Secure Mobile Software Development with
Vulnerability Detectors 1n Static Code Analysis

Xianyong Meng, Kai Qian, Dan Lo
Computer Science Department
Kennesaw State University
Kennesaw, GA, USA
{xmeng5, kqian, dlo2} @kennesaw.edu

Abstract—The security threats to mobile application are
growing explosively. Mobile app flaws and security defects
could open doors for hackers to easily attack mobile apps.
Secure software development must be addressed earlier in
the development lifecycle rather than fixing the security
holes after attacking. Early eliminating against possible
security vulnerability will help us increase the security of our
software, and militate the consequence of damages of data
loss caused by potential malicious attacking. However, many
software developer professionals lack the necessary security
knowledge and skills at the development stage and Secure
Mobile Software Development (SMSD) is not yet well
represented in current computing curriculum. In this paper
we present a static security analysis approach with open
source FindSecurityBugs plugin for Android Studio IDE. We
categorized the common mobile vulnerability for developers
based on OWASP mobile security recommendations and
developed detectors to meet the SMSD needs in industry and
education.

Keywords—Android vulnerability, secure
development, static analysis, FindSecurityBugs

software

I. INTRODUCTION

While the computing landscape is currently moving
towards mobile computing, the security threats to mobile
devices are also growing explosively. The mobile
applications are becoming a major security target
nowadays. Most of malicious mobile attacks take
advantage of vulnerabilities in mobile applications, such as
sensitive data leakage via inadvertent or side channel,
unsecured sensitive data storage, data transmission, and
many others. Most vulnerability should be addressed in the
mobile software development phase; however, most
development teams often have little to no time for security
remediation, as they are usually tasked for the project
deadlines. Even worse, many development professionals
lack awareness of the importance of security vulnerability
and the necessary secure knowledge and skills at the
development stage. Security vulnerabilities open the doors
to security threats and attacks which may be prevented at
early stage. The combination of the mobile devices'
prevalence and mobile threats' rapid growth has resulted in
a shortage of mobile-security personnel. Education for
secure mobile application development is in big demand in
IT fields. With more schools developing teaching materials
on mobile application development, more educational
activities are needed to promote mobile security education
and to meet the emerging industry and education needs.
However, mobile security is a relatively weak area and is

The work is partially supported by the U.S. National Science
Foundation under awards: 1723586, 1723578, 1636995, 1623724,
and U.S. Department of Homeland Security Scientific Leadership
Award grant number: 2012-ST-062-000055.

978-1-5386-3779-1/18/$31.00 ©2018 IEEE

Prabir Bhattacharya
Computer Science Department
Morgan State University
Baltimore, MD, USA
prabir.bhattacharya@morgan.edu

Fan Wu
Computer Science Department
Tuskegee University
Tuskegee, AL, USA
fwu@tuskegee.edu

not well represented in most schools' computing
curriculum. The secure mobile software development is an
important and integral part of mobile application
development instead of an add-on component. Moreover,
Securing Mobile application has many special issues in
addition to securing traditional software development such
as security protection of SMS, GPS, sensors, cameras.

With increasing demands of mobile applications in recent
years, the world has also witnessed numerous major cyber-
attacks, resulting in stolen personal credit card numbers,
leakage of classified information vital for national defense,
industrial espionage resulting in major financial losses, and
many more malicious consequences. Hackers have
managed to make secure computing a more difficult task.
This has resulted in the need for not only the concepts of
cybersecurity, but also the secure software development in
the education of computer science, information
technology, and related fields. The rapid growth of mobile
computing also results in a shortage of professionals for
mobile software development, especially for Secure
Mobile Software Development (SMSD) professionals.
More and more higher education institutions have realized
the importance for computer science and software
engineering students to be exposed to the mobile software
design and development. Unfortunately, despite the great
need for mobile professionals and existing efforts in
mobile software development education, mobile security is
a relatively weak area and is not well represented in most
schools' computing curriculum. The challenges in offering
embedded system courses at these institutions include
scarce dedicated staff and faculty in this field and the
excessive time needed for developing course materials and
projects.

The mobile application flaws and security defects could
open doors for hackers to break into the app, access
sensitive information, and conduct all kinds of malicious
attacks. Most vulnerability should be addressed and fixed
in the mobile software development phase. If all the
mobile apps are secure or have less security flaws and
vulnerabilities, the security threat risks will be greatly
reduced. Computer users, managers, and developers agree
that we need software and systems that are "more secure".
Such efforts require support from both the education and
training communities to improve software assurance,
particularly in writing secure code. There are many open
source static Java code analysis tool that helps developers
to maintain and clean up the code through the analysis
performed without actually executing the code such as
Eclipse IDE, IntelliJ IDE, FindBugs Plugin. These tools

focus on finding probable bugs such as inconsistencies,
helping improve the code structure, conform your code to
guidelines, and provide quick-fix. In general, SCA tools
are used to ensure code quality from the very beginning
and to make software development more productive. The
security vulnerability checking are not their major task.
Source code analysis tools, also referred to as Static
Application Security Testing (SAST) Tools, are designed
to analyze source code and to help to find security flaws
with a high confidence that what's found is indeed a flaw.
However, there is no tool that can just automatically finds
all flaws and can guarantee all detecting are positive or
never miss any potential flaws.

FindSecurityBugs (FSB) is a static code analysis plugin
for the FindBugs(a plugin for IntelliJ API). It specializes in
finding security issues in Java code by searching for
security. It can be used to scan Java applications, Android
applications and Scala applications. Since it analyzes at the
bytecode level to find defects and/or suspicious code,
source code is not mandatory for the analysis. It helps to
prevent potential security flaws from released software.
Moreover, it allows us to design our own custom flaw
detectors to find and report the emerging security threats
such that many flaws can be detected during the software
development phase with immediate feedback to the
developer on rather than finding vulnerabilities much later
in the development cycle.

As security threats and are changing and vulnerability
detections must also be updated. FSB allows developer to
design custom security vulnerability detectors. We have
designed and developed a number of new security flaw
detectors with FindSecurityBugs plug-in for Android
mobile software development based on current OWASP
2017 top 10 mobile risks to increase the security
vulnerability check coverage.

II. RELATED WORKS

Many efforts have been made to enhance the secure
software development education in recent years. UNCC
has designed and developed an Application Security IDE
(ASIDE) plug-in for Eclipse that warns programmers of
potential vulnerabilities in their code and assists them in
addressing these vulnerabilities. The tool is designed to
improve student awareness and understanding of security
vulnerabilities in software and to increase utilization of
secure programming techniques in assignments. ASIDE is
used in a range of programming courses, from CS1 to
advanced Web programming. ASIDE addresses input
validation vulnerabilities, output encoding, authentication
and authorization, and several race condition
vulnerabilities [1-3]. ASIDE only works in the Java
Eclipse IDE and cannot support the Android IDE. Many
computing instructors and professors have integrated
mobile application developments in their curriculums.
Yuan and others [4] reviewed current efforts and
resources in secure software engineering education, and
provided related programs, courses, learning modules,
hands-on lab modules. Chi [8] built learning modules for
teaching secure coding practices to students. Those
learning modules will provide the essential and
fundamental skills to programmers and application
developers in secure programming. The IAS Defensive

Programming knowledge areas (KA) have been identified
as topics/materials in the ACM/IEEE Computer Science
Curricula 2013 that can be taught to beginning
programmers in CSO0/CS1 courses [5-6]. All these works
mainly focus on the mobile application development.
They successfully disseminated the mobile computing
education but did not emphasize the importance of SMSD
and in their teachings.

III. SECURE MOBILE SOFTWARE DEVELOPMENT WITH
VULNERABILITY DETECTORS

A. FindSecurityBugs Detectors for Secure Android
Software Development

To meet the ever-increasing demand for high quality
information security professionals with expertise in
SMSD, we built innovative Android vulnerability
detectors with an open source FindSecurityBugs API
plugin for the popular Android Studio IDE based on the
on most current OWASP 2017 mobile top 10 mobile
security risks [7] in the category of SQL injection,
unintended data leakage, insecure communication,
insecure data storage vulnerability detectors. For example,
the built detectors can recognize a vulnerability of SQL
injection and data leakage in an Android mobile
application program, which may face the threat of
potential malicious code injection, and then issue a
warning on the code line. Following the provided options,
students or developers can enforce a new secure statement
to replace the unsecure statement.

The built package can be loaded into the Android
Studio IDE, parse Android java source code, identify
specific API calls, warn the potential vulnerabilities,
recommend security solutions, and replace code
statements. For example, it can recognize a vulnerability
of SQL injection and data leakage in an Android mobile
application program, which may face the threat of
potential malicious code injection, and then issue a
warning on the code line. Once the developer clicks the
warning icon, secure coding prevention and protection
options will be shown in Android Studio. Following the
provided options, students or developers can enforce a
new secure statement to replace the unsecure statement.

For many Android security vulnerabilities and flaws on
the top 10 mobile risks by OWASP and other new
identified unlisted flaws we need to develop our own
customized detectors. Fig. 1 shows the architecture of
FindSecurityBugs framework. [9]

Java Bytecode

alnt Db ject
Analysis

Detailed Info &
solution of
Vulnerabilities

Fig. 1. Architecture of FindSecurityBugs’ framework

Based on OWASP top 10 mobile risk reports, we have
developed more vulnerability detectors with
FindsecurityBugs for secure Android software

development in the categories of Unintended Data
Leakage, Intent Interception and Spoofing, Content
Provider Data Sharing, Input Validation and Output
Encoding. The section A shows a SQL injection detector
and section B shows unintended data leakage detector for
clipboard cache memory data leakage.

A. SOL Injection Detectors

There are several forms of SQL injection, consisting
of direct insertion code to user input variables and then
concatenated with SQL statements to be executed or other
less direct code insertion technique. Some of them are
listed as below:

1) Incorrectly filtered escape characters

This form occurs if user input is passed to SQL
statement without filtering escape characters.
Implementation is illustrated by following statement.

“SELECT * FROM users WHERE username=
“+username+” "

where the variable username can be crafted by
attackers, either by inputting an always true clause or by
commenting out the rest of query statement. What’s more,
by inserting semicolon, attackers are able to execute
separate SQL statement in this case.

2) Incorrect type handling.

This form of injection takes place when no appropriate
type checking is performed. The implementation of this
form can be same as previous one. There are still many
forms to perform injection, the point that an injection
works is by prematurely terminating a text string and
appending a new command.

Defense strategy for SQL injection
In addition to input validation to eliminate the malicious
injection we also should use secure parameterized query
statements with placeholders to receive parameters instead
of embedding user input to query statement.
Parameterized queries force the developer to first define
all the SQL code, and then pass in each parameter to the
query later. This coding style allows the database to
distinguish between code and data, regardless of what user
input is supplied. This strategy will also solve the problem
if there is not a type handling mechanism, because a
placeholder can only receive value of the given type.

Vulnerable code fragment:

cursor = db.rawQuery ("SELECT * FROM
usertable WHERE _id='" + info + "'", null);

Secure parameterized query:

String sl = input.getText () .toString() ;
cursor = db.rawQuery ("SELECT * FROM
usertable WHERE id= ? ", sl1);

Here is a sample vulnerable SQL injection code
detected by the SQL injection detector after scanning an
Android app with the following snippet

EditText input;

String info = input.getText () .toString/()

cursor = db.rawQuery ("SELECT * FROM
usertable WHERE _id='" + info + "'", null);

Fig. 2 shows a waning alert and a solution hint in the
Android Studio IDE after detector finds the SQL injection
vulnerability:

Vulnerability alert! Use parametrized query with
placeholders (“?”) to receive input parameters instead of
embedding user input to query statement with string
concatenation(““+ ") to avoid malicious SQL injection.

ST g Vs i o
o Fro : 04 i | © Sl g gopets | et x| @ Dsosepajne
i

nnnnnnnn

[} tss
4 s i i o
ned2

Vulngrabilty alert
Thainig

i pogared slemers e Lssob sl b e kol

Mesegs: W fredugel0Ed
s e)

Qo ot
25 (R UTFg: &

Fig. 2. Detector for Android SQL injection
B. Unintended Data Leakage Vulnerability Detectors

Unintended data leakage occurs when a mobile

developer inadvertently leaves sensitive data in insecure
place, such as cache memory and unprotected files on
mobile devices that may be easily accessed by malware.
Typically, these side-effects originate from the underlying
mobile device's operating system. This is a common and
prevalent mobile vulnerability in any mobile program
developed by developers who lack the knowledge of the
side-channel data leakage for data leakage.
Actually, it is easy to detect data leakage by inspecting all
mobile device locations that are accessible to all
applications and looking for the application's sensitive
data.

The most common mobile unintended data leakage
vulnerabilities are seen in the clipboard buffer, logging
files, browser cookie, and any caching. On Android, the
clipboard can be accessed by any application. It is best to
avoid handling sensitive data with Copy/Paste if possible,
however if it cannot be avoided, the developer should
clear the buffer once the data is used and leave data there
with limited time. Another option is for the developer to
use the secured areas with cryptographic encryption for
Copy and decryption for Paste.

Fig. 3 shows a screen shot of diagnosis result by
unintended data leakage detector for clipboard cache
memory data leakage. The alert message and suggested
solutions are also displayed when such flaw is detected.

\camgé pptagaterNandchy - kil o233

CiGopuetppiatin Ciopp s i Djzn Elon Eloangle ©apps Venkdicy

o o 9%

millanftier X C ContaWappe,za X | € Corstjan X | € Ciglatejaa X

»
= oo

it [
s

Bo
By

It ot afe t use clipboard ithoutsankizaon

s Frbem cassuzior
e oo g cppaslespcain €2 gy

Clipboard usage

o o i o
Wirge el e il r 2 e, 2 5 i
Fas b et sty i e o cfcons T)
el 0 03 3 AT e ST 3 170 03T T3

sonin

Q00§ | B [ena E

Oty B catlecorse
maither b %

ol 010 15 U

T b s s ed s serued, Coics e

Fig. 3. Detecting Unintended Data Leakage for clipboard cache memory
data

IV. DIAGNOSTIC ACCURACY

The flaw detecting and diagnosis accuracy is vital in
the vulnerability SCA assessment because the primary
requirement for a SCA 1is report all vulnerability
accurately but it is not easy job. In some case SCA may
miss to report a true flaw and in some other cases it may
misleads developers to a fake flaw.

A False Negative (FN) assessment overlooks
vulnerability and fails to identify or detect a serious
security threat. SCA should be able to cover as much as
security risks.

The False Positive(FP) (false alarm) assessment
falsely identifies acceptable code as a security flaw and
notifies developer wrong message about security
vulnerability which either misleads and confuses
developers or result in a unnecessary development delay.
A good SCA tool should void both of them but it is a
challenge. First, the form of vulnerability are changing
and evolving all the time. Second, for a specific flaw such
as SQL injection, there are many different attack vectors.
Third, for a specific API method invocation, some
overloading calls are safe but some others may make
flaws. Obviously you don't want either of FN and FP.
Clearly it's important for a solution to find all real
vulnerabilities. An inaccurate diagnosis can be more
trouble than it's worth.

V. CONCLUSION AND FUTURE WORK

Our project focuses on developing teaching and
learning materials on SMSD with Android based hands-on
labs. This effort will overcome the shortage of hands-on
learning materials of SMSD, which are essential in
building capacity to secure mobile application
development. Our project with SMSD Android Studio
FindSecurityBugs plugin will help students, faculty, and
professionals to use and develop custom Android app
vulnerability detectors to increase and enhance their
knowledge and skills in SMS in a real working
environment.

w8

ACKNOWLEDGEMENTS

The work is partially supported by the U.S. National
Science Foundation under awards: NSF proposal
1723586, 1723578, 1636995, 1623724, and U.S.
Department of Homeland Security Scientific Leadership
Award grant number: 2012-ST-062-000055. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation and Department of Homeland Security.

REFERENCES

[1] Michael Whitney, Heather Richter Lipford, Bill Chu, and Jun Zhu.
Embedding Secure Coding Instruction into the IDE: A Field Study
in an Advanced CS Course. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (SIGCSE
'15)

[2] Michael Whitney, Heather Richter Lipford, Bill Chu, and Tyler
Thomas. "Embedding Secure Coding Instruction into the IDE:
Complementing Early and Intermediate CS Courses with ESIDE"
In press, Journal of Educational Computing Research, 2017

[3] Jun Zhu, Heather Richter Lipford, Bill Chu. Interactive Support for
Secure Programming Education. In the Proceedings of SIGCSE
2013, the 44th Technical Symposium on Computer Science
Education, March 2013.

[4] Xiaohong Yuan, Kenneth Williams, D. Scott McCrickard, Charles
Hardnett, Litany H. Lineberry, Kelvin S. Bryant, Jinsheng Xu,
Albert C. Esterline, Anyi Liu, Selvarajah Mohanarajah, Rachel
Rutledge: Teaching mobile computing and mobile security. FIE
2016: 1-6

[5] Computer Science Curricula 2013 - Association for Computing,
https://www.acm.org/education/CS2013-final-report.pdf

[6] Katerina Goseva-Popstojanovaa, Andrei Perhinschib, On the
capability of static code analysis to detect security vulnerabilities,
community.wvu.edu/~kagoseva/Papers/IST-2015.pdf

[7] ProjectssOWASP Mobile Security Project - Top Ten Mobile Risks,
https://www.owasp.org/index.php/Projectsf OWASP_Mobile Secur
ity Project - Top Ten Mobile Risks

[8] Hongmei Chi, Teaching Secure Coding Practices to STEM
Students, InfoSecCD '13 Proceedings of the 2013 on InfoSecCD
'13: Information Security Curriculum Development Conference

[91 The FindBugs plugin for security audits of Java web applications,
http://find-sec-bugs.github.io, 2017 accesed

