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Collective migration dominates many phenomena, from cell movement in living systems to abiotic self-
propelling particles. Focusing on the early stages of tumor evolution, we enunciate the principles involved
in cell dynamics and highlight their implications in understanding similar behavior in seemingly unrelated
soft glassy materials and possibly chemokine-induced migration of CD8T cells. We performed
simulations of tumor invasion using a minimal three-dimensional model, accounting for cell elasticity
and adhesive cell-cell interactions, as well as cell birth and death, to establish that cell-growth-rate-
dependent tumor expansion results in the emergence of distinct topological niches. Cells at the periphery
move with higher velocity perpendicular to the tumor boundary, while the motion of interior cells is slower
and isotropic. The mean-square displacement A(z) of cells exhibits glassy behavior at times comparable to
the cell cycle time, while exhibiting superdiffusive behavior, A(#) ~ t* (« > 1), at longer times. We derive
the value of a =~ 1.33 using a field theoretic approach based on stochastic quantization. In the process, we
establish the universality of superdiffusion in a class of seemingly unrelated nonequilibrium systems.
Superdiffusion at long times arises only if there is an imbalance between cell birth and death rates. Our
findings for the collective migration, which also suggest that tumor evolution occurs in a polarized manner,
are in quantitative agreement with in vitro experiments. Although set in the context of tumor invasion, the
findings should also hold in describing the collective motion in growing cells and in active systems, where

creation and annihilation of particles play a role.

DOI: 10.1103/PhysRevX.8.021025

I. INTRODUCTION

The strict control of cell division and apoptosis is critical
for tissue development and maintenance [1]. Dysfunc-
tional cell birth and death control mechanisms lead to several
physiological diseases, including cancers [2]. Together with
genetic cues controlling birth-death processes, mechanical
behavior of a collection of cells is thought to be of
fundamental importance in biological processes such as
embryogenesis, wound healing, stem cell dynamics, mor-
phogenesis, tumorigenesis, and metastasis [3—8]. Because of
the interplay between birth-death processes and cell-cell
interactions, we expect that the collective motion of cells
ought to exhibit unusual nonequilibrium dynamics, whose
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understanding might hold the key to describing tumor
invasion and related phenomena. Interestingly, character-
istics of glasslike behavior such as diminished motion
(jamming) of a given cell in a dense environment created
by neighboring cells (caging effect), dynamic heterogeneity,
and possible viscoelastic response have been reported in
confluent tissues [9,10]. Using imaging techniques that track
cell motions, it has been shown that in both two (kidney cells
on a flat, thick polyacrylamide gel [9,11]) and three dimen-
sions (explants from zebrafish embedded in agarose [12]) the
mean-square displacement exhibits subdiffusive behavior,
reminiscent of dynamics in supercooled liquids at inter-
mediate timescales. This behavior, which can be rationalized
by noting that the core of a growing collection of cells is
likely to be in a jammed state, is expected on timescales less
than the cell division time.

A theory to capture the essence of tumor invasion must
consider the interplay of the cell mechanics, adhesive
interaction between cells, and the dynamics associated
with cell division and apoptosis, over a wide range of
timescales. In an attempt to capture collective dynamics in
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cells, a number of models based on cellular automata
[13,14], vertex and Voronoi models [15-19], subcellular
element models [20], cell dynamics based on the Potts
model [21,22], and the phase field description for collective
migration [23,24] have been proposed. Previous works
have investigated a number of two-dimensional (2D)
models in various contexts [9,16,25], including probing
the dynamics in a homeostatic state where cell birth-death
processes are balanced [26,27]. Existing three-dimensional
(3D) models focus solely on tumor growth kinetics, spatial
growth patterns [28,29], or on cell migration at low cellular
density on timescales shorter than the cell division time
[30-32]. A recent interesting study [26] shows that cell
dynamics in a confluent tissue is always fluidized by cell
birth and death processes, on timescales comparable to
cell division time. A more recent two-dimensional model
[27] investigates the glass-to-liquid transition in confluent
tissues using simulations. However, both of these instruc-
tive models [26,27] focus on the steady-state regime, where
the number of tumor cells is kept constant by balancing the
birth and death rates. Consequently, they do not address the
nonequilibrium dynamics of the evolving tumor in the early
stages, which is of great interest in cancer biology [33-35].

Here, we use a minimal physical 3D model that combines
cell mechanical characteristics and cell-cell adhesive inter-
actions and variations in cell birth rates to probe the non-
steady-state tumor evolution. Such a model, which has
the distinct advantage that it can be generalized to include
mutational effects naturally, was first introduced by Drasdo
and Hohme [28]. Two of our primary goals are to understand
quantitatively the complex invasion dynamics of the tumor
into a collagen matrix and to provide a mechanism for the
observation of superdiffusive behavior. We use free boundary
conditions for tumor evolution to study dynamical finger-
prints of invasion in order to quantitatively compare the
results to experimental observations. We model the prolifer-
ation behavior of tumor cells and investigate the effect of
pressure-dependent growth inhibition. Good agreement
between our results and in vitro experiments on three-
dimensional growth of multicellular tumor spheroids lends
credence to the model. On timescales less than the cell
division time, the dynamics of cell movement within the
tumor exhibits glassy behavior, reflected in a subdiffusive
behavior of the mean-square displacement A(¢). However, at
times exceeding the cell division time, we find superdiffusive
behavior with A(7) ~ t* (@ = 1.26 & 0.05). The duration for
which subdiffusion persists decreases as the cell growth rate
increases, in sharp contrast to the dynamics in confluent
tissues. Detailed analyses of the individual cell trajectories
reveal complex heterogeneous spatial and time-dependent
cell migration patterns, thus providing insights into how cells
are poised for invasion into regions surrounding the tumor.
We find that activity due to cell division coupled with cell
mechanical interactions plays a critical role in the non-
equilibrium dynamics and the physical structure of the

polarized tumor invasion process. The dynamical properties
of cells in our model share considerable similarities to those
found in nonliving soft materials such as soap foams and
toothpaste [36]. In all these cases, the transition from a
glasslike behavior to superdiffusion occurs as a result of cell
growth and death (or the creation and destruction of particles),
resulting in nonconservation of number density without the
possibility of reaching homeostasis. In other words, the
nonequilibrium dynamics arising due to forces that result
from key biological events (cell birth and death) that we have
investigated here are qualitatively different from the dynam-
ics in systems that do not take into account such forces.

II. MULTICELLULAR TUMOR GROWTH MODEL

We simulated the spatiotemporal dynamics of a multi-
cellular tumor using a three-dimensional (3D) agent-based
model, in which the cells in the tumor are represented as
interacting objects. In this model, the cells grow stochas-
tically as a function of time and divide upon reaching a
critical size. The cell-to-cell interaction is characterized by
direct elastic and adhesive forces. We also consider cell-to-
cell and cell-to-matrix damping as a way of accounting for
the effects of friction experienced by a moving cell because
of other cells and by the extracellular matrix (ECM) (or
collagen matrix), respectively.

Each cell is modeled as a deformable sphere with a time-
dependent radius. Several physical properties, such as the
radius, elastic modulus, membrane receptor and ligand con-
centration, and adhesive interaction, characterize each cell.
Following previous studies [28,29,37], we use the Hertzian
contact mechanics to model the magnitude of the elastic force
between two spheres of radii R; and R; [Fig. 1(a)],

1w (1)
Fjj = ¥
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where E; and v;, respectively, are the elastic modulus and
Poisson ratio of cell i. The overlap between the spheres, if
they interpenetrate without deformation, is h;;, which is
defined as max[0, R; + R; — |7; — 7], with |F; — ;| being
the center-to-center distance between the two spheres [see
Fig. 1(a)]. The repulsive force in Eq. (1) is valid for small
virtual overlaps such that 4,; << min[R;, R;] and is likely to
underestimate the actual repulsion between the cells [29].
Nevertheless, the model incorporates measurable mechanical
properties of the cell, such as E; and v;, and, hence, we use this
form for the repulsive force.

Cell adhesion, mediated by receptors on the cell mem-
brane, is the process by which cells interact and attach to
one another. For simplicity, we assume that the receptor and
ligand molecules are evenly distributed on the cell surface.
Consequently, the magnitude of the adhesive force Fj‘jd
between two cells i and j is expected to scale as a function
of their contact area A;; [38]. We estimate F° ?J‘-’ using [29]

(1)
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FIG. 1. (a) Two interpenetrating cells i and j with radii R; and
R;, respectively. The distance between the centers of the two cells
is |r; — r;|, and their overlap is /;;. (b) Force on cell i due to j, F;;,
for R; = R; = 4 ym using mean values of the elastic modulus,
Poisson ratio, and receptor and ligand concentration (see Table I).
F;; is plotted as a function of the distance between the centers of
the two cells. The inset shows the region where F;; is attractive.
When [r; —r1;| > R; + R; = 8 um, the cells are no longer in
contact and, hence, F; = 0.

Fif = Ayf*t5 (eee® + ejeci®), 2)

| =

where ¢ (c?g) is the receptor (ligand) concentration
(assumed to be normalized with respect to the maximum
receptor or ligand concentration so that 0 < ¢}, c?g <.
The coupling constant £2¢ allows us to rescale the adhesion
force to account for the variabilities in the maximum
densities of the receptor and ligand concentrations. We
calculate the contact surface area A;; using the Hertz model
prediction, A;; = zh;;R;R;/(R; + R;). The Hertz contact
surface area is smaller than the proper spherical contact
surface area. However, in dense tumors, many spheres
overlap and, thus, the underestimation of the cell surface
overlap may be advantageous in order to obtain a realistic
value of the adhesion forces [29].

Repulsive and adhesive forces considered in Eqs. (1)
and (2) act along the unit vector 7, ; pointing from the center
of cell j to the center of cell i [Fig. 1(a)]. The force exerted
by cell j on cell i, F;;, is shown in Fig. 1(b). The total force
on the ith cell is given by the sum over its nearest neighbors
[NN(i)].

ﬁi = jeNN(i)(F?]l' - F?f)’_iij- (3)

We developed a distance sorting algorithm to efficiently
provide a list of nearest neighbors in contact with the ith
cell for use in the simulations. For any given cell i, an array
containing the distances from cell i to all the other cells is
initially created. We then calculated R; + R; — |F; — 7;| and
sorted the cells j satisfying R; +R; —|7; —7;| >0, a
necessary condition for any cell j to be in contact with
cell i.

III. SIMULATIONS

A. Equations of motion

The spatial dynamics of the cell is computed based on
the equation of motion [29,39,40] for a cell of mass m;,,

i = FL(1) = Sy ¥ (1) = 2y 2 T (1) = # ()
@)

where the greek indices [o, '] = [x,y, z] are for coordi-
nates, and the latin indices [7, j] = [1,2, ..., N] are the cell
indices. In Eq. (4), yf’//} " is the cell-to-medium friction
coefficient, and y?}ﬁ " is the cell-to-cell friction coefficient.
The adhesive and repulsive forces are included in the term
F¢ . The cell-to-ECM friction coefficient is assumed to be
given by the Stokes relation,

ri/ = 6mR 5, (5)
based on the friction of a sphere in a medium of viscosity 7.
Here, 5*7 is the Kronecker delta.

Because the Reynolds number for cells in a tissue is
small [39], overdamped approximation is appropriate,
implying that the neglect of the inertial term mi?‘l?‘/ ~0 is
justified [29] (see Appendix A for further discussion).
Since additional adhesive forces are also present, cell
movement is further damped [41]. We simplify the equa-
tions of motion [Eq. (4)] by replacing the intercellular drag
term with a modified friction term, given that the movement

of the bound cells is restricted. The modified friction term
will contribute to the diagonal part of the damping matrix

with y?/ﬁ/ = y;’/ﬂ vise yf/ﬂ "ad Where

o 1 F. 7.
af.ad max ! 2
Vi =7 ZjeNN(i) <Aij_ (1 +— >
l 2 |Fil
1 1 1 /!
x5 (c?’cc?g + c;ecc?g))éa/’ . (6)
Notice that the added friction coefficient y;’J/j had i propor-

tional to the cell-to-cell contact surface, implying that a cell
in contact with multiple cells would move less. The
nonisotropic nature of the adhesive friction is evident from

the factor {1+ [(F;- ﬁij)/(|f,-|)]}, where the maximum
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contribution occurs when the net force F ; 1s parallel to a
given unit vector 7i,; among the nearest neighbors. With
these approximations, the equations of motion [Eq. (4)] are

now diagonal,

()

= [

B. Cell cycle

In our model, cells can be either in the dormant (D) or in
the growth (G) phase. We track the sum of the normal
pressure that a particular cell i experiences due to contact
with its neighbors, using

e
pPi= ZjeNN(i)%- (8)

ij

If the local pressure p; exceeds a critical limit (p,.), the cell
stops growing and enters the dormant phase (see the left
panel in Fig. 2). For growing cells, their volume increases at
a constant rate ry. The cell radius is updated from a
Gaussian distribution with the mean rate R = (4zR%)"'ry.
Over the cell cycle time 7,

27(R,,)’

V=T ©)
where R,, is the mitotic radius. A cell divides once it grows
to the fixed mitotic radius. To ensure volume conservation,
upon cell division, we use R; = R,,2”'/3 as the radius of
the daughter cells (see the right panel in Fig. 2). The two
resulting cells are placed at a center-to-center distance
d = 2R,,(1 —27!/3). The direction of the new cell location
is chosen randomly from a uniform distribution on the unit
sphere. One source of stochasticity in the cell movement in

Cell division

D
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FIG. 2. Cell dormancy (left panel) and cell division (right
panel). If the local pressure p; that the ith cell experiences (due to
contacts with the neighboring cells) exceeds the critical pressure
Pe., it enters the dormant state (D). Otherwise, the cells grow (G)
until they reach the mitotic radius R,,. At that stage, the mother
cell divides into two identical daughter cells with the same radius
R,;. We assume that the total volume upon cell division is
conserved. A cell that is dormant at a given time can transit
from that state at subsequent times.

our model is due to random choice for the mitotic direction.
Together with stochasticity in the cell cycle duration, we
obtain fairly isotropic tumor spheroids.

C. Tumor invasion distance
The invasion or spreading distance of the growing tumor
Ar(t) is determined by measuring the average distance

from the tumor center of mass [Rcy = (1/N)Z;7] to the
cells at the tumor periphery,

| IEALA.
Ar(t):N_bZ|ri_RCM’ (10)

where the sum i is over N, the number of cells at the tumor
periphery. In order to find the cells at the tumor periphery
(Ny), we denote the collection of all cells N as a set of
vertices {1,2,3......... N} in R3, where the vertices re-
present the center point of each cell. We generate a 3D
structure of tetrahedrons using these vertices, where each
tetrahedron is comprised of four vertices. Let T be the total
number of tetrahedrons. Since each tetrahedron has four
faces, the total number of faces is 47. Any face that is not
on the boundary of the 3D structure is shared by two
tetrahedrons, but the boundary faces are not shared. Thus,
our aim is to find the set of unshared boundary faces out of
the total number of faces 47. Once the boundary faces are
obtained, we know the list of vertices and, hence, the
positions of cells at the tumor periphery, allowing us to
compute Ar(z) in Eq. (10).

IV. RESULTS

A. Calibration of the model parameters

We compare the normalized volume of the growing
tumor to experimental data [42], as a way of assessing if
the parameters (Table I) used in our model are reasonable.
The tumor volume V(¢), normalized by the initial volume

TABLE I. The parameters used in the simulation.

Parameters Values References
Time step (Af) 1-10 s This paper
Critical radius for division (R,,) 5 ym [29]

Extracellular matrix (ECM)
viscosity (1)

0.005 kg/(ums)  [44]

Benchmark cell cycle time (z,,) 54,000 s [45-47]
Adhesive coefficient (f°4) 107* uN/um? [29]
Mean cell elastic modulus (E;) 103 MPa [44]

Mean cell Poisson ratio (v;) 0.5 [29]
Death rate (b) 1076 57! This paper
Mean receptor concentration (¢¢) 1.0 (normalized) [29]
Mean ligand concentration (c!€) 1.0 (normalized) [29]
Adhesive friction y™m* 10~ kg/(um?s) This paper
Threshold pressure (p.) 10~* MPa [29,42]

021025-4



CELL GROWTH RATE DICTATES THE ONSET OF GLASS ...

PHYS. REV. X 8, 021025 (2018)

of the spheroid (V,)), was tracked experimentally using
colon carcinoma cells [42] through experimental methods
that are very different from the way we simulated tumor
growth. The tumor growth was measured by imposing
stress [42], known to inhibit cancer growth [43]. These
effects are included in our model, which allows us to make
quantitative comparisons between our simulations and
experiments. The tumor volume is obtained in the simu-
lation from R, the radius of gyration,

Ri =fZ(?,-—I§CM)2, (11)

where N is the total number of cells. The volume V() is
given by (4z/3)R3(¢). Our simulation of the growth of
the spheroid tumor volume in the early stages is in good
agreement with experimental data [see Fig. 3(a)]. Thus, our
model captures quantitative aspects of tumor growth.

In the experiment [42], V(¢)/V, was measured for
external pressure ranging from O to 20 kPa. In Fig. 3(a),
we compared our simulation results with the 500-Pa result
from experiments [42]. This is rationalized as follows.

( a) 20 _v
—— Experiment

—— Simulations

Normalized Volume

Time(Days)

[ 1.85 days
I 4.86 days
7] 8.10days

4 5 6
Pressure(MPa) <107

FIG. 3. (a) Normalized volume V(¢)/V of a tumor spheroid as
a function of time. The result of the simulation (red) agrees nearly
quantitatively with experimental data obtained for the tumor
spheroid growth at an applied pressure of 500 Pa [42]. We used a
critical pressure p. = 100 Pa and cell division time of 7 = z,;;,, in
these simulations. The reason for comparing the results from the
p. = 100 Pa simulations with the growth dynamics obtained in
the colon carcinoma cells with an external pressure of 500 Pa is
explained in the text. (b) Distribution of pressure as a function of
total growth time with cell division time 7 = 7,,,;, = 0.625 days.
The mean values are indicated by the dashed lines.

Unlike in experiments, the pressure is internally generated
as the tumor grows [Fig. 3(b)] with a distribution that
changes with time. The mean value of the pressure [see the
dashed lines in Fig. 3(b)] at the longest time is approx-
imately 100 Pa. Thus, it is most appropriate to compare our
results obtained using p,. = 100 Pa with experiments in
which the external pressure is set to 500 Pa.

B. Predicted pressure-dependent growth
dynamics is consistent with experiments

A visual representation of the tumor growth process
generated in simulations is vividly illustrated in the Videos
(see Videos 1 and 2) in Appendix B. Snapshots of the
evolving collection of cells at different times are presented
in Figs. 4(a)—(d). As the tumor evolves, the cells aggregate
into a spheroidal shape because the cell division plane is
isotropically distributed [Fig. 4(d) and the Video 1 in
Appendix B]. In spheroidal cell aggregates, it is known that
pressure inhibits cell proliferation [42,48,49]. We expect
the pressure [see Eq. (8)] experienced by the cells in the
interior of the tumor to be elevated because of crowding
effects, causing the cells to enter a dormant state if the
pressure from the neighbors reaches a preset threshold
value p.. Tumor growth behavior is strongly dependent on
the value of p, [see Fig. 4(e)]. At p, = 10~ MPa, the total
number [N(¢)] of tumor cells during growth is well
approximated as an exponential N(7) & exp(const X ?).
As p. is lowered, implying growth is inhibited at smaller
pressures, an increase in the tumor size is described by a
power law, N()  ##, at long timescales, while N(7) retains
exponential growth at early stages [see the inset of
Fig. 4(e)]. Our simulations also show that f is p,
dependent, increasing as p,. increases. Power-law growth
in the 3D tumor spheroid size has been observed in many
tumor cell lines, with § varying from 1 to 3 [50-54]. The
overall growth of the tumor slows down as the value of
the pressure experienced by cells increases, which is also
consistent with recent experimental results [49]. The known
results in Fig. 4(e) are in near quantitative agreement with
several experiments, thus validating the model.

C. Cell motility within the tumor spheroid

Using direct imaging techniques, it has become possible
to monitor the overall invasion of the tumor, as well as the
movement of individual cells within the spheroid [55,56]. In
order to compare our results to experiments, we calculated
the mean-square displacement, A(z) = {[r(z) — r(0)]?), of
individual cells. By tracking the movement of all the initial
cells within the tumor, we calculated A() by averaging over
hundreds of trajectories. The growth-rate-dependent A(r)
[displayed in Fig. 5(a) on a log-log scale] shows that there is a
rapid increase in A(¢) at early times (¢ < 0.017,,;,, where 7,
is the benchmark value of the cell cycle time given in Table I)

because the cells move unencumbered, driven by repulsive
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FIG. 4. Dynamics of tumor growth. (a)-(d): Instantaneous
snapshots of the tumor during growth at different times. Each
cell is represented by a sphere. There are approximately 2000
cells in (d). The color of each cell is to aid visualization. In
(a)—(d), the cell sizes are rescaled for illustration purposes only.
Note that, even at t = 0 (a), the sizes of the cells are different
because they are drawn from a Gaussian distribution. (e): The
total number of tumor cells N(#) as a function of time at different
values of the threshold pressure p., which increases from bottom
to top (107, 2x 1074, 3 x 107*, 5 x 107*, 103 MPa). The
dashed red line is an exponential function, while the other lines
show power-law behavior N(f) ~ ##, where f ranges from 2.2 to
2.5,2.8, and 3.1 (from bottom to top). The inset in (¢) shows N(7)
with p. = 107 on a log-log scale with both exponential and
power-law fits. The dashed-dotted curve in the inset is an
exponential function, while the power-law trend is illustrated by
the solid line. The average cell cycle time 7 = 7,,;, = 54 000 s, and
the other parameter values are taken from Table I.

interaction with other cells. At intermediate timescales
(0.017;, < t < 7, with 7 being the average cell cycle time),
A(t) exhibits subdiffusive behavior [A(#) ~ #*, with s < 1].
The signatures of the plateaus in A(7) (together with other
characteristics discussed later) in this time regime indicate
that cells are caged by the neighbors [see the left inset
in Fig. 5(a)] and consequently undergo only small

displacements. Such a behavior is reminiscent of a super-
cooled liquid undergoing a glass transition, as illustrated in
colloidal particles using direct imaging as their densities
approach the glass transition [57,58]. As 7 increases, the
plateau persists for longer times because of a decrease in the
outward stress, which slows the growth of the tumor. When ¢
exceeds 7, the average cell doubling time, the A(7) exhibits
superdiffusive motion, A(#) ~ t* (@ > 1). In order to deter-
mine @, we performed multiple simulations and calculated
A(t) for each of them by generating a large number of
trajectories. All the independent simulations show that A(¢)
has the characteristic plateau at intermediate times followed
by superdiffusion at long times in Fig. 5(b). From each of
these simulations, we determine «, whose distribution is
shown in Fig. 5(c). In all cases, we find that a is greater than
unity. The estimate from the distribution in Fig. 5(c) is
a = 1.26 + 0.05, where 0.05 is the standard deviation.

On long timescales, cells can escape the cage created by
their neighbors, as illustrated in the middle inset of
Fig. 5(a). Our observation of superdiffusion in A(r) at
long times agrees well with the experimental result
(a~1.40 +0.04) obtained for fibrosarcoma cells in a
growing tumor spheroid [33]. The onset of superdiffusive
behavior in A(7) shifts to earlier times as we decrease the
average cell cycle time [see Fig. 5(a)], implying that cell
division is the mechanism resulting in superdiffusion (see
below for further discussion of this crucial finding).

We provide another rationale for the robustness of the
long time superdiffusive behavior. This comes from exam-
ining the time-dependent changes in the invasion distance,
Ar(t) in Eq. (10). The finding that the invasion distance
does not increase as a function of time with exponent Ar «
{93 but rather at a higher exponent at the long time regime
necessarily implies that cells do not execute random walk
motion (see Ref. [33]). The dependence of Ar(¢) on ¢ in
Fig. 6 shows that, for t < 7., the invasion radius is
roughly constant. As cells divide, the tumor invasion
distance Ar(t) increases as = with & ~ 0.63 (which implies
that a = 1.26) for t > 7,,;,, a value that is not inconsistent
with experiments [33].

D. Theoretical predictions

In order to understand the role of cell growth and
apoptosis in the observed sluggish dynamics at intermedi-
ate times and superdiffusive behavior at long times, we
developed a theory to study the dynamics of a colony of
cells in a dissipative environment (Appendix C). The
interactions between cells contain both attractive (adhesive)
and excluded volume terms. Starting from the Langevin
equation describing the dynamics of the ith cell, and

. . . . kq .
incorporating the birth reaction, X—X + X, with the rate
constant k, (= 1/7) for each cell, and the apoptosis reaction

X +XE>X, with the rate k,, an equation for the time
dependence of the density p(k, 7) [Eq. (C3) in Appendix C]
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FIG. 5.

Frequency

Superdiffusive behavior in A(7) at long times. (a) The mean-square displacement [A(#)] of cells. From top to bottom, the

curves correspond to increasing average cell cycle time (z is varied from z,;, to 107, where 7,,;, = 54 000 s). Time taken for reaching
the superdiffusive regime increases by increasing z. The blue and red lines have slopes of 0.33 and 1.3, respectively. The subdiffusive
(superdiffusive) behavior corresponds to dynamics in the intermediate (long) times. The left and middle inset illustrate the “cage effect”
and “cage-jump” motion, respectively. The unit for the y-axis is gm?. (b) Fit of the mean-square displacement A(z) to t* for several
simulation runs. Each A(¢) plot is averaged over approximately 300 cell trajectories. The six A(f) plots consistently show a > 1.20 over
approximately 1800 cell trajectories. The plots are separated for clarity. (c) Distribution of a values from multiple independent
simulations. The mean value of a is 1.26, with a standard deviation of +0.05.

can be derived. The cell division and apoptosis processes
drive the system far from equilibrium, thus violating the
fluctuation dissipation theorem (FDT). As a consequence,
we cannot use the standard methods used to calculate the
response and correlation functions from which the ¢
dependence of A(z) can be deduced. To overcome this
difficulty, we used the Parisi-Wu stochastic quantization
method [59], in which the evolution of p(k, ) (w is the
frequency) is described in a fictitious time in which FDT is
preserved. From the analysis of the resulting equation
(Appendix C contains the sketch of the calculations), the
scaling of A(7) may be obtained as

A() = ([r(1) = x(0)?) ~ 172, (12)

In the intermediate time regime, z = 5/2, implying that
A(t) ~ t*/3. The predicted subdiffusive behavior of A(t) is
qualitatively consistent with simulation results. It is likely
that the differences in the scaling exponent between
simulations (2/z~0.33) and theoretical predictions
(2/z~0.80) in this nonuniversal time regime may be
due to the differences in the cell-to-cell interactions used
in the two models.

In the long time limit, the cell birth-death process [the
fourth term in Eq. (C3)] dominates the interactions between
cells. As aresult, we expect that the exponent 2/z should be
universal, independent of the forces governing cell motility.
Our theory predicts that z =3/2, which shows that
A(f) ~ t*/3, in excellent agreement with the simulations
[Fig. 5(a)] and experiments [33]. It is clear from our theory
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FIG. 6. The invasion distance Ar(¢) [Eq. (10)] as a function of
time. The exponent of the invasion distance, as indicated by the
dashed line, determined using Ar 1, is £ ~# 0.63. Note that this
value and the one extracted from experiments [33] are in
reasonable agreement. The inset shows Ar(z) for ¢ > 7., for
average cell cycle time 7 = lz;,.

that the interaction-independent biologically important
birth-death processes drive the observed fluidization during
tumor (or tissue) development, resulting in superdiffusive
cell motion at long times. The underlying mechanism for
obtaining superdiffusive behavior is that cells must move
persistently in a given direction for a long time, leading to
polarized tumor growth, and ultimately resulting in an
invasion driven predominantly by birth. We provide addi-
tional numerical evidence for this assertion below.

E. Dependence of relaxation times on cell cycle time

We first characterized the structural evolution as the
tumor evolves. In order to assess the spatial variations in the
positions of the cells as the tumor grows, we calculated
the pair correlation function using

o) = s S 0= =7l (13

i j#

The pair correlation functions (Fig. 7), at different cell cycle
times (7), show that, at longer cell cycle times, the cells are
packed more closely. There is a transition from a liquidlike
to a glasslike structure as 7 is increased, as indicated by the
peaks in g(r).

To further quantify the fluidization transition driven by
cell birth-death processes, we calculated the isotropic self-
intermediate scattering function F,(q.t) = (e T(0)-r(0))
at |q| =2xz/rg, where ry is the position of the first
maximum in the pair correlation function (see Fig. 7).
The average is taken over all the initial cells, which are alive
during the entire simulation time and the angles of q. We
note that F(g,t) exhibits a two-step relaxation process
[Fig. 8(a)], characterized by two timescales. The initial

60 T T T T T T T T

= T7=0.2Tmin
50 = T7=0.5Tmin 1
= T=Tmin
40 - B
T=10Tmin
T 30t ]
[~
20 - 1
10+ 4
0 [ L \ L

0 10 20 30 40 50 60 70 8 90
r(um)

FIG. 7. Pair correlation function at four different cell division
times (7): 0.2z, (red), 0.57,,;, (green), 7, (blue), and 107,
(cyan). The cells are packed more closely at longer cell cycle
times as reflected by the sharper peak for the cyan line compared
to the others. The distance r at which g(r) approaches zero is
considerably smaller for 7 = 107,;,. The distance at which the
first peak appears is approximately 2R, ~ 10 ym (Table I), which
implies that, despite being soft, the cells in the interior are densely
packed, as in a body centered cubic lattice.

relaxation time, corresponding to the motion of cells in a
cage formed by neighboring cells, depends only weakly on
the cell cycle time. The second relaxation time (z,),
extracted by fitting F,(g,t) to an exponential function
[F(q.t) = age"/%; see colored solid lines in Fig. 8(a)],
depends strongly on the average cell cycle time. As in the
relaxation of supercooled liquids, z, is associated with the
collective motion of cells leaving the cage [60,61]. As
the average cell cycle time is reduced, 7, decreases [see
Fig. 8(b)], and the F(q,t) begins to approach a single
relaxation regime, as expected for a normal fluid. The
second relaxation process in F(q,t) [Fig. 8(a)] can be
collapsed onto one master curve by rescaling time by 7,
resulting in the independence of F (g, ) on the cell cycle
time [Fig. 8(c)]. We surmise that the cage relaxation is
driven by the same mechanism (the cell birth-death
processes) that gives rise to the superdiffusive behavior
in A(r).

F. Diffusion of tracer cells

Elsewhere [27], using a two-dimensional model, A(7)
was computed for cells, as well as tracer cells. In that study,
using periodic boundary conditions, the choice of birth and
death rates was such that in the long time limit homeostasis
was always reached where the birth and death of cells were
balanced. It was found that A(¢) for live cells (those that
can be born and die) show a plateau at intermediate times,
followed by normal diffusion [A(z) ~ ¢] at long times. In
contrast, A, (¢), the mean-square displacement computed
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Self-intermediate scattering function at different cell cycle times. (a) The self-intermediate scattering function, F(q, ), shows

that relaxation occurs in two steps. From left to right, the second relaxation for F(q, 7) slows down as 7 increases (from 0.5z, t0 57ip)-
The solid lines are exponential fits. The upper inset shows a zoom-in of the dashed-line rectangle at long timescales. (b) The second
relaxation time 7, obtained from (a) as a function of cell division time (rescaled by 7,,;,). The red solid line is a linear fit (z, < 0.697).
(c) The rescaled self-intermediate scattering function F(q,t)/a, as a function of the rescaled time t/z,.

for tracer cells (ones that have all the characteristics of cells,
except that they are alive throughout the simulations and do
not grow or divide) shows no caging effects but grows
linearly with time [27], suggestive of normal diffusion. In
light of this dramatically different behavior reported in [27],
we performed simulations using our model by including
100 randomly placed tracer cells. The interactions between
the tracer cells with each other and the cells that undergo
birth and death are identical. The calculated dependence
of A, (r) for tracer cells, as a function of 7 [Fig. 9(a)],
is qualitatively similar to that for cells [compare Figs. 5(a)
and 9(a)]. In particular, at varying values of z, A,.(7)
exhibits a plateau, followed by superdiffusive behavior,
A, (t) ~t%, at long times. However, we find that
a; (> 1.4) depends on 7, in contrast to the universal
exponent for cell dynamics. Similarly, F(q,t) for tracer
cells also displays two-step relaxation for the three values
of 7 investigated, as shown in Fig. 9(b). Interestingly, the

values of the first relaxation times are longer than for
the corresponding dynamics associated with the cells. The
results in Fig. 9(b) show that the dynamics of tracer cells is
qualitatively similar to that calculated for the actual cells
[see also Fig. 8(a) for comparison].

G. Heterogeneity during tumor growth

The effect of the glasslike or liquidlike state of tumor
growth is illustrated by following the trajectories of
individual cells in the growing tumor. Figures 10(a)
and 10(b) highlight the trajectory of cells during a time
of approximately 3 days for the average cell division time
of 157,,;, and 0.257,;,, respectively. In the glasslike phase
(intermediate times corresponding to ¢/7 <1 for z=157;,),
the displacements are small, exhibiting caging behavior
[Fig. 10(a)], resulting in the localization of the cells near
their starting positions. On the other hand, cells move long
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FIG.9. Dynamics of the tracers at different cell cycle times. (a) Time dependence of A(7) of tracer cells at different cell division times
7. Fits to A(7) at intermediate and long times are shown in the inset. (b) The self-intermediate scattering function F(q, t) for tracers.
Exponential fits to the decay of tracer F,(q,t) are shown by solid lines.

distances and show signatures of persistent directed motion
at the shorter cell cycle time in the long time superdiffusive
regime, corresponding to #/7 > 1 [see Fig. 10(b)]. These
observations suggest that the anisotropic growth of cells,
manifested largely in the evolution of cells at the periphery
of the tumor, depends on the cell growth rate, a factor that
determines tumor virulency.

To quantify spatial heterogeneity, we divided the tumor
into two regions—interior and periphery. We note that such
a division is not applicable in a system with periodic
boundary conditions [27]. After obtaining the invasion
distance Ar(t=tg) [see Eq. (10)], we calculated the
distance from the center of mass for the colony of all
the initial cells that are alive at 5. Let us call this vector 7,.
We grouped 7; into two distinct categories: the interior
region if |7;(i)] < 0.4Ar(t = tz) and the boundary region
if |7;(i)] > Ar(t = t5) — 2(R;). The average radius of all
the cells in the tumor is denoted by (R;). We chose
tgp = 350 000 s = 6.487. With this choice of 7z, we obtain
good statistics, allowing us to glean both the subdiffusive
and superdiffusive behavior from the time dependence of
A(t) (see Fig. 11). Once the initial cells are classified in this
manner, we obtained their entire trajectory history and
calculated their A(z). In Fig. 11, a plot of A(z) for the
interior and boundary cells is shown. The dynamics
associated with interior cells is subdiffusive through their
entire lifetime, while the boundary cells show subdiffusive
motion at intermediate times and superdiffusive motion at
long times. Interestingly, the cells at the boundary also
show the intermediate glassy regime, which is a priori hard
to predict.

Because the nature of cell movement determines cancer
progression and metastasis [62], it is critical to understand
how various factors affecting collective cell migration
emerge from individual cell movements (Figs. 10 and 12).
Insights into cell migrations may be obtained by using
analogies to spatial heterogenous dynamics in supercooled
liquids [63,64]. In simple fluids, the distribution of particle

displacement is Gaussian, while in supercooled liquids
the displacements of a subset of particles deviate from the
Gaussian distribution [63]. In Fig. 12(a), the van Hove
function of cell displacement (or the probability distribution
of step size) is shown. The single time step distance covered
by a cell is defined as |5r;(51)| = |r;(t + 6t) — ri(¢)|- By
normalizing ot by the average cell cycle time, i.e.,
ori(8t/t = 0.0074), we obtain a long-tailed 6r probability
distribution [P(6r)]. The distribution P(5r) has a broad,
power-law tail cutoff at large values of or, which depends on
the cell cycle time. As we approach the glasslike phase for a
longer average cell cycle time, P(5r) is suppressed by an
order of magnitude over a wide range of or. Interestingly, we
do not observe an abrupt change in the behavior of P(6r) as
the average cell cycle time is changed. The transition between
glasslike and liquidlike regimes occurs continuously. To
further analyze the displacement distribution, we fit the van
Hove function for squared displacements [P(5r?)] at normal
cell division time (z,,;,) to both the exponential and power
law. The distribution is considerably broader than the
Gaussian distribution (see Fig. 13 and Table II), providing
one indication of heterogeneity [65].

Cell-to-cell phenotypic heterogeneity is considered to be
one of the greatest challenges in cancer therapeutics
[66,67]. Within the context of our model, spatiotemporal
heterogeneity in dynamics can be observed in tissues by
analyzing the movement of individual cells. While the
simulated time-dependent variations in the average mean-
square displacement are smooth, the movement of the
individual cells is not [see Fig. 12(b)]. Cells move slowly
and periodically undergo rapid “jumps” or hops similar to
the phenomenon in supercooled liquids [63,64]. The
squared displacement of individual cells [see Fig. 12(b)]
vividly shows the heterogeneous behavior of different cells.

H. Polarized tumor growth

From our simulations, we constructed a spatial map of
the velocities of the individual cells in the tumor. Using
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FIG. 10. Trajectories displaying spatial heterogeneity. (a) Trajectories (randomly chosen from the whole tumor) for slowly growing
cells are shown. The cell cycle time is 157,,;,. Dynamic arrest due to caging in the glasslike phase is vividly illustrated. (b) Trajectories
for rapidly growing cells with cell cycle time 7 = 0.257,,;,. Displacements of the cells are shown over 3 days, representing the initial
stages of tumor growth in (a) and (b). Two representative trajectories (time dependence of the x — z and x — y coordinates) for the labeled
cells are shown on the right in (a) and (b). Length in (a) and (b) is measured in units of um. The two colored spheres in (a) and (b) show

the approximate extent of the tumor.

these maps, we characterized the spatial heterogeneity in
the dynamics in order to elucidate regions of coordinated
activity in the movement of cells. Figure 14(a) shows a
snapshot of the spatial map of the single cell velocities. The
velocity map, which spans more than eight orders of
magnitude, reveals that there are cell-to-cell variations
in the dynamics. More importantly, it also reveals the
existence of spatial correlations between cell dynamics. In
the tumor cross section [Fig. 14(b), Video 3], faster moving

cells are concentrated at the outer periphery of the tumor.
By calculating the average magnitude of cell velocity as a
function of radius, we show in Fig. 14(c) that faster moving
cells are located at the outer periphery of the tumor
quantitatively. We calculate the average velocity of cells
at different radii of the tumor using

_ Zv;6[r — (|I_éCM - ?,-D]
Z8[r = (IRey — 7i|)]

(v(r)) (14)
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FIG. 12. Quantifying spatial heterogeneity in tumor cell
growth. (a) Probability distribution of distance r (in units of
um), moved by cells over 6 = 100, 400, and 6000 s, respectively,
for varying average cell cycle time 7 = 0.257;,, 17, and
157,,;,.6t is normalized by 7 to 0.0074. (b) Time-resolved squared
displacements A(f) (in units of ym?) of individual cells in a
model for a growing tumor (z = 7,,;,). The average, shown as a
dashed line for approximately 800 such individual trajectories, is
not meaningful because of dynamic heterogeneity.

5r?

FIG. 13. The probability distribution P(5r(#?)) of cell displace-

ments [6r(t;)? = |r(t; + t) — r(#;)]?, in units of ym?] at 6t =
100 s is shown. Cell trajectories until ¢+ = 57 are analyzed at
7 = l7y,. The histogram was constructed by varying ¢; in 67(t;)?
for over 400 cell trajectories and after obtaining approximately
10° data points for 6r(¢;)?. For comparison, the inset shows fits to
both the exponential (dashed line) and power law (solid line).
P(5r%) ~ A x (6r2)8 fits the trend best, where A is a constant and
B is about 0.9. The striking non-Gaussian behavior, with fat
power-law tails, is one indication of heterogeneity. Goodness of
fit can be assessed using the parameters listed in Table II.

Arrows indicating the velocity direction show that cells in
the periphery tend to move farther away from the center of
the tumor as opposed to cells closer to the center of the
tumor, whose direction of motion is essentially isotropic.
This prediction agrees well with the experiments [33],
which showed that cells at the periphery of the tumor
spheroid move persistently along the radial direction,
resulting in polarized tumor growth.

Mean angle @ between cell velocity and the position
vector with respect to the center of the tumor plotted in
Fig. 14(d) further illustrates that cell movement becomes
persistently directed outward for cells closer to the outer
layer of the tumor. To calculate the radius-dependent
average polarization in cell velocity, we first define a
vector pointing from the center of mass of the tumor to
the cell position ¢; = 7; — Ry [see the green arrow in the
inset of Fig. 14(d)]. The angle & [see the inset of Fig. 14(d)]
between each cell velocity (orange arrow) and the vector
(green arrow) from the center of mass to the tumor periphery
can be calculated from cos(8); = ¢; - v;/(|¢]|v;]). The
average of this angle as a function of radius is calculated
using

_ I cos(60[r]),8(r = ([Rey = 7))

o Ol = = 5 = (R = 7))
iO\r = \[Rem — 1

. (15)

The results are presented in Fig. 14(d) in the main text. The
distribution of the 0 angle at different distances (r) [see
Fig. 15(a)] also illustrates that cell movement is isotropic
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TABLE II. The goodness of fit in the inset of Fig. 13. The
R-square value (middle column) and the root-mean-square error
(RMSE) (last column) for power-law and exponential fits are
provided.

Fit type R? RMSE
Power 0.93 2.4 x 107
Exponential 0.57 5.7 x 1073

close to the tumor center, while they move outward in a
directed fashion (see the peak of the histogram in blue)
at the periphery of the tumor. To quantify the heterogeneity
in cell velocity, we plot the probability distribution of the
velocity magnitude (normalized by the mean velocity (v))
P(|v|/{v)) [Fig. 15(b)] accessible in experiments using
direct imaging or particle image velocimetry methods
[55,56]. There is amarked change in the velocity distribution
as a function of cell cycle time. At the longer cell cycle
time (z = 157,,,), corresponding to the glasslike phase,
P(|v|/(v)) distribution is clustered around smaller values of
|v|/(v), while quickly decaying to zero for higher velocities.

(a) In[Ve_Io?ity(;: m/s)]

AI

r(um)

150

For the shorter cell cycle time, the velocity distribution is
considerably broader. The broader velocity distribution
indicates the presence of more invasive cells within the
tumors characterized by high proliferation capacity.

I. Consistency with experiments

We show here that the minimal model captures the three
critical aspects of a recent single-cell resolution experiment
probing the invasion of cancer cells into a collagen matrix
[33]: (i) Ensemble-averaged mean-square displacement of
individual cells exhibits a power-law behavior at long
times [A(7) ~ %, with a ~ 1.40 £+ 0.04 from experiments,
compared with simulation results in Fig. 5(a), with
a=1.26 £0.05], indicating that, on average, directed
rather than random cell motion is observed. (ii) Cells
exhibit distinct topological motility profiles. At the sphe-
roid periphery, cell movement is persistently along the
radial direction, while stochastic movement is observed for
cells closer to the center. Such spatial topological hetero-
geneity is well described as arising in our model from
pressure-dependent inhibition (see Figs. 10, 12, and 14).
(iii) The highly invasive spheroid boundary (deviating from

In[Velocity(um/s)]

0 50 100 150

FIG. 14. Heterogeneity in the tumor cell dynamics. (a) Instantaneous snapshot of a collection N = 1.3 x 10* cells at approximately
3 days with 7 = 0.257,;,. Colors indicate the different velocities of the individual cells (in #m/s). (b) Cross section through the clump of
cells shown in Fig. 14(a). Arrows denote the direction of velocity. (c) Average speed of the cells as a function of the tumor radius at
different z. Observation time is at 18.57, 14.87, and 11.17 for 7 = 0.257;,, 0.57;n, and 1z,;,, respectively. (d) Mean angle 6 (see the
inset figure) between cell velocity and a line through the center of the tumor to the periphery as a function of the tumor radius at different

7. Observation time is the same as in (c).
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FIG. 15. Heterogeneity in the tumor cell dynamics. (a) Distri-
bution of the angle (0) at different distances (r) from the tumor
center at approximately 3 days (7 = 0.257,;,). (b) Probability
distribution of the cell speed normalized by mean cell velocity (v)
at two different cell cycle times at the long time regime (¢ = 57).

what would be expected due to an isotropic random walk)
as experimentally observed is qualitatively consistent with
simulation results (see Fig. 6).

A salient feature of the dynamics of living cells is that
birth and death processes break number conservation,
having consequences on cell collective behavior [68]. To
account for these processes leading to the superdiffusive
behavior at long times, we establish a field theory based on
stochastic quantization that accounts for the physical inter-
actions of the cells, as well as birth and death processes.
Simulations and theory suggest a mechanism of the plausible
universality in the onset of superdiffusive behavior in tumor
growth and unrelated systems. Remarkably, the theory
predicts the dynamics of invasion at all times that are in
good agreement with recent experiments [33].

J. Onset of superdiffusion depends on cell division time

In previous studies [26,27], fluidization of tissues due to
cell division and apoptosis was observed at the homeostatic

state. Our work shows that a glass-to-fluid transition is
driven by cell division at nonsteady states and under free
boundary conditions, relevant during the early stages of
cancer invasion. The transition from glasslike to fluidlike
behavior is determined by the average cell division time.
Superdiftusion of cells in the mean-square displacement
because of highly polarized tumor growth is observed on a
timescale corresponding to the cell division time with a
universal scaling exponent a = 1.26 & 0.05.

K. Comparison with previous studies

The startlingly contrasting results that we find for the
dynamics of tracer cells and live cells compared to the
results reported elsewhere [27] could arise for the following
reasons: (i) In our simulations, we use free boundary
conditions and the tumor grows continuously (with birth
rate being always higher than the death rate). The effect of
a free boundary is particularly pronounced at the periphery
of the tumor, where the cells undergo rapid division.
(ii) Imposing a birth rate that depends on the local cell
density (Ref. [26]) or on the number of nearest neighbors as
in Ref. [27] eventually results in a homeostatic state, where
birth and death are balanced. The superdiffusive behavior
observed in our study would not be present, when there is a
possibility of reaching a homeostatic dense liquidlike state.
In our model, this situation could be mimicked by arbi-
trarily increasing the cell cycle time. For example, when
cell cycle times are very long, 7 > ~107,,,, the super-
diffusive MSD exponent in the long time regime begins
to deviate from approximately 1.3 to lower values [see
Fig. 5(a)]. (iii) Even in our model, simple diffusion at long
times is obtained if the death rate is modified. In Fig. 16,
normal diffusion (red symbols) is observed at long times
when the death rate is modified to

ki = [1/(7min) IN()/[N(0) + N(2)], (16)

where N(7) and N(0) are the tumor size at time 7 and
t = 0, respectively. At r = 0, cells have a higher birth rate,
k, = 1/(7min), compared with the death rate (k;,/k, = 0.5).
As the tumor grows, the death rate becomes higher, and a
homeostatic state is reached once the birth and death rates
are balanced, giving rise to normal diffusion, as found in
Refs. [26,27]. Therefore, the superdiffusive behavior can
only be found if birth and death processes are not balanced,
the regime that is the focus of our study. Most importantly,
if there is a mechanism for reaching homeostasis by
balancing birth and death rates or making the cell division
time arbitrarily long, we predict that normal diffusion
would result, as shown here using Eq. (16) and previously
found elsewhere [26,27].

L. Lack of time translational invariance

The field theory shows that the dynamics is not
time translationally invariant, which is supported by
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FIG. 16. The mean-square displacement [A(r)] of cells
when cell death rate depends on time. The red circles show
the results obtained by averaging over initial cell position,
A(t) = ([r(t) — r(ty = 0)]?). The green squares show the results
calculated using the time shift average, A(r) = ([r(t; +1)—
r(t;)]?). The solid lines show power-law fits to the simulation
data. Normal diffusion results from the use of Eq. (16) lead to
homeostasis at long times.

simulation of A(r). Figure 17 shows two different methods
used to calculate A(r): (i) the definition of MSD,
A(t) = ({1/[N()]}Z[ri(¢) = r;(0)]?), which always uti-
lizes the original position of cells (at the initial simulation
time) [r(0)]. Here, N(z) is the number of initial cells
and (...) is the average over multiple simulation runs;
Gi) A(r) = ([1/(N)IZS ™1 (t; + 1) = r(1,)]7), a time shift
average (varying t;), used routinely in simulations of
periodic systems with N, being the number of possible
time intervals for a given 7. Here, (...) denotes average
over initial cells. In generating the results in Fig. 17, we
chose tg = 500 000 s.

These two methods for computing A(7) produced differ-
ent results, as shown in Fig. 17. The inequivalence of the
two methods in obtaining A(#) shows that the system with
free boundary conditions violates time translational invari-
ance. The intermediate regime with subdiffusive behavior
(red circles) using method (i) disappears when the second
method (ii) is used to compute the A(7) (green squares). It is
also the reason why we focused on initial cells for A(¢)
calculations. In calculating A(#) using the method (ii),
which is commonly employed in simulations of periodic
systems, a large amount of statistics is extracted for the
superdiffusive regime (as it has a larger time range, on the
order of approximately 10° s). Therefore, when we average
A(t) over the various time intervals, the beginning time
regime (which is comparatively short, approximately 10* s)
is suppressed. It should be noted, however, that the time
shift averaged method of computing A(z) also clearly

3L —
10 O Average over tO_O

[]] Time shift average
=—(.000035*t"%
102 F |==0.000018*¢'3

10 10? 10° 10* 10°

Time(s)
FIG. 17. Mean-square displacement A(¢) of cells as a function
of time. The red circles show the results obtained by averaging
over the initial cell positions, A(z) = ([r(¢) — r(0)]?). The green
squares are the results under the time shift average, A(r) =
([r(t; + t) — r(#;)]?). The solid lines show the power-law fitting

of the simulation data. The long time superdiffusive behavior is
evident in both plots. Here 7 = 7,;,.

shows evidence for superdiffusive behavior over three
decades of time (Fig. 17).

V. CONCLUSIONS

Heterogeneity is a hallmark of cancer [69]. It is difficult
to capture this characteristic of cancers in well-mixed
models that exclude spatial information. An important
signature of cell dynamic heterogeneity—Ilarge variations
in the squared displacement of cells in the tumor—is
observed in our simulations. We find a broad velocity
distribution among tumor cells driven by cell growth rate.
The formation of spatial niches, with the tumor periphery
and center as topologically distinct, is characterized by
differences in proliferative and cell signaling activities.
Such a distinct behavior, alluded to as the driving factor
behind intratumor heterogeneity (ITH) [70,71], is not well
understood. Our results predict that the pressure-dependent
inhibition of cell growth is the critical factor behind the
development of distinct topological niches, implying that
the dynamics of cells is dependent on the microenviron-
ment [70,71]. Cells closer to the center of the tumor
spheroid are surrounded by many other cells, causing them
to be predominantly in the dormant state, and they can
move in random directions, while cells closer to the
periphery can divide and move in a directed manner by
pushing against the extracellular matrix, thus promoting
tumor growth and invasiveness. We provide experimentally
testable hypotheses on the signatures of heterogeneity—the
onset of ITH could occur at very early stages of tumor
growth (at the level of around 10000 cells).

021025-15



ABDUL N. MALMI-KAKKADA et al.

PHYS. REV. X 8, 021025 (2018)

Although the context of our work is rooted in under-
standing tumor growth, we expect our model to be relevant
to the study of soft glassy materials. The motion of cells in
our model is surprisingly consistent with the complex
motion of bubbles in a foam, also shown to be superdiffusive
36]] with the MSD exponent of a = 1.37 £ 0.03, consistent
with both our theoretical predictions (a =~ 1.33) and simu-
lation results (¢ = 1.26 + 0.05). The bubbles are charac-
terized by birth and death processes and pressure-dependent
growth, which we predict to be the driving factors behind the
superdiffusive behaviors observed in these diverse systems.
The emergence of underlying similarities in the motion of
constituent particles between living systems, such as cells,
and soft glassy materials, such as foams, suggests that many
of the shared, but as of yet unexplained dynamic behaviors
may emerge from a common underlying theme—an imbal-
ance in the birth and death processes and pressure-dependent
growth inhibition.
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APPENDIX A: SIMULATION TEST

1. Effects of random forces

The neglect of random forces, which should be taken
into account to satisfy the FDT, might seem like a drastic
simplification. There are, however, two considerations.
First, the tumor growth model involves birth and apoptosis.
Hence, it behaves like an active system. Indeed, the theory
outlined in Appendix C shows that, under these conditions,
FDT is not satisfied, forcing us to adopt the stochastic
quantization methods to compute response and correlation
functions (Fig. 19). Second, from practical considerations
we note that the cellular diffusion constant is 107* ym?/s
or smaller [29], resulting in only small displacements for a
large fraction of cells.

In order to verify that the contributions to the dynamics
arising from the random noise is small, we modified Eq. (7)
to include the random forces,

-
= i

. F <
= [T I ).

(A1)

t(s)

FIG. 18. Mean-square displacement A(#) with (blue) and
without (red) random noise. The slopes obtained from the long
time limit are both 1.3 (dashed green). The two curves are almost
identical, thus justifying the neglect of the random noise [second
term in Eq. (A1)] in the simulations.

Ky 0y 00y I’\\

L

Z — k o, 0, Vv 'k,m,mI + ~ ./
\\~__’/,

C=GOG3 =

FIG. 19. The diagrams correspond to perturbation expansions
of the theory [Eq. (C3)], in which the dynamical equations for the
density field are expressed in fictitious time. The self-energy term
(¥) is obtained by contracting the two density p fields. The first
diagram is the two loop contribution generated from the first
order term (which contains two p fields) in the time-dependent
equation for the density fields. The second diagram, with a one
loop contribution from the second order term (which contains
three p fields), resulting in the correction to w? + {Cok*U(k)—
(k, — 2k, Cy)}?, does not have any new momentum dependence.
Hence, only the first term is significant in producing the scaling
results.

where kp is the Boltzmann constant; 7 is the temperature;
and ¢ is white noise with zero mean and variance,
(£i(6)¢;(¢)) = 6(t — t'). The corresponding diffusion con-
stant kgT/y"* is small. Thus, inclusion of random force
has no consequence on the dynamics of tumor evolution.
The results for A(r) as a function of ¢ obtained using
Egs. (7) and (A1) are identical (Fig. 18).

APPENDIX B: VIDEOS

In order to visualize the dynamic growth of the tumor, we
generated videos from the simulations. They demonstrate
vividly the polarized growth of the tumor, which we have
quantified using various measures in the main text.
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‘Z J lifetime
1.000e+01 1.5e+5 I ‘3!e|+|5| i JL?&*S 5.040e+05
VIDEO 1. 3D growth of tumor. This video shows the three-

dimensional growth of the tumor over approximately 8 days.
Each frame is at 1000 s. The cell cycle time 7 = 7,,;,. The color
map indicates the lifetime of the cells. Newborn cells are shown
in blue and older cells that have lived longer are in red (the color
bar in the video shows the cell lifetime in seconds). Cell division
and death events are explicitly depicted.

lifetime

0.000=+00 1.6e+5 3.2e+5 49245 6.500e+05

VIDEO 2. Cross section view through the growing tumor
spheroid. This video illustrates an alternate view of the growing
tumor shown in Video 1. Cells with longer lifetimes are mostly
localized near the center of the tumor, with some of them moving
to the periphery. Newly born cells are mostly located in the
periphery, and division events are amplified in the periphery
compared to the center of the tumor. The color bar shows the cell
lifetime.

In[Velocity(zm/s)]

4I

VIDEO 3. Moving clip through a tumor showing velocity
heterogeneity. This video visualizes the velocity heterogeneity
within the tumor. The color map indicates the speed of cells
(shown in log scale) and the direction of velocity is indicated by
an arrow. The video begins with a snapshot of the tumor after
approximately 3 days of growth at 7 = 0.257,,;;,. A clip moving
through the tumor shows the velocity distribution of cells over
different slices. It is clear that cells move slowly closer to the
center, while faster moving cells are mostly in the periphery. The
direction of the velocity is more randomly oriented in the tumor
center but is mostly polarized outward as the periphery is
approached.

APPENDIX C: THEORY

The behavior of the mean-square displacement [A(7)],
especially the time dependence of A(r) at intermediate and
long times, can be theoretically obtained for the tumor
growth model, mimicking the one used in the simulations.
We consider the dynamics of a colony of cells in a
dissipative environment with negligible inertial effects.
The interaction between cells is governed by adhesion
and excluded volume repulsion. The equation of motion for
a single cell i is

or; N
o ;VU[W) -r;(0)] +n:(r),  (CI)

where U contains the following form of repulsive inter-
actions with range 1 and favorable attractive interactions
between cells with range o:

Ulr(i) — r(j)] = W(;—{[(r(i)—r(ﬂ)z]ﬂf}
TT.
K N1 2
- e lEOi)2?) ()
e .
(276?)3/?

v and x above are the strengths of the repulsive and
attractive interactions, respectively. The x parameter in
Eq. (C2) mimics adhesion between cells. The noise [7; in
Eq. (C1)] is uncorrelated in time.
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The simplified form for U, which captures minimally the
interactions between cells but differs from the more
elaborate model used in the simulations, allows us to
obtain analytical results for A(z) as a function of . In
terms of the density field of a cell, ¢;(r, ) = 8[r — r;(7)],
a closed form Langevin equation for the density,
¢(r,t) = > .¢;, can be obtained using the approach intro-
duced by Dean [72]. In order to study tumor cell dynamics,
we extend the model phenomenologically to describe both
cell division and death, and we introduce a noise term that
breaks the cell number conservation. These crucial features
needed to describe tumor growth can be investigated using
the Doi-Peliti (DP) formalism [73,74], introduced in the
context of reaction-diffusion processes. A related approach
was used recently by Gelimson and Golestanian [75] to
describe collective dynamics in a dividing colony of chemo-
tactic cells.

We use a scheme to study the interplay between
stochastic growth and the apoptotic process, and we use
it to derive a Lange\]/{in type equation for logistic growth.
The birth reaction X—X + X occurs with the rate constant

k, for each cell, and the backward reaction (apoptosis) X +

x2X occurs with rate kj,. By incorporating birth and
apoptosis, and assuming that the density fluctuates around
a constant value, ¢(r,t) = Cy+ p(r, ), we obtain the
approximate equation for the density fluctuation, which
in Fourier space reads

Ip(k.1)
ot

=-Cok*U(k)p(k, 1) + (k, — 2k, Co)p(K. 1)
4 / dq(~q - K)U(Q)p(q.0p(k - q.1)

—kp / dap(q,1)p(k —q) + 1/ k,Co + ki C3f -

(C3)

We derived Eq. (C3) by expanding the density to lowest
order in p/C, nonlinearity. The noise f, satisfies
(folr, ) fp(x', 1)) =6(r—=r)6(t—1). In the hydrody-
namic, k = 0 and ¢t — co limit, the first and third terms
in the rhs of Eq. (C3) vanish and, hence, the scaling
behavior of A(7) at long times is determined solely by the
death-birth terms.

The scaling of A(¢) can be obtained by treating the
nonlinear terms in Eq. (C3) perturbatively using the Parisi-
Wu stochastic quantization scheme [59,76,77], which is
needed because the FDT is not satisfied in Eq. (C3) because
of the cell birth and death processes. In order to outline the
essence of the theory, let us consider the probability
distribution corresponding to the noise term, given by

dPk dwl

ngf(p(k,w)f(p(—k’ —o)|.

(C4)

P(f¢)(k,a)) x exp [—

By reexpressing P(f,(k,®)) in terms of P(p(k,w)), a
Langevin equation of motion in the fictitious time 7, may
be derived, in which FDT is satisfied. Consequently, in
the 7, — co limit, the distribution function P(p(k,®))
exp (— S(k,w)), where an expression for the effective
action S(k, w) is derivable from Egs. (C3) and (C4). Using
this formalism, the Green’s function can be obtained using
perturbation theory by solving the Dyson equation,

G =[G + 2(k, 0, @), (C5)

where Wy, is the frequency related to 7, and G ! =iw, +
{1/[2(kyCo+ky CY)} (@? +{Cok* U (k) = (k, =2k, Co) }).-
A diagrammatic representation of the self-energy
term Z(k,w, w, ) is shown in Fig. 19 to one loop order.
We obtain (k. w,w,,) ~ [{(d”ky)/[(22)°]} [(dan) / (2)
[(do,,)/(2m)]VVGyCo, where the vertex term is of
the form V={1/[2(k,Co+k,C3)]}({iw+Cok*U(k)—
(ka=2kyC,) H (=K1 K)U(ky) =kp } + {iw; +CokiU(ky)—
(ko =2k, C,) H(—k1-K)U(=k)~ky } +{iw + Coki U k)~
(ky=2k,Co) H{ (=K1 (k—kq))U(k—ky)—k,}), the corre-
lation Cy = G(Gj, and D is the spatial dimension. After
computing the self-energy to second order in nonlinearity,
Eq. (C5) can be written as

G (k. 0, ;) = —ia,, —l—ﬁ[mz] +

where D = k,C, + k;,C3. The above equation allows us to
determine an effective coefficient D from G~!(k,0,0),

ﬁ [ngfkﬂ =

(W) + 2(k.w.0,),  (C7)

2(Dy)

with v = CyU(k). In obtaining Eq. (C7), needed for
calculating the scaling of A(¢) in the intermediate time,
the strength of the interactions are such that Cok’U(K)
dominates over (k, — 2k, Cy). Expanding v about v and
D around D, and noting that the renormalization of v
dominates, we write, using Av = v — v,

1
2 _
Avk® = —Z(k,a),a)rf).

2uk? (C8)

In the spirit of a self-consistent mode coupling theory, we
now replace v by Av in the self-energy term X(k, w, o ),
and we use G, as given by Eq. (C6), and the correlation
function C = GG*, as follows from the FDT. According to
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scale transformation, w ~ k%, @, ~ K2 G~k %, C~ k%,
and the vertex factor V ~ k2. The self-energy term in
Fig. (19) can be written as X(k,w, o, )~ [{(d"k’)/
D / / R
[(27)]}(de)/(22)][(de, )/ 27)]VVGC (Fig. 19 pro-
vides a diagrammatic representation of the theory). By
carrying out the momentum count of X(k,w, a)Tf), and

noting that vk* ~ k%, we find 2(k, @, @, ) ~ k”~***. Using

Eq. (C8), we obtain k*+2 ~ kP=3+4 leading to z =1+ (D/2).
The scaling of A(7) at intermediate and long times may
be gleaned using the relation C = (1/w, /)Im G. Assuming

dynamic scaling holds, the single cell mean-square dis-
placement should behave as

A(r) = ([r(r) —=x(0)?) ~ 2= = 12, (€9)

In 3D, a =%=0.8, implying that A(z) should display
subdiffusive behavior. The theoretical prediction is in
accord with the behavior of A(7) in the caging regime.
In the long time limit, the nonlinearity due to death-birth
dominates over mechanical interactions [x U(k)]. A sim-
ilar procedure, as mentioned above, produces the dynamic
exponent z = D/2. In this regime, a = 1.33, implying
superdiffusive motion, a prediction that is also in agreement
with our simulations and experimental results [33]. Thus,
the theory explains the simulation results, and by extension
the experimental data, nearly quantitatively.
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