Benchmark Requirements for Assessing Software-
based Security Vulnerability Testing Tools

Reza M. Parizi Kai Qian

Department of Software Engineering Department of Computer Science

and Game Development
Kennesaw State University
Marietta, GA, USA
rparizil @kennesaw.edu

Kennesaw State University
Marietta, GA, USA
kqian@kennesaw.edu

Abstract—Consistent growth in the software sector of the
world economies has attracted both targeted and mass-scale
attacks by cybercriminals. Producing reliable and secure software
is difficult because of its growing complexity and the increasing
number of sophisticated attacks. Developers can’t afford to believe
that their security measures during development are perfect and
impenetrable. In fact, many new software security vulnerabilities
are discovered on a daily basis. Therefore, it is vital to identify and
resolve those security vulnerabilities as early as possible. Security
Vulnerability Testing (SVT), as an active defense, is the key to the
agile detection and prevention of known and unknown security
vulnerabilities. However, many software engineers lack the
awareness of the importance of security vulnerability and the
necessary knowledge and skills at the testing and operational
stages. As a first step towards filling this gap, this paper advocates
for building skills in selecting proper benchmarks for the
assessment of SVT tools to enable distinguishing valuable security
tools from trivial ones. Thus, we provide a set of requirements in
fulfillment of this need, primarily addressing newcomers and
researcher to the discipline.

Keywords—software security, security testing tools,
vulnerability, security vulnerability testing, benchmark

I. INTRODUCTION

The spread of computing has expanded society's dependence
on secure software applications to ensure national security and
safety. Producing reliable and secure software is difficult
because of its growing complexity and the increasing number of
sophisticated attacks, which pose serious challenges to
individuals, companies, and nations. It is very likely that security
vulnerabilities remain in software applications as the
development progresses and henceforth. Developers can’t
afford to believe that their security requirements during
development are perfect and impenetrable, no matter how
thorough their precautions might be [1]. Having a perimeter and
defending it are not enough because the perimeter fades away
due to continuous integration and delivery, advocated by the
DevOps [2]. That is, passive defense approaches alone are
insufficient to counter dynamic-nature vulnerabilities which
may be used by attackers to get past on-development security
measures and do worse damage to the cyber-infrastructure of our
modern society and economy.

Among the various aspects of cybersecurity, software
security plays a critical role. Software security testing is the
process of assessing an application to discover risks and
vulnerabilities of the application and its data. In a software-run

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2018 IEEE

Fan Wu
Department of Computer Science
Tuskegee University
Tuskegee, AL, USA
fwu@tuskegee.edu

Lixin Tao
Department of Computer Science
Pace University
Pleasantville, NY, USA
ltao@pace.edu

world, what is wanted are more capable skilled professionals
whom will be able to put in motion active defense in real-world
software and web applications. However, many software
engineers lack the awareness of the importance of security
vulnerability and the necessary secure knowledge and skills at
the testing and operational stages. This has resulted in a severe
shortage of security-vulnerability testers and analysts. Education
for SVT of modern software applications is still a very
undervalued topic and has not been well represented in most
schools' computing curriculum. We believe this problem will be
not addressed unless computer and software educators start to
include this notion as a first-class problem in their agenda for
future generation of experts.

As a first step towards filling this gap, in this paper, we
propose and discuss the rationale behind an initial set of
benchmark requirements that we believe could be useful in
building a must-to-possess fundamental skill for the evaluation
of off-the-shelf and newly proposed security tools (either Static
Application Security Testing (SAST), Dynamic Application
Security Testing (DAST), or Interactive Application Security
Testing (IAST) tools for finding vulnerabilities). Without the
ability to meaningfully measure and scale tools’ performance, it
is impossible to understand their pitfalls and advantages, and
consequently the needs for the future advancement. In addition,
we illustrate the use of our proposed requirements by using them
to guide the selection of possible benchmark candidates amongst
existing open source projects.

II. PROPOSED BENCHMARK REQUIREMENTS

Automated SVT tools and scanners (SAST, DAST, and
[IAST) can be evaluated in terms of various quality and
performance factors using synthetic benchmarks or benchmarks
based on real-world software. Fig. 1 shows the holistic
benchmarking process devised in our context.

& @
{3\3@_ (,HJ%!R

DAST : .] l
& SVT tool
Performance results ,,

IAST (speed, coverage, accuracy) X

()

Fig. 1. Holistic view of benchmarking process.

Performing benchmark process is a non-trivial task,
particularly with real-world software. The biggest problem of
using real-world software for benchmarking is the unavailability
code and its documentation to public domain, and most
importantly it involves legal issues. As a result, open-source
benchmarks have been commonly used instead to compare the
outputs of different SVT tools. In fact, the software engineering
research community has long relied on Free and Open Source
Software (FOSS) projects as common benchmarks with which
to conduct and replicate a wide variety of studies. However,
selecting a right FOSS benchmark that unbiasedly captures a
tool’s performance is challenging due to lack of vulnerability
realism, uncertain ground truth, and large amount of irrelevant
findings (i.e., background noise [3]) by the benchmark tests. In
this spirit, our aim is to come up with a set of requirements that
capture the benefits of both synthetic benchmarks and real-
world software by eliminating the above-mentioned issues.
Table I presents our proposed benchmark requirements, as a
start point for what constitutes an ‘ideal’ benchmark for SVT
tools’ assessment and empirical research.

TABLE 1. BENCHMARK REQUIREMENTS

Rationale
The benchmark’s source code and release
history should be easily accessible from a
public version control system (VCS), such as
GitHub.
The benchmark should provide a tool to
support for the calculation of benchmark score
using metrics” (TP, FN, TN, FP), and their
results interpretation guide.
The benchmark should provide support by
automatically downloading and installing
locally all external software artifacts (e.g.,
components, libraries) required to create a
build of the benchmark project and its tests.
The benchmark should provide diversified
large number of test cases aligned with
Common Weakness Enumeration (CWE) to
promote generally accepted security practices
and to reduce confusion.
The benchmark should provide fully runnable
and exploitable tests.
The benchmark should provide both fixed and
Vulnerable and Fixed vulnerable versions of each test
Versions of each Benchmark | to enable evaluating the “actual” tool
Test performance considering only the alerts
relevant to the analyzed vulnerability.
The benchmark should be easy to use and
attract the interest of its target education and
research community.
The benchmark should provide alternate
implementations in terms of programming
languages for broader accessibility.
* https://www.owasp.org/index.php/Benchmark

Requirement
R1: Easy Access from a
Version Control Repository

R2: Support for Automated
Scoring and Interpretation

R3: Support for Dependency
Management

R4: Contain Diversified
Benchmark Test Suits with
CWE Numberings

R5: Support for Automated
Benchmark Test’s Execution
R6: Availability of

R7: Community Usage &
Interest

R8: Alternate Versions

From a practical perspective, meeting these requirements is
important, as this would allow software engineers to evaluate
and experiment with industry-strength DevOps practices and
technologies when conducting SVT tools’ assessment studies.

III. ANALYSIS AND RESULT OF A BENCHMARK SELECTION

To illustrate the benefits of our proposed set of requirements,
we have used them to guide the selection of possible benchmark
candidates from FOSS projects. We have exhaustively searched
the web for existing open source applications that could be good

candidates for a benchmark according to our proposed
requirements. As expected, there are very a few publicly-
available applications that could satisfy our needs, thus two
existing projects, WAVSEP [4] and OWASP benchmark [5]
were identified.

In order to assess whether each benchmark candidate would
satisfy each of our proposed requirements, we have
preliminarily examined each candidate based on their provided
documentation and on the information available in their
respective software repositories. Our assessment results are
presented in Fig. 2.

Satisfied 0= Unsatisfied

1=

1 1
1 1 1 1 1
0 0 0
l (— [o — o —
— — —
R1 R2 R3 R4 RS R6 R7

R8
Eight Benchmark Requirements

HOWASP = WAVSEP

Fig. 2. Benchmark candidate assessment results.

As it can be seen from the figure, no single benchmark
candidate fully satisfies all our proposed requirements. Our early
results indicate that, although none of the projects analyzed is
advanced enough to be used as a community-wide benchmark,
OWASP may already be useful to fulfill the needs and promote
the reproducibility of specific evaluation studies.

IV. CONCLUSION

This paper presented an initial set of requirements for a
candidate benchmark project to be used in assessment of SVT
and detection tools. The proposed requirements were discussed
and illustrated in the context of a selection analysis. By using
these requirements better benchmarks will be selected, helping
individuals and companies select the most appropriate SVT tool
for their projects, and bringing awareness to tool developers to
improve SVT tools for sharper results.

ACKNOWLEDGMENT

The work is partially supported by the National Science
Foundation under award: NSF proposal 1723586, 1723578, and
1438858.

REFERENCES

[1] R.M.LeeandR. Lee, “The Who, What, Where, When, Why and How of
Effective Threat Hunting”, SANS Institute, 2016.

[2] L W.L.BassandL. Zhu, “DevOps: A Software Architect’s Perspective”,
Addison-Wesley Professional,2015.

[3] I Pashchenko et al., “Delta-Bench: Differential Benchmark for Static
Analysis Security Testing Tools," in Proceedings of the ACM/IEEE
International Symposium on Empirical Sofiware Engineering and
Measurement (ESEM), pp. 163-168, 2017.

[4] WAVSEDP, https:/github.com/sectooladdict/wavsep.

[S] OWASP, https:/github.com/OWASP/Benchmark

