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Abstract—The complexity of networking mechanisms
will increase significantly because of the dense deploy-
ment of radio base stations in ultra-dense mobile net-
works. As a result, the existing networking mechanisms
may be unable to efficiently manage ultra-dense mobile
networks. To solve this problem, we propose a data-
driven network optimization framework which inte-
grates the big data analysis methods with networking
mechanisms. In the proposed framework, we adopt big
data analysis methods to divide densely deployed base
stations into groups. Then, each group of base stations
are managed with networking mechanisms indepen-
dently. In this way, the complexity of the networking
mechanisms is reduced. The key challenge in designing
the framework is to optimally group base stations
into clusters in realtime. Addressing this challenge,
the proposed framework consists of an offline machine
learning module and an online base station clustering
and network optimization module. The offline machine
learning module predicts the optimal number of base
station groups in the next time interval based on the
historical data. The online base station clustering and
network optimization module clusters base stations and
optimize the network in realtime. The performance of
the proposed data-driven network management frame-
work is validated through network simulations with real
network data traces.

I. Introduction
The mobile network data are growing very fast with

the proliferation of mobile devices and applications [1].
In order to carry the ever-increasing mobile data, radio
base stations are being densely deployed to provide high
network capacity [2], [3]. Although the network densifi-
cation promises high network capacity, it increases the
complexity of networking mechanisms such as the traffic
load balancing and BS sleep control because of the large
number of base stations [4], [5].

The rapid growth in complexity stifles existing network-
ing mechanisms for ultra-dense mobile networks [6]. For
instance, the computational complexity of the suboptimal
traffic load balancing mechanisms can be estimated to be
O(MaN b) for some nonnegative integer a and b, where M
and N are the numbers of users and BSs, respectively [7].
When base stations are densely deployed, these networking
mechanisms can incur long computing time and high
communication overhead [4], [8], [9]. Therefore, there is
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an urgent need to design efficient networking mechanisms
for ultra-dense networks.

An effective method to mitigate the complexity growth
is to divide base stations into groups and manage each
group of base stations independently [7], [10]. However,
the realtime base station grouping is challenging for a
few reasons. First, the relationships among base stations
cannot be accurately quantified based on the geographical
distances [7]. Hence, it is non-trivial to define the distance
function that quantifies the relationships among base sta-
tions for the grouping. Second, owing to the dynamic
mobile traffic, it is difficult to learn the optimal number
of base station groups at different time intervals. Third,
the tightly coupling of the base station grouping and the
network performance requires an integrated base station
grouping and network optimization.

Big network data analysis and machine learning are
being applied to manage and optimize communications
networks [7], [11]–[13]. However, most of research works on
big-data-driven mobile networks focus on developing big
mobile traffic data monitoring and analyzing systems [11],
[12] and discovering network usage and user behavior
patterns through analyzing big mobile traffic data [13]. We
have designed a network partitioning method based on the
analysis of a mobile traffic dataset containing billions of
mobile traffic records generated from an operating mobile
network [7]. In designing the network partitioning method,
we have validated that the complexity of the networking
mechanisms can be significantly reduced at the cost of
a small network performance decline [7]. The network
partitioning method, however, is an offline method which
is not appropriate for realtime network management and
optimization.

In this paper, we propose the data-driven network
optimization (DINO) framework which integrates data
analysis and machine learning methods with network opti-
mization algorithms to enable realtime and efficient ultra-
dense network optimization. The proposed framework is
composed of an offline machine learning module and an
online base station clustering and network optimization
module. The offline module mines mobile traffic dataset
and performances base station clustering analysis using
the hierarchical clustering analysis (HCA) method [14].
The analysis results are utilized to train an artificial neural
network (ANN) for predicting the optimal number of
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base station groups at different time intervals. Based on
the prediction, the online module adopts the K-medoids
clustering algorithm to partition base stations into groups
and then optimize the performance of each group of base
stations independently. To evaluate the performance of the
DINO framework, we set up data-trace driven network
simulations. The simulation results show the performance
of the offline prediction and the online clustering and
optimization and reveal the impact of the base station
grouping on the computation complexity and performance
of the network optimization.

The rest of the article is organized as follows. Section II
presents the overview of the data-driven network manage-
ment framework. Section III presents the offline machine
learning module in detail. Section IV presents the online
base station clustering and network optimization module.
Section V shows the performance evaluation. We conclude
the paper in Section VI.

II. Framework Overview

In this section, we present an overview of the data-
driven network optimization (DINO) framework as illus-
trated in Fig. 1. In order to reduce the complexity of the
network optimization mechanisms, the DINO framework
partitions base stations into groups and optimizes the
performance of base stations in each group independently.
The DINO framework consists of an offline machine learn-
ing module and an online base station clustering and
network optimization module.

A. Offline Machine Learning
Since the coupling of the base station grouping and

the network performance, it is highly complex to obtain
optimal base station grouping. To enable the optimal base
station grouping in realtime, the offline machine learning
module aims to learn the relationship between the optimal
number of base station groups and the aggregated mobile
traffic in individual base stations. Based on the learned
relationship, the offline module predicts the optimal num-
ber of base station groups at different intervals. The offline

Fig. 1: The data-driven network optimization framework.

machine learning module consists of four major compo-
nents: mobile traffic data collection, networking features
extraction, network performance aware clustering analysis,
and ANN-based cluster number prediction. The mobile
traffic data in each base station are collected and stored
in a traffic record database. These data are used for the
clustering analysis and the ANN-based cluster number
predictor. In order to perform the clustering analysis, three
networking features are extracted from the traffic record
database. Based on these networking features, we define
a distance function to quantify the relationships between
base stations. The hierarchical clustering analysis (HCA)
is adopted to obtain a clustering tree which contains the
optimal base station clusterings for all possible cluster
numbers. For example, if the optimal cluster number is
K, the clustering solution in the K level of the tree is the
optimal base station clustering solution.

To determine the optimal base station clustering, we
adopt a traffic load balancing algorithm1 as the networking
management mechanism to evaluate the performance of
different base station clustering strategies. Denote B and
U as the set of BSs and users in the network, respectively.
Let Ri and R̂i be the ith user’s data rate before and
after the base station clustering, respectively. With a given
traffic load balancing algorithm, the networking perfor-
mance of the base station clustering solution is defined
as P =

∑
i∈U

U(R̂i)∑
i∈U

U(Ri)
. Here, U(·) = log(·) is the utility

function and the Ri is the ith user’s data rate [4]. Denote
τ and τ̂ as the computing time of the traffic load balancing
algorithm before and after the base station clustering,
respectively. The computation performance of the base
station clustering solution is defined as V = τ̂

τ . Considering
both the networking and computation performance, we
define ψ = (1−ω)P+ω(1−V) as the performance function
of the base station clustering solution. Here, 0 < ω < 1 is a
parameter which can be selected by the network operator.
Given ω, the clustering solution that maximizes ψ is the
optimal base station clustering. Then, the optimal number
of base station clusters under given traffic conditions are
learned.

The clustering analysis and the clustering performance
evaluation have very high computation complexity and
are not appropriate for realtime clustering and network
optimization. In order to achieve the optimal base station
clustering in realtime, we have to predict the optimal num-
ber of base station clusters based on the traffic conditions.
Hence, we use the derived optimal base station clustering
solution and the corresponding traffic conditions as input
data to train an artificial neural network and obtain the
model for predicting the optimal number of base station

1Note that different networking mechanisms may be implemented
to evaluate the clustering performance. The optimal clustering solu-
tion may be different when the clustering performance is evaluated
under different networking mechanisms. Owing to the page limit, we
only discuss the clustering solution under the traffic load balancing
scheme.



clusters under a given traffic condition. The online cluster-
ing and network optimization module use this prediction
model for the realtime base station clustering.

B. Online Clustering and Network Optimization
Given the ANN-based prediction model, the optimal

number of base station clusters can be derived based on
the current traffic condition. Then, base stations can be
clustered into groups based on low-complexity clustering
algorithms such as K-means and K-medoids [15]. Once the
base stations are clustered into groups, each group of base
stations can be optimized independently by networking
mechanisms, e.g, the traffic load balancing.

III. Offline Machine Learning
In this section, we present the design of the offline learn-

ing module consisting of the mobile traffic data collection,
networking feature extraction, network performance aware
clustering analysis, and the ANN-based cluster number
predictor.

A. Mobile Traffic Data Collection
In the DINO framework, mobile traffic records are

continuously collected and stored in the traffic record
database. A mobile traffic record include the identification
number of a base station, the geographical location of the
base, the identification number of a user, the start and end
time of the user’s traffic in the base station.

B. Networking Feature Extraction
To cluster base stations into groups, a distance function

is required to quantify the relationship between the base
stations. Therefore, we extract three networking features
from the mobile traffic record data to define the distance
function the clustering analysis.

1) Fd: The geographical distance between two base
stations can reflect whether they are tightly coupled.
When the base stations are close to each other, their
coverage areas will be overlapped. A larger overlap area
may indicate a tighter coupling. We define xi and yi as the
latitude and longitude of BSi, respectively. ϕi and λi are
the corresponding radians of the latitude and longitude.
R is the radius of the earth. The geographical distance
between the ith and jth base stations is expressed as:

dij = arccos(sinϕi sinϕj + cosϕi cosϕj cos ∆λ)R, (1)

where ϕi = xiπ
180 and ∆λ = yiπ

180 −
yjπ
180 .

2) Ft: The mobile traffic trend measures the mobile
traffic diversity over time in a base station. If two base
stations are tightly coupled, they will have similar traffic
trends. We define the duration of a time slot to be 10
minutes. Then, a day consists of 144 time slots. To derive
the traffic trend, we calculate the accumulative traffic load
in a base station in each time slot. Denote γi,j as the
accumulative traffic load in the ith base station in the jth
time slot. Then, Γi = {γi,1, γi,2, · · · , γi,144} represents the

traffic load sequence in the ith base station. The traffic
trend similarity between base stations can be quantified
by using the discrete Fréchect (DF) distance [16], which
can calculate the similarity of two curves regardless of
the shift, scale, and rotation of the curves. Denote δi,j =
FrechetDist(Γi,Γj) as the DF distance between the ith
and jth base stations. A small δi,j indicates that the ith
and jth base stations have the similar traffic trend.

3) Fu: A common active user in base stations is defined
as the user whose data traffic appears in all these base
stations during a certain time period, e.g., 10 minutes.
A large number of common active users in base stations
may indicate that active users frequently handover among
these base stations, implying that these BSs are tightly
coupled. Therefore, we analyze the mobile traffic data and
derive the number of common active users of any two base
stations.

Based on the three network features, the distance func-
tion that quantifies the relationship between the ith and
jth BSs is expressed as Di,j =

∑N
k=1 αkd

k
i,j . Here, N is

the number of features used in the distance calculation;
αk is the weight of the kth feature; dki,j is the distance
calculated based on the kth feature. The optimal value of
α is derived in the clustering analysis.

C. Network Performance Aware Clustering Analysis
The objective of the network performance aware clus-

tering analysis is to derive the optimal base station clus-
terings under different mobile traffic conditions such that
the analysis results can be utilized for training the ANN-
based cluster number predictor. The cluster analysis is
performance in two steps.

First, given the distance function, we adopt the hierar-
chical clustering analysis method to generate a cluster tree
which contains the optimal base station clustering solu-
tions for all possible cluster numbers [14]. At the beginning
of the HCA method, each base station is treated as an
individual cluster. Define D(Cm, Cn) = mini∈Cm,j∈Cn Di,j

as the distance between the base station cluster Cm and
Cn. Hence, the distance between two base station clus-
ters reflects the minimum inter-base stations distance for
base stations in different clusters. Based on the distance
function, the tightness of the coupling between clusters
can be evaluated. A shorter distance indicates a tighter
coupling between the clusters. Based on the distances
between clusters, the HCA algorithm iteratively merges
clusters with the shortest distance into a new cluster.
After each iteration, the distances between clusters are
recalculated. The merging process continues until all BSs
are in one cluster. Once the clustering tree CT is derived,
each level of the clustering tree represents a base station
clustering solution. If the Kth level of CT is selected, the
base stations are clustered into K groups.

Second, we use the mobile traffic load balancing mech-
anism to evaluate the performance of the clustering so-
lutions in terms of both the network and computation



performance [4], [7]. We execute the traffic load balancing
mechanism on the entire radio access network without
the base station clustering and obtain the network utility∑
i∈U U(Ri) and computation time τ , respectively. For a

clustering solution, we perform the traffic load balancing
mechanism on individual groups of base stations indepen-
dently. The corresponding network utility and computa-
tion time are derived as

∑
i∈U U(R̂i) and max(τ̂), respec-

tively. Heres, since the networking mechanism is concur-
rently executing on individual groups of base stations,
we use the maximum computation time required in base
station groups to represent the computation time after the
base station clustering. Then, the network and computa-
tion performance of a base station clustering solution can
be calculated as P =

∑
i∈U

U(R̂i)∑
i∈U

U(Ri)
and V = max(τ̂)

τ , respec-
tively. The overall performance of a base station clustering
solution can be evaluated by ψ = (1− ω)P + ω(1−V). In
the clustering analysis, we traverse the entire clustering
tree to obtain the maximum ψ and the corresponding
number of clusters. These analysis results are transferred
to the ANN-based cluster number predictor for training
the ANN.

D. ANN-based Cluster Number Predictor
The ANN-based cluster number predictor aims to pre-

dict the optimal number of base station clusters in realtime
based on the traffic condition. In order to accurately pre-
dict the optimal number of base station clusters, we train
the ANN with the traffic record data and the correspond-
ing clustering analysis results. As illustrated in Fig. 2,
the ANN-based cluster number predictor is composed of
two parts: the input generation and the artificial neural
network.
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Fig. 2: Structure of Neural Network Predictor.

Input Generation: We define the duration of a time
slot to be 10 minutes. Denote Tri as the accumulative
traffic load in the ith BS in one time slot. Assume
there are n base stations in the network. Then, we use
Γ = {Tr1, T r2, · · · , T rn} to represent the network traffic
load in one time slot. The normalized Γ is one of the
inputs to the ANN. Then, we use the network performance
aware clustering analysis method to derive the optimal
base station clustering solution and the corresponding

cluster numbers at different time slots. The optimal cluster
numbers act as the ground truth for the ANN training.

Artificial Neural Networks: We adopt the back-
propagation neural network as the prediction algorithm.
Our neural network consists of the input layer, two hidden
layer and the output layer. We assign a sigmoid function
ϕ(x) for the neurons in the hidden layers and a purelin
function I(x) for the output layer. The output of the
predication is expressed as

K = I(
∑
q

ω
′′

q ϕ(
∑
p

ω
′

pqϕ(
∑
n

Trnωnp+bp)+b
′

q)+b
′′
), (2)

where b
′′ , b′

q and bp are the biases associated with the
neuron in different layers. ω′′

q , ω′

pq and ωnp donate the
weights associated with the input of different layers.

The performance of the base station clustering depends
on the distance function which quantifies the relationships
between base stations. Since mobile traffic is highly dy-
namic, the distance functions should be revised accord-
ing to mobile traffic conditions. The ANN-based cluster
number predictor is trained with data derived based on
the distance function (clustering analysis). Therefore, the
prediction model should be retrained according to the
mobile traffic conditions. Leveraging the diurnal pattern of
the mobile traffic, we periodically validate our predication
model to ensure the accurate prediction [12].

When we validate the predictor, the ground truth for the
cluster numbers Kg obtained from the clustering analysis
will be compared with the predicted cluster numbers K.
The prediction model will be retrained if the performance
of the base station clustering with K clusters is less than
90% of that with Kg. During the retraining process, the
latest mobile traffic record data will be integrated to the
dataset for re-training the prediction model.

IV. Online Clustering and Network
Optimization

The computation complexity of clustering algorithms
is vital to achieve the realtime network optimization. As
compared with the HCA method, the K-medoids algo-
rithm has lower computation complexity2. In addition,
since the optimal number of clusters has been predicted
by the ANN-based predictor, there is no need to gener-
ate the clustering tree. Hence, we adopt the K-medoids
algorithm as our online base station clustering algorithm.
The pseudo code of the K-medoids algorithm is presented
in Algorithm. 1. Once the base stations are divided into
clusters, each cluster of base stations are optimized inde-
pendently with the networking mechanism, e.g, the traffic
load balancing.

2The complexity of HCA is o(n2 ∗ logn) [17], where n is the total
number of base stations in the network. The complexity of the K-
medoids is o(ikn). Here, k is the number of clusters and i is the
number of iterations required for the convergence.



Algorithm 1: The K-medoids Clustering Algorithm
Input : A feature set{Fg, Ft, Fu}, number of clusters k, a cluster

set C;
Output: A cluster CT ;

1 Randomly select k points in the cluster set as k medoids;
2 while k medoids changes do
3 Associate each point to the closest medoid and formulate k

clusters Ck;
4 for i=1:k do
5 Find the point xi in Ci that minimizes

∑|Ci|
j∈Ci

‖xi − xj‖2
2;

6 Set the point as the new medoid;

7 return CT ;

V. Performance Analysis
In this section, we evaluate the performance of the data-

driven network optimization (DINO) framework through
data trace-driven network simulations.
A. Mobile Traffic Dataset and Simulation Settings

The simulation uses the real mobile network data which
consist of two-week mobile traffic records. These traffic
records are collected from an operating mobile network
with about 10000 BSs and 500000 users. We define the
duration of a time slot to be 10 minutes. Then, we have
144 time slots per day. Γi is defined as the traffic load set
of the network at ith time slot. In the simulation, 80% of
mobile traffic data are used to train the prediction model,
and the remaining 20% is used to evaluate the predictor.

In the simulation, we set ω = 0.5 and α =
{0.65, 0.3, 0.05}. Transmit powers of macro and small cell
base stations are P1 = 46dBm and P2 = 35dBm,
respectively. On modeling the propagation environment,
we adopt a path loss L(d) = 34 + 40log(d) and L(d) =
38 + 30log(d) for macro and small cell base stations,
respectively. We adopt the log normal shadowing fading
with a standard deviation σs = 8dB. The thermal noise
power is assumed to be σ2 = −104dBm.
B. DINO Performance

Fig. 3 shows the computation and networking per-
formance of the proposed DINO framework. Fig. 3(a)
presents the computation performance of the DINO frame-
work. It shows that the computation time of the DINO
framework is less than 10% of that of the optimal net-
working mechanism in about 95% of the simulated time
slots. Here, the optimal networking mechanism is defined
as the network optimization mechanism executing on
the entire radio access network without the base station
clustering. This result proves that the DINO framework
can effectively improves computation performance of the
networking mechanism. Fig. 3(b) presents the networking
performance of the proposed DINO framework. It shows
that the DINO framework can achieve at least 85% of the
optimal network performance in all simulated time slots.
In 80% of the simulated time slots, the DINO framework
can achieve 90% of the optimal network performance.
Therefore, the DINO framework can significantly reduce
the computation time of the networking mechanism at a
low cost of the networking performance.
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Fig. 3: The CDF of DINO performance.
C. Prediction Model Performance

In order to evaluate the performance of the ANN-based
cluster number predictor, we first analyze the impact of
the cluster number on the performance of the network
optimization. Fig. 4 shows the performance of the DINO
framework under three different traffic cogitations. 3:20
AM, 8:40 AM and 11:50 AM represent low, medium and
high traffic load level, respectively. We can observe that
the optimal cluster number, K∗, with the maximum ψ
for different time slots are 8, 15, 25 respectively. Denote
K̂ as the number of cluster predicted from the ANN-
based prediction model, we can see that ψ with the
prediction errors |K̂ − K∗| = 1, |K̂ − K∗| = 2, and
|K̂ −K∗| = 3 will only averagely reduced by 0.5%, 1.5%,
and 2% respectively. Fig. 5 shows the prediction errors of
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Fig. 4: The DINO performance under different traffic
conditions.

the ANN-based cluster number predictor. Although only
about 36% of the simulated time slots have no prediction
error, there are about 85% of the simulated time slots in
which the prediction errors are smaller that 3. This means
the network optimization based on the predictions can
achieve at least 98% of the optimal performance in 85%
of the simulated time slots.

D. Clustering Algorithm Performance
Fig. 6 shows the comparison of the computation time of

HCA and K-medoids algorithms. The computation time
for clustering base stations with the HCA algorithm is
almost stable. This is because the HCA algorithm has
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Fig. 5: The prediction error of the ANN predictor.
to generate the entire clustering tree for the base station
clustering. The computation time of the K-medoids algo-
rithm is linearly proportional to the number of base station
clusters. When the number of base station clusters is small,
the computation time of the K-medoids algorithm is much
less than the HCA algorithm.

Fig. 7 show the performance comparison of different
clustering algorithms. The performance of the HCA al-
gorithm is only slightly better than that of the K-medoids
algorithm. The HCA algorithm has a better performance
because the HCA algorithm merges the clusters with
the minimal inter-clusters distance through building the
clustering tree. However, the computation complexity of
the K-medoids algorithm is significantly lower than the
HCA algorithm. Therefore, the K-medoids algorithm is
selected in the DINO framework.

VI. Conclusion

In this paper, we have proposed the data-driven network
optimization (DINO) framework which integrates data
analysis and machine learning methods with network
optimization algorithms to enable realtime and efficient
ultra-dense network optimization. The proposed frame-
work consists of an offline machine learning module and
an online base station clustering and network optimization
module. The offline module predicts the optimal number
of base station groups while the online module clusters
base stations and optimize the network in realtime. We
have validated the performance of the DINO framework
through mobile data trace-driven network simulation.

0 5 10 15 20 25
K (Number of base station clusters)

0

2

4

6

8

10

12

14

16

18

20

C
lu

st
er

in
g

 ti
m

e
 (s

)

K-medoids
HCA

Fig. 6: The computation time of clustering algorithms.
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