palin example, it outputs the following message:

6 ww2.cs.mu.oz.au/ sulzmann/chameleon/. Since Chameleon doesn’t offer a type diagnosis option
anymore, the result is reproduced directly from Stuckey et al. (2003).
7 http://www.cs.cornell.edu/projects/SHErrLoc/

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 5

Constraints in the source code that appear most likely to be wrong
(mouse over to highlight code):

(variable)t_aU9 == (variable)t_aUf [loc: program.hs:3,19-201{z in [z]}
(variable)t_aTX == (variable)t_aUO [loc: program.hs:5,16-17]1{y}
(variable)t_aUi == (variable)t_aUs [loc: program.hs:4,30-31]{z in (f z x)}

4 errors found

A value with type a_aUJ is being used at type a_aUJ

fold £ z [] = [z]

fold £ z (x:xs)= fold £ (f z x) xs

flipf xy=1f y x

rev = fold (flip (:)) [I

palin xs = rev Xs == XS

Three other messages and their assoctiated slices omitted

SHErrLoc’s response consists of two parts. The first presents the constraints that
are most likely to cause the type error. We have attached the highlighted code in
italics in a pair of curly brackets to each corresponding constraint. Note that the
first constraint mentions z, which is just part of the real error cause [z], according
to Stuckey et al. (2003). The second part presents the likely errors and related slices.

While SHErrLoc is a clear improvement over other slicing approaches in reporting
fewer potential error locations, a programmer still has to work through several code
parts to find the type error. In particular, figuring out which types should be used
at specific locations can be quite time consuming.

Many techniques have been developed to address the lack-of-suggestions problem
of the standard type inference model. They locate the most likely cause of the
type error based on heuristics and provide change suggestions in some form. One
example is the Helium compiler,® which was developed to support the teaching of
typed functional programming languages. A declared focus of Helium is to generate
good error messages (Heeren, 2005). In many cases, Helium produces high quality
type error messages. For our example, it produces the following message:

(56,19): Type error in infix application

expression : rev xs == XS
operator : ==
type T a ->a -> Bool
does not match : [[b]] -> [b] -> ¢
because : unification would give infinite type

Unfortunately, Helium does not perform much better than GHC or Hugs on this
example and provides feedback only in terms of internal representations used by the
compiler.

Helium locates type errors in several steps. First, it builds a type graph (McAdam,
1999; Erwig, 2006) to represent the constraints about typing relations among different
parts of the program. When constraint solving fails, it will search through the type
graph to discover a constraint whose removal will cause the constraint solving to

8 www.cs.uu.nl/wiki/bin/view/Helium/WebHome

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

6 S. Chen and M. Erwig

File "Palin.ml", line 8, characters 21-27:
This expression has type ’a list list but is
here used with type ’a list

Relevant code: rev xs

File "Palin.ml", line 8, characters 15-17:
Try replacing

xs == (rev xs)
with

(=) (xs, (rev xs8))
of type

’b list * ’b list list -> bool
within context
let palin xs = (==) (xs, (rev xs)) ;;

Fig. 1. The error message of Seminal for palin.

succeed. Helium finds the most suspicious constraint based on some heuristics (Hage
& Heeren, 2007).

Seminal,’ a tool for type checking OCaml programs, also produces change
suggestions (Lerner et al., 2006, 2007). Seminal blames the type error on the function
palin and produces a corrective change shown in Figure 1.

Unfortunately, the suggested error location is not correct according to Stuckey
et al. (2003). Although the suggested change will eliminate the type error, it changes
the wrong code: The suggested change of partially applying == to the pair of
differently typed lists turns palin’s type into ’a list -> ’a list * ’a list list ->
Bool.

Seminal locates type errors using binary search. In the example, it first type checks
the first half of the program, which does not contain a type error when considered
alone. It then concludes that the type error is in the second half and directs the
search process to that part. Following this search strategy, the type error will be
found in the last line because if we remove that line, the remaining program is well
typed. This shows that Seminal does not work well when the cause of a type error
occurs in a subexpression that is itself well typed but causes type errors in other
subexpressions.

Offering change suggestions is a double-edged sword: While it can be very helpful
in simplifying the task of fixing type errors, it can also be sometimes very misleading
and frustrating when the suggested change does not work. In the shown example,
both change-suggesting tools fail to correctly locate the error, and consequently their
change suggestions also fail.

Overall, none of the existing approaches adequately addresses all the problems
with the standard type inference model. While error slicing approaches tackle the
right bias and single-error limitation problems, they do not address the lack-of-
suggestions problem. Moreover, they are too general, and their improved variants can
again miss the real error cause. While change-suggestion tools obviously address the
latter problem, they generally do not address right bias and single-error limitation.

9 cs.brown.edu/~blerner/papers/seminal_prototype.html

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 7

In some cases, both Helium and Seminal can report errors at more than one location.
However, in general they report only few locations, and the identified sets of causes
are incomplete.'”

1.2 Systematic identification and communication of type errors

The task of debugging type errors seems to be an inherently ambiguous undertaking,
because in some situations there is just not enough information present in the
program to generate a correct change suggestion. Consider, for example, the
following expression.

not 1

The error in this expression is either not or 1,'' but without any additional knowledge
about the purpose of the expression, there is no way to decide whether to replace
the function or the argument. This is why it is generally impossible to isolate one
point in the program as the source of a type error. This observation provides strong
support for slicing approaches that try to provide an unbiased account of error
situations. On the other hand, in many cases some locations are more likely than
others, and specifically in larger programs, information about the context of an
erroneous expression can go a long way in isolating a single location for a type
error.

Thus, a reasonable compromise between slicing and single-error-reporting ap-
proaches could be a method to principally compute all possible type error locations
(together with possible change suggestions) and present them ranked and in small
portions to the programmer. This idea addresses all the three problems mentioned
above and avoids the shortcoming of error slicing approaches of not being specific.
The biggest challenge in realizing this idea is its high complexity. To find the change
suggestion for each location, or any combination of the locations, we potentially
have to repeatedly modify the program and run the type inference process. The
complexity of this naive approach is exponential in the size of the input program.

To address this challenge, we propose a method that identifies type errors by
systematically varying the program being checked. We call this method counter-
factual (CF) change inference, whose core is a technique to answer the question
“What type should a particular subexpression have to remove type errors in a
program.” We have implemented and evaluated a prototype for a type checker that
is based on this technique.

For each identified type error, the following information will be computed:

e The location of the erroneous expression that needs to be changed. When
fixing the type error needs to change multiple locations, all of them will be
identified.

10 The approach we will present is provably complete, yet our algorithm sacrifices it for performance in
large programs. In practice, this does not have an adverse effect on the precision of our algorithm.
We discuss this in detail in Sections 5 and 7.

1 It could also be the case that the whole expression is incorrect and should be replaced by something
else, but we ignore this case for now.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

8 S. Chen and M. Erwig

Change code of type/ To new type/
Rank | Loc Code | Change expression To new expression Result type
1 (L19) (:) |a -> [a] —> [a] a > [b] -> a [a]l] -> Bool
[Z] 12 z
2 (5,22) xs [a] [[al] [al] -> Bool
3 |(5,12) rev | [a] > [[al] [a] -> [a] [a] -> Bool
4 [(5,19) (==) | [a]l -> [a]l => Bool [[al]l -> [a]l -> b [a]l -=> b
5 4,77) fold | t1 t2 [a] -> Bool

Fig. 2. Ranked list of the first five single-location type and expression change suggestions
inferred for the palin example. The types t1 and t2 in the table are (a -> b -> a) ->
a -> [b] -> [a] and ([a] -> a -> [a]) -> [b] -> [a] -> [al, respectively. The first
two lines denote a single fix, where the expression change in the second line is deduced from
the type change from the first line. We discuss the deduction process in Section 6.

e The type of the identified erroneous subexpression under normal type inference.

e The expected type each identified erroneous expression ought to have to remove
the type error.

e The result type of the expression if all the identified subexpressions are changed
to the expected types.

To keep the complexity manageable we only produce type changes at AST leaves.
Here “type” indicates that the change information is about the types of program
parts, for example the inferred type and the expected type of the erroneous leaf. An
example type change for palin is

Change (:) of type a -> [a] -> [a] to something of type a > [b] -> a

However, errors that are best fixed by expression changes are quite common.
Examples are the swapping of function arguments or the addition of missing
function arguments. In such cases, where the underlying change to the program is
clear, we can directly report an expression change instead of a type change. An
example for the palin program is

Change [z] to z

The identification of such expression changes is not precluded by our approach that
focuses on identifying corrective type changes. In fact, expression changes can often
be deduced from type changes. We discuss an approach of deducing expression
changes from type changes in Section 6. Overall, our approach produces two kinds
of change suggestions, type changes for AST leaves (potentially multiple leaves for
fixing a single error) and expression changes for non-leaves. Since we never generate
type changes for non-leaves and expression changes for leaves, we will from now on
simply use the terms type changes and expression changes, without the qualifications
“for AST leaves” and “for non-leaves,” respectively.

Returning to the palin example, Figure 2 shows the ranked list of the first five!?
(single-location) type changes that are computed by our prototype and that can fix

12 We omitted the remaining eight for clarity.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 9

the type error. The correct change ranks first in our method. Note that this is not a
representation intended to be given to end users. We rather envision an integration
into a user interface in which locations are underlined and hovering over those
locations with the mouse will pop up windows with individual change suggestions.
In this paper, we focus on the technical foundation to compute the information
required for implementing such a user interface.

Each suggestion is essentially represented by the expression that requires a change
together with the inferred actual and expected type of that expression. Since we are
only considering type changes at leaves, this expression will always be a constant
or variable in case of a type change, but it can be a more complicated expression
in case of a deduced expression change. We also show the position of the code in
the program'® and the result types of the program if the corresponding change is
adopted. This information is meant as an additional guide for programmers to select
among suggestions.

The list of shown suggestions is produced in several steps. First, we generate
(lazily) all possible type changes, that is, even those that involve several locations.
Note that sometimes the suggested types are unexpected. For example, the suggested
type for fold is ([a]l -> a -> [a]) -> [b] -> [a] -> [a] although (a -> b -> a)
-> a -> [b] -> a would be preferable. This phenomenon can be generally attributed
to the context of the expression. On the one hand, the given context can be too
restrictive and coerce the inferred type to be more specific than it has to be, just
as in this example the first argument f1ip (:) forces fold to have [a] -> a -> [a]
as the type of its first argument. On the other hand, the context could also be too
unrestrictive. There is no information about how fold is related to [in the fourth
line of the program. Thus, the type of the second argument of fold is inferred as [b].
This imprecision cannot be remedied by exploiting type information of the program.
We show how to generate such type changes with a small example in Section 3 and
present general rules in Section 4.2 and an inference algorithm in Section 5.

Second, we filter out those type changes that involve only one location. We present
those first to the programmer, since these are generally easier to understand and
to adopt than multi-location change suggestions. Should the programmer reject all
these single-location suggestions, two-location suggestions will be presented next,
and so on.

Third, in addition to type-change suggestions, we also try to infer some expression
changes from type changes. In general, only the programmer who wrote the program
knows how to translate required type changes into expression changes. However,
there are a number of common programming mistakes, such as swapping or
forgetting arguments, that are indicated by type-change suggestions. Similar to
Seminal, our prototype identifies these kind of changes that are mechanical and do
not require a deep understanding of the program semantics. In our example, we infer
the replacement of [z] by z, because the expected type requires that the return type
be the same as the first argument type. We thus suggest to use the first argument,

13 We have added the line and column numbers by hand since our prototype currently works on abstract
syntax and does not have access to the information from the parser.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

10 S. Chen and M. Erwig

that is z, to replace the application (:) z [1. We present the deduction process in
Section 6.

Note however, that we do not infer a similar change for the fifth type change
because fold is partially applied in the definition, and we have no access to the third
argument of fold. Had the rev function been implemented using an eta-expanded
list argument, say xs, we would have also inferred the suggestion to change fold
(flip (:)) [xs to xs.

Note also that we do not supplement type changes at leaves with expression
changes. For example, in the second suggestion, we do not suggest to replace xs by
[xs]. There are two reasons for this. On the one hand, we believe that, given the very
specific term to change, the inferred type, and the expected type, the corresponding
required expression change is often easy to deduce for a programmer. On the other
hand, suggesting specific expression changes requires knowledge about program
semantics that is in many cases not readily available in the program. Thus, such
suggestions can often be misleading.

Finally, all the type-change suggestions are ranked according to a few simple, but
effective complexity heuristics. We present such heuristics in Section 5.

1.3 Structure of the paper

At the core of the proposed method of CF typing is a type system for inferring a
set of type-change suggestions. This type system is described in detail in Section 4.
We show that the type system generates a complete and correct set of type change
suggestions.

The type system is based on a systematic variation of the types of AST leaves in
a program. Therefore, some background information on how to represent variation
in expressions and types, how to make use of it for the purpose of type inference,
and what technical challenges this poses, is provided in Section 2. Equipped with
the necessary technical background, the rationale behind type-change inference can
then be explained on a high level in Section 3.

The algorithmic aspects of type-change inference and some measures for control-
ling runtime complexity are discussed in Section 5. We also briefly describe the set
of heuristics that we use for ranking change suggestions. The method of deducing
expression changes from type changes is discussed in Section 6. We have evaluated
our prototype implementation by comparing it with three closely related tools and
found that CF typing can generate correct change suggestions more often than the
other approaches. The evaluation is described in Section 7. Related work is discussed
in Section 8, and conclusions presented in Section 9 complete this paper.

1.4 Additions in the journal paper

This paper is based on our prior work (Chen & Erwig, 2014a) but contains the
following additions and updates:

e We have expanded the evaluation by adding a comparison of CF typing
and Seminal on debugging programs with multiple type errors in Section 7.2.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 11

We have also extended the performance evaluation by considering programs
from Hage (2013) in Section 7.3.

We have corrected an error in the rule for typing let-expressions in Section 4.2.
We have added a high-level overview of CF typing in Section 6.

We have added complete proofs for all theorems except simple ones.

We have expanded our analysis of existing approaches in Section 1.1.

We have extended the discussion of variational typing to make this paper more
self-contained.

e We have included a discussion of recent publications in the literature.

2 Variational typing

The idea of type-change inference is to explicitly represent and reason about
discrepancies between inferred and expected types. This idea can be exploited
in different ways, and the CF typing method presented in this paper is just one
incarnation of this more general strategy. In this section, we will first introduce the
idea of variational types and variational type inference. We will then develop some
technical machinery that is needed for the formalization of CF typing.

First, the goal of CF typing is to generate suggestions for how to change types and
expressions in a program to fix a type error. Both kinds of changes will be represented
using the generic choice representation of the choice calculus that was introduced
in Erwing & Walkingshaw (2011). The first application of this representation in the
context of type checking was to extend type inference to program families (that is, a
set of related programs) (Chen et al., 2014). We will introduce the concept of choices,
variational expressions and types, and some related concepts in Section 2.1.

Second, when type checking a program family, it is important to obtain the types
of some programs (family members) even if the typing of other programs fails. This
leads to the notion of partial types, typing patterns, and an associate method for
partial unification. The application rule will be further generalized to accommodate
partial types. We will explain these concepts in Section 2.2.

2.1 Variational expressions and variational types

The Choice Calculus (Erwig & Walkingshaw, 2011) provides a disciplined way of
representing variation in software. The most important concept is the named choice,
which can be used to represent variation points in both expressions and types. For
example, the variational expression ¢ = not A(1,True) contains the named choice
A(1,True) that represents a choice between the two constants 1 and True as the
argument to not .

The process of eliminating a variation point is called selection (Chen et al., 2014).
Selection takes a selector of the form D.i, where D is the name of a choice, traverses
the expression and replaces each D choice with its corresponding ith alternative.
We write |e|p; for selecting e with D.i. In this paper, we are only concerned
with binary choices, that is, i will be either 1 or 2. For example, selecting 4.1
from e yields the plain expression not 1. Plain expressions are obtained after all

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

12 S. Chen and M. Erwig

choices are eliminated from a variational expression. Note that variation points with
different names vary independently of one another, and only those with the same
name are synchronized during selection. For example, the variational expression
A(odd,not) A(1, True) represents only the two expressions odd 1 and not True, while
A(odd,not) B(1,True) represents the four expressions odd 1, odd True, not 1, and
not True.

Through the use of independent choices, variational programs can very quickly
encode a huge number of programs that differ only slightly. Ensuring the type
correctness of all selectable plain programs is challenging because the brute-force
approach of generating and checking each variant individually is generally infeasible.
Variational type inference (Chen et al., 2014) solves this problem by introducing
variational types and a method for typing variational programs in one run. The
result of type inference applied to a variational program is a variational type, from
which the types for individual program variants can be obtained with the same
selection as the programs.

The syntax of variational types is shown below where o ranges over type variables,
and y ranges over type constants. The type L denotes the occurrences of type errors
and will be discussed in Section 2.2.

¢ = ylald—>9 D¢ L

For example, the variational expression ¢ = A{odd,not) has the variational type
¢ = A(Int — Bool,Bool — Bool). The most important property of variational typing
is that the type for each plain expression selected from a variational expression can
be obtained through the same selections from the corresponding variational type.
For example, by selecting 4.2 from e we obtain the expression not, which has the
type Bool — Bool that is obtained by selecting A.2 from ¢.

An important technical part of variational typing is the fact that the equivalence
of choices is not merely syntactical, but governed by a set of equivalence rules,
originally described in Erwing & Walkingshaw (2011). For example, A(Int,Int) is
equivalent to Int, written as A(Int,Int) = Int, since either decision in A yields
Int. The full set of rules defining the equivalence relation is given in Figure 3. The
first three rules state that the type equivalence relation is reflexive, symmetric, and
transitive. The rule E4 states that a choice is equivalent to either of its alternative
if both alternatives are the same. Here the metavariable D ranges over dimension
names. The rule E5 states that the type equivalence relation is a congruence, where
¢[] represents a type context into which we can plug a type. The rule E6 states
that removing dead alternatives preserves the equivalence relation. The operation
lé1]p1 in the first alternative of D removes all variants reachable by D.2. These
variants are dead due to choice synchronization. Finally, rule E7 states that the
function constructor and the choice constructor may be commuted while preserving
the equivalence relation. Note that all occurrences of D must be substituted with a
same choice name.

As a slightly more sophisticated example, we can show that choices can sometimes
commute past each other. For example, A(B{¢1, ¢>), p2) = B{A{¢p1,p>),$2) can be

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 13

El B 0 =0 B3 o= ¢ 01 = ¢ E4 - o1 =
=9 =9 V= D(p,9)=¢ o[¢1] = (9]
E6 E7

D{(¢1,¢2) = D{|$1]p.1,1$2]p2) D(¢1,¢2) — D{¢3,04) = D{¢1 — @3, — 1)

Fig. 3. Variational type equivalence.

shown as follows:

A(B{($1, $2), $2)

= B(A(B{}1, $2), $2), A(B(d1, 1), $2)) by E4 from right to left

= B([A(B(¢1, $2), $2)|B.1, |A(B{d1,¢2), $2)|p2) by E6 from left to right

= B(A(}1, P2), A{p2, P2)) by the definition of selection
= B{A(¢1, $2), $2) by E4 from left to right and E5

A shortcoming of the variational typing approach is that it can succeed only if all
variants are well typed, that is, it is impossible to assign a type to the variational
expression A(odd,not) 1, even though one of its variants is type correct. Error-
tolerant variational typing addresses this issue.

2.2 Error-tolerant variational typing

The idea of error-tolerant typing (Chen et al., 2012) is to assign the type L to
program variants that contain type errors. The explicit representation of type errors
via L as ordinary types supports the continuation of the typing process in the
presence of type errors. Moreover, each variational program can be typed, and the
resulting variational type contains L for all variants that are type incorrect and
a plain type for all type-correct variants. For example, A(odd,not) 1 has the type
A(Bool, L), which encodes exactly the types that we obtain if we generate and type
each expression separately.

The most challenging part of the error-tolerant type system is the handling of
function applications because type errors can be introduced in different ways. For
example, the function might not have an arrow type, or the type of the argument
might not match the argument type of the function. Moreover, we have to consider
the case of partial matching, that is, in the case of variational types, the argument
type of the function and the type of the argument might be compatible for some
variants only. Deciding in such a case that the whole application is of type L would
be too restrictive. This challenge is addressed by the following typing rule (Chen
et al., 2012).

Fl—e1:¢1 F|—€22¢2 U[/2—>¢/=T(¢1) T[=¢/21><1¢2 (]5=TE<¢,
I'kele:¢

The first two premises retrieve the types for the function and argument. Unlike in
the traditional application rule, however, we do not require ¢; to be a function
type. Instead, the third premise tries to lift ¢; into an arrow type using a function
1 that is defined at the top of Figure 4. Lifting specifically accounts for the case in

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

14 S. Chen and M. Erwig
Typing patterns 7w ::= L | T | D(m,)
T:90—0

N1 = ¢2) =1 =
ND(P1 — 91,02 — ¢3) D<¢17) — D(¢1,95)

)=
)=

T(D(¢1,92)) = T(D(1(¢1),1(42)))
Mo)=L—1 (otherwise)

oa¢p =T D(¢1,¢2) <1 D(3,94) = D{(¢1 > ¢3,¢2 < ¢4)
Lo =1 D(91,¢2) >4 ¢3 = D(@1 > 3,2 <1 ¢3)
ol =1 ¢1 >0 D2, 03) = D(1 > ¢, 91 >3 ¢3)
o ¢’ =1 01— G20 O] — ¢y = (91 >4 9]) @ ($2 4 ¢5)
l<o=1 TRr="m
T<](P=(P l®er=_1
D(m,m) <19 =D(m; <9, M <1) D(m,m) @ M3 = D(m) @ 73, M) @ T3)

Fig. 4. Operations for typing applications.

which ¢, is a choice between arrow types, as in 1(4(Bool — Bool,Int — Bool)) =
A(Bool,Int) — A(Bool,Bool), and it also deals with, and introduces if necessary,
error types. For example, 1(A4(Int — Bool, Int)) can succeed only by introducing an
error type and thus yields A(Int, L) — A(Bool,).

The fourth premise computes a typing pattern n that records to what degree (that
is, in which variants) the type of e, matches the argument type of the (partial) arrow
type obtained for e;. As can be seen in Figure 4, a typing pattern is a (possibly
deeply nested) choice of the two values L (type error) and typing success (T). The
computation of a typing pattern proceeds by induction over the type structure of its
arguments. Note that the definition given in Figure 4 contains overlapping patterns
and assumes that more specific cases are applied before more general ones. When
two rules are equally applicable, the computed result is equivalent modulo the =
relation (Chen et al., 2012).

For two plain types, matching reduces to checking equality. For example, Int <
Int = T and Int > Bool = 1. On the other hand, matching a plain type with
a variational type results in a choice pattern. For example, Int >t D(Int,Bool) =
D(T,1).

Note that for two arrow types to be matched successfully, both their corresponding
argument types and return types have to be matched successfully. There is no
partial matching for function types. We define the operation ® to achieve this,
which is also presented in Figure 4. We can essentially view it as the logical “and”
operation if we treat T as true and L as false. For example, when computing
Int — A(Bool,Int) > B(Int, L) — Bool, we first obtain B(T, L) and A(T, L) for

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 15

matching the argument types and return types, respectively. Next, we use ® to derive
the final result as B(A(T, L), L).

In the fifth and final premise, the typing pattern is used to preserve the type errors
that the fourth premise has potentially produced. This is done by “masking” the
return type with the typing pattern. The masking operation essentially replaces all
the Ts in the typing pattern with the variants in the return type and leaves all Ls
unchanged, denoting the occurrences of type errors.

To see the application rule in action, consider the expression A(not, odd) B(1, True).
The first two premises produce the following typing judgments.

A(not,0dd) : A(Bool — Bool,Int — Bool)
B(1,True) : B(Int,Bool)

Lifting transforms the type of the function into A(Bool,Int) — A(Bool,Bool),
which is equivalent to A(Bool,Int) — Bool. The computation of A(Bool,Int) <
B(Int,Bool) yields # = A(B(L,T),B(T,L)), and masking the return type of the
function, Bool, with n yields A(B{L,Bool), B(Bool, L)).

3 Counter-factual typing

The main idea behind CF typing is to systematically vary parts of the ill-typed
program to find changes that can eliminate the corresponding type error(s) from the
program. It is infeasible to apply this strategy directly on the expression level, since
one could consider infinitely many changes in general. Therefore, we perform the
variation on the type level. Basically, we ask for each AST leaf e the counter-factual
question: What type should e have to make the program well typed?

The CF reasoning is built into the type checking process in the following way. To
determine the type of an expression e, we first infer e’s type, say ¢. But then, instead
of fixing this type, we leave the decision open and assume e to have the type D{¢, a),
where D is a fresh choice name and o is a fresh type variable. By leaving the type
of e open to revision we account for the fact that e may, in fact, be the source of a
type error. By choosing a fresh type variable for ¢’s alternative type, we enable type
information to flow from the context of e to forge an alternative type ¢’ that fits
into the context in case ¢ does not. If ¢ does fit the context, it is unifiable with ¢/,
and the choice could in principle be removed. However, this is not really necessary
(and we, in fact, don’t do this) since in case of a type-correct program, we can find
the type at the end of the typing process by simply selecting the first option from
all generated choices.

Let us illustrate this idea with a simple example. Consider the expression e = not 1.
If we vary the types of both not and 1, we obtain the following typing judgments:

not : A(Bool — Bool, o)
1: B(Int, o))

where o and o, represent the expected types of not and 1 according to their
respective contexts. To find the types a; and o, we have to solve the following

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

16 S. Chen and M. Erwig
unification problem:
A(Bool — Bool, o) =’ B(Int,00) — o3

where o3 denotes the result type of the application and =’ denotes that the unification
problem is solved modulo the type equivalence relation mentioned in Section 2.1
rather than the usual syntactical identity.

Another subtlety of the unification problem is that two types may not be unifiable.
In that case a solution to the unification problem consists of a so-called partial unifier,
which is both most general and introduces as few errors as possible. The unification
algorithm developed in Chen et al. (2012) achieves both these goals.

For the above unification problem, the following unifier is computed. The gener-
ality introduced by o and o7 ensures that only the second alternatives of choices 4
and B are constrained (Chen et al., 2014).

{o) — A{as, B(Int, 04) — o),
oy —> B{o7, A(Bool, o4)),
o3 — A(Bool,us)}

Additionally, the unification algorithm returns a typing pattern that characterizes
all the viable variants and helps to compute the result type of the varied expression.
In this case, we obtain A(B(L, T), T). Based on the unifier and the typing pattern,
we can compute that the result type of the varied expression of not 1 is ¢ =
A(B(L,Bool),as). From the result type and the unifier, we can draw the following
conclusions:

e If we do not change e, that is, if we select A.1 and B.1 from the variational
type, the result type is L (the variant corresponds to A.1 and B.1 in the result
type), which reflects the fact that the original expression is ill typed.

e If we change not to some other expression f, that is, if we select variant A4.2
and B.1 from the variational type, the result type will be as. Moreover, the
type of f is obtained by selecting 4.2 and B.1 from the type that «; is mapped
to, which yields Int — as. In other words, by changing not to an expression
of type Int — s, not 1 becomes well typed. In the larger context, s may be
further constrained to have some other type.

e If we change 1 to some expression g, that is, if we select A.1 and B.2 from the
variational type, then the result type becomes Bool.

e If we vary both not to f and 1 to g, which means to select 4.2 and B.2 from
the variational type, the result type is «s. Moreover, from the unifier we know
that f and g should have the types a4y — o5 and oy, respectively.

This gives us all type changes for the expression not 1. The combination of creating
variations at the type level and variational typing provides an efficient way of finding
all possible type changes.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 17

Term variables x,y, z Value constants ¢
Type variables o, 8 Type constants ¥

Expressions e, f c|lx|Axe|lee|letx=cine]|

if e theneelsee

Monotypes T = ylo|t—T
Variational types ¢ = T|L|D(9,0)|¢ —¢
Type schemas o = ¢|Va¢

Selectors s u= D.

Type environments r | Tx—o0
Substitutions n,0 == g|no—¢
Choice environments A | A(1,D{(¢,9))

Fig. 5. Syntax of expressions, types, and environments.

4 Type-change inference

This section presents the type system that generates a complete set of corrective
type changes. After defining the syntax for expressions and types in Section 4.1, we
present the typing rules for type-change inference in Section 4.2. In Section 4.3, we
investigate some important properties of the type-change inference system.

4.1 Syntax

We consider a type checker for lambda calculus with let-polymorphism. Figure 5
shows the syntax for the expressions, types, and meta environments for the type
system. We employ the abbreviating notation & for a sequence of type variables
o1,...,0d,. Both the definitions of expressions and types are conventional, except for
variational types, which introduce choice types and the error type.

We use | to denote program locations, in particular, leaves in ASTs. We assume
that there is a function Z.(f) that returns [for f in e. For presentation purposes, we
assume that f uniquely determines a location. We may omit the subscript e when
the context is clear. The exact definition of /(-) does not matter.

As usual, I' binds type variables to type schemas for storing typing assumptions.
We use 5 to denote type substitutions that map type variables to variational types.
The metavariable 0 ranges over type substitutions that are unifiers for unifiable types
or partial unifiers for non-unifiable types. Finally, we use the choice environment
A to associate choice types that were generated during the typing process with the
corresponding location in the program. Operations on types can be lifted to A by
applying them to the types in A. We stipulate the conventional definition of FJ that
computes the free type variables in types, type schemas, and type environments. We
write 15 for {a— ¢ €n | o & S}.

The application of a type substitution to a type schema is written as 5(o) and
replaces free type variables in ¢ by the corresponding images in 5. The definition is
as follows.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

18 S. Chen and M. Erwig

CoN VAR
cisoftypey D fresh ['(x)=Va.¢ D fresh o={a—¢'}H¢)
T c:D{y,¢)[{(£(c),D(7,9))} [x:D(9,92)[{(£(x),D(9,92))}
UNBOUND ABS
x&dom(L) D fresh Cx—oke:d'|A
I'x:D(L,9){(¢(x),D{L,9))} CHAxe:9— ¢'|A
APP

Ther:g1]A1 Trhe:plAy 9= ¢ =1(¢) 7w=¢>xp =19
I'keper: d|AUA,

LET
F,x»—>¢1}—e1 :¢1‘A1 a:FV((Pl)—FV(F) r7x>—>va.¢1}—625¢2‘A2

T=[p] ¢ =m<a¢
I'letx=ejiney: 9|AJUA;

IF
(Thei: ¢i|A)™ 3 m=¢;=Bool m=¢a¢3 ¢=m<(m<h)

't if e; thenep else ez : p|A] UAyUA;

[L]=1 [D{91,92)] = D([¢1],[921])
(7] =T [01 = 2] = [¢1] @[]
Fig. 6. Rules for type-change inference. The notations are defined in Figure 5.
n(L) =1 n(p1 = ¢2) = n($1) — n(d2)
n(Va.¢) = Vi 5(h) n(o) = {fx if o ¢ dom(n)
n(D{(¢1,h2)) = D{n(1),n(¢2)) pifardpen

Note that we do not consider variational polymorphic types. This is not a problem
since we can always lift quantifiers out of choices. For instance, D(Vo.¢y,Vf.¢2)
can be transformed to Voyf1.D(¢},¢p5) with ay ¢ FV(¢1) and py1 ¢ FV(¢2), and
1 = (o a1 }(¢1) and ¢ = (B> Bi}(¢2).

4.2 Typing rules

Figure 6 presents the typing rules for inferring type changes. The typing judgment is
of the form I' - e : ¢|A and produces as a result a variational type ¢ that represents
all the typing “potential” for e plus a set of type changes A for the AST leaves in e
that will lead to the types in ¢.

During this phase, we compute type changes in the form of choices only for AST
leaves, that is, constants and variables. This is reflected in the typing rules as we
generate fresh choices in rules Con, Var, and Unounp. In each case, we place the
actual type in the first alternative and an arbitrary type in the second alternative of
the choice. When an unbound variable is accessed, it causes a type error. We thus
put L in the first alternative of the choice.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 19

The rule Ass for abstractions is very similar to that in other type systems except
that variables are bound to variational types. The rule App for typing applications
is very similar to the application rule discussed in Section 2.2. The only difference is
that the rule here keeps track of the information for A.

We need to pay special attention to let-expressions, where type errors can occur in
different parts. For example, a type error can occur in either the body or the bound
term or both. An interesting situation arises when a type error occurs in the bound
term, but the binding is not used in the body. To illustrate, consider the following
example:

v = let x = not 1 in 5.

To simplify the discussion, assume that none of not, 1, and 5 is changed during
the typing process. In other words, both alternatives for the choices created for not,
1, and 5 are Bool — Bool, Int, and Int, respectively. Under this assumption, the
expression should have the result type L, indicating an error when no changes are
made to the expression. If we do not track the type error in not 1, then we may
conclude that the whole expression is well typed because 5 is well typed.

To correctly track errors in the bound term, we define an auxiliary function [-]
at the bottom of Figure 6. This function abstracts a variational type into a typing
pattern by keeping all s in the type and turning all other types into Ts. For example,
[Int] = T and [D{(Int — Bool, L)| = D(T,L). With [-], we type let-expressions
with the rule Ler. The first three premises are standard. In the fourth premise, we
compute where type errors have happened in the bound term with [-]. After that,
we mask the type of the body with the pattern from the previous premise, making
sure that the errors from the bound term are transferred to the whole expression.
We have defined the masking operation <1 in Figure 4.

Now reconsider typing the expression v with LEt, assuming again that none of not,
1, and 5 is changed. The type for x is L, yielding L for = based on [-]. Consequently,
the result type (¢,) is L. Overall, we observe that the error in the bound term is not
lost in the result type.

The Ir rule employs the same machinery as the App rule for the potential
introduction of type errors and partially correct types. In particular, the condition
e1 1s not strictly required to have the type Bool. However, only the variants that
are equivalent to Bool are type correct. Likewise, only the variants in which both
branches are equivalent are type correct.

4.3 Properties

In this section, we investigate some important properties of the type-change inference
system. We show that it is consistent in the sense that any type selected from the
result variational type can be obtained by applying the changes as indicated by
that selection. We also show that the type-change inference is complete in finding
all corrective type changes for leaves. Based on this result, we show that the type-
change inference system is a conservative extension of the Hindley—Milner type
system (HM).

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

20 S. Chen and M. Erwig

_r AN Ft:D@P)=1 AN -3t D)=t
A, (1,D()) I A A, (1,D(9)) 4 A, (1,D(9))
[i9xs—¢
\.Tjs =T I_(Pl — ¢2Js = _(I)IJX — I_(PZJS
[L]s=1 |B(@)]ai=B(l9]ar) ifA#B

|B(®)5.i = [9i]p.i

Fig. 7. Simplifications and selection.

We start with the observation that type-change inference always succeeds in
deriving a type for any given expression and type environment.

Lemma 1
Given e and T, there exist ¢ and A such that I' e : ¢|A.

The proof of this lemma is obvious because for any construct in the language, even
for unbound variables, there is a corresponding typing rule in Figure 6 that applies
and returns a type.

Next, we need to simplify A in the judgment I'F e : ¢|A to investigate the
properties of the type system. Specifically, we define a simplification relation |
in Figure 7 that eliminates idempotent choices from A. Note that the sole purpose
of simplification is to eliminate choice types that are equivalent to monotypes, or
equivalently, remove all positions that do not contribute to type errors. Thus, there
is no need to simplify types nested in a choice D in Figure 7. Also, we formally
define the selection operation |¢ |, in Figure 7. Selection extends naturally to lists
of selectors in the following way: [¢]|ys = || o]y]s

Next we want to establish the correctness of the inferred type changes. Formally,
a type update is a mapping from program locations to monotypes. The intended
meaning of one particular type update [— 1 is to change the expression at [to an
expression of type 7. We use 0 to range over type updates. A type update is given
by the locations and the second component of the corresponding choice types in
the choice environment. We use |- to extract that mapping from A. The definition
is JA={l— 1| (I,D(r1,72)) € A}. (For the time being we assume that all the
alternatives of choices in A are monotypes; we will lift this restriction later.) For
example, with A = {(I, A(Int,Bool))} we have |A = {I — Bool}.

The application of a type update is part of a type update system that is defined
by the set of typing rules shown in Figure 8. These typing rules are identical to an
ordinaryHM type system, except that they allow to “override” the types of AST
leaves according to a type update J that is a parameter for the rules. We only show
the rules for constants, variables, and applications since those for abstractions and
let-expressions are obtained from the HM ones in the same way as the application
rule by simply adding the 6 parameter. We write more shortly d(e) for §(/(e)), and

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 21

CoN-C V. APP-C

c is of type ¥ AR'% 6 e i1 o1 [6HCe 1
o [0 x: 8(x)|[{oe— T} (x)) e
6 c:6(0)||y 6" ejer:t

Fig. 8. Rules for the type-update system.

we use the “orelse” notation d(e)||t to pick the type d(e) if d(e) is defined and t
otherwise.

The rules Con-C and Var-C employ a type update if it exists. Otherwise, the
usual typing rules apply. Rule Aprp-C delegates the application of change updates to
subexpressions since we are considering change suggestions for AST leaves only.

We can now show that by applying any of the inferred type changes (using the
rules in Figure §8), we obtain the same types that are encoded in the variational type
potential computed by type-change inference. We employ the following additional
notation. We write A.2 for the list of selectors D.2 for each choice D{) in A.
For example, {(¢1,A(Int,Bool)), (2, B(Bool,Int))}.2 = [4.2,B.2]. We call a type
environment that maps variables to plain types (types without choices) a plain
type environment. Formally, we have the following result. (We assume that A has
been simplified by || in Figure 7 and the alternatives of choices in A are plain
(non-variational), as mentioned before.)

Theorem 1 (Type-change inference is consistent)

For any given e and plain environment I, if T Fe : ¢p|A;, A; § A, and |¢|ar = 7,
then I'; [AFC e : 1.

This theorem makes two assumptions: (1) I" is plain and (2) the alternatives of
choices in A are plain. Neither assumptions implies a limitation of the typing
relation . Assumption (1) is required because the typing relation F¢ is only defined
when T is plain. The reason is that FC defines a type system that is similar to HM
but also considers changes and HM is defined only for plain I'. Assumption (2)
helps to simplify the theorem and the proof process. Note that in this theorem, each
typing derivation can produce exactly one type update for an ill-typed expression.
For example, with I' F not 1 : A(L,as)|A where A = {(/(not), A(Bool — Bool, Int —
os))}, we can produce the type update that changes not to something of the type
Int — os. For such a typing, both alternatives of choices in A will be plain. Of
course, in general each typing derivation could encode multiple type updates, and
the alternatives may be variational. In fact, Theorem 3 demonstrates that for each
ill-typed expression there is one typing derivation that encode all possible type
updates. Since the goal of this theorem is to prove that each type update encoded in
the typing result of | is correct, we can, for now, assume that alternatives are plain.
We lift this assumption from Lemma 3.

For the proof of this theorem, we need the following lemma, whose proof can be
found in Chen et al. (2012).

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

22 S. Chen and M. Erwig

Lemma 2

[1(P)]s = T(Le]s)
LTE < ¢Js = |_an < L¢Js
[p1 < p2]s = [P1]s < [Pa]s
[¢1 ® P2]s = [P1]s ® [P2]s

Proof of Theorem 1
We consider two different cases. In the first case, A = @. According to the definition
of |, this indicates that no changes have been made in the typing process for
I'F e : ¢|A. In this case, the assumption [¢p|a> = 7 simplifies to ¢ = 7. Thus, the
theorem itself simplifies to T F e : 1|@ = I'; @ FC e : 7. This holds trivially since
both type systems coincide with HM when no type changes have been inferred.

In the second case, A # . This indicates that type changes have been inferred
during the typing process. We prove this case by structural induction over the typing
relation defined in Figure 6.

Case Con: We have e = c and T'F ¢ : D(y,7)|{(/(c), D{y, 7))} for a fresh choice D
since alternatives of choices are plain. The type update in this case is

6 =1A=L{(Z(c),D(y,7))} = {cr>1}.

Our goal is to prove I';6 € ¢ : 7. Based on the structure of e, the only rule
that applies in Figure 8 is Con-C. The proof follows directly as 6 changes ¢ to
T.

Case Var: The proof for this case is very similar to that for case Cox and is
omitted here. Note that the instantiation of ¢; in rule Var is irrelevant as the
instantiation is overridden by the change.

Case App: We need to show that

Fhe e:pA=T; AR erer:[¢laz
with the following induction hypotheses:

e di|A=T; A e [$1]a2
'k ey . (Z)2|A2=>F;lA2 I—C [L¢2JA242

Additionally, ¢ is computed by ¢ and ¢, through a use of the App rule. Let
(1) = 1 — ¢1r, then we have the following relation:

= |dlaz
= [pu > 2 < Pirlan
= |pulaz>< [P2lar < Ld1r]az By Lemma 2
According to the definitions of < and <, we have
lp1laz = [¢2]az (1)
[1r]az = 1. (2)

Combing the fact that {(¢1) = ¢ — ¢ with the Equations (1) and (2),
we have [1(¢1)]a2 = |¢2]ar — 7. Based on the definition of 1, we have the

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 23

following relation.

p1]az = [p2]a2— 7 (3)

From ['; |[A; FC e : [¢1]a,2, we have T'; |A F€ ey : |1]a, 2 because compared
to Aj, A contains additional information that only has an impact on typing
er. From I'; [AFC ey @ [¢1]a, 2, we have T'; A F€ ey @ [d1]az because [¢y]a, 2
already yields a plain type, and expanding the decision A;.2 to A.2 will not
change the result. Overall, we have

LA FC et [di]an = T5 AR er t [¢1]an 4)
Similarly, we have
L3 lAFC et [dalae = T3 LA RS e [¢ha]an (5)
From Equations (3) and (4), we have
LA FC e i [pila =T AR e i [a)ar >t (6)
From Equations (5) and (6), the typing rule App-C, and the induction hypothe-
ses, we have T;|AFCeiey:t. Since t© = |[P|ar, we have

;A FC e es : |¢]a2, completing the proof.

The case for the rule Ass is straightforward and those for rules Ler and Ir are similar
to that for rule Arp and are therefore omitted here. O

Moreover, type-change inference is complete, since it can generate a set of type
changes for any desired type.

Theorem 2 (Type-change inference is complete)
For any e, I and 0, if I';6 FC e : 1, then there exist ¢, A, and a typing derivation
for T' ke : ¢|A such that [A =6 and [P|ar =7

Proof
Again, we consider two cases. In the first case, 6 = @, which means no changes
have been applied. Thus, I'; @ ¢ e : implies that the expression e under I is well
typed. When typing using the rules in Figure 6, we make the second alternative the
same as the first alternative for all choices. In other words, we create idempotent
choices only. The theorem holds trivially in this case.

In the second case, 0 # &. We prove the lemma by structural induction over the
typing relation in Figure 8.

Case Con-C: We have e = ¢. Since § # &, it must be of the form § = {c — 1}.
We construct the typing relation as T'F ¢ : D(y,7)|{(/(c), D{y, 1))}, where y is
the type of ¢ and D is a fresh choice. It’s easy to verify that | {(/(c), D(y,7))} =
{c— 1} and [D(y,7)|p2 =T

Case Var-C: The proof of this case is the same as for Con-C and is omitted here.
The only difference is that we are dealing with a variable reference rather than
a constant.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

24 S. Chen and M. Erwig

Case App-C: We need to show that
I:0FCe es:t=TFe e :¢p|Awith |[A=0 and [p]ar =1
with the following induction hypotheses:

;o FCe 1> 1 = ke 2 ¢1|A with |[A=96 and [¢1|ar =11 > <
[;0Ce; i1y = They: ¢alA with JA =06 and [¢r]ar =11

We can split A into A; and A, such that they contain the change information
for e; and ey, respectively. With that, we have the following relations:

I';o HC¢ e1 1111 = I'keg Z¢1‘A1 with |_¢)1JA1'2=‘L'1 —> 1T
;o ¢ et = I'ke Z(ﬁz\Az with |_¢2JA2,2 =T

Since A1.2 = A2 and |¢1]a,2 =11 — 7, we have [¢1]ar =71 — 7. We have a
similar result regarding ¢,. Based on these, we arrive at the following relations:

I';6 ¢ e 11 —>1 = I'Fe:¢]A with [(,ZS[JA‘z:Tl -1
[0 ey i1y = They: dalAy with [da]ar = 14

Let 1(¢1) = ¢ — ¢1,. We compute | p|az as follows:

[Plaz = LPu>< 2 < bir]an
= |pulaz > [P2]a2 < [¢irJaz ByLemma 2
=TT <7 By relation between | ¢1]a2, P11, and ¢y,
=T«r1

=T

This shows that |¢|r, = 7. Based on the induction hypotheses, |A = §, which
completes the proof.

We can prove the cases for other rules in Figure 8 similarly. O

The introduction of arbitrary alternative types in rules CoN, VAR, and UNBOUND
are the reason that type-change inference is highly non-deterministic, that is, for any
expression e we can generate an arbitrary number of type derivations with different
type potentials and corresponding type changes.

Many of those derivations do not make much sense. For example, we can
derive I' F 5 : A(Int,Bool)|A where A = {(/5(5), A(Int,Bool))}. However, since the
expression 5 is type correct, it does not make sense to suggest a change for it.

On the other hand, the ill-typed expression ¢ = not (succ 5) can be typed
in two different ways that can correct the error, yielding two different type
potentials and type changes. We can either suggest to change not to an expression
of type Int — o4, or we can suggest to change succ into something of type
Int — Bool. The first suggestion is obtained by a derivation for T' e : A({L, o;)|A;
with A; = {(Z.(not), A(Bool — Bool, Int — a4))}. The second suggestion is obtained
by a derivation for I' - e : B{L,Bool)|A; with Ay = {(/.(succ), B(Int — Int,Int —
Bool))}.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 25

Interestingly, we can combine both suggestions by deriving a more general typing
statement, that is, we can derive the judgment I' e : A(B{L,Bool), B{u,an))|A3
where

A; = {(fe(not),A<Bool — Bool,B(Int — oy, 03 — O£2>>),
(Z¢(succ), B(Int — Int, A(Int — Bool, Int — a3)))}

We can show that the third typing is better than the first two in the sense that its
result type (a) contains fewer type errors than either of the result types and (b) is
more general. For example, by selecting [4.1, B.2] from both result types, we obtain
1 and Bool, respectively. Making the same selection into the third result type, we
obtain Bool. Likewise, when we select the result types of these three typings with
[4.2, B.1], we get the types oy, L, and oy, respectively. For each selection, the third
result type is better than either one of the first two.

In the following, we show that this is not an accident, but that we can, in fact,
always find a most general change suggestion from which all other suggestions can
be instantiated.

First, we extend the function | to take as an additional parameter a list of selectors
5. We also extend the definition to work with general variational types (and not just
monotypes).

LA ={l— |¢a]s | (1LD($1,2)) EAND2ES])

Intuitively, we consider all the locations for which the second alternative of the
corresponding choices are chosen. We need to apply the selection |¢,]s because
each variational type may include other choice types that are subject to selection
by s.

Next we will show that type-change inference produces most general type changes
from which any individual type change can be instantiated. We observe that type
potentials and type changes can be compared in principally two different ways. First,
the result of type-change inference ¢ can be more defined than another result ¢/,
which means that for any 5 for which | ¢’ |5 yields a monotype, so does | ¢ 5. Second,
a result ¢ can be more general than another result ¢', written as ¢ < ¢, if there is
some type substitution # such that ¢ = 5(¢). Similarly, we call a type update J;
more general than another type update J,, written as d; < 0y, if dom(d;) = dom(d,)
and there is some # such that for all I: d,(]) = 5(d1(])).

Since we have these two different relationships between type changes, we have to
show the generality of type-change inference in several steps.

First, we show that we can generalize any type change that produces a type error
in the resulting variational type for a particular selection when there is another type
change that does not produce a type error for the same selection. In the following
lemma, we stipulate that the two typings I' e : ¢1|A; and ' e : ¢,]|A; assign the
same choice name to the same program location.

Lemma 3 (Most defined type changes)
Given e and T" and two typings T e : ¢1|A; and T e : ¢|A,, forany 5if | |5 = L
and | ¢, |y = 7, then there is a typing I' e : ¢3]A3 such that

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

26 S. Chen and M. Erwig

e 3]s = [$2]5 and for all other 5 |p3]y = [P1]5.
e |sA3 = |5A; and |¢A; = |yA; for all other §'.

Proof

We construct a typing I' e : ¢3]A; so that both conditions of the lemma are
satisfied. To construct a typing using the rules in Figure 6, we need to designate the
second alternatives of the freshly created choices and the mappings for instantiating
type schemas. Once they are decided, the typing is determined for the given e and
I'. The construction is based on a structural induction over the typing relation in
Figure 6. The general idea is that the third typing is the same as the second typing
at 5 and is the same as the first typing at all other §'s differing from 5. We can realize
this because each node has a variational type that can be viewed as a tree with
choices as internal nodes and plain types as leaves. Moreover, we can replace one
branch of the tree without affecting other branches. Specifically, we can first make
the third typing the same as the first typing and then replace, for each type in the
third typing, the branch identified by 5 with the same branch of the corresponding
type from the second typing. The proof may be best understood by also reading the
example after this proof at the same time. We prove a stronger lemma by dropping
the conditions that |¢|s = L and [¢1]5 =

Case Con: We need to further consider two sub-cases. Assume ¢; = D(y, ¢}) and
¢2 = D(y, ¢5), where y is the type of the constant c. In this case, ¢; and ¢,
determine the contents of A; and A,, respectively.

(1) D2 € 5 Let ¢35 = D(y,¢%) where ¢y = expand(s, ¢}, d,). Here
expand(s, ¢, ¢5) builds a type ¢ such that |¢|s = ¢} and |[¢]y = ¢}
for all other §'. This function is formally defined as follows:

expand(D.15, ¢}, §3) = D(expand(s, ¢y, ¢5), ¢7)
expand(D.25, ¢}, ¢5) = D{(P}, expand(s, §, $}))
expand(D.1, §},) = D(¢5, $})
expand(D.2, ', §5) = D($}, ¢5)

Given a decision, we write s5 to single out an arbitrary selector s from that
decision and bind the remaining to 3.

With the constructed ¢3 we can verify that [¢s]s = [P5]s = @5 = [¢dals
and | @3]y = [P]y = ¢} = [$1]y for all other 5. Since ¢3 determines As,
verifying the second condition of the lemma follows directly from that of
the first condition.

(2) D2 ¢5. Let ¢p3 = ¢p1. When D.2 ¢ 5, we have both | ¢ |5 =y and |25 =7,
which means that the change does not affect the decision 5. Thus, we do
not need to change the type of ¢. We can verify that |¢s]s = ¢ = |¢2]s
and |¢3]y = ¢ = | ¢1]y for all other 5.

Case Var: The proof is similar to that of case Cox and is omitted here.

Case App: For this case, we do not need to construct anything but only have to
show that the lemma is preserved over applying the App rule. The induction
hypotheses are as follows:

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 27

ke ipnlAn The:dnlAn Tkeper:¢ilA
ke :¢alAy Ther:dnlAn Theper:dalA;
Iker:¢31|Asir They:dnlAzny Theper:dslA;
[p3ils = [dpatls Ldaily = Lduily IsAs1 = |5 lyAsr = lyAq
[p32]s = [¢p22ls dnly = 125 IsA3 = |sAn A = lyAp

We need to show that
[psls = [P2ls |P3ly = |d1ly Az = A [yAs = [yAy

In the following, we show |¢3|s = | ¢2]|s with the assumptions that T(¢3() =
$31 — ¢31r and 1(P21) = Po11 — Poir

[#3s = P31 < 32 < harr s
= | P31l > |¢P32ls < |P31,]s By Lemma 2
= |P311]s < [Pa2]s < | P31-)s By induction hypothesis
= |21]s > | P25 < | P21rJs By Lemma 2 and induction hypothesis
= | 211 > P22 < arr |5 By Lemma 2
= [¢2J§
We can prove |¢s]y = [¢1]y similarly. Since Az = Az1 UA3y = Ay UAp = A,,
we have |sA; = [5A,.

The proofs for other cases are very similar to the case App and are omitted
here. O

We use an example to illustrate the proof process. We consider constructing the
new typing for the example expression e = not (succ 5) under the following typings:

I'ke:gilAr ¢y =A(L,ay) Ay = {(/(not), A(Bool — Bool, Int — 1))
(/(succ), B(Int — Int,Int — Int))}

I'ke:¢alAy ¢2=B(L,Bool) A; = {(/(not), A(Bool — Bool,Bool — Bool))
(/(succ), B{Int — Int,Int — Bool))}

We consider 5 = [A4.1,B.2] and observe that |¢;]s = L and |¢2]s = Bool. We
construct I' e : ¢3]A; as follows. For not, the choice created is 4. Since A.2 ¢
[A4.1, B.2], the type for not is A{Bool — Bool, Int — o), the type for not in A;. For
succ, the created choice is B. Since B.2 € [A.1, B.2], the type of succ, written as
(Psuce, can be computed as follows:

Peucc = B{Int — Int,expand([A.1, B.2], Int — Int,Int — Bool))
= B(Int — Int, A(expand(B.2,Int — Int,Int — Bool), Int — Int))
= B(Int — Int, A(B(Int — Int,Int — Bool),Int — Int))
= B(Int — Int, A(Int — Bool, Int — Int))
The type for 5 is always Int. Now that we have specified types for not, succ, and

5, we compute ¢35 = A(B{L,Bool),a;). The content for A; is easy to construct, and
we omit it here. It is easy to verify that |¢3](4182 = Bool = |¢$2](41,82 and that

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

28 S. Chen and M. Erwig

for all other 5 we have | @3]y = |¢1]y. We can verify that the relation given in the
lemma holds for Aq, A, and As.

Next we show that given any two type changes, we can always find a type change
that generalizes the two.

Lemma 4 (Generalizability of type changes)
For any two typings I'Fe : ¢1|A; and T'F e : ¢»|A; and any 5, there is a typing
I' e : ¢3]A; such that

o |h3ls < |d1ls [P3]s < [¢2]5 and for all other ', [¢ps3]y = [1]
e A3 < |5A1, |5A3 < [5A; and for all other 3, [¢A; = [yAy.

The proof strategy is similar to that for Lemma 3, except for one subtle difference.
In proving Lemma 3, we take something directly from the second typing and merge
it into the first to get the third without any changes. This strategy is insufficient
here. We use two examples to illustrate the problem. Both examples relate to the
typing of expression not 1.

In the first example, we remove the type error with the following potential
typings:

I'Fnot 1:¢1|A1 ¢y = A(L,Int) Ay = {(/(not), A(Bool — Bool, Int — Int))}
I'Fnot 1:¢]Ay ¢ =A(L,Bool) A, ={(/(not), A(Bool — Bool,Int — Bool))}

We observe that these typings have different result types and that neither is more
general than the other. We know that there must exist a third typing that gives a
more general result type. The type that is more general than both Int and Bool is a
type variable, say «. We can achieve this result type by changing not to something
of type Int — o. This change can be derived by looking at the types that not is
changed to in both typings. The type of not is changed to Int — Int and Int — Bool,
respectively. A type that is more general than the both is Int — o.

In general, however, we need to accommodate the impact of changing the type for
some subexpression on the typing of the whole expression. In the second example,
we use the following typings to remove the type error in not 1:

I'Fnot 1:¢1|A; ¢y =A(L,Int) Ay = {(/(not), A(Bool — Bool, Int — Int)),
(/(1), B(Int, Int))}

I'Fnot 1:¢A; ¢2 = B(L,Bool) A; = {(/(not), A(Bool — Bool,Bool — Bool))
(/(1), B(Int,Bool))}

We consider 5 = [4.2, B.2] and observe that |¢]|; = Int and |[¢,]s = Bool. Now
in order to get a more general typing for the expression with o being the result
type, we need to change the types assigned to subexpressions not and 1. First, how
should we change the type for not? Since these two typings assign it Int — Int
and Bool — Bool, respectively, a more general type is of the form o; — o, following
the idea of anti-unification (Pfenning, 1991). In other words, we assign oy — o to
not. Now how about the type for 1? The two typings change it to Int and Bool,
respectively. We may be tempted to assign it an arbitrarily more general type, for
example a3. However, this change will make not 1 ill typed because the domain type

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 29

of the function, o, does not match the type of the argument, 3. We should instead
assign 1 the type o4, taking the fact that not has changed to ¢; — « into account.

In summary, while we need to generalize the types for certain subexpressions
during the construction process, we should perform it consistently among all
subexpressions. To simplify the presentation, we assume that there exists a function
postgen,(l,t) that returns the type for the location [in e after generalization. We
usually omit the subscript when the context makes it clear what e is. When no
constraints have been seen so far for [/ in e, postgen,(l,7) returns a type that
has the same structure as 7t except that primitive types are replaced by fresh
type variables. Otherwise, it returns the type that satisfies the type constraints
among subexpressions. For example, consider again e = not 1. For e, we have
postgen(/(not), Int — Int) = oy — op. Since we have not seen any constraints for
not, we assign a fresh type variable to each Int. For 1, we need to consider the
constraint between not and 1, and we have postgen(/(1), Int) = oy. In static typing,
the constraints among all subexpressions are easy to derive. Thus, the function
postgen,(l,t) is easy to compute, and the definition is omitted here.

Proof of Lemma 4

The proof is by constructing a new typing based on the given typings so that both
conditions of the lemma are satisfied.

Case Con: Assume e = ¢, ¢ = D(y, ¢}), and ¢2 = D(y, ¢5), where y is the type
of ¢. We further consider two sub-cases.

(a) D.2 € 5. Let ¢35 = D(y, expand(s, ¢}, postgen(/(c)))) and Az = {(/(c), $3)}.
We can easily verify that both conditions of the lemma hold.

(b) D.2 ¢ 5. Let ¢35 = ¢1 and A3 = A;. We simply do not make any change
because changing ¢ will not affect the result selected with s.

Case Var: The proof is similar to that for Con and is omitted here.

Case Arr: We show the proof for the first condition about the relation among
¢1, ¢, and ¢3. Since the proof about relations among A;, A,, and Aj is almost
the same as in proof for Lemma 3 and is rather simple, we omit it here. We
have the following induction hypotheses.

I'ke:¢pulAn The:dnlAn Theper:i|A
e ¢nlAar Ther:dnlAn Tieper:dalAs
FEe:¢31|As1 TEer i ¢pn|Azxs T'Eeper: ¢3|A;
lpsils < Lpuls Loals < louls Ldsily = [duly
lp3als < Lpnals Ldaals < ldnls |dnly = [dn2ly

We need to show that

3]s < Lp1ls Lpals < Ldals |dsly = o1y

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

30 S. Chen and M. Erwig
In the following, we show |¢3]s < |¢1]s with the assumptions that 1(¢31) =
$31 — @31, and 1(da1) = ¢ = Pair

Lp3ls = Lp3u < P32 < P3irls
= |31l > P32l < |d31r]s By Lemma 2

=T <|¢sils By definition of postgen
= L¢31;‘J§
< |15 By induction hypothesis
= |d1ls By a similar reasoning for ¢y,
We can prove |¢s]5 < [$2]5 and [¢3]y = [¢1]y similarly.
The proof for other rules is similar to that for App and is omitted here. O

We can now combine and generalize Lemmas 3 and 4 and see that type-change
inference can always produce maximally error-free and general results at the same
time. This is an important result, captured in the following theorem.

Theorem 3 (Most general and error-free type changes)
Given e and I' and two typings I'F e : ¢1|A; and T'F e : ¢,|A,, there is a typing
'+ e : ¢3]A; such that for any 5,

e if [¢1]s= L and [¢2]5 =1, then | ¢35 = 7 and [5A; = [5A,.

o if 2] =L and [¢]5 =1, then ¢35 =7 and [5A; = [5A;.

o if |P1]s = 11 and |[P2]s = 1o, then |¢3]s <711 and |¢P3]s < 12. Moreover,
IsA3 < [5A1 and [5A3 < [5A).

Proof

We delegate the actual construction process to the ones described in the proofs
for Lemmas 3 and 4. In particular, given two typings, only one of the three cases
mentioned in the theorem can occur. First, if [¢1|s = L and |¢2]s = t, we use the
idea presented in the proof for Lemma 3 to construct the new typing. The second
case is a dual case of the first case, where |¢2|s = L and |¢1|s = 7. We proceed as
we do in the first case but swap ¢; and ¢, and also A; and A,. Finally, if | ¢ |5 = 14
and | ¢, |5 = 12, we use the construction process described in the proof for Lemma 4
to construct the new typing. In each case, the proof follows directly from Lemma 3
or Lemma 4. OJ

From Theorems 2 and 3 it follows that there is a typing for complete and principal
type changes. We express this in the following theorem.

Theorem 4 (Complete and principal type changes)
Given e and plain T, there is a typing " I- e : ¢|A such that for any 5 if [';6 € e : 1,
then there is some 5 such that [¢]y < 7 and [;A < 6.

Proof

Based on Theorem 2, if I';6; FC e : 1;, then there is a typing and some § such that
'k e : ¢i|A; with |¢;|s = 7; and [3A; = ;. For different 7;s we may get different ¢;s
and A;s. Based on Theorem 3, there is a typing I' e : ¢|A that is better than all
typings with ¢;s and A;s. The result holds. O

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 31

Finally, there is a close relationship between type-change inference and the HM type
system. When type-change inference succeeds with an empty set of type changes, it
produces a non-variational type that is identical to the one derived by HM. This
result is captured in the following theorem, where we write I' F™ ¢ : 1 to express
that expression e has the type 7 under I' in the HM type system.

Theorem 5

For any given e and plain I, I'; @ FC e : 1 <= [HiM ¢

T.
Proof

The proof is a straightforward induction over the typing relations in Figures 6 and
8. Note that when ¢ = &, the typing rules in Figure 8 simplify exactly to those for
the HM typing rules. O

Based on Theorem 1, Theorem 2, Theorem 5, and the fact that | = &, we can
infer that when a program is well typed, the type change-inference system and the
HM system produce the same result.

Theorem 6
I'kFe:t/@if and only if T M ¢ : 7,

Proof

Based on Theorem 1, T+ ¢ : 7| implies that I'; @ € e : 7, which implies T HiM ¢ : ¢
according to Theorem 5. Meanwhile, I’ F™ ¢ : ¢ implies I'; @ ¢ e : t according to
Theorem 5. Based on Theorem 2, I' ¢ : 7|@ holds. O

Note that I' F e : 7|@ implies that T' e : ¢p|A, ¢ =7, and A | @. This theorem also
implies that type-change inference will never assign a monotype to a type-incorrect
program.

5 A change inference algorithm

This section presents an algorithm for inferring type changes. We will discuss
properties of the algorithm as well as strategies to bound its complexity.

Given the partial type unification algorithm presented in (Chen et al., 2012), the
inference algorithm is obtained by a straightforward translation of the typing rules
presented in Figure 6. The cases for variable reference and if statements are shown
in Figure 9. Function application is very similar to if statements, and the cases
for abstractions and let-expressions can be derived from % by simply adding the
threading of A.

For variable reference, the algorithm first tries to find the type of the variable in I"
and either instantiates the found type schema with fresh type variables or returns L
if the variable is unbound. After that, a fresh choice containing a fresh type variable
is returned. The variable then has the returned choice type with the inferred type in
the first alternative and the type variable in the second.

For typing if statements, we use an algorithm vunify(¢1, ¢») for partial unifica-
tion (Chen et al., 2012) that generalizes standard unification to variational types.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

32 S. Chen and M. Erwig

infer:I'xe—0x ¢ xA

infer(I',x) =
o'+ inst('(x)) — returns | when x is unbound
¢« D(¢' @) — D and o are fresh

return (2,9, {(¢(x),9)})
infer(I',if e| then e; else e3) =
(01,1,A1) < infer(T,er)
(6',7") < vunify(¢;,Bool)
(62,92,42) < infer(6'6; (I'),e2)
(63, 03,A3) < infer(6,06,(T), e3)
(04, 74) < vunify(65(¢2),93,)
0+ 9493626/01
return (9,7‘6’ < (71?4 < 94((])3)), 9(A1 UAyUA3))

Fig. 9. An inference algorithm for variable references and conditionals.

We describe the algorithm briefly below. Otherwise, the algorithm follows in a
straightforward way the usual strategy for type inference.

The algorithm vunify has two special aspects. First, it handles types that contain
variations. Correspondingly, the returned unifier may map variables to variational
types. For example, vunify(Int, A(Int, o)) returns {o+— A(oo, Int)} as the unifier,
where o, is a fresh type variable. (Intuitively, if we follow choice 1 of A4, then « is
irrelevant; only when we follow choice 2 of A, should o unify with Int. Therefore
vunify maps o to a variational type to record this split.) Second, vunify also returns
a typing pattern to indicate where unification fails and succeeds. For example,
vunify(Int, A(Bool, o)) returns A{L,T), indicating that the unification fails in A.1
and succeeds in A.2. For any unification problem, vunify reconciles these two aspects
such that for any unification problem it returns a most general unifier that also leads
to as few Ls as possible. The first aspect allows us to, for any expression, perform
type inference once and generate all possible type updates. The second aspect allows
us to solve unification problems in the presence of type errors, and thus infer types
for ill-typed expressions. Section 3 presents a concrete example of using vunify for
debugging the type error in not 1.

We can prove that the algorithm infer correctly implements the typing rules in
Figure 6, as expressed in the following theorems.

Theorem 7 (Type-change inference is sound)
Given any e and T, if infer(I', e) = (0, ¢, A), then O(I') - e : ¢p|A.

At the same time, the type inference is complete and principal. We use the auxiliary
relation ¢; < ¢, to express that for any 5, either |¢2]y = L or [¢1]s < |d2]s
Intuitively, this expresses that either the corresponding variant in ¢; is more general
or more correct. We also define A; < A, if for any ([, ¢1) € A; and (I, ¢,) € A; the
condition ¢; < ¢, holds.

Theorem 8 (Type-change inference is complete and principal)
If 0(T)F e : ¢|A, then infer(I',e) = (01, ¢1,A1) such that § = 5,0; for some 7,
A; <A, and ¢; < ¢.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 33

From Theorems 3 and 8, it follows that our type-change inference algorithm correctly
computes all type changes for a given expression in one single run.

During the type-change inference process, choice types can become deeply nested,
and the size of types can become exponential in the nesting levels. Fortunately,
this can occur only for deeply nested function applications where each argument
type is required to be the same. For example, the function f 1o > o — ... > o is
more likely to cause this problem than the functions g : oy — oy — ... = , and
h :yy — y, —> ... > y, because only the function f requires all argument types to be
unified, which is the source of nested choices.

To illustrate, consider the expressions and2 = 1 && True and equal2 = 1 == True,
where (&%) : Bool — Bool — Bool and (==) : o — o — Bool. In each expression, the
choices B and D are created for 1 and True, respectively. The choice A4 is created
for & in and2 and for == in equal2. Let A; and A, be the change information
(third return value) returned by infer for and2 and equal2, respectively. We observe
that Ay(/(1)) = B{(Int, A(Bool,0oy)), and Ay(/(1)) = B{(Int, A(D(Bool,u4),%)). The
nesting of choices in Ay(/(1)) is deeper than in A;(/(1)) because the argument types
of == are both o and those of && are constant types. This is also the case when
we consider /(True) in A; and A;. The reason is that in and2 the arguments can be
changed independently of one another while in equal2 the arguments have to be
synchronized through the shared argument type o.

To keep the run-time complexity of our inference algorithm under control, we
eliminate choices beyond an adjustable nesting level that satisfy one of the following
conditions: (1) choices whose alternatives are unifiable, and (2) choices whose
alternatives contain errors in the same places. These two conditions ensure that the
eliminated choices are unlikely to contribute to type errors. This strategy may fail
to eliminate choices, but this happens only when there are already too many type
errors in the program, and we therefore stop the inference process and report type
errors and change suggestions found so far.

This strategy allows us to maintain choices whose corresponding locations are
likely sources of type errors and discard those that are not. Note, however, that
this strategy sacrifices the completeness property captured in Theorem 8. We have
evaluated the running time and the precision of error diagnosis against the choice
nesting levels (see Section 7). We observed that only in very rare cases will the
choice nesting level reach 17, a value that variational typing is able to deal with
decently (Chen et al., 2014).

Finally, we briefly describe a set of simple heuristics that define the ranking
of type and expression changes. Each heuristic assigns a numerical score to each
changed location in a message, and we order messages by the sums of the scores
from high to low. (1) We prefer places that have deduced expression changes (see
Section 6) because these changes reflect common editing mistakes (Lerner et al.,
2007). Specifically, we assign messages with an expression change the numerical
value 3. Other messages get the value 1. (2) We favor changes that are lower in
the abstract syntax trees because changes at those places have a smaller effect on
the context and are less likely to introduce exotic results. Roughly speaking, we can
partition all functions in a file into layers such that layer 1 contains all the functions

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

34 S. Chen and M. Erwig

Input: e and I"
(-, 9,A) < infer(T,e)

D + X{D | (1LD(6.6"))eA} {D.1,D.2} — 9 represents the whole change space
i+ 1 — Generate messages that change single locations
M — D — M collects all the messages that change i locations
while True

foreachs € Z.iN ¢z # L — For each change that removes the type error

P {(L,191]5,[92])5) | (1,D(¢1,92)) e AAD2 €5}
F « {(l,7;,7.,McAdam(7;,7,)) | (1,7, 7T.) € P}

T (95
M — MU{(F,)}

for each M € rank(.A)
present M to the user — The whole process is terminated if M is accepted

— If no message was accepted
i+—i+1 — Generate messages that change one more locations

M — D

Fig. 10. The error message generation process.

that are not called by any other functions, layer 2 contains all the functions that
are called at least once from layer 1, and layer n contains all the functions that
are called at least once from layer n — 1. For example, for the palin example from
Section 1.1, palin belongs to layer 1, rev belong to layer 2, and fold and f1ip belong
to layer 3. We assign n to a message if its involved location is within a function
belonging to layer n. Multiple messages pointing to the same function are ordered
similarly by regarding let, where, or anonymous functions to be in lower layers.
(3) We prefer changes that have minimal shape difference between the inferred type
and the expected type. For example, a change that does not influence the arities of
function types is ranked higher than a change that does change arities. Specifically,
we assign 3 to messages that do not change arities, 2 to those that change arities by
1 or 2, and 1 to others. Expression changes are considered as not changing arities.

Based on these three heuristics, each message that changes one location (n
locations) will be assigned three values (3 x n values). All the messages that change
the same number of locations are ordered by the sum of these numbers, and those
with larger values are presented first. In case of ties, we use some additional rules,
such as preferring changes of constants over variable references. If messages are still
tied, we order them by their reported locations, from left to right in the program text.
Messages that change more locations are considered only if all messages changing
fewer locations have been rejected by the user.

6 Generating error messages

Given an expression e and the type environment I', we generate the error messages
following the algorithm sketch shown in Figure 10. The first step is to use infer,
defined in Section 5, to compute the type potential. & represents the complete

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 35

change space, which is computed incrementally. We use the notation Z.i to get all
the decisions that change the expression at i locations. In other words, for each 5 in
92.i, there are i unique Ds such that D.2 €.

For each decision 5 in Z.i, we compute an error message if |¢ |5 is not L. Note
|¢]s is the type of the expression if the changes specified in 5 are applied. Each
member of P is a triple (I,t;,7.), where [is the location of the expression to be
changed, 7; is the inferred type for the expression at [, and 7, is the expected type to
remove the type error. Given t; and 7., we use an extended version of McAdam’s
approach (McAdam, 2002a), discussed below, to deduce expression changes, which
are stored in F. Using the function rank, which implements all the rules descried in
Section 5, we then rank all computed messages and present them iteratively to the
user. The error debugging process is terminated if a message is accepted by the user.
Once we run out of messages for changing i locations, we increment the counter
i and generate, rank, and present the next batch of messages for changing i 4 1
locations.

Instead of presenting each message iteratively, we could envision several ways of
integrating CF typing into a user interface. First, in addition to a source code editing
panel, we could have an error message panel that can show, say, three messages at
a time. This allows the user to quickly compare different error messages. Second, we
could add a small numbered mark to each identified error location. Each number
indicates how the corresponding location is ranked in comparison to other locations.
When the mouse hovers over such a location, we can show more information, such
as the inferred type and the expected type of the expression and the type of the
whole function if the current expression is changed. We leave the construction of
such a user interface for future work.

While it is generally impossible to deduce expression changes from type changes,
there are several idiosyncratic situations in which type changes do point to likely
expression changes. These situations can be identified by unifying both types of
a type change where the unification is performed modulo a set of axioms that
represent the pattern inherent in the expression change.

As an example, consider the following expression.'4

zipWith (\(x,y) -> x+y) [1,2] [3,4]

Our type change inference suggests to change zipWith from its original type (a ->
b -> ¢c) -> [a] -> [b] -> [c] to something of type ((Int,Int) -> Int) -> [Int]
-> [Int] -> d. Given these two types, we can deduce to curry the first argument to
the function zipWith to remove the type error. (At the same time, we substitute d in
the result type with Int.)

By employing unification modulo different theories, McAdam (McAdam, 2002a)
has developed a theory and an algorithm to systematically deduce changes of
this sort. We have adopted this approach (and extended it slightly) for deducing
expression changes, such as swapping the arguments of function calls, currying,

14 This example is adapted from Lerner et al. (2007), where zipWith is called map2.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

36 S. Chen and M. Erwig

and uncurrying of functions, or adding and removing arguments of function
calls.

The extension is based on a simple form of identifying non-arity-preserving type
changes. If such a change is used to modify the types, then McAdam’s approach is
applied, and the result is then interpreted in light of the non-arity-preserving type
change as a new form of expression change. As an example, here is the method of
identifying the addition or removal of arguments to function calls. In this case, the
differences in the two types to be unified will lead to a second-level type change
that pads one of the types with an extra type variable. For example, given the
inferred type t; — 73 and the expected type 1y — 7, — 73, we turn the first type
into o« — 11 — 73. The application of McAdam’s approach suggests to swap the
arguments. Also, o is mapped to 7,. Interpreting the swapping suggestion through
the second-level type change of padding, we deduce the removal of the second
argument.

Besides these systematic change deductions, we also support some ad hoc expres-
sion changes. Specifically, we infer changes by inspecting the expected type only. For
example, if the inferred type for £ in £ g e is b -> ¢ while the expected type is (a
->b) -> a -> c, we suggest to change f g e to £ (g e). Another example is given
by situations in which the result type of an expected type matches exactly one of its
(several) argument types. In that case, we suggest to replace the whole expression
with the corresponding argument. This case applies, in fact, to the palin example,
where the type change for (:) is to replace a -> [a] -> [a] by a -> [b] -> a. We
therefore infer to replace (:) z [1, which is [z], by z because the first argument
type is the same as the return type. Another case is when in expression £ g h the
expected type for £ is (a -> b) -> a -> b. Then, we suggest to remove £ from the
expression. There are several other similar ad hoc changes that are useful in some
situations, but we do not discuss them here.

In Section 8, we compare our method with McAdam’s original approach. Here,
we only note that the success of the method in our prototype depends to a
large degree on the additional information provided by type-change inference,
specifically, the more precise and less biased expected types that are used for the
unification.

7 Evaluation

To evaluate the usefulness and efficiency of the CF typing approach, we have
implemented a prototype of type-change inference and expression-change deduction
in Haskell. (In addition to the constructs shown in Section 4, the prototype
also supports some minor, straightforward extensions, such as data types and
case expressions.) We compare the results produced by our CF typing tool to
Seminal (Lerner et al., 2006, 2007), Helium (Heeren et al., 2003; Heeren, 2005),
and GHC. There are several reasons for selecting this group of tools. First, they
provide currently running implementations. Second, these tools provide a similar
functionality as CF typing, namely, locating type errors and presenting change
suggestions, both at the type and the expression level. We have deliberately excluded

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 37

slicing tools from the comparison because they only show all possible locations, and
do not suggest changes.!

In Section 7.1, we report the evaluation results for a set of programs that
were gathered from a wide range of publications on type error debugging.!'®
One of the reasons for Seminal’s comparatively modest performance is due to
the fact that it systematically deals with multiple errors in programs, whereas
the examples in Section 7.1 focus on single errors. We therefore specifically in-
vestigate the performance of CF typing in the presence of multiple errors in
Section 7.2. After that, we investigate the running time aspect of CF typing in
Section 7.3.

7.1 Evaluation of programs from the literature

For evaluating the applicability and accuracy of the tools, we have gathered a
collection of 121 examples from 22 publications about type-error diagnosis. These
papers include recent Ph.D. theses (Yang, 2001; McAdam, 2002a; Heeren, 2005;
Wazny, 2006) and papers that represent most recent and older work (Schilling,
2012; Lerner et al., 2007; Johnson & Walz, 1986). These papers cover many different
perspectives of the type-error debugging problem, including error slicing, explanation
systems, reordering of unification, automatic repairing, and interactive debugging.
Since the examples presented in each paper have been carefully chosen or designed
to illustrate important problem cases for type-error debugging, we have included
them all, except for examples that involve type classes since our tool (as well as
Seminal) does not currently support type classes. This exclusion did not have a
significant effect. We gathered eight unique examples regarding type classes involved
in type errors discussed in Stuckey et al. (2003) and Wazny (2006). Both GHC and
Helium were able to produce a helpful error message in only 1 case. Otherwise, the
examples range from very simple, such as test = map [1,10] even to very complex
ones, such as the plot example introduced in Wazny (2006). The program sizes range
from 1 LOC to 15 LOC.

We have grouped the examples into two categories. The first group (“with
Oracle”) contains 86 examples for which the correct version is known (because
it either is mentioned in the paper or is obvious from the context). The other group
(“ambiguous”) contains the remaining 35 examples that can be reasonably fixed
by several different single-location changes. For the examples in the “with Oracle”
group, we have recorded how many correct suggestions each tool can find with at
most n attempts. For the examples in the “ambiguous” group, we have determined
how often a tool produces a complete, partial, or incorrect set of suggestions.
For example, for the expression \f g a -> (f a, £ 1, g a, g True), which is given
in Bernstein & Stark (1995), Helium suggests to change True to something of

15 There are a few interactive approaches that have been proposed (Chitil, 2001; Stuckey et al., 2003),
but they currently do not provide running implementations. Moreover, Chameleon (Wazny, 2006) has
evolved to focus on typing extensions of the Haskell type system. Since the tool has switched off its
type-debugging facilities, it is not a viable candidate for comparison.

16° Available at http://www.ucs.louisiana.edu/ sxc2311/ws/files/cft-bench.hs

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

38 S. Chen and M. Erwig

86 examples with Oracle 35 ambiguous examples
1 2 3 >4 never complete partial incorrect
CF typing | 674 80.2 884 919 8.1 100.0 0.0 0.0
Seminal 4777 547 58.1 59.3 40.7 40.0 25.7 343
Helium 61.6 - - 61.6 38.4 0.0 100.0 0.0
GHC 17.4 - - 17.4 82.6 0.0 34.3 65.7

Fig. 11. Evaluation results for different approaches over 121 collected examples (in %). The
column headers are the numbers of messages. For example, the entry with the row header
“CF typing” and the column header “3” indicates that with up to 3 messages, CF typing can
locate 88.4% of all the type errors in the 86 examples with oracle.

type Int. While this is correct, there are also other changes possible, for example,
changing £ 1 to £ True. Since these are not mentioned, the result is categorized as
partial.

Figure 11 presents the results for the different tools and examples with uncon-
strained choice nesting level for CF typing. Note that GHC’s output is considered
correct only when it points to the correct location and produces an error message
that is not simply reporting a unification failure or some other compiler-centric
point of view. We have included GHC only as a baseline since it is widely known.
The comparison of effectiveness is meant to be between CF typing, Seminal, and
Helium.

The numbers show that CF typing performs overall best. Even if we only consider
the first change suggestion, it outperforms Helium that comes in second. Taking into
account second and third suggestions, Seminal catches up, but CF typing performs
even better.

In cases where Helium produces multiple suggestions, all suggestions are wrong.
For CF typing 21 out of the 58 correct suggestions (that is, 36%) are expression
changes. For Seminal the numbers are 20 out of 41 (or 51%), and for Helium it is
15 out of 52 (or 29%). This shows that Seminal produces a higher rate of expression
change suggestions at a lower overall correctness rate.

Most of Helium and Seminal’s failures are due to incorrectly identified change lo-
cations. Another main reason for Seminal’s incorrect suggestions is that it introduces
too extreme changes.

Most cases for which CF typing fails are caused by missing parentheses. For
example, for the expression print "a" ++ "b" (Lerner et al, 2007), our approach
suggests to change print from the inferred type a -> I0 () to the type String ->
String or change (++) from the expected type [a] -> [a] -> [a] to the inferred
type I0 () -> String -> String. Neither of the suggestions allows us to deduce the
regrouping of the expression.

To summarize, since the examples that we used have been designed to test very
specific cases, the numbers do not tell much about how the systems would perform
in everyday practice. They provide more like a stress test for the tools, but the direct
comparison shows that CF typing performs very well compared with other tools
and thus presents a viable alternative to type debugging.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 39

The definition of rev is fold f z [] = [z]

the same as before and is omitted fold £ z (x:xs) = fold £ (f z x) xs
flipfxy=1fyx

palin xs = rev xs == xs rev = fold (flip (:)) False

res xs = palin xs && not 1 palin xs = rev xs == Xs

Fig. 12. Type errors that are independent (left) and entangled (right). The gray background
marks the second type error in each program.

30 examples with 2 independent errors 30 examples with 2 entangled errors
1 2 3 >4 1 2 3 >4
CFtyping | 66.6 80.0 86.7 933 0.0 0.0 133 467
Seminal 433 500 60.0 66.6 00 0.0 11.7 333

Fig. 13. Accuracy of error reporting for CF typing and Seminal for programs with multiple
errors (in %). The column headers have the same meaning as those in Figure 11.

7.2 Evaluation of programs containing multiple errors

Since most ill-typed programs reported in the type error debugging literature contain
only single type errors, we have manually created programs containing multiple type
errors for the evaluation. We first focus on the case that each program has two type
errors. We say that two type errors are independent if the presence of one does not
have any impact or causes a negative impact on the debugging of the other. Dually,
we call two type errors that are not independent entangled. Consider the examples
in Figure 12.

On the left of Figure 12, both palin and not 1 contain a type error. Those two
errors are independent, and to make the program well typed, we have to make two
changes. Two independent type errors may be close (like the ones shown) or far
apart. On the right of Figure 12, the use of False (which should be [1) in rev adds
a second type error that is entangled with the first type error in fold because it
prevents or postpones the identification of the first one. The reason for this effect
of entangled type errors is that there are many single-location updates that will fix
both type errors, and this causes typing approaches that favor the identification of
single-location updates, such as CF typing, to be misled by the second type error.

For example, CF typing will first suggest to change f in f z x from type [al
-> a -> [a] to Bool -> Bool -> Bool, which will fix both type errors. The second
suggestion generated by CF typing is to change (:) from type a -> [a] -> [a] to
Bool -> Bool -> Bool, which will also fix both type errors. As a result, the fixes
regarding [z] and False will be presented later. Seminal reports for this program
the type error at fold in rev in its first message and (:) in £flip (:) in its second
message, missing the real error causes in both messages.

To evaluate how CF typing and Seminal behave on programs with multiple
errors, we have created 30 programs with independent errors by randomly merging
the programs from the set we collected from the literature (Section 7.1). We have
also created 30 programs with entangled errors by modifying the collected programs.

Figure 13 presents the evaluation result for those programs. For programs
with independent errors, each message generated by CF typing contains change
suggestions for two locations because both of them have to be changed to make

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

40 S. Chen and M. Erwig

the program well typed. For entangled errors, CF typing may generate messages
that contain only one change suggestion because changing a single location could
already fix both type errors, as discussed earlier. Also, each error message may fix
one type error but miss the other one. For each message, we assign a value 0%,
50%, or 100% if the message does not fix any error, fixes one error, or fixes both
errors, respectively. Each entry in Figure 13 is the average of the values over all 30
programs.

We can observe that for independent errors, the result of CF typing and Seminal is
similar to that in Figure 11. This indicates that the presence of multiple independent
errors does not cause problems for type error debugging approaches that favor single-
location updates. However, entangled errors are more problematic. As Figure 11
shows, the precision of both CF typing and Seminal decreases significantly. In
particular, with the first two messages, neither CF typing nor Seminal could locate
any type error correctly. The main reason, as we have seen already, is that both CF
typing and Seminal prefer to change as few locations as possible, which may lead
to the identification of less likely causes. (Note that for this analysis we considered
for each program only up to eight messages, since it is not very likely that the user
will go through more messages to fix the type error.)

Besides the programs with two type errors, we have also created 30 programs with
four type errors by randomly merging the 60 programs we created with two type
errors. These programs now contain a mix of independent and entangled errors. We
have evaluated them using the same evaluation scheme as for programs with two
type errors, that is we assign a value of 0% to 100% with a 25% interval for each
message which fixes 0—4 type errors, respectively.

The precision for CF typing with 1, 2, 3, and > 4 messages are 32.5%, 38.4%,
44.2%, and 65.4%, respectively. The result for Seminal with 1, 2, 3, and > 4
messages are 21.4%, 24.7%, 30.6%, and 39.2%, respectively. (Note that, as before,
we investigated up to eight messages for each program.)

Overall, our conclusion regarding the debugging of programs with multiple type
errors is that CF typing performs better than Seminal, and both of them work
poorly for entangled errors. In fact, most existing debuggers prefer to change as few
locations as possible and will therefore probably not work well for entangled errors.
An interesting question for future work is to investigate how often entangled errors
happen in practice.

7.3 Performance

With the help of variational typing, we can generate all the potential changes very
efficiently. The running time for all the collected examples (Section 7.1) is within 2
seconds. Figure 14 shows the running time for both our approach and Seminal for
processing the reported examples. For each point (x,y) on the curve, it means that
x% of all examples are processed with y seconds. The running time for our approach
is measured on a laptop with a 2.8GHz dual core processor and 3GB RAM running
Windows XP and GHC 7.0.2. The running time for Seminal is measured on the

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 41

25
——a— CF typing
— & -Seminal

20
5 /
s
Q
2 15 > Cad

rd
.S:‘ g ‘
g -
& 10 >
g _ -
2 . ek
- L 4 -
- = ' -
_ -
O T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100
examples%

Fig. 14. Running time for typing x% of the examples. The time reported is the accumulated
time for 10 runs.

same machine with Cygwin 5.1. The purpose of the graph is simply to demonstrate
the feasibility of our approach.

To gauge the impact of the nesting level restriction, we have also measured
the running time of CF typing on a number of programs from the Helium
benchmarks (Hage, 2013), the program sizes of which range from 2 LOC to 190
LOC. Specifically, we randomly picked 200 programs: 50 each of the size 50 LOC,
100 LOC, 150 LOC, and 190 LOC. The following table gives a summary of the
running time (in seconds) of CF typing on these programs:

Maximum nesting level: None Maximum nesting level: 17

Min Max Average Min Max Average
50 LOC 0.3 114 5.6 0.3 2.1 1.6
100 LOC 0.7 234 12.6 0.7 3.8 2.5
150 LOC 1.3 89.7 474 1.3 5.1 3.8
190 LOC 2.3 374.5 147.9 2.3 7.5 5.4

We observe that the running time varies quite a bit. The reason is that different
programs have very different dependencies and used very different functions. The
programs on which CF typing runs fastest (column min in the table) contain small
independent functions, whereas the ones for which CF typing needs the most time
(column max in the table) contain functions that have a linear dependency, that
is one function is dependent on another, which is in turn dependent on a third
function, and so on. The average time is a division of the total running time for
programs of a specific size over 50. We can observe that CF typing slows down
quite quickly as program size increases when we do not set a maximum choice
nesting level. The reason is that it computes all potential type error fixes at once. As
the above table shows, the performance issue can mostly be mitigated by setting a
maximum choice nesting level, such as 17. Overall, CF typing is efficient enough for

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

42 S. Chen and M. Erwig

512 110

256 —® —time 100
——f— precision

128 20

80
64

70
32

60

16
50

Precision (%)

40

30

20

Running time (in logarithmic scale), in seconds

T T T T T 10
0 2 4 6 8 10 12 14 16 18 20
Choice nesting levels

Fig. 15. Limits on choice nesting trade efficiency for precision.

most student programs from the benchmark. Also, as pointed out by Lerner et al.
(2007), the short time spent by a tool often pays off, since students usually spend a
long time on debugging type errors.

While the idea of setting a maximum choice nesting level can address the
performance issue with CF typing, it is unclear about its impact on error localization
precision of CF typing. For this purpose, we have automatically generated large
examples, and we use functions of types such as &« — o — ... — « to trigger the
choice elimination strategies discussed in Section 5. We first generated 200 type
correct examples and then introduced one or two type errors in each example by
changing the leaves, swapping arguments, and so on. Each example contains about
60,000 nodes in its tree representation.

Figure 15 presents the running time and precision against choice nesting levels
for these generated examples. A change suggestion is considered correct if it fixes
a type error and appears among the first four changes for that example. Precision
is measured by the quotient of the number of examples that have correct change
suggestions and the number of all examples. From the figure, we observe that a
nesting level cut-off between 12 and 18 achieves both high precision and efficiency.

8 Related work

We have grouped our discussion of related work according to major features shared
by the different approaches.

Reporting single locations: Most of the single-error-location approaches are based on
some variant of the algorithm ¥ and report an error as soon as the algorithm fails.
Since the original algorithm ¥ is biased in the order in which unification problems
are solved (which has a negative impact on locating errors), many approaches have
tried to eliminate this bias. Examples are algorithms .# (Lee & Yi, 2000), 4 (Eo

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 43

et al., 2004), #S™ and .#5"™ (McAdam, 2002b), and ZAE and 1&1 (Yang et al.,
2000). All these algorithms interpret the place of unification failure as the source of
the type error. In contrast, Johnson and Walz (1986) and the Helium tool (Heeren
et al.,, 2003; Heeren, 2005) use heuristics to select the most likely error location
from a set of potential places. Although heuristics often work well and lead to more
accurate locations, they can still get confused due to the single-location constraint.
In contrast, we explore all potential changes and rank them from most to least
likely. Recently, Seidel et al. (2017) developed a machine learning-based approach
for locating most likely error locations.

In deducing expression changes from type changes, we have used (an extension
of) McAdam’s technique (2002a). Since his approach is based on the algorithm %",
it suffers from the bias of error locating mentioned above. Moreover, his approach
does not have access to the precise expected type, which helps in our approach to
ensure that deduced expression changes will not have an impact on the program as
a whole.

Explaining type conflicts: Some approaches have focused on identifying and explain-
ing the causes of type conflicts. Wand (1986) records each unification step so that
they can be tracked back to the failure point. Duggan and Bent (1995) on the other
hand record the reason for each unification that is being performed. Beaven and
Stansifer (1994) and Yang (2000) produce textual explanation for the cause of the
type errors.

While these techniques can be useful in many cases, there are also potential
downsides. First, the explanation can become quite verbose and repetitive, and the
size grows rapidly as the program size increases. Second, the explanation is inherently
coupled to the underlying algorithm that performs the inference. Thus, knowledge
about how the algorithm works is often needed to understand the produced messages.
Third, the explanations usually lead to the failure point, which is often the result
of biased unification and not the true cause of the type error. Finally, although a
potential fix for the type error may lurk in the middle of the explanation chain, it is
not always clear about how to exploit it and change the program.

Recently, Seidel et al. (2016) developed an explanation approach from a very
different perspective. Given an ill-typed expression, their approach finds an input
such that the evaluation of the expression will fail with the given input.

Interactive debugging: While many tools attempt to improve the static presentation
of type error information, interactive approaches give users a better understanding
about the type error or why certain types have been inferred for certain expressions.
Consequently, several approaches to interactive type debugging have been pursued.

The ability to infer types for unbound variables enables a type debugging paradigm
that is based on the idea of replacing a suspicious program snippet by a fresh
variable (Bernstein & Stark, 1995). If such a replacement leads to a type-correct
program, then the error location has been identified. However, the original system
proposed by Berstein and Stark requires users to perform these steps manually. Later,
BraBel (2004) automated this process by systematically commenting out parts of the

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

44 S. Chen and M. Erwig

program and running the type checker iteratively. This method also suffers from
the right bias problem unless all expression leaves are considered for replacement.
Moreover, it is unclear how to handle programs that contain more than one type
error.

Through employing a number of different techniques, Chitil (2001), Neubauer
and Thiemann (2003), Wazny (2006), and Stuckey et al. (2003) have developed tools
that allow users to explore a program and inspect the types for any subexpres-
sion. Chameleon (Stuckey et al., 2003; Wazny, 2006) also allows users to query
how the types for specific expressions are inferred. All these approaches provide
a mechanism for users to explore a program and view the type information.
However, none of them provides direct support for finding or fixing type errors.

Building on the idea from this paper, we have developed a method called
guided type debugging (Chen & Erwig, 2014b), which allows users to specify an
expected type for an ill-typed expression. The guided type debugger will then
find updates that transform the ill-typed expression to have the user-specified

type.

Error slicing: The main advantage of slicing approaches (Tip & Dinesh, 2001;
Haack & Wells, 2003; Schilling, 2012) is that they return all locations related to type
errors. The downside is that they cover too many locations. Recent improvements
in Chameleon (Wazny, 2006) have helped to reduce the number of locations, but
the problem still persists (recall the example in the Introduction). Moreover, slicing
tools do not provide suggestions for how to get rid of the type error. A problem
with slicing approaches and their improvements is that it is quite difficult to achieve
a good balance to report fewer locations while not to miss the real error cause. This
problem was recently addressed by Pavlinovic et al. (2014; 2015), who developed a
method that can find comprehensive error causes but present them iteratively using
some ranking criterion. Our CF typing approach also implements this idea but
additionally provides informative error messages while their method only locates
error causes.

Probabilistic approaches: SHErrLoc (Zhang & Myers, 2014; Zhang et al., 2015)
debugs type errors in the following steps. First, it transforms type constraints
generated by compilers into a graph representation, where nodes are types and
edges are relations between types. For example, two types that are required to be the
same are connected with an edge. Also, if a type is a component of another type, for
example the argument type of a function type, then they are also connected. After
that, each edge is classified as satisfiable or unsatisfiable. Unsatisfiable edges cause
type errors. Finally, a Bayesian model is applied to determine which node (and
the constraints that correspond to incident edges of that node) most likely causes
the type error. Intuitively, SHErrLoc selects the node that is shared by more
unsatisfiable edges but does not belong to satisfiable edges as the error cause.
SHErrLoc can also generate error slices by reporting all nodes that are involved
in unsatisfiable edges. Besides the technical differences between SHErrLoc and our

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 45

approach, the error messages generated by our approach include more information,
as they contain at least the expected type and the inferred type of the error cause and
also the resulting type if the suggested change is followed. In contrast, SHErrLoc
reports type errors in constraints only, as can be seen from Section 1.1.

Embracing type uncertainty: Instead of choice types, one can encode variational
types also using sum types. This is the approach taken by Neubauer and Thie-
mann (2003), who developed a type system based on discriminative sum types to
record the causes of type errors. Specifically, they place two non-unifiable types
into a sum type. Named choice types as employed by CF typing provide more fine-
grained control over variations in types than discriminative sum types. While sum
types are unified component-wise, this is only the case for choice types of the same
name. Each alternative in a choice type is unified with all the alternatives in other
choices with different names. Also, their system returns a set of sources related to
type errors. Thus, it can be viewed as an error slicing approach. However, compared
to other slicing approaches, it is not guaranteed that the returned set of locations
is minimal. Moreover, the approach does not provide specific change locations or
change suggestions.

Typing by searching: CF typing and Seminal (Lerner et al., 2006; Lerner et al.,
2007) could both be called “search based,” although the search happens at different
levels. While CF typing explores changes on the type level, Seminal works on the
expression level directly. Given an ill-typed program, Seminal first has to decide
where the type error is. Seminal uses a binary search to locate the erroneous place.
Once the problematic expression is found, Seminal searches for a type-corrected
program by creating mutations of the original program, for example, by swapping
the arguments to functions, currying or uncurrying function calls, and so on. This
way of searching causes Seminal to make mistakes in locating errors when the first
part of the program itself does not contain a type error but actually triggers type
errors because it is too constrained. For example, the cause of the type error in the
palin example discussed in Section 1 is the fold function, which is itself well typed.
As a result, Seminal fails to find a correct suggestion. Our approach does not suffer
from this problem since the generation of type changes equally varies all AST leaves
in the program.

Tsushima and Chitil (2014) also developed a search method by using an exiting
type checker. Given an ill-typed expression e, they transformed it into ihole.e[hole],
where e[hole] replaces one leaf of e with a hole. Their approach then calls an existing
type checker to check the transformed expression. If the new expression type checks,
then an error location has been identified. Moreover, the parameter type of the new
expression is the expected type of the leaf and the return type of the new expression
is the type of e if the leaf has the suggested type. Compared to our approach, their
approach does not reuse computations when considering changing different leaves.
Moreover, their approach does not work when the expression has more than one
type error.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

46 S. Chen and M. Erwig

9 Conclusions

We have presented a new method for debugging type errors. The approach is based
on the notion of CF typing, which is the idea of systematically varying the types of
all AST leaves to generate a typing potential for the erroneous program that can
be explored and reasoned about. We have exploited this typing potential and the
associated set of type changes to create a ranked list of type-change and expression-
change suggestions that can eliminate type errors from programs. A comparison of
a prototype implementation with other tools has demonstrated that the approach
works very well and, in fact, outperforms its competitors.

In future work, we plan to investigate other uses of typing potentials and type
changes. For example, we may extract more information from typing potentials
about why certain error messages have been generated. Specifically, besides showing
the expected type in each error message, we may show the related context that
coerces the erroneous expression to have the expected type. Finally, we plan to
investigate how well the approach works for the debugging of type errors in richer
type systems.

References

Beaven, M. & Stansifer, R. (1994) Explaining type errors in polymorphic languages. ACM
Lett. Program. Lang. Syst. 2, 17-30.

Bernstein, K. L. & Stark, E. W. (1995) Debugging Type Errors. Tech. rept. State University of
New York at Stony Brook.

BrafBel, B. (2004) Typehope: There is hope for your type errors. In Proceedings of International
Workshop on Implementation of Functional Languages.

Chambers, C., Chen, S., Le, D. & Scaffidi, C. (2012) The function, and dysfunction, of
information sources in learning functional programming. J. Comput. Sci. Colleges. 28(1),
220-226.

Chen, S. & Erwig, M. (2014a) Counter-factual typing for debugging type errors. In Proceedings
of ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
583-594.

Chen, S. & Erwig, M. (2014b) Guided type debugging. In Proceedings of International
Symposium on Functional and Logic Programming, LNCS, vol. 8475, pp. 35-51.

Chen, S., Erwig, M. & Walkingshaw, E. (2012) An error-tolerant type system for variational
lambda calculus. In Proceedings of ACM International Conference on Functional
Programming, pp. 29-40.

Chen, S., Erwig, M. & Walkingshaw, E. (2014) Extending type inference to variational
programs. ACM Trans. Program. Lang. Syst. 36(1), 1:1-1:54.

Chen, S., Erwig, M. & Smeltzer, K. (2017) Exploiting diversity in type checkers for better
error messages. J. Vis. Lang. Comput. 39(C), 10-21.

Chitil, O. (2001 September) Compositional explanation of types and algorithmic debugging of
type errors. In Proceedings of ACM International Conference on Functional Programming,
pp. 193-204.

Choppella, V. (2002) Unification Source-Tracking with Application to Diagnosis of Type
Inference. Ph.D. thesis, Indiana University.

Damas, L. & Milner, R. (1982) Principal type-schemes for functional programs. In Proceedings
of ACM Symposium on Principles of Programming Languages, pp. 207-212.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

Systematic identification and communication 47

Duggan, D. & Bent, F. (1995) Explaining type inference. Sci. Comput. Program. 27(1), 37-83.

Eo, H., Lee, O. & Yi, K. (2004) Proofs of a set of hybrid let-polymorphic type inference
algorithms. New Gener. Comput. 22(1), 1-36.

Erwig, M. (2006) Visual Type Inference. J. Vis. Lang. Comput. 17(2), 161-186.

Erwig, M. & Walkingshaw, E. (2011) The choice calculus: A representation for software
variation. ACM Trans. Softw. Eng. Methodol. 21(1), 6:1-6:27.

Haack, C. & Wells, J. B. (2003) Type error slicing in implicitly typed higher-order languages.
In Proceedings of European Symposium on Programming, pp. 284-301.

Hage, J. (2013) Helium Benchmark Programs (2002-2005). Private communication.

Hage, J. & Heeren, B. (2007) Heuristics for type error discovery and recovery. In Proceedings
of Implementation and Application of Functional Languages, pp. 199-216.

Heeren, B., Leijen, D. & van 1. A. (2003) Helium, for learning haskell. In Proceedings of ACM
SIGPLAN Workshop on Haskell, pp. 62-71.

Heeren, B. J. (2005) Top Quality Type Error Messages. Ph.D. thesis, Universiteit Utrecht, The
Netherlands.

Johnson, G. F. & Walz, J. A. (1986) A maximum-flow approach to anomaly isolation
in unification-based incremental type inference. In Proceedings of ACM Symposium on
Principles of Programming Languages, pp. 44-57.

Lee, O. & Yi, K. (1998) Proofs about a folklore let-polymorphic type inference algorithm.
ACM Trans. Program. Lang. Syst. 20(4), 707-723.

Lee, O. & Yi, K. (2000) A4 Generalized Let-Polymorphic Type Inference Algorithm. Tech. rept.
Technical Memorandum ROPAS-2000-5, Research on Program Analysis System, Korea
Advanced Institute of Science and Technology.

Lerner, B., Flower, M., Grossman, D. & Chambers, C. (2007) Searching for type-error
messages. In Proceedings of ACM International Conference on Programming Language
Design and Implementation, pp. 425-434.

Lerner, B., Grossman, D. & Chambers, C. (2006) Seminal: Searching for ml type-error
messages. In Proceedings of Workshop on ml, pp. 63-73.

Loncaric, C., Chandra, S., Schlesinger, C. & Sridharan, M. (2016). A practical framework for
type inference error explanation. In Proceedings of the 2016 Acm Sigplan International
Conference on Object-Oriented Programming, Systems, Languages, and Applications.
OOPSLA 2016. New York, NY, USA: ACM, pp. 781-799.

McAdam, B. J. (1999). Graphs for Recording Type Information. Technical Report ECS-LFCS-
99-415. University of Edinburgh.

McAdam, B. J. (2002a). Reporting Type Errors in Functional Programs. Ph.D. thesis,
Larboratory for Foundations of Computer Science, The University of Edinburgh.

McAdam, B.J. (2002b). Repairing Type Errors in Functional Programs. Ph.D. thesis, University
of Edinburgh. College of Science and Engineering. School of Informatics.

Neubauer, M. & Thiemann, P. (2003) Discriminative sum types locate the source of type
errors. In Proceedings of ACM International Conference on Functional Programming,
pp. 15-26

Pavlinovic, Z., King, T. & Wies, T. (2014) Finding minimum type error sources. In Proceedings
of ACM International Conference on Object Oriented Programming Systems Languages
& Applications, pp. 525-542

Pavlinovic, Z., King, T. & Wies, T. (2015) Practical SMT-based type error localization. In
Proceedings of ACM International Conference on Functional Programming, pp. 412-423.

Pfenning, F. (1991) Unification and anti-unification in the calculus of constructions. In
Proceedings of IEEE Symposium on Logic in Computer Science, pp. 74-85.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

48 S. Chen and M. Erwig

Schilling, T. (2012) Constraint-free type error slicing. In Proceedings of Trends in Functional
Programming. Springer, pp. 1-16.

Seidel, E. L., Jhala, R. & Weimer, W. (2016) Dynamic witnesses for static type errors (or,
ill-typed programs usually go wrong). In Proceedings of ACM International Conference on
Functional Programming, pp. 228-242.

Seidel, E. L., Sibghat, H., Chaudhuri, K., Weimer, W. & Jhala, R. (2017) Learning to
blame: Localizing novice type errors with data-driven diagnosis. Proc. ACM Program.
Lang. 1(OOPSLA), 60:1-60:27.

Stuckey, P. J., Sulzmann, M. & Wazny, J. (2003) Interactive type debugging in haskell.
InProceedings of ACM Sigplan Workshop on Haskell, pp. 72-83.

Tip, F. & Dinesh, T. B. (2001) A slicing-based approach for locating type errors. ACM Trans.
Softw. Eng. Methodol., 10(1), 5-55.

Tirronen, V., Uusi-mikeld, S. & Isomottonen, V. (2015) Understanding beginners’ mistakes
with Haskell. J. Funct. Program., 25, 1-31.

Tsushima, K. & Chitil, O. (2014) Enumerating counter-factual type error messages with an
existing type checker. In Proceedings of 16th Workshop on Programming and Programming
Languages.

Wand, M. (1986) Finding the source of type errors. In Proceedings of ACM Symposium on
Principles of Programming Languages, pp. 38—43.

Wazny, J. R. (2006 January) Type Inference and Type Error Diagnosis for Hindley/Milner with
Extensions. Ph.D. thesis, The University of Melbourne.

Wu, B. & Chen, S. (2017) How type errors were fixed and what students did? Proc. ACM
Program. Lang. 1(OOPSLA), 105:1-105:27.

Wu, B., Campora III, John P. & Chen, S. (2017) Learning user friendly type-error messages.
Proc. ACM Program. Lang. 1(OOPSLA), 106:1-106:29.

Yang, J. (2000) Explaining type errors by finding the source of a type conflict. In Proceedings
of Trends in Functional Programming. Intellect Books, pp. 58—66.

Yang, J. (2001 May). Improving Polymorphic Type Explanations. Ph.D. thesis, Heriot-Watt
University.

Yang, J., Michaelson, G., Trinder, P. & Wells, J. B. (2000) Improved type error reporting. In
Proceedings of International Workshop on Implementation of Functional Languages, pp.
71-86.

Zhang, D. & Myers, A. C. (2014) Toward general diagnosis of static errors. In Proceedings
of ACM Symposium on Principles of Programming Languages, pp. 569-581.

Zhang, D., Myers, A. C., Vytiniotis, D. & Peyton-Jones, S. (2015) Diagnosing type errors
with class. In Proceedings of ACM Conference on Programming Language Design and
Implementation, pp. 12-21.

Downloaded from https://www.cambridge.org/core. IP address: 73.11.60.106, on 26 Jan 2018 at 17:21:09, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5095679681700020X

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S095679681700020X
https://www.cambridge.org/core

