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The direct measurement of Berry phases is still a great challenge in condensed-matter systems. The
bottleneck has been the ability to adiabatically drive an electron coherently across a large portion of the
Brillouin zone in a solid where the scattering is strong and complicated. We break through this bottleneck
and show that high-order sideband generation (HSG) in semiconductors is intimately affected by Berry
phases. Electron-hole recollisions and HSG occur when a near-band-gap laser beam excites a semi-
conductor that is driven by sufficiently strong terahertz-frequency electric fields. We carry out experimental
and theoretical studies of HSG from three GaAs=AlGaAs quantum wells. The observed HSG spectra
contain sidebands up to the 90th order, to our knowledge the highest-order optical nonlinearity reported in
solids. The highest-order sidebands are associated with electron-hole pairs driven coherently across
roughly 10% of the Brillouin zone around the Γ point. The principal experimental claim is a dynamical
birefringence: the intensity and polarization of the sidebands depend on the relative polarization of the
exciting near-infrared (NIR) and the THz electric fields, as well as on the relative orientation of the laser
fields with the crystal. We explain dynamical birefringence by generalizing the three-step model for high-
order harmonic generation. The hole accumulates Berry phases due to variation of its internal state as the
quasimomentum changes under the THz field. Dynamical birefringence arises from quantum interference
between time-reversed pairs of electron-hole recollision pathways. We propose a method to use dynamical
birefringence to measure Berry curvature in solids.
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I. INTRODUCTION

When parameters in a quantum system change adia-
batically, the quantum states of the system accumulate both
dynamic and Berry phases [1]. Dynamic phases are
associated with the energy eigenvalues of the system,
while Berry phases are associated with adiabatic changes
in wave functions of the system through a quantity called
the Berry curvature. Berry phases are of fundamental
importance in many branches of physics, such as quantum
field theories [2], optics [3], ultracold atoms [4], quantum
computing [5], and condensed-matter physics [6,7].
In condensed-matter systems, Berry phases are accumu-
lated when a Bloch electron moves along a path in

quasimomentum space [6,7]. Many manifestations of
Berry phases in condensed-matter physics have been
observed, such as quantum Hall effects, anomalous Hall
effects, and Faraday rotations [8–10]. In materials that
exhibit these and related phenomena, the Berry curvature of
an energy band is as important as its dispersion relation.
However, although there has been recent progress in
ultracold atoms [11–13] and optical systems [14], Berry
curvature has largely resisted direct experimental measure-
ment in solids [15,16] because it is difficult to coherently
and adiabatically drive an electron across a large portion of
the Brillouin zone without the quantum pathway being
destroyed by scattering.
Strong laser fields can accelerate Bloch electrons across

a substantial fraction of the Brillouin zone in times shorter
than typical scattering times, and hence provide opportu-
nities to probe Berry curvature. In solids, high-order
harmonic generation (HHG) results when laser fields in
the V=Å (100 MV=cm) range at wavelengths longer than
3 μm (photon energy less than 0.4 eV) create electrons and
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holes by Zener tunneling across the band gap, and
subsequently drive them across a substantial fraction of
the Brillouin zone [17–21]. It has been suggested that HHG
can be used for an all-optical reconstruction of band
structures [22], and that Berry phases may play a role in
the HHG process [17,23]. However, the combination of
diabatic Zener tunneling events with subsequent adiabatic
accelerations of electrons and holes within bands compli-
cates the theoretical modeling of HHG [24], and has led to a
range of theoretical approaches [17,20,25–29].
High-order sideband generation (HSG) [30,31] is a

process similar to HHG, in which the strong laser field
that accelerates Bloch electrons is separate from the weak
laser that creates them. HSG can be described by a three-
step model similar to that originally proposed by Corkum in
the context of HHG in atoms [32]. Electron-hole pairs are
created in a controllable and well-defined initial state by a
weak near-infrared (NIR) laser tuned near the band gap of a
semiconductor. The semiconductor is simultaneously
driven by a strong terahertz-frequency electric field, which
is strong enough to accelerate the electron and hole into
large-amplitude, coherent trajectories in momentum space,
but not strong enough to create electron-hole pairs by Zener
tunneling. After their adiabatic evolution in momentum
space, electron-hole pairs that re-collide and recombine
emit sidebands with higher photon energies than the NIR
laser that created them. HSG was predicted by one of us
[30], and has been observed in GaAs quantum wells (QWs)
[31,33], bulk GaAs [34], and, in time-resolved experi-
ments, in bulk WSe2 [24]. Recent theoretical work has
pointed to the importance of Berry curvature to HSG
[10,35,36]. The Berry phases arise due to variation of
the internal states of the electron and hole with varying
quasimomentum in the Brillouin zone. The polarizations of
high-order sidebands are affected by quantum interferences
between time-reversed pairs of quantum trajectories that
have opposite Berry phases [10,35,36].
Previous measurements of HSG showed that low-order

sidebands from InGaAs QWs were slightly weaker when
the electric field of the NIR laser was polarized
perpendicular to the electric field of the THz beam than
when the fields were parallel [31]. This observation is
surprising: within the three-step model, and given the cubic
symmetry of GaAs, why should the polarization of the NIR
laser that created the electron-hole pairs affect the intensity
of the sidebands caused by their re-collision? A subsequent
theoretical investigation predicted that in bulk GaAs the
highest-order sidebands generated when NIR and THz laser
polarizations were perpendicular should be stronger than
when they were parallel [37].
In this paper, we carry out systematic experimental and

theoretical studies of HSG from three GaAs=AlGaAs
quantum wells driven by 40-ns pulses of linearly polarized
540-GHz radiation with a strength of 35 kV=cm in
the quantum wells. The observed HSG spectra contain

sidebands up to the 90th order, to our knowledge the
highest-order optical nonlinearity reported in solids. The
highest-order sidebands are associated with electron-hole
pairs driven coherently across roughly 10% of the Brillouin
zone around the Γ point, making the Berry phase effects
especially relevant. Although GaAs exhibits neither bire-
fringence (polarization-dependent refraction) nor dichro-
ism (polarization-dependent absorption), we observe
surprising polarization-dependent effects in HSG that we
call “dynamical birefringence”: at sufficiently high orders,
the sideband intensities are usually larger when the exciting
NIR and the THz electric fields are polarized perpendicular
than when they are parallel, and also depend on the angle
between the THz electric field and the crystal axes of the
GaAs quantum wells; and sideband polarizations exhibit
significant ellipticity that increases with increasing order
even though the polarizations of both the exciting NIR laser
and the THz field are nearly linear.
To understand dynamical birefringence we generalize the

three-step model for HHG to the case of HSG, including
both the effects of band structure and Berry curvature. The
hole accumulates Berry phases due to variation of its
internal state as the quasimomentum changes under the
THz field. Dynamical birefringence arises from quantum
interference between time-reversed pairs of electron-hole
re-collision pathways, which are associated with different
Berry phases. The observation and theoretical understand-
ing of the dynamical birefringence in HSG open the door to
direct measurements of complete electronic structures of
semiconductors and insulators near the Γ point, including
band structures, scattering rates, and Berry curvatures.

II. EXPERIMENTAL RESULTS

High-order sideband generation experiments are per-
formed on three samples with different degrees of quantum
confinement and disorder. All the samples contain multiple
AlxGa1−xAs QWs separated by Al0.3Ga0.7As barriers
grown on (100) GaAs substrates [38]. The sample with
the strongest quantum confinement contains twenty 5-nm
GaAs QWs. Fluctuations in the widths of such narrow
quantum wells cause fluctuations in the 2D band gap that
manifest themselves in the widths of the excitonic absorp-
tion peaks [39] (see Appendix A for the absorption spectra
from all three samples). The second sample contains twenty
10-nm Al0.05Ga0.95As QWs. In this sample, well-width
fluctuations are smaller than for the 5-nm QWs, but alloy
disorder due to local fluctuations in the concentration of
aluminum atoms in the well region causes fluctuations in
the 2D band gap, which are manifested in the significant
broadenings of the excitonic absorption peaks of this
sample. The third sample is the least disordered, and
contains ten 10-nm GaAs QWs that are grown with special
care to ensure the smoothest possible sidewalls, and hence
excitonic absorption peaks much narrower than the other
two samples.
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To generate high-order sidebands, a continuous-wave
NIR laser is tuned just above the frequency of the lowest
exciton absorption line (heavy hole) while the samples are
driven by 40-ns pulses of 540-GHz radiation from the UC
Santa Barbara MM-Wave Free-Electron Laser. The THz
electric field in the QWs is 35� 2 kV=cm for all experi-
ments. The samples are held at a temperature of 15 K. A
schematic of the HSG experiment is shown in Fig. 1(a).
Details about the samples and the experimental methods are
in Supplemental Material [40].

A. High-order sideband generation

During simultaneous THz and NIR illumination, the
NIR radiation transmitted through the quantum wells
contains dozens of sidebands at sideband frequencies
fSB ¼ fNIR þ nfTHz, where fNIR is the frequency of the
NIR laser, fTHz is the frequency of the THz field, and n is
the sideband order. The HSG spectra for the three samples
are all similar to the spectrum shown in Fig. 1(b). Because
these samples are grown on (100) GaAs, a plane with
inversion symmetry, only sidebands with even n are
observed. At wavelengths longer than the NIR laser line,

sidebands with n ≤ −2 in Fig. 1(b) decay exponentially
with n. These sidebands are associated with perturbative
nonlinear optical processes [41,42]. At wavelengths shorter
than the NIR laser line, sidebands in Fig. 1(b) are visible
with n up to 90, more than 3 times the highest order
previously observed in experiments done on the same
sample [33]. The increase in the number of observable
sidebands is due to a dramatically improved detection
scheme and a stronger THz field. All three samples show
sidebands with order up to at least 60, and each spectrum
spans more than 150 meV.
The large number of sidebands observed in the HSG

spectra we report here enable systematic testing of a three-
step model of high-order sideband generation. In such a
model, each sideband is associated with an electron-hole
pair that re-collides and recombines after acceleration
through the band structure of a quantum well. Thus, as
sideband order increases, so does the fraction of the
Brillouin zone explored by the electron and hole, enhancing
sensitivity to nonparabolic features of the band structure
and to mixing between subbands.

B. Dynamical birefringence

In all three samples, the intensities of sidebands depend
strongly on the relative polarization of the NIR and THz
lasers at sufficiently high sideband offset energy (or order).
The sideband offset energy is the sum of the kinetic energy
of the electron and hole at re-collision and a 5–10-meV
detuning of the NIR laser below the 2D band gap (see
Supplemental Material [40]). In the 5-nm GaAs sample
(Fig. 2, top panel), the onset of polarization dependence is
at about 70 meV (n ≈ 30). Sidebands with offset energies
above 70 meV are stronger when the NIR laser field is
polarized perpendicular to the THz field than when the
fields are parallel. Positive-order sidebands with offset
energies below 70 meV, and negative-order sidebands,
have intensities that are not noticeably dependent on the
NIR laser polarization. The 10-nm AlGaAs and GaAs
samples exhibit similar behaviors, starting at an offset of
about 30 meV (n ≈ 16) (Fig. 2, middle and lower panels).
The dependence of sideband intensity on the NIR laser

polarization is reminiscent of the linear optics of uniaxial
crystals, which exhibit birefringence if the refraction of
light (i.e., the real part of the index of refraction) depends
on the angle of electric field of light with respect to an
optical axis, and dichroism if the absorption of light (i.e.,
the imaginary part of the index of refraction) depends on
said angle [43]. However, GaAs, having a cubic lattice, has
no optical axis and is not birefringent or dichroic. As we
show, the strong THz field defines a dynamical optical axis,
and the polarization response shown in Fig. 2 is a
manifestation of what we call “dynamical birefringence.”
For simplicity, we define dynamical birefringence to
encompass both effects analogous to refraction (which
primarily affect the relative phases of x and y components

FIG. 1. Optical setup and HSG spectrum. (a) Details of the
sample. The sample consists of epitaxially grown quantum wells
transferred to a sapphire wafer. A thin film of ITO on the back side
of the sapphire reflects the THz light back towards the quantum
wells while transmitting the NIR laser and sidebands (SBs). See
Supplemental Material [40] for more details. For sideband
measurements, the NIR and THz lasers are focused collinearly
on the same spot on the sample, and propagate normal to the
surface. (b) Full HSG spectrum spanning 106 orders from the
5-nm GaAs sample. The sidebands (solid lines) decorate the NIR
laser represented by thick dashed red line. The NIR and THz laser
polarizations are parallel to each other, and the [011] direction of
the lattice makes a 55° angle with the THz polarization.
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of a sideband’s electric field, and hence the sideband’s
polarization) and effects analogous to absorption or emis-
sion (which primarily affect the relative amplitudes of
sidebands excited with different polarizations, as shown in
Fig. 2). The correlation between the onset of dynamical

birefringence and the well width suggests that quantum
confinement effects on the band structure influence this
phenomenon.
Rotating the samples with respect to the THz polariza-

tion reveals that HSG is sensitive to the band structure
along the direction of electron and hole motion in the 5- and
10-nm GaAs QWs; see Fig. 3 [44]. On the left-hand side of
Fig. 3, the orientation of the crystal lattice is defined by
the angle θ between the [011] axis of the GaAs lattice
and the THz electric field. The remaining panels of Fig. 3
plot sideband conversion efficiencies for parallel- and
perpendicular-excited sidebands from all three samples
with different values of θ. The lowest conduction subband
is approximately parabolic around the band minimum, so
instead we focus on the valence subbands. The dispersion
relations for the three highest valence subbands are plotted
below the data on sideband conversion efficiency for
each sample and value of θ measured (see Supplemental
Material [45] for the band structure calculation). While
comparing HSG spectra with features in the hole dispersion
relations, it is important to note that holes carry only
10%–30% of the total kinetic energy of an electron-hole
pair at a given quasimomentum [46].
The 5-nm GaAs sample has the strongest quantum

confinement, which is correlated with having the largest
energy required for the onset of dynamical birefringence.
The spacing between the two highest heavy-hole (HH)
subbands, HH1 and HH2, is approximately 25 meVat zero
momentum, as shown in the bottom left of Fig. 3. The
subbands along the 55° and 85° directions are nearly
indistinguishable in HH1 and HH2 subbands until a
∼10-meV wide avoided crossing, centered at a hole kinetic
energy of 12 meV, near a quasimomentum of about 0.1, in
units of 1=a, where a is the lattice constant of bulk GaAs.
Above 0.1 1=a, the gap between the HH1 and HH2
subbands is larger for the 85° than for the 55° orientation.
The sideband conversion efficiencies for the parallel-
excited sidebands are nearly indistinguishable until a
sideband offset energy of about 100 meV. Above this
sideband offset energy, the sideband conversion efficiency
is larger for the orientation with the smaller avoided
crossing (55°). The sideband conversion efficiencies for
the perpendicular-excited sidebands show much weaker
dependence on sample orientations.
The 10-nm GaAs sample has much weaker quantum

confinement compared to the 5-nm GaAs sample, with a
∼10-meV spacing between HH1 and HH2 subbands at zero
momentum, as shown in the bottom right of Fig. 3. As in
the 5-nm GaAs sample, the HH1 and HH2 subbands along
the two directions here are nearly indistinguishable until an
avoided crossing with a ∼5-meV gap, centered at hole
kinetic energy of about 5 meV, near momentum 0.08 1=a.
Above 0.08 1=a, the gap between HH1 and HH2 subbands
is slightly larger for the 91° than for the 63° orientation.
The sideband conversion efficiencies for both the

-

-

-

FIG. 2. Sideband conversion efficiencies for NIR laser field
polarized parallel and perpendicular to THz field. The angles
between the THz polarizations and the [011] direction are 85°,
91°, and 93° for the 5-nm GaAs sample, the 10-nm AlGaAs
sample, and the 10-nm GaAs sample, respectively. The sideband
offset energy is the difference of the sideband photon energy and
the NIR laser photon energy. The sideband conversion efficiency
is the power in the sideband divided by the power of the NIR laser
incident on the sample. The perpendicular-excited sidebands are
stronger than the parallel-excited sidebands above an energy
offset of roughly 70 meV for the 5-nm GaAs sample and 30 meV
for the two 10-nm samples. The perpendicularly excited side-
bands fall off more slowly above this offset than below it. In both
the 5-nm GaAs and 10-nm AlGaAs samples, the sideband
intensities fall off almost exponentially as the sideband order
increases. Sideband intensities from the 10-nm GaAs sample,
however, show a more complicated relationship with the sideband
order, perhaps because of weaker scattering in this sample. The
nonexponential decay of negative-order sidebands in this sample
may be due to a relatively thick GaAs layer outside of the QWs
(see Supplemental Material [40]).
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parallel- and perpendicular-excited sidebands show a very
strong dependence on lattice orientation above sideband
offset energy of about 20 meV, and are larger for the 63°
orientation.
The 10-nm AlGaAs sample has nearly identical subband

spacings as the 10-nm GaAs sample, but much stronger
quenched disorder because of alloy scattering that is not
present in either GaAs sample. The influence of disorder is
represented as broadenings of the subbands in the lower
center part of Fig. 3. Interestingly, while the 10-nm AlGaAs
and 10-nm GaAs samples show birefringence above
roughly the same offset energy, the sideband conversion
efficiencies in the 10-nm AlGaAs sample depend very little
on the orientations of the lattice. The persistence of
dynamical birefringence in the face of alloy disorder is
striking, and suggests that dynamical birefringence is

related to local electronic structure, and not simply to
crystal symmetry. We speculate that, at the length scale of a
re-collision (a few tens of nm), local avoided crossings
persist in the presence of alloy disorder, so the THz-
induced birefringence is similar in the 10-nm AlGaAs and
GaAs samples. At the length scale of the 200-μm NIR spot,
however, the ensemble of re-collisions samples many
different local band gaps. In the ensemble, the fourfold
symmetry of the band structure may be averaged out to
nearly cylindrical symmetry without masking the structure
of the Bloch wave functions.
The experimental results of this section are consistent

with the notion that the direction of the THz electric field
defines the birefringent axis, and that the effects of this
dynamical birefringence are related to the band structure.
The 5-nm GaAs sample, with the narrower, more strongly

FIG. 3. HSG spectra from all three samples for different lattice orientations, and calculated valence subband dispersion relations.
The THz polarization was kept horizontal. The angle θ between the [011] direction and the THz field is shown on the left side, with
the propagation direction into the page. Experimental data show sideband offset energy versus sideband (conversion) efficiency. The
empty black squares are replotted from Fig. 2. The valence subband dispersion relations are plotted along the directions of the THz
electric field to elucidate the relation between the hole subbands and the sideband spectra. 5-nm GaAs QWs: The relatively large
avoided crossing between HH1 and HH2 is correlated with a relatively large energy required for the onset of dynamical
birefringence (see Fig. 2). The dependence of HSG spectra on lattice orientation is relatively weak, except for the parallel-excited
spectrum above 100-meV sideband offset energy. 10-nm AlGaAs QWs: The avoided crossing between HH1 and HH2 is much
smaller than for the 5-nm GaAs QW. Broadening caused by alloy disorder is represented as a shaded strip on each curve in the
dispersion relation. The sideband conversion efficiencies show little dependence on lattice orientations. 10-nm GaAs QWs: The hole
dispersion relations are nearly identical to those for the 10-nm AlGaAs QW, but broadening from alloy disorder is absent in this
sample, which has smaller disorder than the other two samples (see Fig. 7 and the related discussions). The sideband spectra depend
substantially on angle θ.
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confined wells, shows the weakest dynamical birefrin-
gence: the energy required for the onset of dynamical
birefringence is the highest, and the contrast between the
intensities of parallel- and perpendicular-excited sidebands
is the weakest. The two 10-nm samples, despite having
very different dependences of HSG spectra on crystal
orientations, have similar degrees of dynamical birefrin-
gence. Before investigating the experimental results further,
we consider possible physical mechanisms for this dynami-
cal birefringence and develop a theoretical model to
describe the phenomenon.

III. THEORETICAL ANALYSIS

A. Berry physics in HSG

In a three-step model of high-order sideband gener-
ation, the first step is the creation of electron-hole pairs
whose initial state is determined by the polarization of
the excitation laser, the second step is the acceleration of
electrons and holes along k-space trajectories in the
conduction and valence bands, and the third step is the
emission of a photon whose polarization state is
determined by the final state of the electron-hole pair.
Therefore, the polarization dependence of HSG is
closely related to the variation of the internal states
(including spin and orbital states) in the Brillouin zone,
or the Berry connection. The Berry connection is
defined as R⃗mn ¼ hum;kji∂kjun;ki, where jun;ki is the
cellular function (internal state) of the nth band or
subband at quasimomentum k. The Berry connection is
in general non-Abelian and is Abelian if R⃗mn ¼ 0 for all
m ≠ n. As an excitation moves in the reciprocal space,
Berry connections are accumulated as a Berry phase.
Being gauge dependent, the Berry connection is not a
physical quantity. A gauge-independent quantity that
characterizes the variation of cellular functions is the
Berry curvature, which is defined as F γ ¼ 1

2
εαβγFαβ, with

Fαβ ¼ i½Dkα ;Dkβ �, where Dk ¼ ∂k− iR⃗ (α, β, γ ¼ x, y, z).
In the Abelian case, the relation between the Berry
connection and Berry curvature reduces to F⃗ ¼ ∂k × R⃗,
similar to that between the vector potential and magnetic
field in electromagnetism.
In a band insulator with both time-reversal and inversion

symmetries, and in-plane dipole matrix elements being
cylindrically symmetric at a quasimomentum k and non-
zero only between valence and conduction bands, there
should be no dynamical birefringence in HSG if the Berry
connection is zero. It is convenient to describe the radiation
on the basis σ� (σ� correspond to photons with angular
momentum �1), and we call the corresponding compo-
nents σ� photons. If the Berry connection is zero, the
cellular functions for each energy band and the dipole
matrix elements will be the same for all Bloch wave
vectors. Thus, assuming zero intraband, intervalence-band

and interconduction-band dipole matrix elements, electron-
hole pairs associated with different cellular functions will
be completely decoupled. In this case, in the acceleration
process, an electron-hole pair can accumulate only a
dynamic phase and a dephasing factor, but no Berry
phase. Without Berry phases, the recombination of an
electron-hole pair created by a σþ NIR photon can produce
only a σþ sideband photon, which carries the dynamic
phase and the dephasing factor of the electron-hole pair. It
is similar for a σ− NIR photon. Because of time-reversal
and inversion symmetries, for each electron-hole pair
created by a σþ NIR photon, there is always another
one that can be created by a σ− NIR photon with the same
dynamic phase and dephasing factor. Therefore, in the
band insulator described above, a zero Berry connection
implies that the amplitudes of the sidebands are propor-
tional to the exciting NIR laser, which means rotating
a linearly polarized NIR laser has no effect on the sideband
intensity. For the mathematical details and generalizations,
see Appendix B 1. The (100) GaAs QWs are band
insulators that satisfy the conditions outlined above
[47], so a nonzero Berry connection is essential to explain
the observation of dynamical birefringence.
Dynamical birefringence arises as a result of quantum

interference between electron-hole re-collision pathways
associated with different Berry phases in systems like the
(100) GaAs QWs because of nonzero Berry connection. In
the THz field, an electron-hole pair excited by a σþ NIR
photon can evolve into a state whose in-plane transition
dipole moment is a linear combination of σþ and σ−. Thus,
a sideband generated from a σþ NIR photon is of the form
aσþ þ bσ−, where the energy levels, the dephasing rates,
and the Berry curvatures are coded in the coefficients a and
b, which depend on the direction of the electron and hole
motion. Similarly, for the same order of sideband generated
from a σ− NIR photon, the radiation has the form
a0σ− þ b0σþ. With nonzero Berry connection, the polari-
zation states of the sidebands can be quite different from
that of the NIR laser. For a NIR laser linearly polarized
along e−i2Ψσþ − σ−, each sideband is of the form
ðe−i2Ψa − b0Þσþ þ ðe−i2Ψb − a0Þσ−, a sum of interfering
quantum amplitudes. The norm of that sum—the electric
field amplitude of a particular sideband—depends on the
polarization angle Ψ, as do the experimentally observed
sidebands. This analysis also suggests that sidebands
should depend on the lattice orientation with respect to
the THz field as observed, and, in general, should be
elliptically polarized.

B. Semiclassical picture

To construct a physical picture of dynamical birefrin-
gence, we establish a semiclassical theory with a non-
Abelian Berry connection using the saddle-point method,
which has been successfully used to construct semiclassical
theories for both HHG [48] and HSG [10,35,36,49].
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We first model the band structure of the GaAs QWs by
using the envelope function approximation based on the
six-band Kane Hamiltonian [50]. Thus, the basis we use to
describe the electronic states contains combinations of
envelope functions and the following cellular functions,

ju1i ¼ jS;↑i; ju2i ¼ jS;↓i; ð1Þ

ju3i ¼ −
1ffiffiffi
2

p jðX þ iYÞ;↑i ¼
����32 ;þ 3

2

�
; ð2Þ

ju4i ¼ −
1ffiffiffi
6

p ½jðX þ iYÞ;↓i − 2jZ;↑i� ¼
����32 ;þ 1

2

�
; ð3Þ

ju5i ¼
1ffiffiffi
6

p ½jðX − iYÞ;↑i þ 2jZ;↓i� ¼
����32 ;− 1

2

�
; ð4Þ

ju6i ¼
1ffiffiffi
2

p jðX − iYÞ;↓i ¼
����32 ;− 3

2

�
; ð5Þ

where jSi belongs to the irreducible representation Γ1 of Td
symmetry group, jXi, jYi, jZi belong to Γ4, and j↑i; j↓i are
eigenvectors of Paulimatrix σz in spin space. The eigenstates
ju1i, ju2i are usually called the electron components. The
eigenstates ju3i, ju4i, ju5i, ju6i can also be labeled by the
quantum numbers of spin-3=2. The eigenstates ju3i, ju6i are
usually called the heavy-hole components, while ju4i, ju5i
are the so-called light-hole components. In bulk GaAs, the
energy gap is about 1.55 eV, so we neglect the coupling
between the electron and hole components and apply the
effective-mass approximation for the conduction bands.
Under the hard-wall approximation, the envelope functions
are sinusoidal:

fnðzÞ ¼
ffiffiffiffi
2

L

r �
cos ð2m−1

L πzÞ ∶n ¼ 2m − 1

sin ð2mL πzÞ ∶n ¼ 2m;
ð6Þ

where m ¼ 1; 2;…; L is the well width and fnðzÞ is odd
(even) as a function of zwhen n is even (odd).We denote the
basis as fnjS;↑i, fnjS;↓i for the electron components and
fnj32 ;� 3

2
i, fnj32 ;� 1

2
i for the hole components. In ourmodel,

zero Berry connection is assumed for the conduction
subbands, while heavy-hole–light-hole coupling induces a
non-Abelian Berry connection in the valence subbands. See
Supplemental Material [45] for more details about band
structure calculations.
To study the simplest model that is expected to capture

the main physics of HSG in the GaAs QWs, we consider
only the lowest conduction subband and the highest two
valence subbands. As the QWs have both time-reversal and
inversion symmetries, we choose the eigenstates in each
subband as pairs related by a time-reversal transformation
and an inversion. The cellular functions of the lowest
conduction subband (E1 subband) are denoted as jE1;↑i≡
f1jS;↑i and jE1;↓i≡ f1jS;↓i, which are k independent

under the assumption of zero Berry connection. For the jth
highest valence subband (HHj subband, j ¼ 1, 2), the
cellular functions are denoted as jHHj;↑ik and jHHj;↓ik.
With non-Abelian Berry connection, the states jHH1;↑ik
and jHH2;↓ik are linear combinations of f2m−1j32 ;þ 3

2
i,

f2mj32 ;− 3
2
i, f2m−1j32 ;− 1

2
i, f2mj32 ;þ 1

2
i (m ¼ 1; 2;…), with

k-dependent coefficients. Thus, there are only four types of
electron-hole pairs involved that have nonzero transition
dipole moments: f1jS;↑i-f1j32 ;þ 3

2
i, f1jS;↑i-f1j32 ;− 1

2
i,

f1jS;↓i-f1j32 ;− 3
2
i, and f1jS;↓i-f1j32 ;þ 1

2
i (see

Supplemental Material [51]). The electron-hole pairs
involving a f1jS;↑i component are decoupled with those
containingf1jS;↓i, andwecandivide the electron-hole pairs
into two groups, which are related to each other by a time-
reversal transformation and an inversion. For one group, we
have electron-hole pairs jE1;↑i-jHH1;↑ik, jE1;↑i-jHH2;↓ik,
and for the other group, we have jE1;↓i-jHH1;↓ik,
jE1;↓i-jHH2;↑ik.
With the band model established, we start the saddle-

point analysis by writing the amplitude of the nth-order
sideband in the following standard path integral form,

Pn ¼
X
s¼↑;↓

Z þ∞

−∞
dt
Z

t

−∞
dt0
Z

dP
ð2πÞ2

Z
D½ϕ†

s ;ϕs�

× D†
s ½kðtÞ�ϕs½kðtÞ�eði=ℏÞSsϕ†

s ½kðt0Þ�Ds½kðt0Þ� · FNIR;

ð7Þ
where s ¼ ↑;↓ labels the two groups of electron-hole pairs,
ℏkðtÞ ¼ ℏP − eAðtÞ is the kinetic momentum with ℏP
being the canonical momentum and − _A ¼ ETHzðtÞ ¼
FTHz cosðωtÞ the THz electric field with frequency ω,
ENIRðtÞ ¼ FNIRe−iΩt is the electric field of the NIR laser
under the rotating-wave approximation with frequency Ω,
D↑½kðtÞ� and ϕ↑ are, respectively, a two-component dipole
vector and an SU(2) functional field corresponding to
electron-hole pairs jE1;↑i-jHH1;↑ik and jE1;↑i-jHH2;↓ik,
S↑ ¼ R tt0 L↑½kðt00Þ; _kðt00Þ;ϕ↑; _ϕ↑�dt00 þ ℏΩðt − t0Þ þ nℏωt,

with L↑ ¼ iℏϕ†
↑
_ϕ↑ − ϕ†

↑½ΛðkÞ − eETHzðtÞ · R⃗↑ðkÞ�ϕ↑,
ΛðkÞ ¼ diagfEcv;1ðkÞ; Ecv;2ðkÞg is a diagonal matrix with
Ecv;jðkÞ being the energy level difference between E1

subband and HHj subband, R⃗↑ðkÞ is the non-Abelian

Berry connection, and D½ϕ†
↑;ϕ↑� is the functional measure

(similar for s ¼ ↓) (see Supplemental Material [51] for the
derivation). The dephasing rate is neglected to simplify the
picture and is discussed in later sections. Variations with
respect to k and ϕ†

s respectively give the following saddle-
point equations,

0 ¼
Z

t

t0

�
ϕ†
s ½kðt00Þ� 1

ℏ
½Ds

k;Λ½kðt00Þ��ϕs½kðt00Þ�

− _kðt00Þ × ϕ†
s ½kðt00Þ�F⃗ s½kðt00Þ�ϕs½kðt00Þ�

�
dt00; ð8Þ
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iℏ
dϕs

dt
¼ Λ½kðtÞ�ϕs − eETHzðtÞ · R⃗s½kðtÞ�ϕs; ð9Þ

where ½Ds
k;ΛðkÞ�=ℏ is the covariant relative group velocity

of the electron-hole pairs withDs
k ¼ ∂k − iR⃗s the covariant

derivative, and F⃗ s is the non-Abelian Berry curvature
matrix defined as F γ

s ¼ 1
2
εαβγFαβ

s , with Fαβ
s ¼ i½Ds

kα
; Ds

kβ
�

(α; β; γ ¼ x, y, z).
Another two saddle-point equations concerning conser-

vation of energy are obtained by variations with respect to t
and t0:

Re

�
FNIR ·D†

sðt0ÞΛ½kðt0Þ�ϕsðt0Þ
FNIR ·D†

sðt0Þϕsðt0Þ

�
¼ ℏΩ; ð10Þ

Re

�
Êl · D

†
sðtÞΛ½kðtÞ�ϕsðtÞ

Êl ·D
†
sðtÞϕsðtÞ

�
¼ ℏðΩþ nωÞ; ð11Þ

which require that the weighted average energy of the
electron-hole pair equals the photon energy of the NIR laser
at the moment of excitation, and reaches the sideband

photon energy at the moment of re-collision. The weights
are proportional to the transition dipole moments. For
instance, if we write ϕ↑ ¼ ðϕ↑;1;ϕ↑;2ÞT , and define
jϕ↑;1i ¼ ϕ↑;1jE1;↑ijHH1;↑ik, jϕ↑;2i ¼ ϕ↑;2jE1;↑ijHH2;↓ik,
then the average energy can be cast in the form
Re½ðhμjϕ↑;1iEcv;1 þ hμjϕ↑;2iEcv;2Þ=ðhμjϕ↑;1i þ hμjϕ↑;2iÞ�,
where hμj ¼ hgjer0 with jgi being the ground state and r0
the projection of the radius vector along a certain direction.
Armed with Eqs. (8)–(11), a semiclassical picture can be

constructed following the three-step sequence of the side-
band generation process. This picture is shown schemati-
cally in Fig. 4. For a detailed look at calculated sideband
trajectories, see Appendix C, and for the method of solving
these equations, see Supplemental Material [52].
First, an incoming NIR photon resonant with the energy

gap is decomposed into circularly polarized components,
σ� ≡�ðX̂ � iŶÞ= ffiffiffi

2
p

(X̂ and Ŷ are unit vectors along ½010�
and ½001�, respectively). The σ− component excites an
f1j32 ;þ 3

2
i electron from the highest valence subband to the

state f1jS;↑i in the lowest conduction subband, creating a
spin-up electron wave packet and a hole wave packet with
angular momentum −3=2 in real space, while the σþ

FIG. 4. Schematic representation of three-step model for high-order sideband generation in position space (left) and momentum space
(right). The figures represent a quantum interference process, with the upper (lower) arms associated with creation and dynamics of
electron-hole pairs with total spin −1 (þ1). The linearly polarized NIR excitation light is a superposition of a right and a left circularly
polarized component, σ�NIR. In step 1, a quantum superposition of an electron-hole pair with total spin −1 (electron spin þ1=2, heavy-
hole spin −3=2) and an electron-hole pair with total spin angular momentum þ1 (electron spin −1=2, heavy-hole spinþ3=2) is created.
In step 2, the electrons and holes are accelerated by the THz field. In position space, the electron spinors (vertical arrows at four different
times along “electron” trajectories, defined in Sec. III C) do not rotate because Berry curvature is negligible, while the hole spinors rotate
substantially under the influence of non-Abelian Berry curvature. In momentum space, the electron state remains confined to a single
band during its acceleration, while the hole state mixes into nearby bands during its acceleration. In step 3, electrons and holes re-collide.
Upon re-collision, the hole state is a superposition of states (depicted by ovals in the right-hand figure) in several different hole subbands
with coefficients determined by the non-Abelian Berry curvature and the initial NIR excitation. Some of these states have allowed dipole
transitions with the electron, and so create photons σ�HSG that then interfere to generate the HSG emission at frequency fHSG with
elliptical polarization. Rotating the NIR polarization changes the relative phase of the σþNIR and σ−NIR photons and influences the output
by changing how the emitted sideband photon states interfere, resulting in dynamical birefringence.
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component creates the time-reversal counterpart electron-
hole pair.
In real space, as shown on the left of Fig. 4, after being

created by the NIR laser, the electron and hole wave
packets first move along opposite directions under the
THz field, then are driven back and finally re-collide with
each other to generate sidebands. This re-collision process
is described by the first saddle-point equation, Eq. (8), in
which the integrand can be written as the relative velocity of
the electron and hole wave packets. With zero Berry
connection, the velocity of the electron is the ordinary
group velocity. For the hole, with non-Abelian Berry
connection, the ordinary group velocity is replaced by a
covariant group velocity, and there is a velocity component
perpendicular to the THz field, which looks like the Lorentz
force resulting from a k-space magnetic field (see
Refs. [53,54]). Here, the Lorentz-like velocity of the hole
is neglected for simplicity, because it is small for sidebands
of order n < 60 (see animations for n ¼ 20, 40, 60 in
Supplemental Material [55]).
In momentum space, the Berry physics shows up in a

more direct way, as shown on the right side of Fig. 4.
Driven by the THz field, each electron-hole pair moves
around the Brillouin zone as ℏ _k ¼ eETHzðtÞ. The dynamics
of the pseudospinϕs is described by the second saddle-point
equation, Eq. (9). With zero Berry connection,
the spin state of the electron remains the same. For the
holes, we can consider ϕs as a pseudospin on the basis
fjHH1;↑ik; jHH2;↓ikg, or fjHH1;↓ik; jHH2;↑ikg. During
the acceleration process, a hole acquires a Berry phase,
which is non-Abelian and induces Landau-Zener tunneling
between the hole subbands. In the non-Abelian case, the
dynamic phase and Berry phase are inseparable. In the
language of spinors, the pseudospinϕs is initially in the spin-
up state, and precesses because of the non-Abelian Berry
curvature.
Finally, for the third step, consider the electron-hole pair

created by a σ− NIR photon. At re-collision, the electron is
still in the state f1jS;↑i while the hole has evolved into
a superposition

P
n;jηn;jfnjuji, where ηn;j ¼ ϕ↑;1α

↑;1
n;j þ

ϕ↑;2α
↑;2
n;j , with α↑;mn;j being the coefficient of fnjuji compo-

nent in the cellular function of the mth subband. The non-
Abelian geometric phase is carried by the pseudospin
ðϕ↑;1;ϕ↑;2ÞT . We have fixed the gauge at k ¼ 0 and the

gauge is smoothed over the Brillouin zone, so α↑;mn;j is
uniquely determined. Except for the heavy-hole component
f1j32 ;þ 3

2
i and the light-hole component f1j32 ;− 1

2
i, all other

components in the hole wave packet cannot recombine with
the electron state. Recombination of the f1jS;↑i electron
with f1j32 ;þ 3

2
i hole and f1j32 ;− 1

2
i hole, respectively,

produces sideband components σ− and σþ. Similarly, σþ
photons can produce both σ− and σþ sideband photons.
Based on this picture, we explain the observed dynami-

cal birefringence as a consequence of quantum interference

between electron-hole re-collision pathways injected with
opposite spins. For a NIR laser linearly polarized along
cosΨX̂ þ sinΨŶ, both σþ and σ− components are present
with a definite relative phase π − 2Ψ. Consider the side-
band component σþ, which can be produced by both σþ
and σ− NIR photons with different amplitudes denoted by a
and b. The sideband strength of the σþ component is
proportional to jeiðπ−2ΨÞaþ bj2. In our model, a and

ffiffiffi
3

p
b

are, respectively, the amplitudes of the heavy-hole compo-
nent f1j32 ;− 3

2
i and light-hole component f1j32 ;þ 1

2
i at re-

collision. We can immediately see that with a nonzero b,
the sideband intensity should depend on the polarization of
the NIR laser, because of the heavy-hole–light-hole cou-
pling, or the nonzero Berry curvature. For simplicity,
suppose the THz field is polarized along the [010] direction
of the lattice and the NIR laser is linearly polarized parallel
or perpendicular to the THz field. For the parallel case, the
NIR laser is polarized along X̂ ∝ σþ − σ−, so the sideband
strength for the component σþ is Ix;þ ∝ j − aþ bj2, while
for the perpendicular case, since the NIR laser is polarized
along Ŷ ∝ σþ þ σ−, the corresponding sideband strength is
Iy;þ ∝ jaþ bj2. When the relative phase of a and b lies
within ð− π

2
; π
2
Þ, as in our cases, there will be Iy;þ > Ix;þ.

For these special configurations, the sidebands are almost
linearly polarized along the NIR laser, and the strength of
each sideband is proportional to the strength of the
corresponding σþ component.
Because of the Landau-Zener tunneling induced by the

non-Abelian Berry curvature, the initially time-reversed
electron-hole pairs can have nonzero total angular momen-
tum at re-collisions. This provides a mechanism for a
linearly polarized NIR laser to produce elliptically polar-
ized sidebands. In contrast, when both electrons and holes
are restricted to a single subband, a linearly polarized NIR
laser can produce only linearly polarized sidebands, which
may be rotated with respect to the polarization of the NIR
laser by the Berry connection, which is Abelian in this case
[56]. Note that Abelian Berry phases can induce elliptically
polarized HSG from a linearly polarized NIR laser, say, in
the case when the electron-hole pair is created at more than
one wave vector k [49]. See Appendixes B 2 and B 3 for the
mathematical details and generalizations.

C. Quantum simulation

To compare with experimental data, we then numerically
simulate the evolution of interband polarizations, whose
Fourier transforms give the HSG spectra. In the Heisenberg
picture, when the Coulomb interaction is neglected, the
dynamics of the electron-hole pairs is governed by

iℏ
dηkðtÞ;s
dt

¼ Λ½kðtÞ�ηkðtÞ;s − eETHzðtÞ · R⃗s½kðtÞ�ηkðtÞ;s
−Ds½kðtÞ� ·ENIRðtÞ − iℏγ2½kðtÞ�ηkðtÞ;s; ð12Þ
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where ηkðtÞ;↑ ¼ ðc†H1;↑;kðtÞcE;↑;kðtÞ; c
†
H2;↓;kðtÞcE;↑;kðtÞÞT , with

c†H1;↑;kðtÞ and c
†
H2;↓;kðtÞ being creation operators correspond-

ing to Bloch states eik·rjHH1;↑ik and eik·rjHH2;↓ik, and
cE;↑;k an annihilation operator for an electron in the Bloch
state eik·rjE1;↑i (similar for ηkðtÞ;↓), and γ2ðkÞ ¼
diagfγ2;1ðkÞ; γ2;2ðkÞg is a diagonal matrix with each matrix
element being a momentum-dependent dephasing rate due
to phonon and impurity scattering. Low electron and hole
densities are assumed, so that each electron-hole operator in
ηkðtÞ;s is approximately bosonic. Since the THz photon
energy is much smaller than the energy gap and the NIR
laser field is much weaker than the THz field, we neglect
the THz field in the initial optical excitation process, while
the NIR laser field is ignored when the electron-hole pairs
are accelerated. After Eq. (12) is solved, the interband
polarization is obtained as the expectation value of P⃗ðtÞ ¼P

sD
†
s ½kðtÞ�ηkðtÞ;s þ H:c:. In the numerical integration, we

combine the leapfrog method with the Crank-Nicolson
method, and consider only resonantly excited electron-hole
pairs.
In the next section, experiment and theory are compared.

In the hard-wall approximation used in the calculation, the
height of the barrier is assumed to be infinite and the well
widths are enlarged. In order to reproduce both the measured
exciton peaks and the heavy-hole–light-hole exciton split-
ting, effective well widths in the conduction and valence
bands are assumed to be different. The effective well widths
used in the calculation of the valence subbands (Fig. 3) are
10.9, 15.6, 15.9 nm for the 5-nm GaAs QWs, the 10-nm
AlGaAs QWs, and the 10-nm GaAs QWs, respectively
(see Supplemental Material [45] for more details). Given
the relatively severe approximations, and the small number
of parameters adjusted, detailed quantitative agreement
between experiment and theory is not expected, but trends
should be reproduced. See Supplemental Material in
Ref. [51] for the derivation of the dynamical equation and
SupplementalMaterial inRef. [57] for thenumericalmethod.

IV. COMPARISON OF EXPERIMENT
AND THEORY

Both experiment and theory show that the polarization
states of the sidebands are in general different from the
polarization of the NIR laser, and change systematically
with increasing sideband order.Wemeasure the polarization
states of the NIR laser and of the sidebands using a home-
built Stokes polarimeter (see SupplementalMaterial [40] for
experimental details). In all cases, we find the sidebands to
be perfectly polarized, so that the polarization ellipse
completely describes their polarization states. The polari-
zation ellipse is parametrized by two angles: α is the angle
themajor axismakeswith the dynamical optical axis defined
by the direction of THz polarization, and γ is the arctangent
of the ratio of the semiminor to semimajor axes; see Fig. 5(a).

With the measured NIR laser polarization as an input
(estimated error �1°), we also calculate the two ellipticity
angles α and γ associated with each sideband to compare
with experiment.
For the 10-nm AlGaAs sample, with the NIR laser nearly

linearly polarized parallel to the dynamical optical axis
(γ ≈ 0 and α ¼ −6°), both α and γ of the sidebands rotate
clockwise with increasing sideband order. The calculated
and measured α and γ show the same trends and agree
within the experimental error [see Fig. 5(b), left].
With the NIR laser within 10 deg perpendicular to the

dynamical optical axis, two measurement trials, together
with associated calculations, show that the polarization
states of the sidebands can depend sensitively on the
polarization of the NIR laser [see Fig. 5(b), right]. In trial
1, the NIR laser is nearly perfectly linearly polarized (γ ≈ 0)
at α ¼ 91°, which is oriented only 2° from the [011]

FIG. 5. Polarization state of the sidebands in terms of the two
ellipticity angles. (a) Definition of α and γ for the polarization
ellipse. (b) Experimental and theoretical values for the polariza-
tion angles. Experimental measurements are filled scatter points,
theoretical calculations are empty scatter points. The shaded
region is the error in the calculation propagated from error in the
measured NIR laser polarization state. Polarization state mea-
surements were performed on both 10-nm samples for both
excitation geometries, and the nearly perpendicular measure-
ments were performed twice, labeled trials 1 and 2. For sideband
polarimetry for the 10-nm GaAs sample, see Supplemental
Material [40]. The angle of the [011] direction relative to the
THz field is 93°. The NIR laser polarization state is plotted as the
order zero sideband and circled in black for each measurement.
Overall, both theory and experiment agree that the polarization
state of a given sideband is extremely sensitive to the NIR laser
polarization state.
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direction. Theory predicts, in this special case, a nearly null
effect–that the sidebands should all have polarizations that
are extremely close to the polarization of the NIR laser. This
case is analogous to the case of linearly polarized light that is
nearly parallel or perpendicular to the optical axis of a
birefringent crystal, in which case the transmitted beam’s
polarization is nearly unchanged. Indeed, measured values
for γ are close to calculated ones, showing nearly linear
polarization at all measured orders (jγj < 3°). The measured
α in trial 1 are within experimental error of the theoretical
prediction up to about n ¼ 20, but are about 1 standard
deviation above theory between 20 and 40.We note that, for
the nearly perpendicular case, the error in calculated side-
band polarization, which is propagated from the error in
measured NIR laser polarization, decreases slightly with
increasing order, making the comparison of experiment and
theory in these cases more sensitive to approximations and
systematic experimental errors than for the nearly parallel
case (see Supplemental Material in Ref. [58] for estimation
of error propagation and Supplemental Material in Ref. [40]
for a discussion of systematic errors).
In trial 2, the NIR laser is nearly linearly polarized (γ ¼ 0)

at an angle of α ¼ 81° with respect to the dynamical optical
axis. Experiment and theory are in good agreement in this
case: the sidebands in trial 2 remain nearly linearly polar-
ized, and their polarization rotates counterclockwise with
increasing order, reaching nearly 90° at n ¼ 40.

Measurements and calculations are also performed for
the 10-nm GaAs samples (see Supplemental Material [40]).
The sideband polarization states actually change more
strongly with order than for the 10-nm AlGaAs sample.
However, perhaps because details of the band structure are
more important in this cleaner sample, the quantitative
agreement between experiment and theory is not as good as
for the 10-nm AlGaAs sample.
In addition to accounting for the dependence of sideband

polarization on sideband order, the theory also accounts for
the dependence of sideband intensity on NIR laser polari-
zation. In order to largely factor out the effects of scattering
on the intensities of high-order sidebands, we compare the
theoretically calculated and experimentally measured ratios
of the sideband intensities I⊥=I∥, where I⊥ is for the case
when the NIR laser field is perpendicular to the THz field
and I∥ for the case when the two fields are parallel; see
Fig. 6. For the 5-nm GaAs sample at 85° orientation, for
sidebands of order n ≲ 46 (≈100 meV), the calculation and
the experiment have an almost perfect match, increasing
monotonically at the same rate. Above 100 meV, the
experimentally measured ratio continues to increase, while
the calculated one decreases. The trends for both theory and
experiment for the 10-nm GaAs and AlGaAs QWs for all
sample orientations are similar to those for the 5-nm GaAs
QW at 85°, except that the experimentally measured side-
band ratios for the 10-nm GaAs QW, the cleanest sample,
show some nonmonotonic structure that is not present in
the theory. The experimental measurements for the 5-nm

GaAs sample mounted at 55° are quite different from all the
others. The measured ratios are all close to 1—there is, in
this orientation, almost no dynamical birefringence. The
calculated sideband ratios for this orientation do not agree
with the measured ones.
We do not understand the deviations between experiment

and theory for the 5-nm GaAs QW mounted at 55°. One
possible cause is the hard-wall approximation. The non-
Abelian geometric phases depend on the band energy and
the non-Abelian Berry connection due to heavy-hole–light-
hole coupling, both determined by the well width (see
Supplemental Material [45]). As the effective well width
decreases, the splitting of the valence subbands becomes
larger, holes are more likely to remain in a single subband,
and the Berry connection tends to zero. As discussed earlier,
with a cylindrically symmetric dipole vector and zero Berry
connection, the sideband polarizationwould be independent
of the polarization of the NIR laser. Therefore, the deviation
of the ratio I⊥=I∥ for the 5-nm GaAs QWs at 55° could be
explained by an overestimation of Berry connection in the
calculation (see Appendix D for more details). However,

-

-

-

FIG. 6. Comparison of dynamical birefringence in experiment
and theory. The ratio I⊥=I∥ is compared in all three quantum
wells at different lattice angles. The nonzero Berry connection is
responsible for deviations from unity. The quantum theory of
sidebands includes only macroscopic dephasing, where the only
k dependence arises when the electrons (or holes) have enough
energy to be elastically scattered into other bands (i.e., the
dephasing rates are step functions). Comparing intensity ratios
instead of absolute intensities largely cancels out the spin-
independent scattering effect, which is assumed to be the
dominant mechanism of scattering. The blue line is the result
if the Berry connection is assumed to be zero.
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a smaller Berry connectionwould also reduce the dynamical
birefringence predicted at 85°, increasing deviations
between experiment and theory along that direction. A
second possible cause is anisotropic scattering from fluc-
tuations in well width. The 5-nmGaAs QW is actually more
accurately described as consisting of rectanglelike islands
that are 9, 10, or 11monolayers thick,with the long direction
parallel to the [1̄10] direction [59]. Scattering from these
islands, which are likely smaller than the 10-nm excitonic
Bohr radius because the samplewas grownwithout pauses at
GaAs=AlGaAs interfaces [60], may be different along the
two directions measured. Further investigations will be
required to understand dynamical birefringence from such
narrow QWs.

V. DISCUSSION

A. What about the “plateau”?

The classical three-step model predicts the existence of a
“plateau” in which the strengths of high-order sidebands
[30] or harmonics [48] depend relatively weakly on side-
band order up to a cutoff. In atomic HHG, if the electron is
launched on a valid re-collision trajectory, there is little to
stop it from re-colliding with its parent ion, leading to high-
order harmonics whose intensity varies little with order
below the cutoff. In HSG, however, the electron and hole
must interact with the lattice. Previously, scattering and
dephasing were posited as the dominant mechanisms
for the decrease in sideband strength with increasing
sideband order [24,33]. The generalized three-step model
we present here suggests that the Berry curvature should
also contribute. When a hole that is initially in the HH1
state mixes into the nearby subbands upon acceleration,
that hole is less likely to radiatively recombine with the
electron upon re-collision. In the GaAs QWs we study here,
the probability of Landau-Zener tunneling between sub-
bands increases dramatically with increasing sideband
order (see Appendix C, Fig. 8), and so the proportion of
HSG-active holes decreases with increasing sideband order
even in the absence of scattering. In general, even Abelian
Berry curvature can cause electron-hole pairs to become a
mixture of many components, most of which could be not
HSG active. We suggest that a clear plateau in HSG, one
similar to the plateau observed in HHG from atoms, should
be expected only in cases with nearly zero Berry curvature
and weak scattering.

B. Why do disordered samples generate
strong sidebands?

When we began this study, we assumed that dephasing
and decoherence were the dominant factors attenuating
high-order sideband generation [33], and we expected the
highest sideband conversion efficiency to come from the
least disordered sample. A careful look at Fig. 2 will show
that the 10-nm GaAs sample, which was grown to have

very smooth walls and has no Al atoms to cause band gap
fluctuations, generates fewer and weaker sidebands than
the more disordered 10-nm AlGaAs sample. We speculate
that the hole Landau-Zener tunneling into dark states may
explain this difference. In clean material, once the hole
mixes into the HH2 subband, it is very likely to remain in
that subband and be unable to radiatively recombine. In
dirtier material, the disorder may suppress the coherent
Landau-Zener tunneling and hence leave a larger compo-
nent of the hole in the HH1 subband, from which it can
radiatively recombine. Further theoretical work is neces-
sary in order to fully understand the role of disorder
in HSG.

C. Proposal for measuring band structure
and Berry curvature

We conclude the discussion section of this paper by
explaining how the generalized three-step model we
present here, in combination with experimental measure-
ments like those presented here, can be used to determine
band structures, Berry curvatures, and dephasing rates in a
self-consistent way. This is significant because, although
the dispersion relations of energy bands can be measured
by angle-resolved photoemission spectroscopy (ARPES)
and magnetotransport [61], and ARPES has been used to
measure Berry phase in a special situation [62], these
techniques are not sensitive, to our knowledge, to Berry
curvature. We note that it has been suggested that HHG
may be used to measure Berry curvature [23].
To clarify the role of polarization in this proposed

technique, we introduce a simple linear formalism that
relates the electric field of the nth sideband to that of the
NIR laser with a complex, 2 × 2matrix we call a dynamical
Jones matrix J n (T n) for a linearly (circularly) polarized
basis; see Appendix E for details. It is straightforward to
measure this matrix experimentally. In fact, the ratio I⊥=I∥
plotted in Fig. 6 is simply jJyy;n=Jxx;nj2, although several
more measurements are required to fully determine J n.
Theoretically, it is more natural to work in the circularly
polarized basis, and semiclassical or quantum theory can be
used to calculate T n. The matrices T n and J n are related
by a unitary transformation. Good agreement between the
experimental and theoretical values of this matrix then
confirm a convincing understanding of the host material.
There are likelymanyways to solve the inverse problemof

extracting band structures, Berry curvatures, and dephasing
rates by comparing experimentally measured and theoreti-
cally calculated dynamical Jones matrices. One method is to
establish a trial band model [22] and a trial dephasing model
from which to calculate T n. The calculated T n is then
compared with the measured T n and the band model is
modified iteratively until themeasured T n is reproduced.We
can start from low-order sidebands with a tight-binding
model extended from thek · p theory as is used in this paper,
in which the low-energy physics is well described. For

HUNTER B. BANKS et al. PHYS. REV. X 7, 041042 (2017)

041042-12



high-order sidebands, more high-energy terms might be
needed to better describe the large-k behavior.
The theoretical model that can reproduce the measured

dynamical Jones matrix is not unique unless all compo-
nents of the wave functions are optically active in the
experiments. For example, in our experiments, the prob-
ability of the hole being in the HH2 subband is quite small
near the zone center, where the Berry connection in this
subband is hardly accumulated and is irrelevant. In order to
measure the Berry connection for the HH2 subband near
k ¼ 0, a stronger THz field or a NIR frequency resonant
with that exciton should be used.
Several experimental techniques can be used to improve

the results of the self-consistent algorithm. For example,
exciting with purely circularly polarized light will isolate
any polarization changes to just one electron and hole
species, measuring the non-Abelian Berry curvature more
directly by eliminating the complex interference generated
by linearly polarized light. Then, by tuning the THz
frequency and field strength, the time scales for sidebands
of the same order or offset energy can be changed tomeasure
scattering rates with different time constants. As is done in
Ref. [24], one can also use NIR pulses instead of continuous
waves. The advantage of using pulses is that it is possible to
inject electron-hole pairs at particular phases of theTHz field
so as to initiate designated quantum trajectories.
When the semiclassical theory works well or there is

only a single quantum path for each spin sector, we can
already measure the Berry phase in the Abelian case, where
the dynamical Jones matrix can be approximated as

T n ∝ e−ΓdeiΓD

 
eiΓBαH

1ffiffi
3

p e−iΓBα�L
1ffiffi
3

p eiΓBαL e−iΓBα�H

!
; ð13Þ

where Γd, ΓD, and ΓB are, respectively, the dephasing
factor, dynamic phase, and the open-path Berry phase for
the electron-hole pair created by an σþ NIR photon. αH and
αL are the coefficients in the cellular function for the
components f1j 32 ;− 3

2
i and f1j 32 ;þ 1

2
i. We can choose the

gauge that αH is real at k ¼ 0, which means through gauge
smoothing, αH can be made real all over the whole
Brillouin zone. Since T n can be determined from the
techniques in this paper to within a phase factor,
T−−;n=Tþþ;n can be measured, which is just e−2iΓB .

VI. CONCLUSION

In conclusion, we study how the interplay between the
relative orientations of the NIR laser polarization, THz
polarization, and lattice affects HSG. We measure HSG
spectra of up to the 90th order and spanning over 200 meV,
a bandwidth of over 12% of the NIR laser frequency, by
manipulating those relative orientations. We show conclu-
sively that electrons and holes accelerate coherently
through the lattice before re-colliding. This coherence

allows for interference between different electron and hole
pathways, initialized by the NIR laser polarization and
caused by non-Abelian Berry curvature in the hole sub-
bands, and leads to large changes in sideband strength and
sideband polarization state.
In the next experiments, the observations discussed here

should lead to a new generation of complete band structure
measurement because HSG is inherently sensitive to both
elements of the Bloch wave function, eik·xjuki. By clever
control of the NIR laser polarization, the THz frequency
and field strength, and lattice orientation, a self-consistent
algorithm can be developed for the direct measurement of
the electron and hole dispersion relations, non-Abelian
Berry curvatures, and even k- and t-dependent scattering
rates in a broad class of materials.
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APPENDIX A: SAMPLE ABSORPTION

Near-IR absorption measurements are performed on all
samples using methods described in Supplemental
Materials [40]. Several excitonic features are apparent in
the absorption spectrum for each sample (see Fig. 7). The
lower- and higher-energy peaks are assigned to the heavy-
hole exciton (HHX) and light-hole exciton (LHX), respec-
tively. The splitting between theHHXand LHXpeaks arises
because quantum confinement breaks the HH-LH degen-
eracy at the top of the valence band. In the 5-nm QWs, the
HHX-LHX splitting is 25meV. In both 10-nmQW samples,
the HHX-LHX splitting is 10 meV, since larger well
widths lead to smaller splitting due to weaker quantum
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confinement. The two 10-nm samples have different alu-
minum concentrations in the well region leading to the
absorption differences. For the 10-nm AlGaAs sample, the
5% Al content increases the 2D band gap so that the HHX
absorption line is blueshifted up to coincide with the HHX
absorption line from the 5-nm GaAs sample. The 5-nm
GaAs and 10-nmAlGaAs samples are produced by the same
epitaxial growth as samples studied in Ref. [33].
The linewidths of the exciton lines probe the quenched

disorder of the samples and so depend on the composition
and growth conditions. The FWHM of the HHX line in the
10-nm GaAs sample is 2.0 meV. In both the 5-nm GaAs
sample and the 10-nm AlGaAs sample, it is 6.3 meV. There
are two important sources of the inhomogeneous broad-
enings: well-width fluctuations and alloy disorder in thewell
region. Well-width fluctuations lead to a broadening that is
inversely proportional to the well width, and so it is the
dominant source of the inhomogeneous broadening for the
5-nmGaAs sample. If alloy disorder is modeled by Poisson-
distributed aluminum content fluctuations over the 10-nm-
diameter exciton wave function leading to local fluctuations
in the band edge, we should expect an inhomogeneous
excitonic linewidth broadeningof about 5meV for the 10-nm
AlGaAs samplewith5%aluminumconcentration, consistent
with the measured linewidth. The 10-nm GaAs sample, with
wider and unalloyed QWs, has the narrowest linewidth.

APPENDIX B: MATHEMATICS
IN BERRY PHYSICS

To mathematically study the Berry physics in HSG, we
investigate the amplitude of the nth-order sideband in the
form

Pn ¼
i
ℏ

Z þ∞

−∞
dt
Z

t

−∞
dt0
Z

dP
ð2πÞd

× eiðΩþnωÞtD†½kðtÞ�e−ði=ℏÞSD½kðt0Þ� ·ENIRðt0Þ; ðB1Þ

e−ði=ℏÞS ¼ T̂ exp

�
−
i
ℏ

Z
t

t0
H½kðt00Þ�dt00

�
; ðB2Þ

where d is the dimension of the system, HðkÞ ¼
ΛðkÞ − eETHzðtÞ · R⃗ðkÞ þETHzðtÞ ·DintðkÞ − iℏγ2ðkÞ, T̂
denotes the time-ordering operator in the integration, and
DintðkÞ is a matrix describing the intraband, intervalence-
band and interconduction-band dipole matrix elements. We
assume that the dephasing rates depend on only the band
index and the quasimomentum. The symbols we use here
are similar to those in Eq. (12) but in a more general sense
that there could be more energy bands included. See
Supplemental Material [51] for more details.

1. Zero Berry connection

In a band insulator with zero intraband dipole matrix
elements, if there is only one conduction band and one
valence band involved in HSG, a zero Berry connection
will imply that all sidebands should have the same
polarization state, and the HSG spectra will be independent
of the NIR laser polarization, except for an overall factor
that is uniform for all orders of sidebands (the background
optical birefringence of the sample). If the Berry connec-
tion is zero, then the dipole matrix elements are the same
for all Bloch wave vectors. Since there is only one
conduction band and one valence band involved, with zero
intraband dipole matrix elements, we have Dint ¼ 0, so that
HðkÞ is diagonal. In this case, the sideband amplitude
[Eq. (B1)] can be simplified to

Pn ¼
i
ℏ

Z þ∞

−∞
dt
Z

t

−∞
dt0
Z

dP
ð2πÞd e

iðΩþnωÞt

×
X
j;gj

e−ði=ℏÞ
R

t

t0 Hj½kðt00Þ�dt00d�
gjdgj · ENIRðt0Þ; ðB3Þ

summing over the electron-hole pairs from different bands
and degenerate states (labeled by j and gj, respectively),
with HjðkÞ ¼ Ecv;jðkÞ − iℏγ2;jðkÞ and dgj being a con-
stant dipole vector. If there is only one conduction band and
one valence band, the label j has only one value and the
dynamic phases and dephasing factors associated with each
k-space trajectory [fix t, t0 and canonical momentum P in
Eq. (B3)] are the same for all electron-hole pairs. Thus, we

FIG. 7. Optical absorption spectra of the three samples mea-
sured by differential transmission. In all three samples, the heavy-
hole exciton lines (starred peaks) and the light-hole exciton lines
(slightly weaker, blueshifted by 10 or 25 meV depending on the
well widths) are both clearly resolved. The measurements are
performed at 15 K. In the 5-nm GaAs sample, the onset of the
heavy-hole 2D band gap is apparent at about 1.630 eV. The onset
of the light-hole 2D band gap is also evident (not pictured). The
smaller heavy-hole–light-hole splitting in the 10-nm samples
masks the heavy-hole 2D band gap in them, but, in the 10-nm
GaAs sample, the onset of the light-hole 2D band gap is apparent
at 1.570 eV. The NIR laser wavelength used for the HSG
experiments are shown as dark red arrows.
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have Pn ∝
P

gjd
�
gjdgj · FNIR, which means all sidebands

have the same polarization state. In a HSG spectrum with
logarithmic scales, a variation of the NIR laser polarization
will only induce an overall change of sideband intensity.
In a band insulator with more than two bands involved in

HSG, even if the Berry connection is zero, sideband
polarization states and degrees of dynamical birefringence
can depend on the sideband order. In this case, electron-
hole pairs can be created directly by the NIR laser from
more than two bands, or can be first created by the NIR
laser from two bands and then tunnel to other bands
through intervalence-band or interconduction-band transi-
tion dipole moments. For simplicity, we discuss the case
when Dint ¼ 0. Suppose associated with each sideband
there are two electron-hole pairs from different energy
bands with different dipole vectors (labeled by j ¼ 1, 2)
and a k-space trajectory. If the Berry connection is zero, we
can still apply Eq. (B3), from which the amplitude of a
sideband generated by the two electron-hole pairs has
the form Pn ∝

P
j¼1;2 exp½iΓD;j − Γd;j�d�

jdj · FNIR, where
ΓD;j ¼ −

R
t
t0 Ecv;j½kðt00Þ�dt00=ℏ and Γd;j ¼

R
t
t0 γ2;j½kðt00Þ�dt00

(j ¼ 1, 2) are the dynamic phase and dephasing factor,
which are in general not the same for different bands and
depend on the sideband order. Therefore, the sideband
polarization states and the degrees of dynamical birefrin-
gence should, in general, depend on the sideband order.
In a band insulator with both time-reversal and inversion

symmetries, and in-plane dipole matrix elements being
cylindrically symmetric at a quasimomentum k and non-
zero only between valence and conduction bands
(Dint ¼ 0), there should be no dynamical birefringence
in HSG if the Berry connection is zero. As discussed above,
Eq. (B3) is valid in this case, and in addition, all in-plane
transition dipole moments are cylindrically symmetric,
i.e., dgj ∝ σþ or σ−. Consider a re-collision pathway along
a k-space trajectory from kðt0Þ to kðtÞ for an electron-
hole pair with transition dipole moment d1 ∝ σþ. The
contribution of this pathway to the sideband amplitude is
C0exp½iΩðt− t0Þþ inωtþ iΓD;1−Γd;1�σ�þσþ ·FNIR, where
ΓD;1 and Γd;1 are the dynamic phase and dephasing factor,
respectively, as defined in the previous paragraph, and
C0 is a constant that does not depend on the choices of re-
collision pathways. Because of time-reversal and inversion
symmetries, there is another re-collision pathway for an
electron-hole pair with the same k-space trajectory, band
energy difference Ecv;2ðkÞ ¼ Ecv;1ðkÞ, and dephasing rate
γ2;2ðkÞ ¼ γ2;1ðkÞ, but a complex conjugate dipole moment
d2 ¼ d�

1. The contribution of this second pathway to the
sideband amplitude is C0 exp½iΩðt − t0Þ þ inωtþ iΓD;1−
Γd;1�σ�−σ− · FNIR. The sum of the contributions from these
two re-collision pathways is proportional to −ðσþσ−þ
σ−σþÞ · FNIR ¼ FNIR. Thus, for such a band insulator, a
zero Berry connection implies that the amplitudes of the
sidebands are proportional to the exciting NIR laser, which

means rotating a linearly polarized NIR laser has no effect
on the sideband intensity, i.e., no dynamical birefringence.
The proof above does not require the laser fields to be
continuous waves.
If the laser fields are continuous waves, then the state-

ment in the previous paragraph is still valid for even order
sidebands in the absence of inversion symmetry. Consider a
re-collision pathway along k-space trajectory kðt00Þ from
kðt0Þ ¼ k0 to kðtÞ ¼ ke for an electron-hole pair with tra-
nsition dipolemomentd1 ∝ σþ. The contributionof this path-
way to the sideband amplitude is still C0 exp½iΩðt − t0Þ þ
inωtþ iΓD;1 − Γd;1�σ�þσþ · FNIR, with C0, ΓD;1, and Γd;1

defined the same as above. By a time-reversal transformation,
we can find another re-collision pathway for an electron-hole
pair with transition dipole moment d2 ¼ d�

1 along k-space
trajectory k̄ðt̄Þ ¼ −kðt00Þ from −k0 to −ke, where
t̄ ¼ t00 þ π=ω, since a cw THz field changes its sign every
half a period. The band energy difference and dephasing rate
for this second electron-hole pair satisfy Ecv;2ðkÞ ¼
Ecv;1ð−kÞ and γcv;2ðkÞ ¼ γcv;1ð−kÞ, so the dynamic
phases and the dephasing factors associated with the two
time-reversed pathways are the same. The contribution
of this second pathway to the sideband amplitude is
ð−1ÞnC0 exp½iΩðt − t0Þ þ inωtþ iΓD;1 − Γd;1�σ�−σ− · FNIR.
The sum of the contributions from these two re-collision
pathways is proportional to −½ð−1Þnσþσ− þ σ−σþ� · FNIR.
Therefore, even-order sideband amplitudes are proportional to
the NIR laser polarization, while all odd-order sidebands have
the same polarization that is a mirror image of the NIR laser
polarization, apart from the different intensities.

2. Abelian Berry connection

In a band insulator with time-reversal and inversion
symmetries, and in-plane dipole matrix elements being
nonzero only between valence and conduction bands
(Dint ¼ 0), when there are only two electron-hole re-
collision pathways (related by time-reversal and inversion
symmetries with the same k-space trajectory) associated
with each sideband, an Abelian Berry connection can
only induce rotations of linear polarizations. If the
Berry connection is Abelian, the matrices R⃗ðkÞ, ΛðkÞ,
and γ2;jðkÞ are all diagonal and commute with each other.
Taking into account only two electron-hole re-collision
pathways related by time-reversal and inversion sym-
metries with a k-space trajectory from kðt0Þ to kðtÞ, we
have from Eq. (B1)

Pn ∝ ei½Ωðt−t0Þþnωt�X
j¼1;2

e−ði=ℏÞ
R

t

t0 Hj½kðt00Þ�dt00

×eiΓj½kðtÞ;kðt0Þ�d�
j ½kðtÞ�dj½kðt0Þ� · FNIR; ðB4Þ

where Γjðk;k0Þ ¼ R kk0 R⃗jjðkÞ · dk is the Berry phase

for the electron-hole pair labeled by j, R⃗jjðkÞ is the
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corresponding Abelian Berry connection, and dj is a
momentum-dependent dipole vector. As discussed in the
case of zero Berry connection, the dynamic phases ΓD and
dephasing factors Γd are the same for these two pathways.
With a suitable gauge choice, we make the dipole vectors
for these two pathways be complex conjugates, and mean-
while the Berry phases be opposite [35]. Denote the dipole
vector at t0 for the first pathways as d1½kðt0Þ� ¼
at0σ

þ þ bt0σ
−, and the Berry phase it gains along the k-

space trajectory as ΓB. For a NIR laser linearly polarized
along FNIR¼e−iΨσþþeiΨσ−∝sinΨX̂þcosΨŶ, the dipole
coupling isQ0≡d1½kðt0Þ�·FNIR¼−ðeiΨat0 þe−iΨbt0 Þ for the
first pathway and d�

1½kðt0Þ�·FNIR¼−Q�
0 for the other. Thus,

from Eq. (B4), we have Pn∝eiΓBQ0ðatσþþbtσ−Þ−c:c:,
i.e., Pn ∝ ρðe−iφσþ þ eiφσ−Þ, where ρe−iφ ¼ Q0ateiΓB þ
Q�

0b
�
t e−iΓB . Therefore, the sidebands are linearly polarized.

If the laser fields are continuous waves, the statement in
the previous paragraph is still valid for sidebands of all
orders in the absence of inversion symmetry. We choose the
same time-reversed two electron-hole re-collision pathways
as in the case of zero Berry connection, but with dipole
vectors d1½kðt0Þ� ¼ at0σ

þ þ bt0σ
− ¼ d�

2½−kðt0Þ�. Because
of time-reversal symmetry, the dynamic phases and dephas-
ing factors for the two pathways are the same, while the
Berry phases are opposite. So from Eq. (B4), we have
Pn ∝ Q1 − ð−1ÞnQ�

1, where Q1 ¼ eiΓBQ0ðatσþ þ btσ−Þ;
i.e., Pn ∝ ρ½e−iφσþ þ ð−1Þneiφσ−�. Thus, all sidebands
are linearly polarized.
In a band insulator with time-reversal and inversion

symmetries, and in-plane dipole matrix elements being
nonzero only between valence and conduction bands
(Dinter ¼ 0), in general, an Abelian Berry connection can
induce ellipticity from linear polarizations. Suppose, asso-
ciated with each sideband, there are electron-hole pairs
from different energy bands or there is more than one k-
space trajectory. In this case, there is more than one pair of
electron-hole re-collision pathways related by time-reversal
and inversion symmetries. As discussed above, each pair of
re-collision pathways contributes a linearly polarized
amplitude to a sideband. In general, dynamic phases and
Berry phases, obtained by electron-hole pairs from different
energy bands or along different k-space trajectories, are not
the same. The phase factor exp½iΩðt − t0Þ þ inωt� also
depends on the k-space trajectory. Therefore, even if the
Berry connection is Abelian, each sideband, as a sum of
linear polarizations with different phases and polarization
angles, can be elliptically polarized.

3. Non-Abelian Berry connection

In a band insulator with time-reversal and inversion
symmetries, even if there is only one k-space trajectory
associated with each sideband, through intervalence-band
or interconduction-band transitions (which can be induced
by a non-Abelian Berry connection, or nonzero

intervalence-band or interconduction-band transition dipole
moments), time-reversed electron-hole pairs injected by a
linearly polarized NIR laser can have nonzero total angular
momentum at re-collisions. We discuss the case of inter-
valence-band transitions induced by a non-Abelian Berry
connection. The discussion for the case of intervalence-
band or interconduction-band dipole transitions is similar.
Consider the (100) GaAs QWs with only the lowest
conduction subband and the highest two valence subbands,
as discussed in Sec. III B. For simplicity, we neglect the
dephasing effects, and further assume that the cellular
functions for the valence subbands involve only f1j32 ;þ 3

2
i,

f1j32 ;− 1
2
i, f1j32 ;− 3

2
i, and f1j32 ;þ 1

2
i. At a certain quasimo-

mentum k, we can choose the cellular functions as related
by time-reversal and inversion symmetries, so that the
Berry connection matrices of the two spin sectors satisfy
R⃗↓ ¼ −R⃗�

↑. When the QWs are resonantly excited by a
linearly polarized NIR laser, the initial hole spinor states are
ϕs ¼ gsð1; 0ÞT (gs is a constant with modulus 1). Angular
momentum conservation law requires that the total angular
momentum of the holes is zero initially. Right before
intervalence-band tunneling happens, the hole spinor states
are still of the form ϕs ¼ g0sð1; 0ÞT (g0s is a constant
containing the dynamic phase and Abelian Berry phase
with modulus 1), and the total angular momentum of the
holes remains zero, as discussed in the case of Abelian
Berry connection. To see how non-Abelian Berry con-
nection induces angular momentum changes of the holes,
we calculate the spinor state ϕ↑ from the dynamical equ-
ation, Eq. (9), with initial condition ϕ↑ð0Þ ¼ g0↑ð1; 0ÞT in
two steps, considering only the off-diagonal elements of the
Berry connection for the first step, and the dynamic phases
and Abelian Berry phases for the second. In the first step,
the hole spinor ϕ↑ð0Þ evolves to ϕ↑ðΔtÞ ¼ g0↑ð1; iλΔtÞT ,
where λ ¼ _kð0Þ · R⃗�

↑;12½kð0Þ�. Denote the cellular functions
at kðΔtÞ as jHH1;↑ikðΔtÞ ¼ f1ða1j32 ;þ 3

2
i þ b1j32 ;− 1

2
iÞ and

jHH2;↓ikðΔtÞ ¼ f1ðc1j32 ;þ 3
2
i þ d1j32 ;− 1

2
iÞ. The angular

momentum of the hole spinor ϕ↑ðΔtÞ can be calculated as

J↑ ¼ ð3=2Þja1 þ iλΔtc1j2 − ð1=2Þjb1 þ iλΔtd1j2: ðB5Þ

Similarly, for ϕ↓ðΔtÞ with initial state ϕ↓ð0Þ ¼ g0↓ð1; 0ÞT ,
we have

J↓¼ð−3=2Þja�1− iλ�Δtc�1j2þð1=2Þjb�1− iλ�Δtd�1j2: ðB6Þ

The total angular momentum of the holes is J↑ þ J↓ ¼ 0.
In the second step, the hole spinor ϕ↑ðΔtÞ evolves into
ϕ↑ð2ΔtÞ ¼ g0↑ðeiðΓD;1þΓB;1Þ; eiðΓD;2þΓB;2ÞiλΔtÞT , where ΓD;j¼
−Ecv;j½kðΔtÞ�Δt=ℏ, ΓB;j¼R⃗↑;jj½kðΔtÞ�· _kðΔtÞΔt (j¼1, 2)
are the dynamic phase and Abelian Berry phase,
respectively. The hole spinor ϕ↓ðΔtÞ gets the same
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dynamic phases but opposite Berry phases, i.e., ϕ↓ð2ΔtÞ ¼
g0↓ðeiðΓD;1−ΓB;1Þ; eiðΓD;2−ΓB;2ÞiλΔtÞT . Denote the cellular func-
tions at kð2ΔtÞ as jHH1;↑ikð2ΔtÞ¼f1ða2j32;þ3

2
iþb2j32;−1

2
iÞ

and jHH2;↓ikð2ΔtÞ¼f1ðc2j32;þ3
2
iþd2j32;−1

2
iÞ. After some

algebra, we can get the total angular momentum for the
hole spinors at 2Δt as

J ¼ 2Δt sinðΔΓDÞRe½ðb�2d2 − 3a�2c2Þλ�eiΔΓB �; ðB7Þ

where ΔΓD ¼ ΓD;2 − ΓD;1 and ΔΓB ¼ ΓB;2 − ΓB;1. Thus, a
nonzero total angular momentum is induced by electron-
hole pairs associated with different energy bands.

APPENDIX C: SEMICLASSICAL
CARRIER DYNAMICS

To demonstrate how the non-Abelian Berry connection
affects the dynamics of the electron-hole pairs, two semi-
classical trajectories with different relative phases between
the NIR and THz laser fields are shown in Fig. 8. As can be

seen in Fig. 2, the relative strength of the parallel and
perpendicular sidebands of 20th and 60th orders are very
different for the 10-nm AlGaAs QWs. The phases of the
THz field for ionization and re-collision for the two orders
of HSG are labeled in the upper right of Fig. 8. The
trajectory associated with the 60th-order sideband is about
100 fs longer than the trajectory associated with the 20th-
order sideband.
The details of the trajectory associated with the 20th-

order sideband are plotted in the lower left two graphs in
Fig. 8. Over the course of the acceleration step, the electron
and hole paths separate by almost 30 nm at their farthest.
The spinor states of the two particles are plotted at seven
different time instants (the spinor directions are chosen for
excitation by a σþ NIR photon). The spin state of the
electron does not change, but the hole pseudospin rotates
by a large amount in the last 50 fs. Notice that the position
at re-collision is not at exactly zero, but slightly positive.
This translation results mainly from the nonparabolic
nature of the hole subbands. If the masses of the electron
and hole remained the same in the entire process, the

FIG. 8. Semiclassical trajectories for the n ¼ 20 and n ¼ 60 sidebands in the 10-nm AlGaAs sample. Upper left: Full perpendicular
HSG spectrum experimentally measured in the 10-nm AlGaAs sample oriented at 47°. Upper right: Time trace of the THz electric field.
The arrows point to the time instants of ionization in and re-collision rn for the two sidebands considered here. Middle left: The real-
space trajectories of the electron and hole for the 20th-order sideband. The spin state is η⃗e ¼ ½↑;↓�T for the electron and η⃗h ¼
½jHH1i; jHH2i�T for the hole. Each arrow represents a spin or pseudospin in xz plane for each of seven instants throughout the trajectory.
Lower left: The location of the hole in the valence subbands at each of those seven instants with the area of each maroon circle
representing the relative weight in either subband. Middle right: The real-space trajectories of the electron and hole for the 60th-order
sideband, with the spinor directions drawn for eight instants. The hole spinor almost entirely flips to the HH2 state at re-collision.
Bottom right: The location of the hole in the valence subbands at each of the eight instants. For both cases, the electron is always in spin-
down state and the y component of the hole pseudospin is approximately zero. Comparing the two cases shows the scale of the effects of
non-Abelian Berry curvature.
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re-collision would occur at exactly zero. The hole states at
the same seven instants are shown in the band structure
underneath, where the area of each circle represents the
probability amplitude of being in the subband. At instant
no. 1, the hole is entirely in the HH1 subband. As the hole
accelerates to the left, at instant no. 2, it only slightly mixes
with the HH2 subband. As the hole accelerates to the right,
at instants no. 3–7, the hole spinor rotates significantly as it
passes through the avoided crossing point of HH1 and HH2
subbands. The majority of the spinor weight is then in the
HH2 subband.
The details of the 60th-order trajectory are plotted in

the lower right two graphs in Fig. 8. The non-Abelian
Berry curvature has a much stronger effect. The electron
and hole travel much further apart for this trajectory, and
the hole spinor rotates more substantially, shown now
at eight instants in the trajectory. The location of re-
collision is shifted almost 10 nm away from the origin.
At t ¼ 120 fs, instant no. 3, the hole sits close to the
avoided crossing point, and some noticeable weight is
transferred to the HH2 subband. As it accelerates to the
right, at instant no. 4, some of the weight is transferred
back to the HH1 subband. As it continues accelerating to
the right in the last 100 fs, the hole almost completely
tunnels to the HH2 subband.

APPENDIX D: EFFECTS OF WELL WIDTH

We show that the deviation of the ratio I⊥=I∥ between
experiment and theory for the 5-nm GaAs QWs at 55°
could be explained by the overestimation of Berry con-
nection in the calculation. In Fig. 6, the effective well width
for the conduction band is taken to be Le ¼ 8.13 nm in the
calculation. As shown in Fig. 9, if we use Le ¼ 5 nm
without changing all other parameters, we obtain a side-
band ratio close to 1, as observed in the experiment. The

conduction subbands have higher energy levels for nar-
rower QWs. If the effective masses of the conduction
subbands do not depend on the effective well width Le, as
in our calculation, the k-space region, in which the
conduction band energy of the QWs lies below that of
the AlGaAs barriers, will be smaller for narrower QWs. For
QWs with Le ¼ 5 nm, at 55°, the largest momentum that an
electron can have before it steps into the barrier is
calculated to be about 0.08 1=a. To generate a sideband,
the electron and hole should have the same momentum, so
the relevant k-space region in HSG for the valence sub-
bands lies between �0.08 1=a along the lattice direction at
55°. In this k-space region, the highest valence subband is
nearly parabolic (see Fig. 3) and the Berry curvature is
close to zero, which implies that there is almost no
dynamical birefringence. For QWs with Le ¼ 8.13 nm, a
hole has chances to pass the avoided crossing point, where
the Berry curvature is relatively large, which could induce a
larger degree of dynamical birefringence. Therefore, we
might have had an overestimation of the Berry connection
by using a larger effective well width in the calculation
in Fig. 6.

APPENDIX E: DYNAMICAL JONES CALCULUS

The Jones calculus is a convenient formalism for
describing the propagation of perfectly (or fully) polarized
light through linear optical media and components [63].
The Jones calculus manipulates the Jones vector, a complex
two-component vector that can only describe perfectly
polarized light. This formalism handles interference phe-
nomena naturally and can be used with any orthogonal
polarization state basis, such as linear or circular. Because
the NIR laser and sidebands are perfectly polarized, as we
show in Sec. IV, and interference is central to our model, we
generalize the Jones calculus to the nonlinear optical
phenomenon of HSG.
Familiar linear optical elements, like polarizers and wave

plates, can each be associated with a conventional Jones
matrix. In the dynamical Jones calculus, the THz-driven
quantum well acts as the optical element, and the Jones
matrix relates the polarization state of each sideband to that
of the incident NIR laser. For each sideband, we assign a
Jones matrix J n ¼ Jij;n, which is defined as

	
Ex;HSG

Ey;HSG



n

¼
	
Jxx Jxy
Jyx Jyy



n

	
Ex;NIR

Ey;NIR



: ðE1Þ

Following the input of a NIR laser field described by Jones
vector ðEx;NIR; Ey;NIRÞT, the THz-driven quantum well
produces HSG with Jones vector ðEx;HSG; Ey;HSGÞT. The
elements of dynamical and conventional Jones vectors and
Jones matrices are, in general, complex. If HSG were an
isotropic effect, J n would be proportional to the identity
matrix. Dynamical linear birefringence is the dynamical
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FIG. 9. Theoretical calculation of sideband intensity ratio I⊥=I∥
for the 5-nm GaAs sample at 55° with two different well widths
for the conduction band, 5 nm (red curve) and 8.13 nm (black
curve replotted from Fig. 6). The blue line is the result if the Berry
connection is assumed to be zero.
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analog to the familiar linear birefringence that is observed
in a material like calcite. In the case of pure dynamical
linear birefringence, J n is diagonal, with diagonal ele-
ments having different complex phases.
The J n can be determined experimentally. Measure-

ments of the polarization angles α and γ for more than three
different polarization states of the NIR laser determine
Jxy;n=Jxx;n, Jyx;n=Jxx;n, Jyy;n=Jxx;n. Together with one
measurement of sideband intensity for a certain NIR laser
field, the dynamical Jones matrix can be determined to
within an overall phase factor, which can be measured
through time-resolved experiments (see Supplemental
Material [58] for more details).
In the experiment, the polarization angles of the side-

bands and their intensities are measured independently.
However, both the polarization state and the intensity of a
sideband are determined by the dynamical Jones matrix
J n. Using the J n formulation, the sideband intensity ratio
I⊥=I∥ can be derived from the polarization ellipse mea-
surements. This provides a way to check the consistency of
the experiments.
Figure 10 compares the ratio I⊥=I∥ calculated from the

polarization state measurements [from Fig. 5(b)] with the
one calculated from the sideband intensity measurements
(from center left of Fig. 6). To calculate the ratio from the
polarization states, Eq. (E1) is used with the three data sets
from Fig. 5(b) to calculate Jxy;n=Jxx;n, Jyx;n=Jxx;n, and
Jyy;n=Jxx;n. The values are then used in Eq. (E1) to calculate
the expected sideband intensity ratio given an input NIR
laser polarization state. It should be noted that no infor-
mation of the intensities of the sidebands is used, only the
polarization states of the sidebands and NIR laser.

The polarization state measurements agree remarkably
well with the intensity measurements, matching the trend of
increasing sideband intensity ratio with increasing order, as
well as the overall scale. Agreement between techniques is
not as good for the GaAs sample (see Supplemental
Material [40]). The deviation between the two methods
is likely due to a systematic error in the Stokes polarimeter
used to measure the NIR laser and sideband polarization
states. The polarimeter is sensitive to the exact retardance
value of the quarter wave plate used (see Supplemental
Material [40] for details). Improving the accuracy of these
measurements is outside the scope of the current work. The
internal consistency between the sideband intensity mea-
surements and the polarization state measurements—which
is independent of any inputs to simulation—strongly
supports the validity of our theoretical approach.
Jones matrices can also be computed from the theory and

compared with experiment. In the context of theory, it is
natural to express the Jones vectors and matrices on the
basis of circularly polarized states σ�. With this basis, we
define the Jones matrices T n ¼ Tij;n as

	
σþHSG
σ−HSG



n

¼
	
Tþþ Tþ−

T−þ T−−



n

	
σþNIR
σ−NIR



: ðE2Þ

Following the input of a NIR laser field described by Jones
vector ðσþNIR; σ−NIRÞT, the THz-driven quantumwell produces
HSG with Jones vector ðσþHSG; σ−HSGÞT. The Jones matrices
T n and J n are related by a unitary transformation. If HSG
were an isotropic effect, T n would again be proportional to
the identity matrix. Dynamical circular birefringence is
analogous to the familiar circular birefringence—also called
optical activity—that is observed, for example, when the
polarization of visible light is rotated upon transmission
through a solution containing a chiral molecule like glucose.
In the case of pure dynamical circular birefringence, T n is
diagonal, with diagonal elements having different complex
phases. In general, HSG results in both dynamical linear and
circular birefringence, so all of the matrix elements of
dynamical Jones matrices, in either linear or circularly
polarized bases, are nonzero and complex.
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