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Categorical models for equivariant classifying spaces

B. GUILLOU
J.P. MAY
M. MERLING

Starting categorically, we give simple and precise models for classifying spaces
of equivariant principal bundles. We need these models for work in progress in
equivariant infinite loop space theory and equivariant algebraic K -theory, but the
models are of independent interest in equivariant bundle theory and especially
equivariant covering space theory.

55P91, 55R35; 55P92, 55R91

Introduction

Let II and G be topological groups and let G act on II, so that we have a semi-direct
product I' = II x G and a split extension

C q

(0-1) 1 II I G 1.

The underlying space of I' is II x G, and the product is given by

(0,8)(1,h) = (o(g - 7),8h).

There is a general theory of (G, Ilg)-bundles [2, 8, 9, 15] corresponding to such
extensions. Here Il denotes II together with its given action of G. We shall only be
interested in principal (G, 11s)-bundles p: E — B.

Definition 0.2 Let p: £ — B be a principal II-bundle where B is a G-space. Then
p is a principal (G, II;)-bundle if the (free) action of II on E extends to an action of
I" and p is a I'-map, where T" acts on B through the quotient map I' — G.

The more general theory of (II;I")-bundles applicable to non-split extensions I is
included in [9, 14, 15]. The theory is especially familiar when G acts trivially on II,
sothat I' = G x II. With II = O(n) or U(n), the trivial action case gives classical
equivariant bundle theory and equivariant topological K -theory.
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Definition 0.3 A principal (G,Ilg)-bundle p: E — B is universal if for all G-
spaces X of the homotopy types of G-CW complexes, pullback of p along G-maps
f: X — B induces a natural bijection from the set of homotopy classes of G-maps
X — B to the set of equivalence classes of (G, II5)-bundles over X.

For applications in equivariant infinite loop space theory and equivariant algebraic K-
theory, we need to understand classifying G-spaces for (G, I1;)-bundles as classifying
spaces of categories. Nonequivariantly, it was already emphasized in Segal’s classical
paper [21, §3] that the universal principal II-bundle of a topological group II can be
constructed on the level of topological categories, and the intuition is that we are giving
the equivariant generalization of his classical construction.

One motivation is to give new constructions of E., operads of G-categories and G-
spaces. This much only requires trivial actions of G on II. By definition, the jth-space
of an E, operad of G-spaces is a universal principal (G, ¥;)-bundle. Having various
category level models for such classifying spaces allows us to construct examples of
E~ G-spaces from E, categories, and these feed into equivariant infinite loop space
machines to construct interesting G-spectra [4, 5, 6].

The examples relevant to the equivariant algebraic K -theory of G-rings, namely rings
with G-action by automorphisms, require more general split extensions. If R is a
G-ring, then G acts entrywise on GL(n, R). The classifying spaces of (G, GL(n, R)g)-
bundles are central to the definition of the genuine equivariant algebraic K-theory
spectrum Kg(R) of R [4, 16]. Our treatment of the fixed point spaces of the classifying
spaces of equivariant bundles is crucial to determining the fixed point spectra of the
Kg(R). The paradigmatic example is a finite Galois extension E/F with Galois group
G. As explained in [4], it is an immediate application of examples in this paper,
which demonstrate the relevance of Hilbert’s theorem 90, that the fixed point spectrum
Kg(E)! is the classical nonequivariant K -theory spectrum of the fixed field E”. The
use of genuine G-spectra in algebraic K -theory is new and is explored in [16].

The results we need are close to those of [8, 9, 14] and those stated by Murayama
and Shimakawa [18]', but we require a more precise and rigorous categorical and
topological understanding than the literature affords. This is intended as a service
paper that displays the relevant constructions in their fullblown simplicity.

We start with the topologized equivariant version of the elementary theory of chaotic
categories in §1. We analyze a general construction that specializes to give our
classifying G-spaces in § 2. We show how it gives universal equivariant bundles in § 3.

'But see Scholium 3.12.
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Our explicit description of the classifying spaces of (G, Ilg)-bundles as classifying
spaces of categories allows us to compute their fixed point spaces categorically in
§4. This gives precise information already on the category level, before passage to
classifying spaces, and that is essential to our applications.

The main results of the paper are summarized in the following two theorems: the
first gives a categorical model for equivariant universal bundles and their classifying
spaces, and the second gives a description of the fixed points of the classifying spaces
of equivariant bundles. Details of the first are in Theorems 3.10 and 3.11 and details of
the second are in Theorems 4.18, 4.23, and 4.24. We need some preliminary definitions
and notations to state these results.

Let G be discrete and let £G denote the unique contractible groupoid with object set
G. Itis a (right) G-category, meaning that G acts on both objects and morphisms, and
it has a unique morphism between any two objects. We agree to identify the topological
group IT with the topological groupoid with a single object and with morphism space
II. Then the action of G on II makes it a G-groupoid.

For small topological categories 7 and 4, let 6at(</, ) denote the category of all
continuous functors &/ — 4 and all natural transformations. When </ and % are
G-categories, Gat(</ , %) inherits an action of G given by conjugation. We shall give
more details in §1.1.

We assume that the reader is familiar with the classifying space functor B from cat-
egories to spaces, or more generally from topological categories to spaces. It works
equally well to construct G-spaces from topological G-categories. It is the composite
of the nerve functor N from topological categories to simplicial spaces (e.g. [13, §7])
and geometric realization | — | from simplicial spaces to spaces (e.g. [12, § 11]), both
of which are product-preserving functors.

Theorem 0.4 If G is discrete and 11 is either discrete or a compact Lie group, then
the canonical map
B%at(£G, E1l) — Béat(EG,1I)

is a universal principal (G, I1)-bundle.

Thus the classifying space of the G-category 6at(£G,11) is a G-space that classifies
(G, I1)-bundles.

Crossed homomorphisms, their automorphism groups, and the non-Abelian cohomol-
ogy group H'(G;Il) are defined in Definitions 4.1, 4.11, and 4.17.
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Theorem 0.5 The fixed point category ¢at(£G,INC is the disjoint union of the
groups Aut o, where « runs over crossed homomorphisms representing the elements
of H'(G;11). Equivalently, ¢at(£G,I1)C is the disjoint union of the groups IINNp A,
where A runs over the I1-conjugacy classes of subgroups A of I' such that ANIl = e.
Therefore B€at(£G,II)C is the disjoint union of the classitying spaces B(Il N NpA).

With more work, our hypotheses on G and II could surely be weakened. We should
admit that we are especially interested in discrete groups in many of our current
applications. Since II is the relevant structural group, we are then studying equivariant
covering spaces. However, it is important for some applications to allow II to have a
topology. For example, in [16], equivariant algebraic K -theory is related to equivariant
topological K-theory and to Atiyah’s Real K-theory. There it is crucial that II be
allowed to be compact Lie in Theorem 0.4.

There is an earlier topological analogue of our categorical construction in terms of
mapping spaces rather than mapping categories [14]. It applies in considerably greater
topological generality, but it does not generally start categorically. We compare the
categorical and topological constructions in §5.

The choices of II relevant to equivariant infinite loop space theory and equivariant
algebraic K-theory, namely symmetric groups and the general linear groups of G-
rings, have alternative categorical models, which play a key role. These alternative
categorical models are given in § 6, which is entirely algebraic, with all groups discrete.
We call special attention to §6.2, where we relate crossed homomorphisms to skew
group rings and their skew modules. The algebraic ideas here may not be as well-known
as they should be and deserve further study.

The letter B for the classifying space functor from categories to spaces would sometimes
be awkward in our context, since the classifying space functor will also be used to
construct universal bundles rather than classifying spaces for bundles, hence we agree
to write out |N — | rather than B whenever B seems likely to confuse.

This notation also displays a key technical problem that is sometimes overlooked in
the literature. The functor | — | is a left adjoint and therefore preserves all colimits,
such as passage to orbits in the equivariant setting. The functor N is a right adjoint
and it generally does not preserve colimits or passage to orbits, as we illustrate with
elementary examples. This problem is the subject of the paper [1] by Babson and Ko-
zlov. For topological categories, there is no discussion in the literature. Exceptionally,
N does commute with passage to orbits in the key examples that appear in equivariant
bundle theory. Clear understanding of passage to orbits is essential to our calculations
of fixed point spaces.
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Remark 0.6 The functor 6at(£G, —) from G-categories to G-categories plays a
central role in our work. Its G-fixed category was introduced by Thomason [24, (2.1)],
who called it the lax limit of the action of G on ¥ and denoted it by %utc(EG, C).
The relevance to equivariant bundle theory of the equivariant precursor ¢at(£G, %)
was first noticed by Shimakawa [18, 23].
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1 Preliminaries on chaotic and translation categories

The definitions we start with are familiar and elementary. However, to keep track of
categorical data and group actions later, we shall be pedantically precise.

1.1 Preliminaries on topological G-categories

Let %at be the category of categories and functors. We may also view it as the
2-category of categories, with O-cells, 1-cells, and 2-cells the categories, functors,
and natural transformations. From that point of view, %at(</, %) is the internal hom
category whose objects are the functors &/ — % and whose morphisms are the
natural transformations between them; they enrich at over itself.

For a group G, a G-category < is a category with an action of G specified by a
homomorphism from G to the automorphism group of 7. Regarding G as a groupoid
with one object, the action is specified by a functor G — %ar. We have the 2-
category G%at of G-categories, G-functors, and G-natural transformations, where the
latter notions are defined in the evident way: everything must be equivariant.

We may view G%at as the underlying 2-category of a category enriched over G%at.
The 0-cells are still G-categories, but now we have the G-category Gat(</, %) as the
internal hom between them. Its underlying category is %at(</, %), and G acts by
conjugation on functors and natural transformations. Thus, for F': &/ — %, g € G,
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and A either an object or a morphism of o7, (gF)(A) = gF (g_lA). Similarly, for a
natural transformation 7: £ — F and an object A of <7,

(8 = gng—1a: SE(g™'A) — gF(g™'A).

The category G%at(</ , %) is the same as the G-fixed category Gat(</, %)°, and we
sometimes vary the choice of notation.

We can topologize the definitions so far, starting with the 2-category of categories
internal to the category %/ of (compactly generated) spaces, together with continuous
functors and continuous natural transformations. Recall that a category <7 internal to
a cartesian monoidal category ¥ has object and morphism objects in ¥ and structure
maps Source, Target, Identity and Composition in ¥". These maps are denoted S, T, I,
and C, and the usual category axioms must hold. When ¥ = %, we refer to internal
categories as topological categories; we refer to them as topological G-categories when
¥ = G% . These are more general than (small) topologically enriched categories,
which have discrete sets of objects. We can now allow G to be a topological group
in the equivariant picture. We continue to use the notations already given in the more
general topological situation.

1.2 Chaotic topological G-categories

Definition 1.1 A small category € is chaotic if there is exactly one morphism from b
to a for each pair of objects a and b. The unique morphism from a to b must then be
inverse to the unique morphism from & to a. Thus % is a groupoid, and its classifying
space is contractible since every object is initial and terminal; in fact, it is the unique
contractible groupoid with the given object set. A topological category % is chaotic
if its underlying category is chaotic. Its classifying space is again contractible (see
Remark 2.11), but there are other topological groupoids with the given object space
and contractible classifying spaces. Similarly, a topological G-category is chaotic if its
underlying category is chaotic. It is then contractible but not usually G-contractible.

The senior author remembers hearing the name “chaotic” long ago, but we do not know
its source. The idea is that everything is the same as everything else, which does seem
rather chaotic.’

2Some category theorists suggest the name “indiscrete category”, by formal analogy with
indiscrete spaces in topology. The key difference is that indiscrete spaces are of no interest,
whereas we hope to convince the reader that chaotic categories are of considerable interest.
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Lemma 1.2 If o/ is any category and 9 is a chaotic category, then the category
Gat(f , $) is again chaotic.

Proof The unique natural map (: E — F between functors E,F: &/ — A is
given on an object A of <7 by the unique map (4: E(A) — F(A) in A. O

Lemma 1.3 If </ is any topological G-category and 98 is a chaotic topological
G -category, then the topological G-category %at(</, %) and its G-fixed category
G%at(of , ) are again chaotic.

Proof Since %uat(</, A) is just the category ¢at(/, %) with its conjugation action
by G, Lemma 1.2 implies the conclusion for Gat(27, 98). The conclusion is inherited
by GGat(o/,B) = Cat(a/,B)C since the unique natural transformation between
G-functors E and F is necessarily a G-natural transformation. a

Definition 1.4 The chaotic topological category £X generated by a space X is the
topological category with object space X and morphism space X x X. The source,
target, identity, and composition maps are defined by

S=m: XxX—X, T=m:XxX—X, I=A:X—XxX, and
C=idxexid: X X X)Xy (X xX)ZXxXxX—XxX,

where €: X — = is the trivial map. On elements, S(y,x) = x, T(y,x) =y, I(x) =
(x,x), and C(z,y,x) = (z,x). Forgetting the topology, the element (y, x) is the unique
morphism x — y. Reversing the order of source and target in the notation this way,
so that (z,y) o (y,x) = (z,x), will turn out to be helpful later.

A map f: X — Y induces the functor f: £X — ¥ given by f on objects and f x f
on morphisms. When X is a (left or right) G-space, we give £X the action specified
by the given action on the object space X and the diagonal action on the morphism
space X x X; £X is then a chaotic topological G-category. Sending X to £X specifies
a functor from the category G% of G-spaces to the category G¥pd of topological
G-groupoids (a full subcategory of G%at).

1.3 The adjunction between G-spaces and topological G-groupoids

Sending a category to its set of objects restricts to an object functor Ob: G¥%pd —
G .
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Lemma 1.5 The chaotic category functor is right adjoint to the object functor, so that
Géat(€¢,EX) = GMap(Ob¥ , X)

for a topological G -category ¢ with object space Ob% and a topological G-space X .
It € is chaotic with object G -space X, then the unit of the adjunction is an isomorphism
of topological G-groupoids n: € — £X.

Proof Let.#or% be the morphism G-space of ¢ . The functor € — £X determined
by a continuous G-map f: Ob%¢ — X is f on object G-spaces and the composite

ore - ove x oveLox x x

on morphism G-spaces. The last statement rephrases the meaning of chaotic. |

1.4 Translation categories and chaotic categories

We use another simple definition to relate chaotic categories to other familiar categories.
Let G be a topological group and Y be a left G-space. Generalizing how we think
of G as a one object category, we can think of Y together with its action by G as the
functor Y: G — % that sends the single object * to Y and is given on morphism
spaces by the map G — Map(Y, Y) adjoint to the action map G X ¥ — Y.

Definition 1.6 Let Y be a left G-space. Define the translation category T(G,Y) as
follows. The object space is Y and the morphism space is G x Y. We think of (g,y) asa
morphism g: y —> gy. Themap I: Y — G x Y sends y to (e,y). The maps S and T
send (g,y) to y and gy, respectively. The domain of composition, (G X Y) Xy (G X Y),
can be identified with (G x G) x Y, and composition sends (%, g,y) to (hg,y). The
construction is functorial in Y, for fixed G, and in the pair (G, Y) in general. If Y has a
right action by G that commutes with the left action, then T'(Y, G) is aright G-category
via the given right action on the object space Y and on the second coordinate of the
morphism space G X Y.

Remark 1.7 The definition makes sense when G is only a monoid, not necessarily
a group. When Y is a point, 7(Y, G) is G regarded as a one object category. When
G is a group, T(Y, G) is the standard groupoid associated to a G-space, but it is not
generally chaotic.

Proposition 1.8 For left G-spaces Y, there is a natural comparison functor
pu: T(G,Y) — Y. If Y has a right action that commutes with its left action, then
W is a map of right G -categories. The functor p: T(G,G) — EG is an isomorphism
of right G-categories.
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Proof Define i to be the identity map on object spaces and the map that sends (g, y)
to (gy,y) on morphism spaces. Since ¥ is chaotic, this is the unique functor that is the
identity on objects, and it is easy to check equivariance when Y has a right G-action.
When Y = G with left action and right action given by its product, p is an isomorphism
with ,u_l(h,g) = (hg~ ', g) on morphism spaces. O

In view of the differing group actions on the morphism spaces G x G, namely action on
the right coordinate in 7(G, G) and diagonal action in £G, the isomorphism between
T(G, G) and £G must not be viewed as a tautology.

Remark 1.9 When we return to the split extension (0—1), the group II there will play
arole close to that of the group denoted G in Definition 1.6 and Proposition 1.8. When
G = e, we would then specialize to Y = II with its natural left II action and see the
usual universal principal II-bundle. When G # e, the relevant specialization is a little
less obvious; see Lemma 3.4, which is a follow up of Proposition 1.8.

2 The category Gat(EX, 11)

We let X be a space and Il be a topological group in this section. We regard II
as a category with one object without change of notation; it should be clear from
the context when we mean the group II and when we mean the category II. From
now on, functors and natural transformations are to be continuous (in the topological
sense), even when we neglect to say so. We are especially interested in the functor
categories Gat(EX, 1), which are chaotic by Lemma 1.2, and in the functor categories
%at(£X,11), which are not. The right action of II on £II induces a right action of II
on at(EX, EID).

This section and the next give a pedantically explicit description of Gat(€X, 1) and of
the induced map

Cat(EX, ETT) — Cat(EX,TI),

showing in particular that it is obtained by passage to orbits over II. When X = G,
this elementary analysis will be at the heart of all our proofs. We defer adding in the
second group G that appears in the bundle theory until after we have this description
in place since a group defined solely in terms of the diagonal on X and the product on
II plays a central role in the description.
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2.1 An explicit description of %at(EX, 1)

By the adjunction given in Lemma 1.5 (with G = e), the object space of the chaotic cat-
egory Gat(£X, E1I) can be identified with the space Map(X, II) of maps X — II with
its standard (compactly generated) function space topology. Therefore Gut(EX, E11)
can be identified with the chaotic category EMap(X, II).

Definition 2.1 Define the pointwise product * on Map(X, II) by
(o B)(x) = a(x)B(x)

for a, 5: X — II. The unit element ¢ is given by £(x) = e and inverses are given
by a '(x) = a(x)~'. The topological group Map(X, IT) contains II as a (closed)
subgroup, where we regard an element o € II as the constant map o: X — Il at o.
The inclusion of IT in Map(X, IT) and composition give Map(X, IT) its right II-action.

Definition 2.2 Choose a basepoint xo € X. There is a unique representative map
a such that a(xp) = e in each orbit of Map(X, II) under the right action by II.
Let (X, 1) C Map(X, II) denote the subspace of such representative maps. It is a
subgroup of Map(X, IT). The II-action and the product * on Map(X, II) are related
by ac = a *x o for o0 € II, and * restricts to a homeomorphism of II-spaces
O(X, 1) x Il — Map(X, IT). Write elements of Map(X, II) in the form ao, where
a(xp) = e. Passage to orbits restricts to a homeomorphism (X, IT) = Map(X, IT)/II.
Observe that the product * on Map(X, II) induces a left action of Map(X,II) on
O(X,1I) by sending (5, ) to the orbit representative of 3 * «.

The proofs of the follow three lemmas are simple exercises from the fact that there is
a unique morphism (y, x) from x to y in £X; compare Lemma 1.2.

Lemma 2.3 A functor E: £X — 11 is given by the trivial map X — * of object
spaces and a map E: X x X — II of morphism spaces such that E(x,x) = e and
E(z,y)E(y,x) = E(z,x). Define o € 0(X,11I) by a(x) = E(x,x9). Then « determines
E by the formula

E(y,x) = EQ, %0)E(x0,x) = a(ya) .
Writing E = E,, sending E, to « specifies a homeomorphism from the space of
functors EX — 11 to O(X,1I).

Lemma 2.4 ForE,,Eg: £X — 11, a natural transformation n: E, — Eg is given
by amap n: X — II such that n(y)E.(y,x) = Eg(y,x)n(x) forx,y € X. If o € Il is
defined by o = n(xp), then the pair (8o, ) determines 1 by the formula

n(x) = Eg(x, x0)n(x0)Ea(x,x0) ' = (Bo * o H)(x).

Algebraic & Geometric Topology XX (20XX)



Categorical models for equivariant classifying spaces 1011

Writing n = 0, , sending 1, to (8o, «) specifies a homeomorphism from the space of
morphisms of at(EX,11) to the space Map(X, I1) x O(X,II).

Lemma 2.5 Identify the object and morphism spaces of 6at(£X, I1) with

O(X, 1) and .#(X,1I) = Map(X,II) x 6(X,II)

via the homeomorphisms of the previous two lemmas. Then the identity map I sends
« to («e, o) and the source and target maps S and T send (6o, ) to « and to 3. The
S =T pullback

A (X1 X gex 11y A (X, 1)

can be identified with Map(X, II) x Map(X, I1) x &(X,II) via
((y1, B), (Bo, @) <> (7, Bo, a)

and the composition map C sends (v, Bo, ) to (Y7o, ).

Proof If we compose 7,: Eg — E,, with n,: E, — Eg, we obtain

777*770:7_17*6*6_10*04:7_170*04,

which corresponds to the given description. a

2.2 Two identifications of Gat(£X,1I)

We show here that Proposition 1.8 leads to one identification of %at(£X,1I), and
the lemmas of the previous section lead to a closely related one. These elementary
identifications commute passage to orbits with the functor Gut(£X, —), and that will
be crucial to understanding Béat(£G, 11) as an equivariant classifying space.

Notation 2.6 The category II is isomorphic to the orbit category EI1/I1. The quotient
functor p: EII — 11 is the trivial map II — * on object spaces and is given on
morphism spaces by the map p: II x IT — (II x IT)/II = II specified by p(7,0) =
7o~ 1. Let g denote the functor

Gar(id, p): Gar(EX, EI) — Car(EX,II).
We also let ¢ denote the functor between translation categories
T(Map(X, IT), Map(X, I1)) — T(Map(X, II), O'(X, II))
that is induced by the quotient map p: Map(X, IT) — Map(X, IT)/I1 = 0'(X, II).

Algebraic & Geometric Topology XX (20XX)



1012 B. Guillou, J.P. May and M. Merling

Theorem 2.7 There is a commutative diagram of topological categories in which p,
v, and & are isomorphisms.

T(Map(X, IT), Map(X, II)) a Cat(EX, ETT)

| .

T(Map(X, II), (X, II)) Cat(EX, EM) /11 —— Car(€X, 1D)

v

Proof The map p is the quotient map given by passage to orbits over II. Since g on the
right is a IT-map with IT acting trivially on Gat(£X,11), g factors through a map & that
makes the triangle commute. Since Gat(EX, £11) is the chaotic category whose object
space is the topological group Map(X, II), Proposition 1.8 gives the isomorphism .
Since g on the left is obtained by passage to orbits from the relevant action of 1I, it is
clear that ;4 induces an isomorphism v making the left trapezoid commute.

All that remains is to prove that £ is an isomorphism, and that follows from the results
of §2.1. Forafunctor E,: EX — I, a: X — ITand a x a: X x X — II x II
define the object and morphism maps of a functor F: £X — EII. The functoriality
properties of E, show that p o F = E, so that ¢ is surjective on objects. If we also
have p o F' = E,,, then a quick check shows that F(x)~'F'(x) = F(y)~'F'(y) for all
x,y € X. If the common value is denoted by o, then F'(x) = F(x)o for all x. In view
of the specification of p and ¢ in Notation 2.6, this implies that £ is a homeomorphism
on object spaces.

Now let E,,Eg: £X — II be any two functors. For any choices of functors
F,F': EX — Ell suchthat go F = E,, and g o F' = E, define (: X — II x II by
((x) = (F(x), F'(x)). Then ¢ is a map from the object space of £X to the morphism
space of ETI. A quick check shows that ¢ is a natural transformation F — F’ such
that = g o ( is a natural transformation E, — Eg with 7y, = F'(xo)F (x0)~'. Via
our enumeration of the possible choices, this implies that g restricted to the inverse
image of the space of natural transformations E, — Eg can be identified with the
quotient map p: II x IT — II of Notation 2.6. It follows that ¢ is a homeomorphism
on morphism spaces. a

2.3 The nerve functor and classifying spaces
We recall the definition of the nerve functor N in more detail than might be thought

warranted at this late date since, in the presence of the left-right action dichotomy
of multiple group actions, the original definitions in category theory can cause real
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problems arising from categorical dyslexia. There are two standard conventions in the
literature, and we must choose. Let € be a topological category with object space &
and morphism space .# . Then Ng% = & and, for ¢ > 0,

NC =M xp- xp M,

with ¢ factors .# . The pullbacks are over pairs of maps (S, 7). To avoid dyslexia, we
remember that g o f means first f and then g, and choose to forget the picture

f f Jo—1 Jq

of g composable arrows and instead remember that the picture

| : fo— fa
(2-8) X0 i X1 L X2 Xg—2 ! Xg—1 fa Xq

corresponds to an element [f1, - - - ,f,] of N,&, so that S(f;) = T(fi+1). Forx € 0, we
write id = I(x) generically. Then

dolf] = T(f), dilf]1 =S(f), and so(x) = [id,].

For g > 2,
2, fyl ifi=0
di[fl;"' 7fq] = [f17"' 7ﬁ—17fi Oﬁ+17ﬁ+27"' 7fq] if0<i< q
[f17"' 7fq—1] lfl:q
and, forg > 1,

Si[fl?' .. 7fq] = [flv e 7fi7id7ﬁ+la e afq]'

Of course, these can and should be expressed in terms of the maps S, 7', I, and C so
as to remember the topology and check continuity.

Recall thata (right) action of a group G on a simplicial space Y is specified by levelwise
group actions such that the d; and s; are G-maps; formally, Y, is a simplicial object in
the category of (right) G-spaces. Orbit and fixed point simplicial spaces are constructed
levelwise, (Y,/G), = Y,/G and (Y*)g = ch. For a G-category €, N(€©) = (N©)©
since N is a right adjoint, but it is rarely the case that N(¢'/G) = (N%)/G, as the
following counterexample should make clear.

Example 2.9 Let G be a group and let G act on itself by conjugation. Let A be the
abelianization of G. Regarding G and A as categories with a single object, G/G = A,
and NA is generally much smaller than NG/G. Here [g1, . .. ,8q¢l and [hy, -, hy] are
in the same orbit under the conjugation action if and only if there is a single g such
that gg;g~' = gh;g! for all i. For example if G is a finite simple group of order 7,
then A is trivial but N,G/G has at least ni~! elements.
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In this example, NG is the simplicial space, often denoted B.G, whose geometric
realization is the classifying space BG. Parametrizing with a left G-space Y gives a
familiar simplicial space B.(x,G,Y) (e.g. [13, §7]). Write g: E.G — B,G for the
map

B.(*,G,G) — B.(x,G,*) = B.(x,G,G)/G
induced by G — *. The isomorphism on the right is obvious, but it is in fact

an example of an isomorphism of the form N(%'/G) = (N%)/G, as the following
observations make clear. Recall the translation category from Definition 1.6.

Lemma 2.10 The simplicial space NT(G, Y) is isomorphic to B.(x,G,Y).

Proof A typical g-tuple (2-8) in N,T(G,Y) has i term

Ji=(gi 8it1 - 8qY): Git1 " 8qY — &i&it1" " &qY

for elements g; € G and y € Y. It corresponds to [gy,- -+, g4ly in By(*,G,Y). O

Remark 2.11 For any space X, NEX is the simplicial space denoted D, X in [12, p.
97]. Our choice of S and T on £X is consistent with (2-8) and the usual notation
(x0, - -+ ,xg) for g-simplices. The claim in Definition 1.1 that [NEX] is contractible
is immediate from [12, 10.4], which says that D, X is simplicially contractible. The
isomorphism Ny : NT(G,G) — NEG implied by Proposition 1.8 coincides with the
isomorphism «,: E.G — D,G of [12, 10.4].

Applying geometric realization, write B(x, G, Y) = |B.(x, G, Y)|, and similarly for EG
and BG. Then B(x,G,Y) = B(x,G,G) Xg Y = EG X Y. By Lemma 2.10,

BT(Y,G) =EG XgY.
A relevant example is Y = G/H for a (closed) subgroup H of G. The space
BT(G,G/H) = EG x¢ (G/H) = (EG)/H
is a classifying space BH since EG is a free contractible H-space.

In particular, take G = Map(X, IT) and H = 1I for a space X and group II, remember-
ing that Gat(EX, £11) is the chaotic category with object space the group Map(X, IT).
Applying the classifying space functor to the diagram of Theorem 2.7 and using
Lemma 2.10, we obtain the following commutative diagram, in which the horizontal
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maps are homeomorphisms and, up to canonical homeomorphisms, the vertical maps
are obtained by passage to orbits over II.

o)

E(Map(X, II)) Béar(EX, E1D) B¢a(EX, £1D)

| | |

(EMap(X, D)) /TI —= B(%ar(€X, EI)/IT) —— B%ar(EX,11)

Ignoring minor topological niceness conditions?, for any space X the diagram gives
isomorphic categorical models for the universal principal II-bundle EII — BII.

3 Categorical universal equivariant principal bundles

3.1 Preliminaries on actions by the semi-direct product I'

Now return to the split extension (0-1) of the introduction. For a I'-category or
I"-space, passage to orbits with respect to II gives a G-category or a G-space. It is
standard in equivariant bundle theory to let G act from the left and II act from the right.
Thus suppose that X is a left G and right II object in any category. Using elementwise
notation, turn the right action of II into a left action by setting ox = xo~!.

By an action of I' on X, we understand a left action that coincides with the given
actions when restricted to the subgroups G = e x G and II = II x e of I'. Since
(0,8) = (0,e)(e, g), the action must be defined by

(3-1) (0,8)x = (0,¢€)(e, 8)x = (0,e)gx = ogx = (gx)o .

For now, we will denote the action of G on II by -, but we just use juxtaposition
for the prescribed actions of G and II on X. Since the action by g on II is a group
homomorphism, g - (67) = (g-0)(g-7) and g- 0~ ' = (g-0)~!. The interaction of
II and G in T is given by the twisted commutation relation

(e,g)(a, 6) = (g 0, g) = (g 0, 6)(€,g),

or the same relation with o replaced by o~!. Therefore (3—1) gives an action of T" if
and only if the given actions of II and G satisfy the twisted commutation relation

(3-2) g(xo) = (gx)(g - 0).

3The identity element of the group Map(X, II) should be a nondegenerate basepoint and the
space Map(X, IT) should be paracompact; see [13, 9.10].
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The placement of parentheses is crucial: we are taking group actions in different orders.
When the action of G on II is trivial, g - ¢ = o, this is the familiar statement that
commuting left and right actions define an action by the product G x II.

Lemma 3.3 For a G-category </, the left G and right II-actions on ¢at(<f , E11)
extend naturally to a I'-action.

Proof We must verity that g(Fo) = (gF)(g - o) for g € G, ¢ € Il and a functor
F: o/ — II. The unique natural transformation £ — F between a pair of functors
E and F will then necessarily be given by I'-maps. The verification is formal from the
fact that G acts by conjugation, so that the action of G on II is part of the prescription
of the action of G on F. Recall that the left action of G on Bat(<7, ETI) is given by
conjugation, (gF)(a) = g- F(g~'a) for g € G and an object or morphism a € .27 . The
right action of II is given by (Fo)(a) = F(a)o. Then

@(Fo)@) = g-(Fo)g 'a)
= g-(F(g"'a)o)
(g-F(g"'a)(g - 0)
= ((gF)a)(g- o)
(gF)(g-oNa. O

In particular, let o7 = £X for a left G-space X. Then the given action of G on the
object space X and the diagonal action of G on the morphism space X x X give a left
G-action on the category £X. Lemma 3.3 shows that the left G and right II-action on
Cat(EX, E1N) give it an action by I'. Explicitly, the conjugation left action by G and
the evident right action by II on the object space Map(X, 1I) induce diagonal actions
on the morphism space Map(X, II) x Map(X, II), and these specify left G and right
IT-actions on Gat(EX, II) that satisfy the commutation relation required for a I"-action.

Specializing further to X = G, we have the following equivariant elaboration of
Proposition 1.8. We change the group G there to the group Map(G, II) here and
remember that the product on Map(G, II) is just the pointwise product induced by the
product on II, with no dependence on the product of G. Ignoring the group action, we
may identify the chaotic right Map(G, II)-category with object space Map(G, II) with
the category 6at(£G, E11). The following lemma identifies group actions. Remember
that II is a subgroup of Map(G, II).

Lemma 3.4 The isomorphism of right Map(G, 1) -categories
p: T(Map(G,1I), Map(G, II)) — €at(EG, E)
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is an isomorphism of I'-categories, where the G-action on both source and target
categories is given by the conjugation action on the object space Map(G, I1) and the
resulting diagonal action on the morphism space Map(G, I) x Map(G, 1I).

Proof Since p is an isomorphism and a II-map, we can and must give the source
category the unique G-action such that ;i is a G-map. Since p is the identity map on
object spaces, the action must be the conjugation action on the object space. On an
element (3, ) of the morphism space, we must define

8B, ) = p~ N (gu(B, o)) = p ' (g(Ba), ga) = u ' ((gB)(ga), ga) = (gB,g). O

Lemma3.5 With X = G, the diagram of Theorem 2.7 is a commutative diagram of T" -
categories and maps of I' -categories, where I acts through the quotient homomorphism
I' — G on the three categories on the bottom row.

Proof Since the trapezoid is obtained by passing to orbits under the action of II, it is
a diagram of I'-categories by Lemma 3.4. The functor p: £II — II of Notation 2.6
is a G-map since

g(ro)=g-(toH)=(g-7)g - 0) ' =p(g-T,8 0).

It follows that the right vertical arrow g = %at(£G,p) is a map of I'-categories.
Letting [F] denote the orbit of a functor F: £EG — £II under the right action of II,
the functor £ is specified by £[F] = p o F, and it follows that £ is '-equivariant. O

3.2 Universal principal (G, I1;)-bundles

Observe that for any G-category o7, the corepresented functor %at(</, —) from G-
categories to G-categories is a right adjoint and therefore preserves all limits. We take
7 to be the G-category £G from now on, and we use the functor Gat(£G, —) to obtain
a convenient categorical description of universal principal (G, 1Is)-bundles. Variants
of the construction are given in [14, 18].

Definition 3.6 Let G and II be topological groups and let G act on II. Define
E(G,I1g) to be the I'-space BGat(EG, EIT) = |[NCar(EG, ETT)| and define B(G,I1s)
to be the orbit G-space E(G,I1s)/II. Let p: E(G,Ilg) — B(G,Ils) be the quotient
map.
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We need a lemma in order to prove that p is a universal (G, IIz)-bundle in favorable
cases. We defer the proof to the next section. We believe that the result is true more
generally, but there are point-set topological issues obstructing a proof. We shall
not obscure the simplicity of our work by seeking maximum generality. As usual in
equivariant bundle theory, we assume that all given subgroups are closed.

Lemma 3.7 Let A be a subgroup of I'. It A N 1I # e, then the fixed point category
Cat(EG, EIDN is empty. At least if G is discrete, if A NI = e, then Gat(EG, EIDHA
is non-empty and chaotic.

The following result is [9, Thm. 9], but the details of the proof are in [8, §2]. A
principal (G,Ilg)-bundle is numerable if it is trivial over the subspaces of B in a
numerable open cover.

Theorem 3.8 A numerable principal (G, Ilg)-bundle p: E — B is universal if and
only if EM is contractible for all (closed) subgroups A of I' such that A N1I = {e}.

We comment on the hypotheses. Recall from point-set topology that a space X is
completely regular if for every closed subspace C and every point x not in C, there
is a continuous function f: X — [0, 1] such that f(x) = 0 and f(C) = 1. Thisis a
weak condition that is satisfied by reasonable spaces, such as CW complexes.

Remark 3.9 Specializing [9, Propositions 4 and 5], a principal (G, I1;)-bundle with
completely regular total space is locally trivial, and a locally trivial principal (G, I1s)-
bundle over a paracompact base space (such as a CW complex) is numerable. Therefore,
modulo weak point-set topological conditions, the fixed point condition in Theorem 3.8
is the essential criterion for a universal bundle.

Therefore Lemma 3.7 has the following consequence. Its condition on II serves only
to ensure that p is a numerable principal (G, I1s)-bundle.

Theorem 3.10 If G is discrete and 11 is either discrete or a compact Lie group, the
map
p: E(G,1lg) — B(G, 11g)

obtained by passage to orbits over 11 is a universal principal (G, 11s)-bundle.

The classifying space B(G,Ilg) = |NGat(EG,E1)| /11 is obtained by first applying
the classifying space functor and then passing to orbits. On the other hand, the space
B%at(EG, 1) = [NGat(EG,11)| is obtained by first passing to orbits on the categorical
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level and then applying the classifying space functor. The category 6at(£G,II) is
thoroughly understood, as explained in § 2. The key virtue of our model for B(G, I1;)
is that these two G-spaces can be identified, by Theorem 2.7.

Theorem 3.11 The canonical map
B(G,11) = |[NGat(EG, ETT)| /1T — |[NCa(EG,1)| = BGat(EG, 1)

is a homeomorphism of G-spaces. Therefore, if G is discrete and 11 is either discrete
or a compact Lie group, the map

Bq: BCat(EG, ET) — BCat(EG, 1)

is a universal principal (G, Ilg)-bundle.

Scholium 3.12 For finite groups G, this result is claimed in [18, p. 1294]. For more
general groups G, [18, 3.1] states an analogous result, but with EII — 1I replaced
by a functor defined in terms of the nonequivariant universal bundle EII — BII,
resulting in a much larger construction. The replacement is needed for the proof
of their analogue [18, 3.3] of our Lemma 3.7. A commutation relation of the form
N(% /1I) = (N%) /11 for their larger construction is stated (five lines above [18, 3.1]),
but there is no hint of a proof or of the need for one. It is not altogether clear to us that
the commutation relation stated there is true, and we view the commutation relation
Theorem 2.7 as the main point of the proof of Theorem 3.11. Nevertheless, [18] had
the insightful right idea that led to our work.

4 Determination of fixed points

4.1 The fixed point spaces of E(G, 1)

We must prove Lemma 3.7, but we place no restrictions on G and II until they are
needed. Since II acts freely on Gar(G, EIN), it is clear that Car(EG, EIN* is empty
if ANII # e. Thus assume that A N II = e. By Lemma 1.3, the fixed point category
Gat(EG, EM)? is chaotic. It remains to prove that it is non-empty, and Lemma 1.5
implies that this is so if and only if the space Map(G,II)* is non-empty. Thus it
suffices to show that Map(G, II) has a A-fixed point, which means that there is a
A-map f: G — II. We prove this using the following standard generalization of a
homomorphism and a variant needed later.
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Definition 4.1 A function a.: G — II is a crossed homomorphism if

(4-2) a(gh) = a(g)(g - ah))

for all g,h € G. In particular,

@3)  a@=e a® ' =g-ag™) and ag™H T =g alg).
A map a: G — Il is a crossed anti-homomorphism if

(4-4) a(gh) = (g - a(h)a(g).

Note that we should require the function « to be continuous in our general topological
context. However, the continuity is sometimes automatic, as indicated in the following
lemma. Remember that we understand subgroups to be closed.

Lemma 4.5 All subgroups A of I" such that A N II = e are of the form
Ao = {(a(h),h)|h € H},

where H is a subgroup of G and o«: H — 11 is a crossed homomorphism. At least if
G is discrete or I' is compact, o is continuous.

Proof Clearly A, isasubgroup of I' such that A,NII = e. Conversely, let ANII = e.
Define H to be the image of the composite of the inclusion ¢: A C I' and the projection
m: ' — G. Since A NII = e, the composite 7 o ¢ is injective and so restricts to a
continuous isomorphism v: A — H. For h € H, define a(h) = o, where o is the
unique element of II such that (¢, 4) € A. Thus « is the composite of cov~™!: H — T
and the projection p: I' — II. If G is discrete or if I' and therefore A is compact,
then v is a homeomorphism and « is continuous. For h, k € H,
(a(h), h) (k) k) = (a(h)(h - a(k)), hk) € A,

so a(hk) = a(h)(h - a(k)). Thus « is a crossed homomorphism and A = A,. O

Proof of Lemma 3.7 We must obtain a A-map f: G — II, where A = A, for a
crossed homomorphism «. By the definition of the action by A, this means that

f(e) = (h-f(h'g)ah)™!
or equivalently
h-f(h™'g) = f(g)ah)

forall h € H and g € G. We choose right coset representatives {g;} to write G as a
disjoint union of cosets Hg;. We then define f : G — 1I by

flkg) = a(k)™!
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for k € H. By using (4-2), writing out the inverse of a product as the product of
inverses, using that #~!- and /- are group homomorphisms and that - is a group action,
and finally using (4-3) and, again, that - is a group action, we see that
h-f(h'kg) = h-ah” k)7
= h- (O - atk)™!
he (" at) ™ ah™ )™
(h- (™" al)™ D (ah™H™h
= a®~'(h- (7" ah)
= flkgo(h).

for all h € H. Thus f is a A-map. We have assumed that G is discrete in order to
ensure that f is continuous. a

Remark 4.6 If we relax the condition that G is discrete, we do not see how to prove
that f is continuous, as would be needed for a more general result.

4.2 The fixed point categories of Gur(£G, 1)

For H C G, the structure of the fixed point space B(G,IIg) is known (up to homo-
topy), for example by specialization of more general results in [9]. We show here how
to see that structure on the category level. In fact, we identify the fixed point categories
Gat(EG, I, with no restrictions on IT and G. However, the reader may prefer to
assume that G is discrete for the rest of Section 4.

Since the functor B commutes with fixed points, this gives a categorically precise
interpretation of the fixed point space B(G, IIg)".

We return to §2, taking X = G there. The H-fixed functors and H-natural trans-
formations in Gat(£G, I1) are the H-equivariant functors and natural transformations,
in accord with our notational convention %at(£G,IN = H€ar(EG,1I). Since £G
and H are both H-free contractible categories, they are equivalent as H-categories.
Therefore

(4-7) Cat(EG, I ~ Car(H,IDY = HCat(H, 11).
This implies that we may restrict to the case G = H and deduce conclusions in
general. The objects and morphisms of G%at(£G, 1) are the G-equivariant functors

E : £EG — 1I and the G-equivariant natural transformations 7. In Lemma 2.3, we
described a functor E in terms of the map o: G — 1II defined by a(h) = E(h, e).
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Lemma 4.8 The G-action on functors E: £G — 1I induces the G-action on maps
a: G — 11 specified by

(ga)(h) = (g - (g™ "M)(g - alg™ ™).

Proof
(gE)h,e) =g - E(g 'h,g™") = g (E(g"'h,e)E(e, g™ ")) m

Lemma 4.9 The space of objects of G¢at(£G,11) can be identified with the subspace
of Map(G, 1) consisting of the crossed anti-homomorphisms «: G — I1.

Proof Setting ga = « and applying g~! - (—) to the formula for the action of G on
o, we obtain
g ') =alg” hag™) ™
Replacing g~! by g and multiplying on the right by a(g), this gives
a(gh) = (g - a(h)a(g)

for all g, h € G, which says that « is a crossed anti-homomorphism. a

Similarly, as in Lemma 2.4, a natural transformation 7: E, — Eg is determined by
o = n(e). Explicitly,

1(8) = Es(g, ©n(@)Ea(g,e)”" = f(g)oa(g) ™
for g € G. Now a G-fixed natural transformation 7 satisfies n(gh) = g - n(h) for

g,h € G and thus n(g) = n(ge) = g - n(e) = g - 0. Therefore the naturality square for
G-fixed natural transformations translates into

g0 = pgloa®)”!
or equivalently

(4-10) B(@a = (g - o)a(g).
We use the following definitions and lemma to put things together.

Definition 4.11 Let G act on II. Define the crossed functor category % ar. (G, II) to
be the category whose objects are the crossed homomorphisms G — 1I and whose
morphisms o: a — [ are the elements o € II such that 5(g)(g - 0) = ca(g);
they are are called isomorphisms of crossed homomorphisms. The composite 7 o o,
T: 8 — 7, is given by 7o. Define the centralizer II* of a crossed homomorphism
a: G — II to be the subgroup

% = {o € M]a(g)(g - 0) = oca(g) forall g € G}
of II. It is the automorphism group Aut(c) of the object v in Fat« (G, 11).
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Definition 4.12 Define the anti-crossed functor category ¢at, (G, II) to have objects
the crossed anti-homomorphisms «: G — II and morphisms o: a« —> 3 the
elements o € II such that 8(g)o = (g - 0)a(g), with 7 o 0 = 70 . The centralizer I1¢
of a crossed anti-homomorphism a: G — Il is

II* = {o € Ia(g)o = (g - 0)a(g) forall g € G}.
Again, II* = Aut(a) in Cat, (G,1I).
If the action of G on II is trivial, then the crossed functor category is just the func-
tor category %at(G,II) since homomorphisms «: G — II correspond to functors

a: G — II and elements o € II such that 8(g)oc = cga(g) for g € G correspond to
natural transformations o« — . In that case,

% = {o € H|o " 'a(g)o = a(g) forall g € G}
is the usual centralizer of « in II, and then the following identification is obvious.

Lemma 4.13 The categories ¢ aty(G,1I) and €at, (G,II) of crossed homomor-
phisms and crossed anti-homomorphisms are canonically isomorphic.

Proof For a crossed homomorphism «: G — 11, define &: G — II by
ag) =g (g™
Then
a(gh) = (gh) - a(h™'g™") = g - h- (a(h™Hh™" - a(g™") = (g - a)(@(8)),

sothat & is a crossed anti-homomorphism. If ¢ is amorphism o« — 3 in Fat« (G, 1),
then 5(g)(g - o) = oalg). It follows that

Bgro = (g B Nr=g-BlgNg " 0) =g (calg™) = (g- 0alg),

so that ¢ is also a morphism & — {3 in €at,(G,II). The construction of the inverse
isomorphism is similar. |

Returning to the G-fixed category of interest, we summarize our discussion in terms
of these definitions and results.

Theorem 4.14 The fixed point category G¢at(EG,I1) = Gat(G,11)C is isomorphic

to the anti-crossed functor category ¢at, (G, II). Therefore it is also isomorphic to the
crossed functor category 6at (G, I1).
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Corollary 4.15 For H C G, the fixed point category 6at(EG,ID" is equivalent to
the anti-crossed functor category ¢at, (H,II). Therefore it is also equivalent to the
crossed functor category ¢at(H,11).

Remark 4.16 The appearance of anti-homomorphisms in this context is not new; see
e.g. [25]. As we have seen, it is also innocuous. We have chosen not to introduce
opposite groups, but the anti-isomorphism (—)~': II — II° is relevant.

4.3 Fixed point categories, H'(G;Il;), and Hilbert’s Theorem 90

Since G¢at(£G, 1) is a groupoid, it is equivalent to the coproduct of its subcategories
Aut(a), where we choose one « from each isomorphism class of objects. The following
definition is standard when 1II and G are discrete but makes sense in general.

Definition 4.17 The first non-abelian cohomology group H'(G;1ls) is the pointed
set of isomorphism classes of (continuous) crossed homomorphisms G — II. We
write [a] for the isomorphism class of «. The basepoint of H Y(G; 1) is [e], where
¢ is the trivial crossed homomorphism given by £(g) = e for g € G.

With this language, (4-7) and Corollary 4.15 can be restated as follows.

Theorem 4.18 For H C G, ¢at(£G,I) is equivalent to the coproduct of the
categories Aut(«), where the coproduct runs over [a] € H YH; I1y).

Here Aut(ca) implicitly refers to the ambient group II x H, not I' = II x G. By
(4-7) or, more concretely, Lemma 4.22 below, we obtain the same group Aut(«) for
considered as an object of Gat(K,I1)" forany H C K C G.

For any G-category <7, we have a natural map of G-categories
L. A — Cat(EG, ).

It is induced by the unique G-functor EG — =, where * is the trivial G-category
with one object and its identity morphism. The G-fixed point functor ¢ played a
central role in Thomason’s paper [24]. When &/ = II for a G-group II, ¢ sends the
unique object of II to the basepoint [¢] € H'(G;II).

We shall describe the groups Aut(c«) in familiar group theoretic terms in the next
section. As a special case, Aut(¢) = I1¢ and ¢ restricts to the identity functor from
IIC to Aut(e). This implies the following result.
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Proposition 4.19 The functor % : 1I° — %at(£G,11)¢ is an equivalence of cate-
gories if and only if H'(G;11g) = [¢].

Example 4.20 Let E be a Galois extension of a field F with Galois group G. Then G
actson E and EC = F. Let G act entrywise on GL(n, E). Then Serre’s general version
of Hilbert’s Theorem 90 [22, Ch 10, Prop. 3] gives that H (G; GL(n,E)g) = [¢]. Since
GL(n,E)¢ = GL(n, F), we conclude that (© is an equivalence of categories

GL(n, F) — 6at(£G, GL(n, E))°.
More generally, for H C G, /! is an equivalence of categories
GL(n,E"Y — %at(€G, GL(n,E)".
As explained in [4] this gives precisely the information that ensures that the algebraic

K -theory fixed point spectrum Kg(E)? is equivalent to K(E”). We shall return to
consideration of G-rings such as E in §6.

We recall the easy calculation of H'(G;II) in group theoretic terms. Here we must
restrict G since the proof depends on Lemma 3.7.

Lemma 4.21 At least if G is discrete, the set H'(G; II) is in bijective correspondence
with the set of I1-conjugacy classes of subgroups A of I' such that A NIl = e and
g\ =G.

Proof By Lemma 3.7, the subgroups A of I" such that A N II = e are of the form

Ao = {(a(W), W)|h € H}

for a crossed homomorphism «: H — II. If ¢ € II, then 0Ao,o~' NII = e and
therefore oA 0! = A for some crossed homomorphism 3. The equality forces j3
and « to be defined on the same subgroup H and to satisfy S(g)(g - 0) = ga(g). We
are concerned only with the case H = G, and then this says that ¢ is a morphism and
thus an isomorphism o« — 3 in %at« (G, II). ]

4.4 The fixed point spaces of B(G, 1)

We here identify the automorphism groups Aut(c) group theoretically and so complete
the identification of Gar(EG,II)°.
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Lemma 4.22 Let o: H — II be a crossed homomorphism and I1 be a G-group,
where H C G. Then the crossed centralizer I1% is the intersection 11 N NpA,.
Therefore this intersection is the same forall 'y =11 ©x K, H C K C G.

Proof Let (m,g) € Il x G and h € H. Calculating in I' = II x G, we have
(0,9 (@), o,9) = (g o ' g Nalh), h)0,8)
= (g o7 ah), g o, 8)
= (g "o e a)(g h) o), 87 ).
Therefore (o, g) is in NrA,, if and only if g is in NgH and
a(g'hg) = (g~ o7 Ne™ - a8~ ) - 0)
forall h € H. When g = ¢, so that ¢ = (o, ¢) is a typical element of II N Ny A,,, this

simplifies to
ah) = o Lah)(h - o). O

Passing to classifying spaces from Theorem 4.18 gives the following result.

Theorem 4.23 For H C G,
B(G, 1) = B6at(EG, TN ~ ]_[ B Aut(c),
where the coproduct runs over [a] € H Y(H; ).

By Lemmas 4.21 and 4.22, at least when G is discrete we can restate Theorem 4.23 as
follows.

Theorem 4.24 Let I' = II x G, where G is discrete. For a subgroup H of G,
B(G,TIg)" ~ [[BAIN NrA),

where the union runs over the Il-conjugacy classes of subgroups A of I" such that
ANII=e and g(A) = H.

Of course, we are only entitled to consider B(G, I1) as a classifying space for principal
I"-bundles when Theorem 3.11 applies. The fixed point spaces B(IT; T')? of classifying
spaces are studied more generally in [9] when I' is given by a not necessarily split
extension of compact Lie groups

(4-25) 1 I r.¢ 1.

For such groups I', [9, Theorem 10] gives an entirely different bundle theoretic proof
that the conclusion of Theorem 4.24 still holds as stated, but without the restriction on
G. However, when [9] was written, no particularly nice model for the homotopy type
B(I;T") was known.
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5 The comparison between B%ut(£G, 11) and Map(EG, BII)

A convenient model p: E(II;I') — B(II;T") for a universal principal (IT;I")-bundle
was later given in terms of mapping spaces [14]. Here we assume given an extension
(4-25), with no restrictions on our topological groups.* Start with the classical models
in §2.3 for universal principal II, G, and I'-bundles and let Eq: ET' — EG be the
map induced by the quotient homomorphism ¢: I' — G. Let Sec(EG, ET") denote
the I'-space of sections f: EG — ET’, so that Eq o f = id. The following result is
part of [14, Theorem 5].

Theorem 5.1 The quotient map p: Sec(EG, EI") — Sec(EG, ET")/11 is a universal
principal (I1I; I') -bundle.

Now let the extension be split, so that I' = II x G. The given action of G induces a left
action of G on EII that, together with the free right action by II, makes it a I'-space.
Taking EG to be a left G-space and letting I" act through g on EG, we have the product
T'-space EII x EG. Itis free as a I"-space because EII is free as a II-space and EG is
free as a G-space. Since it is contractible, we may as well take ET" = EII x EG. Since
the second coordinate of a section f: EG — EII x EG must be the identity, we then
have
Sec(EG, ET') = Map(EG, ETI).

Its I"-action is defined just as was the I'-action on 6ar(£G,II) in Lemma 3.3. This
gives the following specialization of Theorem 5.1, which is the space level forerunner
of the categorical Theorem 3.10.

Theorem 5.2 The quotient map p: Map(EG, EIT) — Map(EG, ETI) /11 is a univer-
sal principal (G, Il)-bundle.

We also have the mapping space Map(EG, BII). The canonical map EIl — BII
induces a map ¢: Map(EG, EIl) — Map(EG, BII). Then there is an induced map &
that makes the following diagram commute.

Map(EG, ETI)

Sk

Map(EG, ETI)/TT —— Map(EG, BII).

*We do assume their identity elements are nondegenerate basepoints.
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The analogy with the triangle in Theorem 2.7 should be evident. As observed in
[14, Theorem 5], elementary covering space theory gives the following space level
forerunner of the categorical Theorem 3.11.

Theorem 5.3 If I is discrete, then &: Map(EG, EIl)/II — Map(EG, BII) is a
homeomorphism and therefore q: Map(EG, E1I) — Map(EG, BIl) is a universal
principal (G, I1)-bundle.

Note that G but not II is required to be discrete in Theorem 3.11, whereas II but not
G is required to be discrete in Theorem 5.3.5 There is an obvious comparison map
relating the categorical and space level constructions. For any G-categories /' and
A, we have the evaluation G-functor

e: bat(A , B) x o — B.
Applying the classifying space functor and taking adjoints, this gives a G-map
5-4) &: Béat(/ , ) — Map(B</ , BA).

When &7 and # are both discrete (in the topological sense), there is a simple analysis
of this map in terms of the simplicial mapping space Map™(N.«Z, N%). The following
two lemmas are well-known nonequivariantly.

Lemma 5.5 For discrete categories </ and 2, there is a natural isomorphism
w: Néat(o/ , B) = Map™ (N, NB),

and this is an isomorphism of simplicial G-sets if o/ and % are G -categories.

Proof Let A, be the poset {0, 1,--- ,n}, viewed as a category. The n-simplices of
Gat(o/ , B) are the functors A, —> Gat(</, 7). By adjunction, they are the functors
o x A, — HB. Since N is full and faithful, these functors are the maps of simplicial
sets

NoZ x NA, ZN(F x A,) — N&A.

By definition, these maps are the n-simplices of Map™(N.«7,N%). These identifi-
cations give the claimed isomorphism of simplicial sets. The compatibility with the
actions of G when &7 and % are G-categories is clear. a

*When G is a compact Lie group acting trivially on a compact Abelian Lie group II, results
of [10] imply that the map ¢ is a weak G-equivalence; in [20], Charles Rezk proves that this
remains true when II is a finite extension of a torus (a compact Lie homotopy 1-type).
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Lemma 5.6 For simplicial sets K and L, there is a natural map
v: |Map™ (K, L)| — Map(|K|, |L]).

If K and L are simplicial G-sets, v is a map of G-spaces, and it is a weak equivalence
of G-spaces when L is a Kan complex.

Proof The evaluation map Map®(K, L) x K — L induces a map
[ Map™(K, L)| x |K| 2 [Map™(K, L) x K| — |L|

whose adjoint is ¥. When L is a Kan complex, so is MapA(K,L) (e.g. [11, 6.9)),
and the natural maps L — S|L| and Map®(K, L) — S|Map“ (K, L)| are homotopy
equivalences, where S is the total singular complex functor. A diagram chase shows
that £ induces a bijection on homotopy classes of maps

€t [[J], | Map™ (K, L)| — [|J], Map(|K]|, |L])]

for any simplicial set J. Letting G act trivially on J, all functors in sight commute
with passage to H-fixed points, and the equivariant conclusions follow. O

Now the following result is immediate from the definitions and lemmas above.

Proposition 5.7 For discrete G-categories o/ and %, the map £ of (5-4) is the
composite v o i, and it is a weak G-equivalence if % is a groupoid.

Returning to the topological setting, take <« = £G and write EG = |[NEG], as we
may. Recalling that ETI — BII is obtained by applying B to the functor £1I — 11,
we obtain the following commutative diagram.

BGat(£G, £ Map(EG, ETI)

| |

B%at(EG, EIN) /11 Map(EG, EII) /11

| |

B%at(EG, TI) Map(EG, BII)

Theorems 3.10 and 5.2 say that that the top two vertical arrows are often universal
principal (IT; I')-bundles, in which case the top two horizontal arrows are equivalences.
Theorems 3.11 and 5.3 say that the lower two vertical arrows and therefore also the
bottom horizontal arrow are also often equivalences. When both II and G are discrete,
the equivalences are immediate from Proposition 5.7. More elaborate arguments might
prove all of these results in greater topological generality.
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6 Other categorical models for classifying spaces B(G, 1)

For particular G-groups 11, there are alternative categorical models for universal prin-
cipal (G, Ilg)-bundles that are important in our applications in [4, 16]. They lead to
equivalent, but more intuitive, constructions of categorical models for a number of
interesting G-spectra, in particular suspension G-spectra and the equivariant K -theory
spectra of rings with actions by G.

Perhaps surprisingly, the symmetric groups 3, with trivial G-action are of particular
importance in equivariant infinite loop space theory. For a ring R with an action of a
group G via ring maps, the general linear groups GL(n, R) with G-action on all matrix
entries are of particular importance. We give alternative models for universal principal
bundles applicable to these cases. We focus on the total spaces here and explain
additional structure on the resulting classifying spaces in [4]. We assume that G is
finite, although some of the definitions make sense and are interesting more generally.

6.1 A model &;(n) for E(G,X,)

Definition 6.1 Let U be a countable ambient G-set that contains countably many
copies of each orbit G/H. The action of G on U fixes bijections g: A — gA for all
finite subsets A of U, denoted a — g - a.

Letn = {1,--- ,n} and view elements o € 3}, as functions n — n, sothat o (i) = o-i
gives a left action of ¥, on n.

Definition 6.2 For n > 0, let &;(n) denote the chaotic (3, X G)-category whose
set O'b of objects is the set of pairs (A, ), where A is an n-element subset of U and
«:n —> A is a bijection. Let G act on &b on the left by postcomposition and let
>, act on the right by precomposition. Thus g(A,«) = (gA,g o a) for g € G, and
(A,a)0 = (A, 0 0) for o € X; of course

(gomoo =goaoo=go(@oo).

The action of >, x G is given by (0, 8)(A,a) = (gA,goa o o~ 1. Since (;‘“dn) is
chaotic, this fixes the actions on the morphism set, which the map (S, 7') identifies with
Ob x Ob with ¥, x G acting diagonally.

Proposition 6.3 For each n, the classifying space |N c?G(n)| is a universal principal
(G, X,)-bundle.
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Proof For each A, choose a base bijection 74 : n — A. The function sending o to
(A, n4 o o) is an isomorphism of right 3, -sets from X, to the set of objects (A, «v); its
inverse sends (A, «) to 77;1 oca. Thus X, acts freely on &6(n). Since &;(n) is chaotic,
it suffices to show that the set of objects of g"g(n)A is non-empty if ANY, = {e}. As
usual, A = {(p(h),h)|h € H}, where H is a subgroup of G and p: H — ¥, is a
homomorphism.

Let H act through p on n, so that # - i = p(h)(i). Since U contains a copy of every
finite G-set, there is a bijection of G-sets 5: G xyn — B C U. Its restriction
to n gives a bijection of H-sets a: m — A C B. We claim that this (A, «) is
a A-fixed object. Obviously hA = A for h € H. By Definition 6.2, we have
(p(h), h)(A, @) = (A,h o a o p(h)~"), where

(hoaop™MHG) = h-alpth)™ ()
= h-h ' al) =al)O

Definition 6.4 Define &5(n) to be the orbit G-category 5"(;(11) /.

By Proposition 6.3 and §2.3, B&g(n) is a classifying space B(G,X,). Up to isomor-
phism, the G-category &g(n) admits the following more explicit description.

Lemma 6.5 The objects of &g(n) are the n-pointed subsets A of U. The morphisms
are the bijections a: A — B, with the evident composition and identities. The group
G acts by translation on objects and by conjugation on morphisms. That is, g sends A
to gA and o to ga, where ga = go v o g~ !, so that (ga)(g - a) = g - a(a).

Proof The objects (A, ) are all in the same orbit, denoted A, and the bijections
na chosen in the proof of Proposition 6.3 give orbit representatives for the objects
of &g(n). In &g(n), we have a unique morphism tg: (A,ma) — (B, ) for each
bijection 5: n — B, and these morphisms give orbit representatives for the set of
morphisms A — B in &g(n). Letting the orbit of ¢z correspond to the bijection
a=pfo 77;1: A — B and noting that & = g oo o 77;1 for a unique o € 3, we
obtain the claimed description of &g(n). Since 14 specifies an ordering on A, 7,4 is
fixed as g ony. Then if a = BonA_],

goaog_]:go(ﬁonxl)o(nAong_Al):goﬁon;‘l:gA—>gB. O
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6.2 G-rings, G-ring modules, and crossed homomorphisms

By a G-ring we understand a ring R with a left action of G on R through ring automor-
phisms. We do not assume that R is commutative, although that is the case of greatest
interest to us. Following the literature, we write g(r) = r8 for the automorphism
g: R — R determined by g € G. Then r&" = g(h(r)) = (r")5.

When R is a subquotient of Q, the only automorphism of R is the identity and the
action of G must be trivial, but non-trivial examples abound. One important example
is the action of the Galois group on a Galois extension E of a field F.

In the next section we will give an analogue of c?’(;(n) but with IT = ¥, replaced by
II = GL(n, R) with the entrywise action of G. We will need a tiny bit of what appears
to us to be a relatively undeveloped part of representation theory.

For a G-ring R, there are standard notions of a “crossed product” ring, a “group-graded
ring”, and, as a special case of both, a “skew group ring”, variously denoted R x G
or R * G. We shall use the notation R;[G] for the last of these notions. If the action
of G on R is given by the homomorphism 6: G — Aut(R), a more precise notation
would be Rg[G]. Observe that R is a k-algebra, where k denotes the intersection of
the center of R with RC.

Definition 6.6 As an R-module, Rs[G] is the same as the group ring R[G], which is
the case when G acts trivially on R. We define the product on Rs[G] by k-linear (not
R-linear) extension of the relation

(rg) (sh) = rs® gh
for r,s € R and g,h € G. Thus R and k[G] are subrings of Rz[G] and

gr=r8g.

Definition 6.7 We call (left) RG[G]-modules “G-ring modules” or “skew G-modules”.
Such an M is a left R-module and a left k[G]-module such that g(rm) = r8(gm) for
m € M. If M is R-free, we call M a skew representation of G over R.

Although special cases have appeared and there is a substantial literature on crossed
products, group-graded rings, and skew group rings (for example [3, 17, 19]), we have
not found a systematic study of these representations in the literature. Kawakubo’s
paper [7] gives a convenient starting point. The following relationship with crossed
homomorphisms is his [7, 5.1].
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Theorem 6.8 Let R be a G-ring. Then the set of isomorphism classes of Rg[G]-
module structures on the R-module R" is in canonical bijective correspondence with
H'(G; GL(n, R)). In detail, let {e;} be the standard basis for R". Then the formula

gei = p(g)ei)
establishes a bijection between Rg[G]-module structures on R" and crossed homo-
morphisms p: G — GL(n,R). Moreover, two Rs[G]-modules with underlying R -
module R" are isomorphic if and only if their corresponding crossed homomorphisms
are isomorphic.

Proof Given an Rg[G]-module structure on R", define the matrix p(g) in GL(n, R)
by letting its i column be (s; j)» where

ge; = E S,'J'EJ'.
J

Conversely, given p, write p(g) = (s;;) and define ge; by the same formula. From
either starting point, we have ge; = p(g)(e;). For a second element 7 € G, write
p(h) = (1;j), where p(h) is either determined by an Rg[G]-module structure or is given
by a crossed homomorphism p. Since gr = r® g in Rg[G] and g(r;;) = (r‘fJ) in
GL(n, R), the relation (gh)e; = g(he;) required of an R;[G]-module is the same as the
relation p(g)p(h)(e;) = p(g)(gp(h))(e;) required of a crossed homomorphism. Indeed,
(gh)e; = p(gh)(e;) and

g(he;) = gp(h)(e;) = Z gt jej)

J
= Z tﬁjgej = Z Z fzg,jsﬁkek
- ~ %

J
= p())_ ) = p(e)gph)(e).
J

The remaining compatibilities, in particular for the transitivity relation required of a
module, are equally straightforward verifications, as is the verification of the statement
about isomorphisms. |

The following easy observation specifies the permutation skew representations. For a
set A, let R[A] denote the free R-module on the basis A.

Proposition 6.9 Let A be a G-set and define
g raw)=> réga
a a

forge G, r, € R,and a € A. Then R[A] is an Rg[G]-module.
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In view of Theorem 6.8, this has the following immediate consequence.

Corollary 6.10 For a G-ring R, any n-pointed G-set A canonically gives rise to a
crossed homomorphism ps: G — GL(n, R).

We shall need to embed skew representations in permutation skew representations to
apply these notions in equivariant bundle (or covering space) theory. Of course, in
classical representation theory over C, every representation embeds in a permutation
representation. We need an analogue for skew representations.

Definition 6.11 A G-ring R is amenable if there is a monomorphism of Rg[G]-
modules that embeds any finite dimensional skew representation of G over R into a
finite dimensional permutation skew representation.

Example 6.12 Let G act trivially on n = {1,--- ,n}. The trivial permutation skew
representation R[n] is the Rs[G]-module corresponding to the trivial crossed homo-
morphism €: G — GL(n,R). Thus, when H'(G; GL(n,R)) = [e] for all n, every
skew representation of G over R is isomorphic to a permutation skew representation
and R is amenable. This holds, for example, when G is the Galois group of a Galois
extension R = K over a field k.

More generally, we have the following analogue of the situation in classical represen-
tation theory, which shows that amenability is not an unduly restrictive condition. It
is proven in Passman [19, 4.1 in Chapter 1]. Even in this generality, he ascribes it to
Maschke.

Lemma 6.13 Let N C M be Rg[G]-modules with no |G|-torsion. If M = N @V as
an R-module, then there is an Rg[G]-submodule P C M such that |GIM C N & P.

An irreducible skew representation is one that has no non-trivial proper skew subrep-
resentations.

Theorem 6.14 Suppose that R is semisimple and |G|~ € R. Then every Rg[G]-
module is completely reducible and R is amenable.

Proof By thelemma,if N C M,then M = N@P. Thatis, the complete reducibility of
R-modules implies the complete reducibility of Rg[G]-modules. If N is an irreducible
Rg[G]-module, then any choice of an element n # 0 determines a map of Rg[G]-
modules f: Rg[G] — N suchthat f(1) = n. The image of f is a submodule of N, and

Algebraic & Geometric Topology XX (20XX)



Categorical models for equivariant classifying spaces 1035

itis all of N since N is irreducible. By complete reducibility, Ker(f) has a complement
in Rg[G], and that complement must be isomorphic to N. Thus N is a direct summand
of the permutation skew representation Rg[G]. Therefore, by complete reducibility,
all skew representations are direct summands of permutation skew representations. O

6.3 A model ¥Z;(n, R) for E(G, GL(n, R);)

Again let R be a G-ring, and assume that R is amenable. We have the entrywise left
action of G on GL(n,R), and we have the right action of GL(n, R) on GL(n, R) given
by matrix multiplication.

Lemma 6.15 The left action of G and the right action of GL(n,R) on GL(n,R)
specity an action of GL(n,R) x G on GL(n,R) via (1,g)(x) = (gx)r~! for g € G,
x € GL(n,R), and T € GL(n,R).

Proof The required relation g - (x7) = (g - x)(g - 7) is immediate from the fact that
g: R — R is an automorphism of rings. |

Recall the G-set U from Definition 6.1. By Proposition 6.9, R[U] is an Rg[G]-module
with
(6-16) g-(ruy=régu forge G,reRanducU.

Similarly, we have the entrywise (equivalently, diagonal) left action of g on R",
g - (re;) = r8e;, where we think of G as acting trivially on the set {¢;}. Regard
elements 7 € GL(n, R) as homomorphisms 7: R" — R". That fixes the left action of
GL(n,R) on R" given by matrix multiplication, where elements of R" are thought of
as row matrices.

Definition 6.17 We define the chaotic general linear category 2% c(n, R). The objects
of Y. (n, R) are the monomorphisms of left R-modules «: R" — R[U]. Let G act
from the left on objects by gaw = g o a0 g~!. By (6-16), we have

(goaog HO ren = D goa)rf e = gtf Hale)

1

= DA g ae)) =D nlg - ate).

In particular, (ga)(e;)) = g - ale;). Let GL(n,R) act from the right on objects by
at = aoT: R" — R[U]; this uses the left, not the right, action of GL(n,R) on R".
Since 4.7 c(n, R) is chaotic, this fixes the actions on the morphism set, which the map
(S, T) identifies with the product of two copies of the object set.
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Proposition 6.18 The actions of G and GL(n,R) on @G(n,R) determine a left
action of GL(n,R) x G via

(1, 8) = (ga)T .
The classitying space \N@ c(n, R)| is a universal principal (G, GL(n, R)¢)-bundle.

Proof For the first claim, we must show that g(a7) = (ga)(g - 7): R* — R[U] for
a: R" — R[U], g € G,and 7 = (t;j) € GL(n,R). On elements e;,

gar)e) = g-(ar)(e) =g (@) tije)
J
= g > (tjole)) =Y £(g-ale))
J Jj

= @) #e) = (ga)g - T)(ey).
J

For each free R-module M C R[U], choose an R-linear isomorphism 7,,: R* — M.
Sending «: R* — M to 77;,1 o « specifies an isomorphism of right GL(n, R)-sets
from the set of objects o with image M to GL(n, R); the inverse sends 7 € GL(n, R)
to ny o 7. Therefore GL(n,R) acts freely on @(;(n, R). Since @G(n, R) is
chaotic, it only remains to show that the set of objects of @G(n, R) is non-empty if
AN GL(n,R) = {e}. By Lemma 4.5, A = {(p(h), h)|h € H}, where H is a subgroup
of G and p: H — GL(n, R) is a crossed homomorphism.

By Theorem 6.8, we may use p to endow R" with a structure of left Ry[H]-module.
By the assumed amenability of R, there is a monomorphism of left Ry[H]-modules
R" — RJ[A] for some finite H-set A. We can embed A in the finite G-set B = G Xy A
and then B is isomorphic to a sub G-set of U. This fixes a monomorphism a:: R" —
R[U] of left Ry[H]-modules. Writing p(h) = (s;;) and p(h)y~' = (1 j)» we have

hadey) = alp(h)(e)) = Y sixer) = Y sjxcu(er)
k k
and therefore, using the display in Definition 6.17,
((hayp(h) ")) = ()Y tijep) =Y tijh-ale) =Y Y tijsixaler) = ale).
J J J ok -
Definition 6.19 Define ¥.%;(n, R) to be the orbit G-category 2% ¢(n,R)/GL(n, R).
The classifying space [N9.Zs(n, R)| is a model for B(G, GL(n,R)¢s). Up to isomor-

phism, the G-category ¥.%(n, R) admits the following explicit description.
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Lemma 6.20 The objects of 9.%;(n, R) are the n-dimensional free R-submodules M
of R[U]. The morphisms a.: M — N are the isomorphisms of R-modules. The group
G acts by translation on objects, so that gM = {gm |m € M}, and by conjugation on
morphisms, so that (ga)(gm) = a(m) form € M and g € G.

Proof The objects o of 2% ¢(n, R) with a fixed image M are all in the same orbit.
Choose np: R* — M to fix an orbit representative. In @G(n,R), we have a
unique morphism ¢: 7 — [ for each object 5: R* — N. We define a: M — N
to be the composite 5 o 771‘7[1. The « are isomorphisms of R-modules that give orbit
representatives specifying the morphisms of .4¢(n, R). As in the proof of Lemma 6.5,
the description of the action of G follows. |
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