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Perceptual Biases in Font Size
as a Data Encoding

Eric Alexander, Chih-Ching Chang, Mariana Shimabukuro,
Steven Franconeri, Christopher Collins, Member, IEEE, and Michael Gleicher, Member, IEEE

Abstract—Many visualizations, including word clouds, cartographic labels, and word trees, encode data within the sizes of fonts. While
font size can be an intuitive dimension for the viewer, using it as an encoding can introduce factors that may bias the perception of the
underlying values. Viewers might conflate the size of a word’s font with a word’s length, the number of letters it contains, or with the
larger or smaller heights of particular characters (‘o’ vs. ‘p’ vs. ‘b’). We present a collection of empirical studies showing that such
factors—which are irrelevant to the encoded values—can indeed influence comparative judgements of font size, though less than
conventional wisdom might suggest. We highlight the largest potential biases, and describe a strategy to mitigate them.

Index Terms—Text and document data, cognitive and perceptual skill, quantitative evaluation.
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1 INTRODUCTION

W ITH the growing amount of textual data available to re-
searchers, methods of visualizing such data are of increas-

ing importance. Text visualizations support analysts in many tasks,
including forming a gist of a collection of documents, seeing
temporal trends, and finding important documents to read in detail.
One common method for encoding data using text rendering is to
vary the font size. The importance and impact of font size as an
encoding can be seen in a wide variety of contexts, from word
cloud applications [1], [2], [3], to cartographic labeling [4], [5], to
a number of different hierarchical visualization tools [6], [7].

However, there has been some question of how effective
people are at judging font size encodings [8]. Such concerns
arise in part because there are many ways in which words vary
with one another outside of font size. In particular, two words
with the same font size can vary tremendously in their shape.
Longer words with more letters take up more area on the screen.
The glyphs for some letters are inherently taller or wider than
others. Kerning and tracking can create diverse spacing between
characters. Differences in font would exacerbate these problems,
but even the same font can be rendered differently depending on
the platform. Other potential factors that could skew perception
include color, font weight, and a word’s semantic meaning [1],
[3], [9], [10], [11].

We are interested in better understanding the ways in which
these factors may bias font size perception. Such an understanding
is important for knowing how much we can trust interpretations of
data based on font size encodings. Measuring potential biases can
also give us a way of finding limits on the kinds of tasks for which
font size can be used—and seeing whether or not there are ways
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in which those limits can be stretched. Additionally, we can begin
to tease apart the mechanisms that create those limits in a way that
may inform the use of similar methods in different contexts.

In this paper, we focus specifically on the degree to which a
word’s shape can affect impressions of its font size. We present
the results from a series of crowdsourced experiments in which
participants were asked to judge font size within word cloud visu-
alizations. In each experiment, we varied the words along one of
the axes described above. We found that, in general, performance
was high enough to call into question some existing notions of the
limits of the encoding. However, there were conditions in which
participants’ perception of font size was biased. In particular, in
cases where some physical attribute of the word, such as width,
disagreed with its font size, accuracy dropped dramatically for
many participants.

Fortunately, this effect can be corrected for. We describe a
proof-of-concept method for debiasing font size encodings that
uses colored tags sized proportionally to the data. We empirically
show that our debiasing efforts improve performance even in the
most pathological cases.

The main contributions of this paper are:

• An evaluation of user accuracy when making comparative
judgements of font size encoding within a visualization,
indicating that users may be better at making such judge-
ments than conventional wisdom would suggest.

• A description of situations in which these judgements can
be biased by attributes of the words being shown.

• A proof-of-concept method for debiasing visualizations in
these situations using padded bounding boxes.

2 RELATED WORK

Font size has been used to encode data across a number of
visualization types, and to support a variety of tasks. Investigations
of font size encoding have been largely focused on word clouds
and their overall effectiveness, whereas our work focuses on the
perceptual task of comparing word sizes under a variety of real-
world conditions.
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Fig. 1. To test whether attributes of words can affect perception of their font size, we highlighted words within word clouds and asked participants to
choose the larger font. On the left, “zoo” has the larger font, but the length of “moreover” can bias participants toward choosing it as larger. On the
right, “source” has the larger font, but the taller ascending and descending parts of “begged” can bias participants toward choosing it as larger.

The most familiar visualizations using font size encoding
are tag clouds, more generally called word clouds. Word clouds
represent variables of interest (such as popularity) in the visual
appearance of the keywords themselves—using text properties
such as font size, weight, or color [9]. One particularly popular
example of word clouds is Wordle, an online tool for creating
word clouds that encode word frequency information using font
size [3]. Taking a cue from the popularity of word clouds, the
Word Tree, which is an interactive form of the keyword-in-context
technique, uses font size to represent the number of times a word
or phrase appears [7].

Font size has also been used to encode data in cartographic
visualizations, in typographic and knowledge maps. A typographic
map represents streets using textual labels for street names while
encoding spatial data such as traffic density, crime rate, or de-
mographic data into the font size [4], [12]. In contrast, Skupin
uses font size to indicate semantic clustering, adding a semantic
hierarchy to his knowledge maps [5].

Rivadeneira et al. performed two experiments on word cloud
effectiveness [11]. In the first, the effects of font size, location, and
proximity to the largest word were investigated. The experiment
results showed an effect of font size and position (upper-left
quadrant) on recall; meanwhile, proximity showed no effect. In
the second experiment, the authors evaluated impression formation
and memory by varying font size and layout (e.g., alphabetical
sorting, frequency sorting) of words in the cloud. Font size had
a significant effect on recognition, but layout did not. However,
the authors found that layout affected the accuracy of impression
formation. From this evaluation, the authors concluded that word
clouds are helpful for people to get a high-level understanding of
the data, and for casual exploration without a specific target or
goal in mind.

A study by Bateman et al. investigated the visual influence
of word cloud visual properties (font size, tag area, tag width,
font weight, number of characters, color, intensity and number of
pixels) for the task of selecting the 10 “most important tags” [9].
Participants were asked to find the most attention-grabbing word
out of a word cloud. They report that the features exerting the
greatest visual influence on word clouds were font size, font
weight, saturation and color. However, the authors did not look
at user ability to accurately read data encoded with these features.

A study by Lohmann et al. [10] supports Bateman et al. [9]
and Rivadeneira et al. [11] by reporting that words with larger

font sizes attract more attention and are easier to find. However,
none of these studies identify the magnitude of this effect for real-
world use, or strategies for mitigating the biases. This knowledge
is relevant because when encoding data into font size [4], [5], [7],
[13] there is expectation from designers that people can perceive
the difference in size to correctly understand the encoded data.

3 EXPERIMENTAL TASK

There are many different documented tasks for which font size
encodings have been used. These tasks include:

• Gist-forming: discerning the general meaning of a collec-
tion of words, taking their relative importance as coded by
their font size into account [1], [11], [14].

• Summary comparison: making sense of juxtaposed sets
of words from different sources [15], [16].

• Word search: finding a particular word in a visualization
[9], [10], [11].

• Retention: being able to recall a word from a particular
visualization, and to distinguish it from others [11].

• Value reading: reading a specific numerical value associ-
ated with text [13].

• Order reading: comparing words to determine relative
value [9], [11].

It has been shown that font size encodings are not the proper
design choice for a number of these tasks, most notably searching
and retention, where simple ordering can be much more effective
[11]. In general, font size encodings are more frequently used
for subjective, high-level tasks like gist-forming. However, it is
difficult to measure perceptual limitations with these tasks. For this
study, we were not interested in measuring participants’ cognitive
ability to draw connections between groups of words, but rather in
better understanding their perceptual abilities.

As such, in selecting a task for our experiments, we chose
one that we believed would isolate the primitive sub-task of
discerning information represented in font size. Specifically, we
focused on a simple comparison task. We would highlight two
words within a visualization containing words of different sizes
and ask subjects to choose the one with the larger font size.
While value-level accuracy in judging font size seems unnecessary
for many high-level interpretations, the ability to make accurate
relative judgements of represented data is important. Unless users
can reliably discern that words with higher values are bigger than
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those with lower values, the relationships between data associated
with these words will be distorted or lost. We believe that decently
accurate perception of relative size is a prerequisite even for
such high-level tasks as gist-forming and summary comparison,
in addition to the more obvious ones of order reading and value
reading. Therefore, though users in the wild are rarely faced with a
single pairwise comparison, we believed performance at this task
would help us measure the ability to perform higher level tasks
that rely on the same perceptual abilities.

There were other tasks that we considered, as well. One
solution might have been to ask participants to make an absolute
judgment of font size (e.g., 1.5mm), or to compare to a memorized
baseline size (e.g., bigger than baseline). Although such tasks are
simple, their detachment from the context of real-world tasks
might have lead to idiosyncratic strategies, such as focusing
attention on the height of a single letter instead making a holistic
judgement about a whole word. At the other extreme, another
solution might have been to ask which word in an entire cloud has
the biggest font, while systematically manipulating the distribution
of font sizes within that cloud. However, this task presents many
degrees of freedom that make precise measurement more difficult.
For example, it is not clear whether we should measure precision
as the difference between the biggest font versus the next biggest,
of versus the algebraic or geometric mean of the distribution, or
versus some other property of the distribution [17], [18], [19].
We chose to use the pairwise comparison task in most of our
experiments for the greater control it offered us. After having
explored perceptual biases in this task, however, we still wanted to
be sure that what we had found was extensible to more real-world
situations, and so we ran a set of experiments using the pick-the-
biggest-word task, which showed similar results (see Section 7).

4 GENERAL EXPERIMENTAL DESIGN

As discussed in Section 3, we focused on comparative judgements
of size rather than exact ones. In particular, we focused on
the use of word clouds. Not only are these one of the most
common mediums for font size encodings, but they also present a
challenging context for reading values, given the dense proximity
of distracting words and the frequent lack of alignment to any
shared baseline for any pair of words.

4.1 Task Setup and Measures
Participants were first given instructions on the task, and read a
tutorial indicating the difference between a word’s font size and
the area it took up on the screen. Participants were instructed to
complete the tasks as accurately as possible.

Across multiple experiments, we gave participants the fol-
lowing task with different stimuli: Upon being shown a word
cloud in which two words were highlighted using a darker gray,
participants were asked to click on the highlighted word that had
been given the larger font size. We were sure to fully explain
the distinction between font size and the general footprint of a
word on the screen. While others have observed instances of users
misinterpreting the meaning of font size encodings [3], we were
concerned primarily with perceptual abilities, and so did not want
there to be any confusion for participants.

For each task, we recorded which word the participant clicked,
as well as the time it took. We measured time only to test
for fatigue effects (were tasks getting slower over time, or was
performance decreasing)—our primary measure was accuracy. We

used analyses of variance (ANOVAs) to test for differences among
participant accuracies across conditions. Upon clicking a word, the
participant was immediately presented with the next trial.

4.2 Factor Agreement
In each experiment, we tested a potentially biasing word factor to
see if it affected the perception of font size. These factors were
features of the words that vary based on the contents of the words
themselves, such as word length, rather than attributes of the font
that could feasibly be controlled across the entire visualization. To
check for bias of a factor, we employed a method we have called
factor agreement.

Factor agreement indicates whether the difference in the factor
in question reinforces or opposes the difference in font size (see
Figure 2). For example, if the word within a given pair with the
larger font size also contains more letters, then we would say that
word length agrees with font size. However, if the word with the
larger font size contains fewer letters, we would say word length
disagrees with font size. If both words are the same length, then
the word length factor is neutral. It is not necessarily the case that
any given factor’s agreement or disagreement will affect a user’s
perception of font size, but if they do have an effect, we would
expect user accuracy to decrease in situations of disagreement.

4.3 Stimuli
Stimuli for these experiments were all generated within a web
browser. For early experiments, we created our own clouds using
the D3 visualization library [20]. In later experiments, to create
more realistic scenarios, we used jQCloud [21], a word cloud
library that packs words more densely using a spiral layout. With
the exception of Experiment HEIGHT3, in which we explicitly
decided to test a sans serif font (see Table 1), we used Times New
Roman for all of our stimuli.

The words used in each experiment were either English words
or “pseudowords” (see Table 1). Pseudowords were constrained
strings of random characters we created for greater control over
the character glyphs being used and to factor out any semantic
weight. Precise characteristics of these pseudowords varied be-
tween experiments (see Section 5). When building word clouds
with English words, we drew from the Corpus of Contemporary
American English (COCA) [22]. We built a database that allowed
us to query for words with specific attributes (e.g., length).

The two target words between which participants had to
choose varied in their font sizes and attributes from experiment
to experiment. They were also joined by 40 distractor words
in each stimulus, whose sizes were distributed across a normal
distribution. After some calibration through pilot studies, we kept
the difference in font size between the two target words relatively
small. Accuracy was high enough in these conditions that testing
larger differences was deemed unnecessary.

One issue that came up during experimentation was how
different browsers perform subpixel-rendering. For non-integer
font sizes (e.g., 12.5px), modern browsers sometimes use different
rendering methods that can result in participants with different
machines viewing slightly different sizes. However, as a between-
subjects factor, browser differences should not affect the within-
subjects factors that make up most of the factors in our ex-
periments. Additionally, the experiments we chose to report in
the main body of the paper all used integer-value font sizes.
However, it is worth noting that some of the between-subjects
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Factor

hello hello hello
sam world goodbye

help plot corn
corn flop help

bigger font,

wider word

disagree

bigger font,

longer word
same length

bigger font,

shorter word

bigger font,

shorter word

bigger font,

taller word

word length

word height

word width

agree neutral

Factor agreement

bigger font,

narrower word

same

"raw width"
joyful

le�er

li�le
hummed

li�er
fillet

same

"raw height"

Fig. 2. In this figure, we show examples of the different conditions of factor agreement (see §4.2) for the three main factors of word shape that
we tested: word length, word height, and word width. For height, we were concerned with the use of tall and short characters, rather than height
differences resulting from font size. Similarly, for word width, our primary concern was not the final width of the word in the stimulus, but rather the
raw width—its width before any changes in font size had been applied. While “litter” is wider than “fillet” in the above figure, they are the same width
when written in the same font size.

Fig. 3. For many of our experiments, we used word clouds that we
built using the D3 visualization library [20]. These clouds dispersed
words randomly throughout the two-dimensional space, restricted only
by avoiding collisions with the borders and other words. Words were
either drawn from the English words within COCA [22] or pseudowords
created using random characters (as shown here).

effects described in the supplemental materials may be influenced
by cross-browser differences.

4.4 Participants

Over 12 experiments, we recruited 301 participants using Ama-
zon’s Mechanical Turk framework, restricted to native English
speakers residing in North America with at least a 95% approval
rating. These participants ranged in age from 18 to 65 (with a

mean of 33) and were made up of 172 males and 129 females. We
paid participants either $1.00 or $2.00 for their time, depending
on the number of stimuli with which we presented them (which
varied from 56 to 150).

It is worth noting that by using a crowdsourced framework, we
sacrifice control over a number of environmental factors that could
affect a participant’s perception. These include browser differences
(as discussed above), along with things like viewing distance,
lighting, etc. Such factors may have influenced differences be-
tween participants, and may be worth investigating in future in-
person studies. However, we believe we can rely on them being
relatively consistent for individual participants, and therefore they
should not affect the reported within-subjects factors.

To account for the varying levels of engagement often seen
in participation in online studies, we followed acknowledged
best practices to improve the reliability of our experimental
data, including randomizing questions and manually checking for
“click-through” behavior [23], [24]. Within each session, we also
included “validation stimuli” with font size differences of a full
10 pixels. These validation stimuli were used as engagement
checks to verify that participants had properly understood the
instructions and were giving earnest effort. These questions were
not considered in further analysis.

5 EXPLORING BIASING FACTORS

Over the course of our explorations, we ran over a dozen experi-
ments involving hundreds of participants on Amazon’s Mechanical
Turk. Rather than describe the results for every experiment in
detail, we have organized the main results and takeaways from
each experiment into Tables 1 and 2 and will discuss a subset of
them in greater depth in this section. The remaining experiments
are described in full in the supplemental materials. We have
structured the experiments by the main factors that we tested for
bias: word length, character height, and word width (shown in
Figure 4).
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Accuracy at min ∆ font sizeLabel E/P Effect of ∆

font size
Primary bias

factor

Effect of
bias factor
agreement

Additional
factor agree neutral disagree

Notes

len1 P 3 word length† 3 - 0.860 0.879 0.753 Word length biases perception of
font size

len2 P 3 word length† 3
base font

size‡ 0.861 0.816 0.734 We see a greater bias at larger base
font (30px vs. 20px)

len3 P 3 word length† 3
base font

size† 0.825 0.838 0.642 Tested wider variety of baseline
font sizes

len4 E 3 word length† 3 - 0.992 0.942 0.867 Bias still present with English
words and denser word clouds

height1 P 3 word height† 3 - 0.974 0.909 0.684 Character heights bias perception
of font size

height2 P 3 word height† 3 - 0.929 0.810 0.529
Proportional difference in font size

seems to matter more than
absolute difference

height3 P 3 word height† 3 - 0.937 0.795 0.525 Bias still present when word
clouds use sans serif font

height4 P 3 word height† 3
base font

size† 0.931 0.790 0.479 We see a greater bias at larger base
font (30px vs. 20px)

height5 P 3 word height† 3
base font

size‡ 0.963 0.854 0.489 Accuracy hits ceiling between
20-25% size difference

width1 E 3 word width† 3 - 0.975 - 0.909 Bias present when length is held
constant and width varies

width2 E 7 word length† 7 - 0.982 - 0.982 No bias when width is held
constant and length varies

box1 E 3 word width† 7 - 0.914 0.932 0.908 No bias with corrected-width
rectangular bounding boxes

big1 P 3 word length† 3
number of
near misses 0.888 0.826 0.658 Tested using “pick the biggest

word” task

big2 P 3 word length† 3
number of
near misses 0.811 - 0.562 Tested wider variety of length

differences
† - within-subjects factor ‡ - between-subjects factor

TABLE 1
An overview of the experiments we ran for this study. Each experiment compared at least two factors: the difference in font size between the two
target words, and a potentially biasing factor that was a feature of the words’ shape. (Additional factors tested are described in the supplemental

materials.) Here, we report the effects of these factors and the effect size of factor agreement at the smallest difference in font size tested
(generally a 5% difference). Experiments with a white background are described in Sections 5 and 6, while those with a gray background are

described in full in the supplemental materials. In column “E/P”, “E” indicates that English words were used and “P” indicates that “pseudowords”
were used (see §4.3).

word width

example
descenders
baseline

ascenders
x-height

word length = 7 characters

sh
or

tword 
height ta

ll

Fig. 4. We looked for biasing effects on font size perception for three
main factors of word shape (shown here in blue): word length (§5.1),
word height (§5.2), and word width (§5.3). For our experiments on height,
words were broken down into two categories: “tall” words containing
both ascenders and descenders, and “short” words whose height was
contained between the font’s baseline and x-height.

5.1 Word Length

The first attribute we tested was word length: the number of
characters contained within a word. Longer words take up more
space, and have a larger area than shorter words of the same
font size, and even some shorter words with larger font sizes. We
predicted that these differences in area could interfere with the
ability to perceptually distinguish words by pure font size alone.

We ran four total experiments using word length as a test
factor. In each one, we observed a significant effect in which
participant accuracy went down when word length disagreed with
font size. The details for these experiments can be found in Tables
1 and 2, as well as the supplemental materials. We will describe

two of the most important experiments here.

5.1.1 Experiment LEN1
Word length biases perception of font size

For our first experiment on word length, we presented participants
with word clouds of our own creation as described in Section 4.3
(see Figure 3). To afford greater control in stimulus generation,
we used words of random characters, excluding characters with
ascenders or descenders (e.g., “h” or “g”—see Figure 4) as well
as characters of abnormal width (e.g., “w” or “i”). We enforced
a minimum distance between the two highlighted words, and en-
sured that they shared no common horizontal or vertical baselines
that would aid in comparison.

We tested two main factors: font size and word length. Both
were examined using within-subject comparisons. Font size for
the first target word was either 20px, 21px, or 22px, while font
size for the second word was either 20px or 22px. Length for both
target words alternated between 5 characters and 8 characters. The
full combination of these factors created 24 conditions, of which
16 had a “correct answer” (i.e., one of the words had a larger
font size), and 8 of which did not (i.e., the words were the same
font size). This allowed us to observe both instances of factor
agreement and disagreement, as well as see which way people
leaned at the extreme marginal case where the sizes were equal.

We tested 31 participants, each of whom saw 150 stimuli (6 per
each of the 24 conditions described above, as well as 6 engagement
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Analysis of Variance
Experiment N Factors Conditions W/B df1 df2 F p-value

∆ font size w1: [20, 21, 22px], w2: [20, 22px] W 1 150 59.21 < 0.0001len1 31 word length agreement w1: [5, 8 chars], w2: [5, 8 chars] W 2 150 14.91 < 0.0001
∆ font size [5, 10, 15, 20%] W 3 418 58.96 < 0.0001
word length agreement w1: [4, 7, 10 chars], w2: [4, 7, 10 chars] W 2 418 12.13 < 0.0001len2 39
base font size [20, 30px] B 1 37 7.98 0.008
∆ font size [5, 10, 15, 20%] W 3 926 85.43 < 0.0001
word length agreement w1: [5, 8 chars], w2: [5, 8 chars] W 2 926 31.60 < 0.0001len3 20
base font size [20, 25, 30, 35px] W 3 926 8.57 < 0.0001
∆ font size w1: [20px], w2: [21, 22, 23, 24px] W 3 269 7.84 < 0.0001len4 20 word length agreement w1: [5, 8 chars], w2: [5, 8 chars] W 2 269 14.32 < 0.0001
∆ font size w1: [20, 21, 22px], w2: [20, 22px] W 1 155 55.31 < 0.0001height1 32 word height agreement w1: [tall, short], w2: [tall, short] W 2 155 71.22 < 0.0001
∆ font size w1: [20, 22, 24px], w2: [21, 23px] W 5 323 45.88 < 0.0001height2 20 word height agreement w1: [tall, short], w2: [tall, short] W 2 323 83.90 < 0.0001
∆ font size w1: [20, 22, 24px], w2: [21, 23px] W 5 323 59.42 < 0.0001height3 20 word height agreement w1: [tall, short], w2: [tall, short] W 2 323 36.10 < 0.0001
∆ font size [5, 10, 15, 20%] W 3 448 59.81 < 0.0001
word height agreement w1: [tall, short], w2: [tall, short] W 2 448 88.39 < 0.0001height4 20
base font size [20, 30px] W 1 448 44.9 < 0.0001
∆ font size [5, 10, 15, 20, 25%] W 4 546 94.39 < 0.0001
word height agreement w1: [tall, short], w2: [tall, short] W 2 546 207.2 < 0.0001height5 40
base font size [20, 30px] B 1 38 20.09 < 0.0001
∆ font size w1: [20px], w2: [21, 22, 23, 24px] W 3 133 6.77 0.0003width1 20 word width agreement [+10px, -10px] W 1 133 11.33 0.001
∆ font size w1: [20px], w2: [21, 22, 23, 24px] W 3 126 1.47 0.23width2 19 word length agreement [+3 chars, -3 chars] W 1 126 0.00 1.00
∆ font size [5, 10, 15, 20%] W 3 209 10.88 < 0.0001box1 20 word width agreement [-20px, 0px, +20px] W 2 209 0.52 0.60
∆ font size [5, 10, 15, 20%] W 3 414 5.82 0.0007
word length agreement target: [5, 8 chars], near misses: [5, 8 chars] W 2 414 10.10 < 0.0001big1 19
# near misses [1, 4] W 1 414 33.66 < 0.0001
∆ font size [5, 10, 15, 20%] W 3 846 3.02 0.03
word length agreement [-5, -3, -1, 1, 3, 5 chars] W 5 846 8.00 < 0.0001big2 19
# near misses [1, 4] W 1 846 7.00 0.008

TABLE 2
An overview of the statistical tests we ran for this study. For each experiment, we show the number of participants (N), the factors and their levels
(specifying conditions for both target words—w1 and w2—where appropriate), whether the factors were treated as within- or between-subjects

factors, and the analyses of variance for each. Effect sizes can be seen in Table 1 and in the supplemental materials.

tests). While this initially seemed like a large number of stimuli,
we saw no fatigue effects in any of our studies. Average time to
completion was 5.8 minutes, and the comments we received from
participants were positive. We analyzed answers to questions with
a correct answer and without a correct answer separately.

For data where there was a correct answer, we calculated
the font size difference (1 or 2 px) and word length agreement
(“agree,” “neutral,” or “disagree”) for each stimulus. We then ran
a two-way analysis of variance (ANOVA) to test for the effect
of the font size difference and word length agreement. We saw
main effects for both font size difference (F(1,150) = 59.21,
p < 0.0001) and word length agreement (F(2,150) = 14.91,
p< 0.0001). Specifically, participant performance decreased when
the difference in word length disagreed with the difference in
font size, as well as when the difference in font size was smaller
(see Figure 5). A post hoc test using Tukey’s HSD showed that
the “disagree” condition was significantly different from both the
“neutral” and “agree” condition, though the latter two were not
statistically distinguishable from one another.

For data where there was no correct answer, we tested to see if
the rate at which participants picked the longer of the two words
was significantly different from chance. Specifically, we calculated
the rate at which each participant picked the longer of the two
words when the font sizes were the same (M = 0.59, SD = 0.17)
and ran a two-tailed, paired Student’s t-test to compare these

sizeDiff agree neutral disagree

1px 0.860 0.879 0.753

2px 0.952 0.948 0.909

*

*

Fig. 5. This table shows the average participant accuracy for each
combination of factors for experiment LEN1 (§5.1.1). A two-way ANOVA
showed significant main effects for both size difference and length
agreement. A post hoc Tukey’s HSD test showed that the “disagree”
condition (i.e., when the longer of the two words had the smaller font
size) was significantly different from the “agree” and “neutral” cases,
though the latter two were not distinguishable from one another.

values against an equally sized collection of values of 50%. We
found that participants were significantly more likely to pick the
longer of the two words (t(30) = 2.99, p = 0.005), indicating the
same direction of bias as seen with the data with correct answers.

5.1.2 Experiment LEN4
Biases still present with full English words

For this experiment, we wanted to test whether the effects that we
had seen using “fake” words and our relatively sparse word clouds
would still be present in a more realistic setting. Specifically, rather
than generating random strings of characters for words, we used
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sizeDiff agree neutral disagree

5% 0.992 0.942 0.867

10% 1.000 1.000 0.917

15% 0.992 0.992 0.992

20% 0.992 1.000 0.975

*

*

Fig. 6. This table shows the average participant accuracy for each
combination of factors for experiment LEN4 (§5.1.2), in which we looked
for a bias of length agreement within a more realistic collection of word
clouds. After a two-way ANOVA showed significant main effects for both
length agreement and font size difference, post hoc tests showed that
the “disagree” condition and the closest font size difference were the real
departures from the rest of the conditions.

words drawn from the COCA [22]. We also switched from our
own word cloud implementation (Figure 3) to a modified version
of a commonly used library called jQCloud [21] (Figure 7). These
clouds packed words more densely by using the spiral positioning
layout. The jQCloud library also allowed us to easily modify the
aesthetics of the clouds through CSS, creating images more closely
resembling the types of word clouds participants might be familiar
with seeing in other contexts, such as Wordles [3].

Our factors were once again font size and word length, each a
within-subject factor by our design. We held the first target word
at a font size of 20px while the second word’s font size was either
21px, 22px, 23px, or 24px. The word length of each target word
alternated between 5 and 8 characters. All words were restricted
to characters that contained no ascenders or descenders to avoid
any effects resulting from height. The full combination of these
factor levels resulted in 16 combinations—each, in this case, with
an explicitly correct choice.

We tested 20 participants, each of whom saw 102 stimuli (6
per each of the 16 conditions, plus an additional 6 engagement
tests). After calculating the font size difference and word length
agreement for each stimulus, we ran a two-way ANOVA to test for
the effect of these two metrics. Once again, we saw main effects
for both font size difference (F(3,269) = 7.84, p < 0.0001) and
word length agreement (F(2,269)= 14.32, p< 0.0001), indicating
lower accuracy in instances of word length disagreement at close
font sizes (see Figure 6). Post hoc tests with Tukey’s HSD identify
the “disagree” condition and the closest font size difference as
the main departures from the rest of the conditions. The lack of
difference between the higher-scoring conditions may be the result
of ceiling effects, as accuracy was very high across the board.

5.1.3 Discussion

In these experiments, we see a very consistent bias towards longer
words. Word length, it appears, does affect user perception of font
size. However, accuracies across both experiments were higher
than we had been anticipating. With mean accuracies consistently
near or above 90%, participants seemed surprisingly good at mak-
ing these comparisons. These high accuracies may have created
a ceiling effect, which could account for the lack of distinction
between the “agree” and “neutral” conditions in post hoc tests.
Dips in accuracy, while consistent, happened primarily at very
close font sizes, but even then participants did notably better than
chance. This may be cause to trust user perceptions of font size

Fig. 7. To create a more realistic context for experiment LEN4 (see
§5.1.2), we used a modified version of the jQCloud library to create
stimuli [21]. These word clouds were more densely packed, more closely
resembling what participants might be used to seeing in other settings.

encodings. However, the number of letters is just one of many
features that factors into the diversity of shapes words can make.

5.2 Word Height

The next potentially biasing feature of a word that we tested was a
word’s height. Specifically, there are some characters in the basic
Latin alphabet that are taller than others due to the presence of
ascenders and descenders in their glyphs. Ascenders—found for
example in the letters “h” and “k”—are marks that reach above
a font’s x-height, while descenders—as in “g” and “y”—extend
below a font’s baseline (see Figure 4). Given that height is perhaps
the easiest way to tell font sizes apart when comparing words of
varying lengths, we wanted to see whether the presence or lack of
such characters would adversely affect user judgement.

We ran five experiments investigating this possibility, and saw
a significant bias for character height in each of them (see Table
1). We will again discuss the most important of these experiments
here and relegate the others to the supplemental materials.

5.2.1 Experiment HEIGHT1
Character heights bias perception of font size

For our first experiment investigating the effect of character height,
we again used words of random characters to give us fine-tuned
control over the characters present. We defined two types of “fake”
words: tall and short. Short words were generated using only
characters without ascenders and descenders (e.g., “a” or “c”) and
excluding characters of abnormal width (e.g., “w” or “i”). For
tall words, we used the vowels “a”, “e”, “o” and “u” and added
characters with ascenders and descenders, again excluding tall
characters with abnormal width (e.g., “f”, “j”, “l”). Short words are
naturally rectangular since all of their characters share the same
height, but the ascenders and descenders in tall words unbalance
this rectangular shape. In order to balance the tall words’ shapes,
we positioned tall characters both in the beginning and end of the
word making sure that if a word started with an ascender, it would
end with a descender and vice-versa. Each tall word was made up
of 8 characters: 3 short characters and 5 tall characters.

We used precisely the same experimental setup as in Section
5.1.1, with the factor of word length exchanged for word height:
the presence or absence of ascending and descending characters.
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sizeDiff agree neutral disagree

1px 0.974 0.909 0.684

2px 1.000 0.965 0.932

** *

*

Fig. 8. This table shows the average participant accuracy for each
combination of experimental factors for experiment HEIGHT1 (§5.2.1).
A two-way ANOVA showed main effects for both word height agreement
and font size difference. Post hoc analysis using Tukey’s HSD showed
that all experimental conditions were statistically distinguishable from
one another. Most notably, accuracy is lowest for the “disagree” condition
with the closest difference in font size.

This meant that the first target word again varied between sizes of
20px, 21px, and 22px while the second word varied between 20px
and 22px as both words alternated back and forth between the tall
and short words. Of the 24 conditions created by combining these
factors, 16 had a difference of font size (and therefore a “correct”
answer) while 8 did not. We analyzed the data for stimuli with a
correct answer and stimuli without one separately.

For data where there was a correct answer, we calculated
the font size difference (1 or 2 px) and word height agreement
(“agree,” “neutral,” or “disagree”) for each stimulus. We then
ran a two-way ANOVA to look for effects of these metrics on
participant accuracy. We saw significant main effects for both
height agreement (F(2,155) = 71.22, p < 0.0001) and font size
difference (F(1,155) = 55.31, p < 0.0001). These effects went
in the same direction as seen in Section 5.1 with word length:
accuracy dropped when character height disagreed with font size
and when the font sizes were particularly close (see Figure 8). Post
hoc tests with Tukey’s HSD showed all pairwise combinations of
conditions to be statistically significant.

For data without a correct answer, we calculated the rate at
which each participant picked the tall word when presented with
two words of the same font size (M = 0.67, SD = 0.07) and
compared these values to a collection of 50% values with a two-
tailed, paired Student’s t-test. We saw that participants chose the
taller of the two words at a significantly higher rate than chance
(t(31) = 12.91, p < 0.0001).

5.2.2 Discussion
Like word length, character height seems to create a consistent
bias on participant perception of font size. In fact, the bias for
character height seems to be more pronounced, with accuracy in
the worst cases dropping to levels not much better than chance
(see Table 1). However, instances of these height differences
are relatively rare in English. The list of words we used from
COCA [22] has in total 25,859 eligible words after removing
duplicates and words containing numerals and punctuation. Of
these, only 870 fit our definition of “short” words—approximately
3.3% of eligible words. As such, the extreme comparison of tall to
short words would likely not happen often in the wild. However,
there are less extreme comparisons—words containing only a few
ascenders or descenders, words containing only one or the other,
etc.—that may be more common and still exhibit this bias.

5.3 Word Width
After running our tests on word height, we decided to look for
the the effect of a different factor: word width. In our height

experiments, we held length constant and attempted to control for
width by excluding characters of abnormally small or large width
(as described in Section 5.2.1). However, there were still small
differences in glyph widths even outside of those characters, which
created variance in width from word to word, even within the
same length conditions. In a post hoc test, we computed a width
agreement metric for each stimulus from experiment HEIGHT2
indicating whether the difference in width went in the same direc-
tion as the difference in font size. It was only for stimuli with the
smallest font size difference that we saw any width disagreement,
given that we had attempted to make widths neutral. We ran a two-
way ANOVA looking for an effect of width agreement, specifically
on the stimuli in the closest font difference case. The effect we
saw was significant (F(2,38) = 13.73,p < 0.0001). Accuracy in
the disagree condition (M = 0.523, SD = 0.18) was substantially
lower than accuracy in the agree condition (M = 0.82, SD = 0.10).

This led us to an interesting question. We knew that longer
words created a bias for font size perception, as described in
Section 5.1, but we did not know why. Was this bias the result
of longer words taking up more space, and therefore a function
of width, or were participants actually making a numerosity
judgement about the letters? We hypothesized that the main factor
in this effect was width rather than length, thinking that words—
especially real ones—are read more or less as a whole, rather than
letter by letter [25]. To test this hypothesis, we ran two additional
experiments to isolate the effects of width and length.

5.3.1 Experiment WIDTH1
Bias present when width varies but not length

In our first of these experiments, we wanted to see whether
word width biased font size perception even when the number of
characters and character height were held constant. Varying width
but not length put a tight constraint upon the words we were able to
use; differences between character widths are small, and so words
that differ substantially in one factor but not the other are rare.
For our stimuli, we chose a collection of pairs of words that were
each 8 characters long, but differed in raw width by 10 pixels.
We defined “raw width” to be a word’s width computed at a font
size of 20px, so that we could have a measure of width differences
that was separate from our font size factor. We also made sure that
each pair of words shared the same character height.

Our two factors for this experiment were width agreement and
font size difference. For each stimulus, one of the target words
had a font size of 20px, while the other was either 21px, 22px,
23px, or 24px. For the width agreement factor, the larger of the
two words either had a raw width that was 10 pixels greater than
the smaller word (“agree”) or 10 pixels less than the smaller word
(“disagree”). Four font size differences combined with two levels
of width agreement gave us 8 conditions, each of which had a
“correct” answer.

We tested 20 participants, each of whom saw 56 stimuli (6 per
each of the 8 conditions, as well as 6 engagement tests). After
calculating the font size difference and width agreement of each
stimulus, we ran a two-way ANOVA to test for the effects of
the two factors on participant accuracy. We saw main effects for
both width agreement (F(1,133) = 11.33, p= 0.001) and font size
difference (F(3,133) = 6.77, p = 0.0003) indicating a drop off in
accuracy for width disagreement at close font sizes (see Figure
9). While a post hoc Tukey’s HSD test only showed the smallest
size difference condition to be statistically distinguishable, this
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*

sizeDiff

5% 0.975 0.909

10% 1.000 0.992

15% 0.992 0.992

20% 1.000 0.983

agree disagree

*

Fig. 9. This table shows the average participant accuracy for each
combination of experimental factors for experiment WIDTH1 (§5.3.1).
In this experiment, target words had a difference of 10 pixels in raw
width (i.e., their width at the same font size). In the “agree” condition, this
width difference was in the same direction as the difference in font size,
while it was in the opposite direction for the “disagree” condition. A two-
way ANOVA showed significant main effects for both width agreement
and font size difference. Only the lowest size difference was statistically
distinguishable in post hoc tests, perhaps due to ceiling effects given the
very high overall accuracy.

may have been due to ceiling effects, given the very high accuracy
across all other conditions.

5.3.2 Experiment WIDTH2
Bias not present when length varies but not width
In the second of these experiments, we wanted to see whether the
number of letters in a word had any effect on font size perception
outside of the correlated factor of width difference. For our stimuli,
we chose pairs of words that had the same raw width (described
in Section 5.3.1) but differed by 3 letters in length. Of the words
we had available from which to choose, this was the largest length
difference that provided us with enough pairs. Each pair of words
shared the same character height, as well.

Our two factors for this experiment were length agreement
and font size difference. Once again, one of the two target words
in each stimulus had a font size of 20px, while the other was
either 21px, 22px, 23px, or 24px. For the length agreement factor,
the larger of the two words had either 3 more characters than the
smaller word (“agree”) or 3 fewer characters than the smaller word
(“disagree”). Four font size differences combined with two levels
of length agreement gave us 8 conditions, each of which had a
“correct” answer.

We tested 19 participants, each of whom again saw 56 stimuli.
After computing the font size difference and length agreement of
each stimulus, we ran a two-way ANOVA to test for the effects of
these factors on participant accuracy. This time, we saw no main
effects for either font size difference (F(3,126) = 1.47, p = 0.23)
or length agreement (F(1,126) = 0.00, p = 1.00). Accuracy was
quite high across all conditions (see Figure 10). This seems to
indicate that any bias created by number of letters alone is not
strong enough to register without also varying the stronger factor
of word width.

5.3.3 Discussion
The restriction of varying only one of width and length meant that
we were not able to test very large differences in either factor. As
such, we did not expect to see a vary large effect size for either
experiment. However, from these results, we feel we can conclude
that width is the more important factor to consider when worrying
about bias. Length may matter in some extreme cases, but we
stretched the degree to which length can vary without width to the
limits of the English language, and still saw no effect. Practically,
therefore, width seems the more relevant concern.

agreesizeDiff

5% 0.982 0.982

10% 1.000 0.991

15% 0.991 1.000

20% 0.982 1.000

disagree

Fig. 10. This table shows the average participant accuracy for each
combination of experimental factors for experiment WIDTH2 (§5.3.2).
In this experiment, target words had a difference of 3 characters in their
length (going with or against the direction of the difference in font size in
the “agree” and “disagree” conditions, respectively). A two-way ANOVA
showed no significant main effects for either factor, and accuracy was
very high across the board.

6 DEBIASING WITH RECTANGLES

In Section 5, we show that there are multiple ways in which a
word’s shape can bias interpretation of its font size. Depending
on the task a designer intends a user to undertake, the effect of
this bias may not be large enough to warrant much intervention—
a possibility we discuss further in Section 8. However, for tasks
precise enough to be concerned by these effects, the next question
is what we can do as designers to mitigate this bias.

One potential method for this debiasing effort was inspired
by the work of Correll et al. debiasing area discrepancies in
tagged text [26]. In this work, the authors determined that users
suffered from an area bias when making numerosity judgements
of words tagged with colored backgrounds. Specifically, when the
number of words disagreed with the area of the colored back-
grounds, accuracy dropped dramatically. However, they were able
to counteract this bias by adjusting the area of the backgrounds
for underrepresented words.

We suspected that such a technique could be useful for the
biases we observed in font size encodings. By enclosing individ-
ual words in filled bounding boxes, we can create a redundant
encoding for font size that may alleviate the issue of diverse word
shapes. These bounding boxes would also give us a glyph whose
proportions we can adjust without fearing any change in legibility.

As such, we decided upon the following potential debiasing
technique: We would surround each word with a padded bound-
ing box. These boxes would contain the full height of any potential
character, going from the ascender line to the descender line (see
Figure 4). The width of each box would be adjusted such that
they all shared the same raw width—which is to say, they would
be equal in width if they all contained words of the same font
size. With such padding, the difference in rectangle width and
height would always agree with the font size difference for any
two words, creating a more reliable and readable indication than
the word alone. We ran an experiment to test whether this strategy
would help increase user accuracy in cases of factor disagreement.

6.1 Experiment BOX1
Can debias encoding with rectangular highlights

To test our debiasing technique, we ran an experiment with a
similar design to that described in experiment LEN4 (described in
Section 5.1.2). The factors for our stimuli were font size difference
(which varied in increments of 5, 10, 15, and 20% from a base
font of 20px) and word length (which alternated between 5 and
8 characters for each word). For this experiment, we also ensured
that whenever the two target words were the same length, they also
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Fig. 11. By containing each word in a color-filled bounding box and
padding the sides of each bounding box such that their widths were
proportional to their font sizes, we were able to eliminate the effect of
width disagreement.

sizeDiff neutral

5% 0.914 0.932 0.908

10% 0.983 0.992 0.933

15% 0.983 0.971 0.992

20% 0.992 0.996 0.983

agree disagree

*

Fig. 12. This table shows the average participant accuracy for each
combination of experimental factors for experiment BOX1 (§6.1). In this
experiment, words were given padded bounding boxes (as in Figure 11)
in an attempt to mitigate the bias created by disagreement in word width.
While a two-way ANOVA showed there to be a significant main effect
of size difference on accuracy, no main effect was seen on word width
agreement—indicating that padded bounding boxes may be a viable way
of debiasing font size perception.

had the same raw width, and when they were not the same length,
they had a difference in raw width of 20 pixels. These factor levels
created 16 conditions, each of which had a “correct” answer.

Rather than showing participants a pure word cloud, we placed
padded bounding boxes around each word (see Figure 11). These
bounding boxes were padded on either side such that the rectangle
for each word had the same raw width before any differences
in font size had been applied. Participants were instructed in
the tutorial that the rectangles containing the words were sized
proportionally to the words’ font sizes.

We tested 20 participants, each of whom saw 102 stimuli (6
for each of the 16 conditions, plus an additional 6 engagement
checks). After computing the length/width agreement and font
size difference of each stimuli, we ran a two-way ANOVA to
test for the effects of these factors on participant accuracy. While
we found a significant main effect for font size difference as
before (F(3,209) = 10.88, p < 0.001), we saw no effect of
length/width agreement (F(2,209) = 0.52, p = 0.60). Even in the
typical worst case—conditions with factor disagreement and the
smallest difference in font size—participants scored over 90%
accuracy (see Figure 12). To this degree, it seems that the padded
bounding boxes were successful at mitigating the bias introduced
by length/width disagreement.

This technique of debiasing font size encodings is primarily a
proof-of-concept. Aesthetically, word clouds like the one in Figure

Fig. 13. For experiments BIG1 (§7.1) and BIG2 (§7.2), participants were
presented with word clouds of pseudowords and asked to pick the one
with the biggest font size. In this example, “zoav” is the correct answer,
with four near misses that are of longer length.

11 are inferior to more standard layouts, and aesthetics can be an
important factor to an encoding’s utility [27]. It may be possible
to create more aesthetic approaches, perhaps using other word
features like font weight or tracking. At any rate, this shows that
the effects of word shape on font size perception are possible to
correct for.

7 ALTERNATE TASK

A possible critique of this work is that our experimental task (pick
the bigger of two highlighted words) does not necessarily reflect
how font size encodings are used in the wild. Our reason for
using this task was that it acts as a “visual primitive” for broader,
more general tasks (see Section 3). It is not our intention to say
that people routinely have to perform the act of comparing two
words within a word cloud, but rather that the more high-level,
interpretation-based tasks that people do perform rely upon this
low-level perceptual ability.

Nonetheless, we wanted to confirm that the bias that we saw
within the compare-two-words task was not specific to this precise
experimental setup. In a further set of experiments, we looked for
the same bias using a different task: finding the single biggest
word within a cloud. While we believe that this task relies upon
the same perceptual abilities as the comparison task, it is in some
ways closer to how word clouds are used in practice. Picking out
the biggest word (or words) from a visualization that uses font size
to encode values is similar to the higher level task of asking what
the data encoded by the visualization is “about.”

To give us control over the gap in font size between target
words similar to what we had in our previous experiments, we
introduced a concept called near misses. Near misses are words
that are almost as large as the biggest font size word, but not
quite (see Figure 13). Explicitly controlling the near misses in
each stimulus allowed us to evaluate multiple font size differences
between the biggest word and the next biggest. It also gave us a
new factor: the number of near misses.

Our general hypotheses for the pick-the-biggest task were
that participant accuracy would be worse in instances of factor
disagreement (as in our previous experiments), and that this effect



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, AUGUST 2016 11

would be more pronounced in stimuli that contained more near
misses to distract the participant.

7.1 Experiment BIG1
Bias still present in “pick the biggest” task

In our first experiment making use of the pick-the-biggest task,
we sought to examine potential bias due to word length agreement
or disagreement. We created a set of stimuli of word clouds made
up of pseudowords (see Section 4.3). As before, stimuli contained
40 distractor words, in this case limited to font sizes below 40px.
Stimuli then contained either 1 or 4 near miss words which were
given a font size of 40px. Finally, each stimulus contained a
target word (the “correct” choice) with a font size defined by a
percentage increment above that of the near misses (either 5, 10,
15, or 20% bigger).

The factors for this experiment were font size difference (5,
10, 15, or 20%), target word length (5 or 8 letters), near miss
word length (5 or 8 letters), and number of near misses (1 or 4).
Each factor was varied within participants. The full combination
of these factor levels resulted in 32 conditions. We tested 19
participants, once again recruited through Amazon Mechanical
Turk, each of whom saw 134 stimuli (4 per each of the 32
conditions, plus an additional 6 engagement tests with a font size
difference of 50%). After calculating font size difference and word
length agreement for each stimulus, we ran a two-way ANOVA
to test for the effect of the three metrics (including number of
near misses). We saw main effects for all three factors: font
size difference (F(3,414) = 5.82, p = 0.0007), length agreement
(F(2,414) = 10.10, p < 0.0001), and number of near misses
(F(1,414) = 33.66, p < 0.0001), indicating lower accuracy in
instances of word length disagreement, more near misses, and
closer font sizes (see Figure 14).

Our hypothesis that we would still see a biasing effect of length
disagreement using a different task was confirmed. Interestingly,
accuracies seemed to drop off even more when participants were
performing the pick-the-biggest task than when they were per-
forming the pairwise comparison task (see Figure 14). However,
participants still achieved greater than 50% accuracy in each
condition, performing better than chance.

7.2 Experiment BIG2
Wider variety of sizes in “pick the biggest” task

For a second experiment using the pick-the-biggest task, we were
interested in whether the magnitude of the word length agreement
or disagreement was relevant to the bias created—that is, would in-
stances of greater disagreement hurt accuracy more than instances
of small disagreement. We created a design that was similar to
that described in Section 7.1, but with different levels for the word
length disagreement factor. Rather than only considering words of
5 or 8 characters, we considered word length differences of 1, 3,
and 5 characters in both the “agree” and “disagree” directions, for
a total of 6 levels for this factor. We hypothesized that instances of
large disagreement (e.g., 5 characters) would show lower accuracy
than instances of small disagreement (e.g., 1 character).

We tested 19 participants on Amazon Mechanical Turk, each
of whom saw 150 stimuli (3 per each of the 48 combinations of
factors with an additional 6 engagement checks). We ran a two-
way ANOVA to test for the effects of the three metrics, and again
saw main effects for all three: font size difference (F(3,846) =
3.02, p = 0.03), length difference (F(5,846) = 8.00, p < 0.0001),

sizeDiff agree neutral disagree

5% 0.947 0.908 0.750

10% 0.974 0.9805 0.895

15% 0.987 0.974 0.908

20% 0.987 0.987 0.934
# of near misses = 1

sizeDiff agree same disagree

5% 0.829 0.743 0.566

10% 0.908 0.9145 0.776

15% 0.961 0.967 0.973

20% 1.000 0.987 1.000

# of near misses = 4

*

*

*

*

*

Fig. 14. This table shows the average participant accuracy for each
combination of experimental factors for experiment BIG1 (§7.1). In this
experiment, participants were asked to select the word with the largest
font size. They were presented with word clouds containing a single
word bigger than the rest (the “target” word) along with either 1 or 4
“near misses.” A two-way ANOVA showed there to be a significant main
effect for both the font size difference between the target and the near
misses, for word length agreement, and for the number of near misses.

and number of near misses (F(1,846) = 7.00, p< 0.008)—each in
the same direction as seen previously. We also noted, as expected,
that accuracies were lowest in instances of largest disagreement
and highest in instances of largest agreement (see Figure 15).

7.3 Discussion
The main takeaway from these two additional experiments is that
the biasing effect of factor disagreement is not isolated specifically
to the task of pairwise comparison, but can also be seen in a
task that specifically tries to draw the user’s attention to the most
“important” word in the visualization. The detrimental effect of
more “near misses” seems to perhaps indicate that while people
are generally able to perform pairwise comparisons, needing to
perform multiple of these can cause them to miss smaller words.
However, performance is still better than chance in all but the most
pathological cases.

8 FULL DISCUSSION

Results from other experiments not described above are laid out in
the supplemental materials. In those experiments, we looked for a
number of extra details and effects. We compared performance at
different base font sizes. We tested to see if the results were the
same with a sans serif font (which they were). We looked for a
size difference ceiling past which participant accuracy maxed out
(which proved to be between 20-25% size difference). Consistent
across each experiment were the same things we saw in each
of the experiments described in Sections 5, 6, and 7: decreased
performance with factor disagreement at close size differences. It
is worth noting that this effect is not simply the result of partic-
ipants focusing on area rather than font size. Consider examples
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Fig. 15. This graph shows the average participant accuracy for combinations of experimental factors in experiment BIG2 (§7.2). In this experiment,
participants were tasked with picking the word with the largest font size as in §7.1. We tested a wider variety of length differences, and saw that
performance was generally lowest in cases of large disagreement and highest in cases of large agreement. These values are averaged across two
levels of the “number of near misses” factor. Error bars represent a 95% confidence interval.

from our length disagreement experiments. While we observed
decreased accuracy when a word with a 1-pixel-larger font size
was significantly shorter than the other target, increasing the font
size difference by a mere pixel resulted in very high accuracy—
even though the difference in area disagreement created by this
change in font size would be minimal.

Clearly, perceptions of font size can be biased by these factors.
The relevant question for a designer is how much this bias will
affect their end users, and whether it is worth designing around it.
The effects that we saw occurred at very close differences in font
size, and even then participants performed better than chance. It
may be that our experimental setup artificially enhanced perfor-
mance past what we would see in the wild—perhaps by having
users focus in on two individual words out of many. Nonetheless,
the consistently high accuracy that we saw across so many trials
and conditions was remarkable. Despite the fact that font size
encodings are rarely used for tasks requiring pixel-level accuracy,
our findings seem to suggest that they may be more suitable for
such tasks than previously thought. Given the particular utility
of the font size encoding for textual data, expanding its potential
uses could have significant impact. An important future direction
of this work, therefore, will be to continue testing the limits of this
perception in real-world applications.

While thorough investigation of these phenomena in more
realistic contexts will be important for applying this work, it is
also important to understand the psychophysical mechanism(s)
responsible for the observed effects. Perceptual-level study of why
this bias exists could help us predict whether effects might be
better or worse in other viewing conditions, visualization contexts,
or using different kinds of data. It may be useful for such future
work to take the form of in-person studies for more precise mea-
surement and better data gathering. This could also help validate
our crowdsourced results in a more controlled environment.

Our debiasing attempts are a proof-of-concept, and show that
it is possible to correct for the effects of factor disagreement in
the event that a designer expects careful reading and comparison
of their encodings. We believe there are more aesthetic ways of

making these corrections, and are interested in exploring them
further. Font weight, for instance, may interact with font size in
ways that we could exploit in our encodings. Possible candidates
for other methods include typeface modifications such as kerning,
widths of individual letter glyphs, or even exploring the use of
monospaced typeface (where all the characters have the same
width causing words that have the same length to be the same
width as well). Ultimately, whether or not debiasing is even
necessary depends on how the encoding will be used in practice.

While we looked for biasing effects of a number of features
related to a word’s content—including length, width, character
height, and font (see the supplemental materials)—there are more
features that could be examined. These include color, font weight,
and a word’s semantic weight or meaning. Also, while we believe
that the pairwise comparison and pick-the-biggest tasks allow us to
get down to the perceptual primitives of higher level tasks, we are
interested in testing a wider variety of tasks to better understand
font size encodings in real world contexts.

9 CONCLUSION

We have explored the effects of different word shapes on the
perception of data encoded through font size. Across multiple
experiments, we have shown that the factors of word length,
character height, and word width can all have a negative impact
on one’s ability to judge comparative font sizes, particularly
when they differ in the opposite direction from the font sizes
being compared (“disagreement”). These biases are consistent, but
surprisingly small in their effects, possibly indicating that such
encodings are better suited to higher accuracy tasks than previ-
ously expected. We have shown in a proof-of-concept design that
correcting for them is possible by adjusting the visual encoding.
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