CHI 2018 Honourable Mention

[Tb and mi (17§ [1Tb ai ['nni (@ [TInt

Aurélien Tabard
Université de Lyon, CNRS,
LIRIS UMRS5205, Lyon, France
aurelien.tabard@univ-lyonl.fr

Adam Rule
Design Lab, UC San Diego
La Jolla, CA
acrule@ucsd.edu

0oobooooo

Computational notebooks combine code, visualizations, and
text in a single document. Researchers, data analysts, and
even journalists are rapidly adopting this new medium. We
present three studies of how they are using notebooks to
document and share exploratory data analyses. In the first,
we analyzed over 1 million computational notebooks on
GitHub, finding that one in four had no explanatory text but
consisted entirely of visualizations or code. In a second
study, we examined over 200 academic computational
notebooks, finding that although the vast majority described
methods, only a minority discussed reasoning or results. In
a third study, we interviewed 15 academic data analysts,
finding that most considered computational notebooks per-
sonal, exploratory, and messy. Importantly, they typically
used other media to share analyses. These studies demon-
strate a tension between exploration and explanation in
constructing and sharing computational notebooks. We
conclude with opportunities to encourage explanation in
computational media without hindering exploration.

OurhndT'Eke nd C]
Computational notebook; Jupyter Notebook; data science;
data analysis; narrative;

000 MaCCoo I mni [TJEke ndCJ

H.5.3. Information interfaces and presentation: Group and
Organization Interfaces — Collaborative computing
mooooboomg

Data analysis is an iterative and exploratory process of ex-
tracting insights from data [11, 17]. Insights are sensitive to
the methods used to produce them; small changes in how
data are collected, cleaned, or processed can lead to vastly
different results [13]. For this reason, analysts must docu-
ment their steps and reasoning if others are to understand,
and ultimately trust their work. Yet, the iterative and ex-
ploratory nature of data analysis complicates documenta-
tion. Analysts struggle to track which of the many versions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CHI 2018, April 21-26, 2018, Montreal, QC, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5620-6/18/04 $15.00
https://doi.org/10.1145/3173574.3173606

Paper 32

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

ummni (al/nk_ nnrC

James D. Hollan
Design Lab, UC San Diego

La Jolla, CA
hollan@ucsd.edu

of their code produced a particular result [11, 17]. Explora-
tion often leads to dead-ends, prompting analysts to view
code as being “throw-away” and see little point in annotat-
ing it [17]. Over time analysts produce dozens of similarly
named scripts, figures, and files, which can be difficult to
navigate [35]. Together, these factors complicate tracking
and sharing of analyses, undermining replication and review.

Computational notebooks address these problems by com-
bining code, visualizations, and text in a single document
(Figure 1). While they have ties to Knuth’s early work on
literate programming [20], and have been available for dec-
ades in software such as Maple and Mathematica, the recent
emergence of open-source computational notebooks has
enabled rapid adoption by millions of researchers, data ana-
lysts, and journalists. Many users adopt computational
notebooks with the aim to not only perform, but also docu-
ment and share their analyses. Indeed, computational note-
books were designed to support construction and sharing of
computational narratives [28]. Are they being used to share
compelling narratives, or simply to explore data?

This paper presents three studies that document a tension
between exploring data and explaining process and how
this hinders construction and sharing of computational
notebooks. We assess current use of computational note-
books through quantitative analysis of over 1 million note-
books shared online, qualitative analysis of over 200 aca-
demic computational notebooks, and interviews with 15
academic data analysis. In place of rich narratives, we find
computational notebooks are often loose collections of
scripts and notes, or lack explanatory text altogether. We
find individual notebooks rarely tell a story by themselves
but are routinely combined with other notebooks, emails,
slides, and READMEs. We find many analysts see their note-
books as personal, exploratory, and messy artifacts and
prefer using other media, or highly cleaned notebooks, to
share results.

Making data and analyses understandable and public is cru-
cial to advancing open science and enabling reproducibility.
We believe computational notebooks are an important step
towards these ends, but still in an early stage of development.
Guiding their evolution requires careful examination of how
they are being used, especially to better support both analysis
and communication. While our results demonstrate a lack of
explanation, they also highlight opportunities to foster more
explanation in computational media while still encouraging
the exploratory process that analysts use to think with data.

Page 1

CHI 2018 Honourable Mention

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Narrative Text Sampling from the generative model

Code and Visualizations

an e o, For smpicly, ur “ocsbuary” vl b dumy.

Notebook title and introduction

e—— Importing external packages

Description of model parameters

o—— Implementation of parameters

Description of need to profile data

o—— Profile plotting code

e—— |Inline plot

050

Figure 1: The first half of a computational notebook analyzed in our second study, which demonstrates a novel Python package for
modeling patterns of online learning activity. The notebook combines code, visualizations, and text into a computational narrativel

Joooooomm oog

This research builds on three bodies of related work: under-
standing data analysis, the design of computational note-
books, and computational narrative.

Oomii CekCdCl

In the introduction to his seminal book Exploratory Data
Analysis John Tukey memorably described his subject as
“looking at data to see what it seems to say” [37]. The defi-
nition is vague, which may have been Tukey’s point. He
stressed that exploratory analysis and plotting, preferably
by hand, should almost always precede more exact statisti-
cal tests as hand-guided exploration can identify interesting
trends, check assumptions, and inform selection of analyti-
cal techniques.

From large scale user data collected on the Web, to big sci-
ence initiatives collecting and integrating petabytes of data,
the scale of data analyzed today routinely exceeds what can
be plotted by hand [22]. Still, recent accounts of data analy-
sis echo Tukey’s description of an iterative and imprecise
art. Two interview studies found that data analysis involves
cycles of obtaining, cleaning, profiling, analyzing, and in-
terpreting data [11, 17]. In their iterations, analysts try dif-
ferent versions of the same analysis, slowly improve analyt-
ical methods, and hit numerous “dead ends” before finding
an explanation that “fits” the data.

These studies demonstrate the sensemaking [30] involved
in data analysis and that the process used to collect, explore,
and model data has a significant impact on the sense made.
While the goal of this process may be to produce general-
izable knowledge, more often than not it may simply be to

Paper 32

inform the analyst seeking to make a decision [19]. This
can make it difficult to perform an “objective” analysis, or
to precisely document or share results. Moreover, it implies
that given the same dataset, two analysts may come to dif-
ferent, though potentially equally valid, conclusions [13].

Data analysis requires professional judgment to collect,
clean, analyze, and interpret data, which has additional con-
sequences for the ways analysts document and share their
work. While observing analysts at the International Mone-
tary Fund, Harper and Sellen found that the more judgment
involved in producing a piece of information, the less suita-
ble it was for sharing over asynchronous electronic me-
dia [12]. Analysts at the Fund routinely interpolated miss-
ing data or adjusted figures based on their knowledge of
countries’ data collection practices. Without knowing how
and why these adjustments were made, others could easily
misinterpret the data and insights drawn from them. For
these and other reasons, analysts require ways of fluidly
documenting and communicating their work.

Ont ummni Calnr&Cnnr COJ

The amount of judgment and exploration involved in data
analysis necessitates clear documentation of analyses if
others — or even the original analyst — are to inspect, repli-
cate, or build on them. Leading work on reproducibility
suggests that at a minimum, analysts should distribute the
code used in their analyses [27]. Yet, analysts themselves
may have difficulty reconstructing the exact process used to
generate a result [11]. Moreover, the analysis may involve
combining and reflecting on media from a variety of digital
and paper resources that are not easily shared [35]. Even
with all the code and resources in one place there is the

Page 2

CHI 2018 Honourable Mention

additional challenge of making them understandable. As the
organizers of the Software Carpentry workshops note,
“most researchers are never taught the equivalent of basic
lab skills for research computing” [38]. These include plac-
ing explanatory comments at the start of every program,
making code dependencies explicit, and separating raw and
cleaned data. Much of this organization and annotation is a
manual process learned through experience.

One way to address these challenges is to perform data
analyses in computational notebooks. In the tradition of
Knuth’s literate programming [20], computational note-
books enable analysts to mix code with manual annotations
in a single document. While computational notebooks have
been available in propriety software for decades, recent
HCI research has explored mixed methods notebooks. Bur-
rito, for example, instrumented analysts’ computers so that
analytical steps were automatically recorded and could be
mixed with manual annotations [11]. PRISM enabled com-
putational biologists to mix and reflect on paper and digital
media in a hybrid laboratory notebook [35].

In recent years computational notebooks have seen wide
adoption thanks to the availability of open source varieties
such as RNotebooks and Jupyter Notebook, which have
millions of users in fields as diverse as education, finance,
and the sciences [10]. This new generation of notebooks is
based on cells, each of which contains rich text or code that
can be executed to compute results or generate visualiza-
tions (Figure 1). These cells are linearly arranged, but can
be reorganized, reshuffled, and executed in any order.

This notebook paradigm is spreading beyond data analysis
to other development and visualization environments. At
the time of writing, Mike Bostock was creating d3.express,
an interactive notebook version of his popular D3 Javascript
visualization library [2]. Distill, an online academic pub-
lisher, uses a notebook format to explain complex machine
learning research [6]. Likewise, Codestrates recently
demonstrated how the notebook paradigm could be used to
blur the line between development and use of an applica-
tion [29]. The notebook paradigm is clearly powerful and
addresses key challenges of preforming data analysis. But
do analysts actually use them to write clear explanations of
their work, or simply to support iterative analysis?

Computational Narrative

Science “begins as a story about a Possible World—a story
which we invent and criticize and modify as we go along, so
that it ends by being, as nearly as we can make it, a story
about real life.” — Sir Peter Medawar, Induction and Intui-
tion in Scientific Thought (1969)

One of the key features of computational notebooks is that
they enable analysts to arrange code, visualizations and text
in a computational narrative. While computers are good at
producing and processing data, humans are much better at
understanding stories. We are not experts in narrative, nor
can we summarize millennia of innovation in a few para-

Paper 32

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

graphs. However, we highlight a few salient aspects of nar-
rative as it relates to data analysis and visualization.

At its core, a narrative is a series of ordered and connected
events. The Oxford English Dictionary defines narrative as
“An account of a series of events, facts, etc., given in order
and with the establishing of connections between them; a
narration, a story, an account”. As such, a series of disjoint-
ed events is not a narrative (e.g., a twitter newsfeed), nor is
a collection of related events that are not in a particular or-
der (e.g., an affinity diagram or mood board). Narratives
occur in a variety of media including audio, text, and video,
each of which have their own strategies for engaging the
audience and moving the story along. While some tech-
niques, such as the “flashback” can be employed across
media, others like split-screen sequences in film, are unique
to particular media [30].

Since the early 2000s, there has been increasing focus on
narrative and storytelling in information visualization. Ger-
shon and Page highlighted the power of narrative to engage
and convey information and suggested that information
visualization employ well-established narrative techniques
such as continuity editing, filling gaps, and redundancy [9].
Segel & Heer built on this foundation by developing a de-
sign space for what they called “narrative visualizations”
(visualizations with a set of ordered and connected views),
and identified seven distinct genres including magazine,
slideshow, and comic-strip [32]. Noting the importance of
the order in which data views are presented, Hullman et. al
conducted multiple studies of how people sequence infor-
mation visualization events, finding they tend to prefer a
consistent, hierarchical structure [14, 15]. More recently,
Kosara & Mackinlay highlighted the need to use different
storytelling strategies in different situations with different
audiences (self-running presentations, live presentations,
small-group presentations) [21], and Satyanarayan & Heer
demonstrated Ellipsis, a tool to support the authoring of
narrative visualizations particularly for the web [31].

This prior research demonstrates the challenge of com-
municating exploratory data analysis, the promise of com-
putational notebooks, and the characteristics of narrative in
information visualization. However, as noted in prior re-
search, narrative affordances and strategies differ across
media and audience. It remains to be seen what types of
explanation computational notebooks afford and the distinct
scenarios in which analysts use them. Moreover, tools such
as Ellipsis which support the construction of narratives in
interactive information visualizations may not apply when
crafting narrative in computational notebooks which need
to not only convey insights, but also how they were gener-
ated. In the following three studies we assess the current
state of narrative in computational notebooks and the chal-
lenges analysts face constructing and sharing them.

STUDY 1: COMPUTATIONAL NOTEBOOKS ON GITHUB
To examine if computational notebooks make significant
use of narrative, we analyzed 1.23 million Jupyter Note-

Page 3

CHI 2018 Honourable Mention

1 10 100 1000
Cells

1 10 100 1000
Lines of Code

% of all Notebooks

30
25
20
15
10

1 10 100 1000
Words of Text

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

___ Beginning

10000

Middle = Text Code

of Motebook

10000

Section

i nd
10000 End 25 50 75 100
% of Cells

Figure 2: A) Notebook length as measured by cells, lines of code, and words of markdown. While only 2.2% of all notebooks had no
code, 27.6% had no text. B) Content type across the average notebook. Cells at the start of the notebook were more likely to be text
and cells at the end more likely to be code.

books hosted publicly on GitHub. GitHub is a popular web-
site for hosting, managing, and collaboratively editing
software source code. Jupyter Notebook is a popular open-
source computational notebook that enables authors to
combine code, visualizations, and text in a single document
(an .ipynb file) whose underlying structure is JSON. In May
2015, GitHub began to natively render Jupyter Notebooks
so that anyone viewing one on the site would see the fully
rendered notebook rather than its underlying JSON [33],
which has made GitHub a popular site for storing and shar-
ing Jupyter Notebooks.

O ErmnCT

In July 2017, we searched GitHub for all publicly available
Jupyter Notebooks that had not been forked (i.e., copied)
from another repository (i.e., collection of code). For each
notebook, we attempted to download the notebook, infor-
mation about the repository that contained it, and, if pre-
sent, the repository’s README. Of the 1,294,163 notebooks
hosted on GitHub at the time, we were able to download
notebook and repository data for 1,227,573, roughly 95% of
the corpus. Unless otherwise stated, all figures in the fol-
lowing results are relative to this set of 1.23 million note-
books. The majority of notebooks we did not obtain data for
were invalid JSON or empty files, though some data were
missing because files had been moved, renamed, or deleted
during our search. We computed metrics about each note-
book’s content and structure to facilitate analysis.

[JECuat]

Users: There are 100,503 GitHub users who have publicly
shared a notebook. This is about 0.4% of all GitHub users
and 1.7% of the estimated 6 million Jupyter Notebook users
[10]. The number of notebooks per user follows an expo-
nential distribution, , with 24.5% of users hosting
only one notebook on GitHub, and 27.4% hosting ten or
more. The majority of notebooks (81.4%) belong to users
who have hosted 10 or more.

Paper 32

Repositories: There are 191,402 repositories on GitHub
containing at least one Jupyter Notebook. The number of
notebooks per repository follows an exponential distribu-
tion, , with 39.1% of repositories having only one
notebook and 14.6% of repositories having ten or more.
The majority of notebooks (66.4%) belong to repositories
with ten or more notebooks in them.

Language & Packages: Jupyter Notebook can execute code
written in over 40 programming languages and users select
a primary language when they create a notebook. Of the
85.1% of notebooks with a language specified, the vast ma-
jority were written in Python (96.3%), particularly Python
2.7 (52.5%). Notebooks written in R and Julia each ac-
counted for about 1% of all notebooks. Of notebooks writ-
ten in Python, R, or Julia, 89.1% imported external packag-
es or modules. The most commonly imported Python pack-
ages were Numpy (67.3% of Python notebooks with im-
ports), Matplotlib (52.1%), and Pandas (42.3%), showing a
strong emphasis on data science and visualization.

Notebook Length: Jupyter Notebook cells can be any length
and contain either executable code, markdown to be ren-
dered as text, or raw content that should be rendered as is.
Most cells were either markdown or code (99.8% of cells)
rather than raw content. The number of cells per notebook,
as well as the amount of text and the number of lines of
code per notebook all followed log-normal distributions,
with the exception that a significant number of notebooks
(27.6%) had no text in them but consisted entirely of visual-
izations or code (Figure 2A). Only 2.2% of notebooks did
not have any code but were entirely text. Ignoring note-
books without text, the median notebook had 218 words of
text, though the longest, at 55,000 words, was longer than
The Great Gatsby. Disregarding notebooks without code,
the median notebook had 85 lines of code, though the long-
est had over 400,000 lines of code, more than NASA’s pri-
mary space shuttle flight software [7].

Page 4

CHI 2018 Honourable Mention

Organization: Notebooks are extremely flexible with the
main organizational element being cells, which can be line-
arly arranged. Users can provide additional structure by
deciding how to split text or code across cells, using func-
tions, classes, and comments to structure code, and using
markdown headers and links to structure text. We found
that cells at the beginning of notebooks were more likely to
be text, but that the majority of later cells were devoted to
code. (Figure 2B). Most notebooks used headers to organize
text, and comments to organize code (Table 1).

Feature % of all Notebooks
Text 72.7
> Headers 60.2 I
|_
URLs 31.6 .
Code 97.8 I
§ Comments 62.1 I——
o Functions 37.3 I
Classes 12.3 W

Table 1: Organizational features of notebooks. Most note-
books organized text with headers, and code with comments.

Execution & Outputs: While convention is to run cells line-
arly from top to bottom of the notebook, cells can be exe-
cuted in any order. This can be useful when checking if
changes to a prior analytical step impact later computations.
Jupyter Notebooks track cell execution order, so we were
able to see if notebooks were run linearly or non-linearly.
We found that 43.9% of notebooks with computational out-
put had a non-linear execution order. Jupyter supports three
types of output: stream (e.g., print statements), executed
results (e.g., numerical results), and displayed data (e.g.,
rich data displays such as graphics and tables). In our cor-
pus, 85.0% of notebooks had output in at least one cell,
with 68.5% of notebooks having stream output, 58.1% hav-
ing an executed result, and 45.5% having displayed data.

Description of Repositories: GitHub repositories provide a
number of facilities for describing and documenting pro-
jects. These include a short description, longer README
files that get rendered on the repository’s homepage, and
GitHub-hosted project websites. While 58.5% of notebook
repositories had a description and 73.0% had a README,
only 4.5% had a GitHub-hosted project website. Analyzing
the descriptions gives a sense for the topics notebooks ana-
lyze and discuss. The ten most common words in repository
descriptions were learning, project, machine, udacity,
course, deep, nanodegree, neural, kaggle, and model,
showing an emphasis on machine learning and education.

Discussion

Our corpus is very diverse, including notebooks containing
a single line of code and others that are full interactive text-
books. While some stood alone, others were part of a col-
lection that formed a multi-step analysis. While some were

Paper 32

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

homework submissions, others demonstrated software
packages, or documented original research. This diversity
discourages generalization, but we highlight a few broad
trends in the use of text and narrative.

First, most notebooks were not narratives but collections of
scripts with loose notes. A quarter had no text and, even
disregarding these, the median notebook had barely more
text than the abstract of this paper (Figure 2A). The design-
ers of Jupyter Notebooks intended for them to be a “Literate
Computing environment, [in which] the author weaves hu-
man language with live code and the results of the code,
and it is the combination of all that produces a computa-
tional narrative” [16]. It appears many analysts are not us-
ing notebooks in this way.

Second, descriptive text is not evenly distributed across
notebooks (Figure 2B). Text is most likely to occur at the
very beginning of the notebook, steadily less prevalent as
the notebook progresses, and least likely to occur at the
very end. This may reflect the use of introductory text to
present the goals and organization of the notebook, but not
conclusion text to reiterate goals and interpret results. Al-
ternatively, the declining use of text as the notebook pro-
gresses may demonstrate that less explanation is needed
once the analysis has been setup, or that analysts tire of
annotating the notebook over time.

Third, notebooks in our corpus rarely stood alone. The vast
majority were in repositories containing other notebooks, a
README file, or both. A single narrative may flow across
multiple notebooks, from one for data cleaning into another
for profiling and modeling. Moreover README files may
provide additional information about the motivations, back-
ground, and findings of the analysis.

Finally, the exploratory and iterative nature of data analysis is
reflected in the fact that nearly half (43.9%) of notebooks were
uploaded to GitHub with a non-linear execution order. This
means that analysts went back and re-ran earlier cells, rather
than just linearly writing and executing code. This figure
should be considered as a lower-bound as analysts may have
done a clean run of their notebook before sharing it online.

These results demonstrate that while many notebooks are
used for iterative analysis, few contain lengthy explanations
of their contents. Are analyses performed in notebooks be-
ing explained in other ways? Or might it be that particular
uses of notebooks employ more narrative than others? We
begin to address these questions by focusing on one particu-
lar community of practice: academic data analysis.

STUDY 2: NARRATIVE IN ACADEMIC NOTEBOOKS

In this second study, we focused on how notebooks docu-
menting academic data analysis employ narrative. We se-
lected these notebooks because, relative to other communi-
ties, the collaborative nature of academic research may fa-
vor inclusion of text to explain methods and results so oth-
ers can understand and build on the work. Transparency and
replicability of analytical processes is also of increasing

Page 5

CHI 2018 Honourable Mention

importance in the scientific community [26]. To give an
idea of the richness of some scientific notebooks, one high-
lighted by the Jupyter team [16] which supplements a Na-
ture article [5] contains over 2000 lines of code and 7000
words of text, even as the Nature article itself is half that
length at 3500 words. We explore whether this example is
an outlier, or if most academic notebooks employ narrative.

O ErmnCT

Sampling: We sampled academic computational notebooks
by searching GitHub for repositories with both a notebook
and a README linking to an academic publication. In a pilot
analysis of “interesting” academic notebooks [16], we
found that many notebooks were in repositories whose
README had a URL pointing to a journal, conference, or
pre-print publication. While many of these links lead to
journal-specific websites, such as nature.com, the most
common links pointed to Document Object Identifiers
(DOIs) and arXiv publications (a popular pre-print service).
To obtain a sample of academic computational notebooks,
we searched GitHub for repositories containing Jupyter
Notebooks and a README with a DOI or arXiv link. We
purposefully sampled the resulting 858 repositories to get
52 from a range of disciplines, looking for keywords such
as “chemistry”, “physics”, and “linguistics” in the READ-
MEs. These 52 repositories contained 221 notebooks.

Coding: We iteratively coded all 221 notebooks to develop
codes describing how academic notebooks employ text.
Specifically, we coded each notebook’s genre, organization
and use of text, and the organization and use of code com-
ments (Table 2). Two researchers open coded 50 notebooks
to develop initial codes and refined and reapplied these
codes until they achieved greater than 60% inter-rater relia-
bility (Cohen’s Kappa). They then divided and separately
coded the remaining notebooks. They used a similar pro-
cess to identify features of the repositories containing aca-
demic notebooks, coding for the contents of the repository
as well as contents of the README.

[JECuat]

Repository Content and Readmes: In 43 of the 52 reposito-
ries, notebooks made up the majority of contents, averaging
81.6% of the repository's total bytes. In the nine cases
where notebook content was the minority, the majority of
repository contents were program files that the notebook
imported. In addition to notebooks, the majority of reposito-
ries contained source code in program files such as .py files
(40). Many contained raw data (24 repositories), figures
(15), manuscript files (10) and additional documentation
(7). Most repository README files described what the re-
pository’s code did (33 repositories) and the steps required
to setup or install it (33). Many READMESs also described the
organization of the repository’s files (24) and how to exe-
cute the code or notebooks once configured (18). Few dis-
cussed analytical reasoning (7) or results (10).

Notebooks: Half of the repositories (26) contained a single
notebook, L _ . The two repositories with the most

Paper 32

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

notebooks (52 and 26 respectively) were largely repetitive
with notebooks that tweaked one or two parameters at the
top, and then ran the exact same collection of cells. To pre-
vent these nearly identical notebooks from biasing our data,
we removed them from further analysis, leaving 50 reposi-
tories with 145 notebooks. These 145 notebooks were long-
er than the notebooks from our GitHub corpus in Study 1
with a median length of 31 cells (compared to 18 in Study
1) 102 lines of code (85), and 329 words (218).

Organization and Use of Text: Most notebooks had an in-
troductory text cell (55%) but almost none had a concluding
text cell (3%). The vast majority used headers (86%), and
slightly fewer had text aside from the headers to explain the
analysis (77%). Of those notebooks with non-header text,
88% used that text to describe analytical steps, but only
34% to explain reasoning, and just 38% to discuss results.

Organization and Use of Code Comments: We found 82% of
notebooks had code comments. Of these, almost all (99%)
used comments to describe what the code was doing, and half
(50%) used them to control the program flow by commenting
out alternative code. Very few notebooks used comments to
explain the analysts’ reasoning (10%) or results (4%).

Uoomimd OOohamm 0momo

d 0mm
OO0 O 0o 0d oo 0Jd
Omomo 0o 0d oo oo

Oy I 0000 EEEE 0d g g

O DAY Tt #) 0l RN R O

OOCA D 0Jd g 000 0Jdd g
CEbmy 0o o oo oo oo g
Ot #ITHA T 0o o oo oo oo g
Ot #T# 1D 0o o oo oo 0o g
OOt #1000 0Omom 0o o oo oo 0o g
Ot #T O N# (D 0Jd g 000 0Jdd g
Ont t Ei B0 0o o oo oo oo g
OO0 Mg 180 0o o g o oo oo g
000 Mo O 02PO 0o o oo oo oo g
OO0 Mo N# 0 oo oo oo oo
000 MDo °0 0o o oo oo oo g

(I [OCH OO [0 BT OA# T #TF (I# 0] o B0 0 O # O

Table 2: Length and content of academic computational
notebook by genre. Analysis notebooks employed more text,
while Figure notebooks had more code.

Notebook Genre: 54 notebooks documented a full analysis,
50 simply replicated figures, and 41 were tutorials for how
to use a particular software package. The use of text varied
across genre (Table 2) with full analysis notebooks more
likely than figure replication notebooks to have text outside
of headers, to have a textual introduction to the notebook,
and to use text to describe reasoning. On the other hand,
figure replication notebooks tended to use text to discuss
results more than analysis notebooks. Note that due to our
small sample and variance between notebooks, none of the-
se differences were statistically significant.

Page 6

CHI 2018 Honourable Mention

Discussion

This closer examination of academic computational note-
books revealed distinct genres. Yet, even in the most ver-
bose genre (full analysis) analytical reasoning and results
were discussed less than half the time. While a couple note-
books contained richly detailed narratives with several
thousand words of text, most were simply collections of
scripts with occasional notes describing the code. Similarly,
most repository README files focused on what the reposito-
ry’s files did and how they were organized, but did not dis-
cuss reasoning or results. This lack of explanation is not
because analyses were straightforward. Even in these pub-
licly shared notebooks, half used code comments to control
program flow, demonstrating that versions of the analysis
were tried, evaluated, and rejected in favor of other imple-
mentations. Notebooks were being used for iterative anal-
yses, but not necessarily for constructing rich narratives.
Indeed 90 of the 145 notebooks in our sample had less text
than its repository’s README.

Still, the consistent use of headers, text descriptions of
steps, and README files describing repository contents
demonstrates that analysts are taking time to annotate and
explain their analyses. What audience do analysts consider
when they annotate their notebooks? And why do they
seem to devote more effort to describing steps but not high-
er-level motivations or reasoning? We began to address
these questions in our third study.

STUDY 3: INTERVIEWS WITH DATA ANALYSTS

The second study highlighted that, when present, text in
academic computational notebooks was more often used to
discuss methods than reasoning or results. Seeking to better
understand why these notebooks lacked rich narrative struc-
ture, we interviewed 15 academic data analysts who use
computational notebooks on a regular basis.

Methods

Participants: We recruited 15 academic data analysts (4
Female, 11 Male) from eight laboratories at UC San Diego,
by attending weekly lab meetings and emailing open sci-
ence listservs at the university. Participants included six
postdocs, five PhD students, three staff researchers, and one
undergraduate student. Participants researched topics rang-
ing from computational biology and pharmacology to as-
tronomy and engineering science. Four laboratories had
multiple people using computational notebooks as well as
extensive infrastructure for running, storing, and sharing
notebooks. In the other four labs, our participants were the
only ones using computational notebooks. Five of our in-
terviewees had authored at least one notebook from our
Study 1 corpus, though we did not specifically recruit them
for this reason. None was the author of a notebook included
in our Study 2 corpus.

Procedure: We conducted twelve semi-structured inter-
views, three with pairs of analysts and nine with individual
analysts. Each interview lasted 30-45 minutes and focused
on how each analyst organized, edited, and shared computa-

Paper 32

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

tional notebooks. We grounded each interview by discuss-
ing at least one notebook the analyst had been working on
recently. Sample questions included:

e Can you show us a notebook you have been work-
ing on recently?

e Can you explain the analysis in this notebook?

e What sections or cells have you spent the most
time working on?

e Who else has access to this notebook? Do you plan
to share it further?

e Would you need to make any changes before shar-
ing it further?

We transcribed each interview and iteratively generated an
affinity diagram to identify themes across participants.

Results

Notebook Uses: Participants used notebooks for a variety of
reasons, many of which were educational. Analysts gave
lectures in notebooks, assigned homework in notebooks,
and used notebooks to train new lab members. While these
educational uses warrant further study, we focused our in-
terviews on the use of notebooks in research, where they
were most commonly described as playgrounds for experi-
mentation (seven participants), particularly when prototyp-
ing and debugging code. While many used notebooks to
develop pipelines to automate multi-step analyses (five par-
ticipants), some felt that notebooks were best for small-to-
medium sized tasks and preferred language-specific devel-
opment environments for larger analyses which they would
run repeatedly as new data became available (two partici-
pants). Two other participants would not run analyses in the
notebook but copied code into the notebook as a record of
work performed elsewhere.

Analysts spoke not only of notebooks’ initial use, but also
their ongoing reuse. One reason for reuse was tracking
provenance, that is, the exact steps used to generate a result.
This provenance was useful for keeping track of what anal-
yses had been tried, even if they led to dead ends, keeping
older versions of figures in case an advisor decided they
preferred them to the new one, and helping analysts untan-
gle exactly how they achieved a result. While analysts can
use computational notebooks to track their every step, it
does not happen automatically, especially when cells are
overwritten and re-run. As one participant mentioned:

I wanted Jupyter to be the tool that tracked what I did,
and I'm sad that it's not - P6

A second reuse purpose our participants mentioned was
code reuse. Individual analysts might want to reuse snippets
of code from prior notebooks, or they might want to copy
code for others’ notebooks.

I don't necessarily want to delete that messy version of
the notebook because I might not even remember if |
had something in there that, like I, I might want again.
—Pl4

Page 7

CHI 2018 Honourable Mention

A third purpose was enabling replication. This meant the
code should be clean and annotated enough that another
analyst could reasonably re-run the notebook on their ma-
chine. As one participant noted, there are numerous barriers
to making notebooks both human and machine readable,
and preparing notebooks for replication requires more care-
ful construction than preparing notebooks for code reuse.

Should sharing just be, look at their code, 'Oh they did
that'? Maybe just that. Maybe it's too much to go all
that way... it's really hard to make it runnable on
somebody else's server — P13

A fourth purpose for notebooks was presenting results. In
these notebooks analysts downplayed the role of code and
added text to describe methods and results. In many cases,
they even transferred outputs of the analysis to an entirely
different medium (e.g., slides, word processing document)
for easier review. In some cases this was for a non-technical
audience, so analysts tried to draw attention away from the
code and toward the conclusions by copying results to an-
other media for sharing. In other cases, when the audience
was technical and the desired feedback was technical, ana-
lysts would focus on refactoring code in the notebook so it
was easy to understand and critique.

While notebooks serve these different purposes, it is diffi-
cult for them to serve more than one at a time.

It's a trade-off between having a very extensive note-
book where every step is documented, or only tracking
the last evolved state of whatever the question is. — P1

1 know I need to make a new version of it that I think
will be like, “Github ready”. I want my notebook to
look like the examples of notebooks that I talked about
from my lab mate, but those are so clean that they don't
represent my normal notebooks. They're like, presenta-
tion notebooks. Like this is perfect. This has descrip-
tions of all the stuff I did and there's no fooling around.
—Pi4

Sharing: Analysts shared their notebooks in ways that re-
flected their perspective on appropriate uses and audiences.
For some analysts, notebooks were personal artifacts, best
for individual use or select sharing with other technically
oriented insiders:

A notebook is a very personal thing, so even if I would
say, “Okay, here [labmate] please look into it”, it
wouldn't be very helpful because it's very much reflect-
ing my style and for sure he would do slightly different
types of analysis to come to the same conclusions. — Pl

1 think, that notebook as a medium is sort of useful to,
you know, those insiders, the people that will be inter-
ested and will, you know, tweak some parameters and
then possibly, you know, redo the exact same analysis
Jjust on different data. - P2

Paper 32

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

These analysts were skeptical that collaborators wanted to
see their code and instead shared results in mediums such as
email, word processing documents, and slides. They would
often attach the full notebook if their collaborator wanted to
see more details, but some felt that reviewing the notebook
got in the way of interpreting higher-level findings and
providing feedback.

So over time I had to realize that the collaborators...
have no computer science background, nor a very
strong microbiome background, so I have to report on
a very high level... I try to condense what I'm finding
within one sentence. So, I try to reply to mail with very
few sentences. And I'm attaching the PDF [version of
the notebook] should the person be interested in de-
tails, but typically no one is really looking into the
methodology I'm applying, so they just trust me. — Pl

I've got all this code and I've got my data but this is re-
ally not interesting and, you know, my collaborators
should not really be worried about that. They should be
worried about, like, what do these figures represent
and whether this is something that they are expecting,
or is this, is it likely there is something wrong with the
way that we are processing their data. — P2

In contrast to this “notebooks for insiders” perspective,
some analysts felt that notebooks were good for interacting
with people who didn’t program. However, notebooks for a
general audience required careful curation to make them
easily interpretable. Having programming novices run the
notebook could present additional challenges.

I'm trying to explain every detail unless it’s like very
intuitive... I wanna have chemistry people be able to
read the notebook... and if there is a problem, they are
going to have to look for a bioinformatician. But I just
wanted them to be able to read for now. - P8

Cleaning, Layout & Annotation: Whether for personal or
shared use, every analyst felt their notebooks had to be
cleaned. Analysts described their notebooks as “messy”,
containing “ugly code” and “dirty tricks”, and in need of
“cleaning” or “polishing”. Notebooks needed cleaning be-
cause analysts were “too lazy” to add annotation, needed to
be “at their best” to produce well annotated notebooks, or
simply “ran out of time”.

Mine feels like a mess, mine feels like if somebody else
looked at it they wouldn't have any idea what, really
what order [I ran the code in], or like why I did things.
-PI2

Cleaning involved both organizing the notebook and adding
textual annotation. Organization included adding tables of
contents, sequentially numbering sections within and across
notebooks, keeping scripts in individual cells under 100
lines of code, and splitting analyses that were “bulky” or
“crowded” into multiple notebooks.

Page 8

CHI 2018 Honourable Mention

1 like to break apart my analyses into what I consider
to be notebooks that cover all the work you would do
up to a stopping point where a human has to evaluate
it. — P7

For me [the biggest challenge is] organization, I don't
know if I should do things chronologically or if I
should do things by type of data... If I run something
and I run it four different times do I just make a note up
here of the four parameters I used, or do I do four dif-
ferent cells where I ran it each time? ... at some point [I
end up] just getting frustrated and I'll make a new
notebook. - P12

Analysts annotated their notebooks both for personal use
and easing interpretation by collaborators. Personal docu-
mentation was added to prevent “getting lost” in the note-
book, to remember what was done previously, and visually
differentiate sections of the analysis to aid scanning.

So I try to document what I'm doing, or at least what
the tasks are because it's so easy to get lost in all the
different specific questions. - P1

When the notebook was to be shared, documentation fo-
cused instead on presenting the analysis at a high level,
providing background information and interpreting results.

The thing that I usually end up having to put in that's
tedious but it's kind of the whole point, is, you know,
okay I generated these beautiful visualizations and then
what are the conclusions that I drew from them, be-
cause, in our role, we're supposed to be the experts
who are saying not just, “This is the visualization”, but
“If you look at this visualization the conclusion that
you should draw”... the interpretation, that is not
something that can ever be auto generated. - P6

Social Expectations: Several analysts felt that there was not
sufficient social expectation or practice to make widespread
sharing and detailed annotation of notebooks feasible.

Does your PI [Primary Investigator] care about the
code or not? And I think that most of the time, from my
experience, it’s been no. You know they just want to see
the plots... That’s, I think, driven by what, you know,
what our old kind of standard kind of pathway was... it
was a lot of just scripts that you couldn't really port
and couldn't really make available. — P15

So I know with like paper lab notebooks in the wet lab
you get really heavy training in like... you should write
like your name, your date, kind of the hypothesis that
you're doing, a little bit of the intro and then like your
materials what your steps were and then some sort of
conclusion like and your data. And there's a lot of that
training and it's not ever, like the notebook isn't physi-
cally set up that way where it has on each page like, in-
tro, conclusion, whatever. But you just do it that way
because that's how you're trained to do it. — P12

Paper 32

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Publication and Reproducibility: Despite this lack of train-
ing or pressure to share notebooks in some labs, many ana-
lysts expressed a desire, even an obligation to document
their notebooks in such a way as they would be reproduci-
ble, that is, that they could be run by another analyst on
their own computer. However our participants expressed
several barriers to making their notebooks truly reproduci-
ble. One was deciding when the analysis was ready for pub-
lication. Another was receiving pushback from collabora-
tors when preparing to publish a notebook publicly.

So to define the point in time when a publication is fi-
nalized is very complicated. Is it when you first submit?
Is it when it’s in review? Or when you only have to do
some format editing? So there is no hard deadline unto
which you have to finalize your notebook, and there-
fore it’s very easy to not do it... it's a lot of additional
work, and you also have a todo list of more pressing is-
sues, so it's easy that this publication or making the
notebook public will be missed. - P1

The couple times I've mentioned it [publishing a note-
book] I've gotten people, like, they're worried that it
like opens them up to more criticism than it’s worth for
them. - P7

Discussion

These results highlight the effort involved in organizing,
annotating, and sharing computational notebooks. In partic-
ular, they highlight the tension between exploration, in
which iterative experimentation tends to produce “messy”
notebooks, and explanation, in which these notebooks are
“cleaned” for a particular purpose (tracking provenance,
code reuse, replication, presentation). In each of these roles,
there is a tension between exploration and explanation.
Notebooks that track provenance focus on faithfully track-
ing the exploratory process of data analysis. However, giv-
en the interactivity of notebooks, analysts seeking to track
provenance need to be careful to not overwrite past actions.
Alternatively, notebooks for presentation may obscure al-
most the entire exploratory process of data analysis in an
effort to make it easy to review and provide feedback on the
results. Notebooks to be shared publicly online had to meet
an even higher standard of cleanliness that one participant
noted removed all the exploratory “sandbox’ material.

Finally, while notebooks enable analysts to wrap computa-
tional code and results with explanatory text, they do not
necessarily prompt more frequent reflection or annotation.
Social practices like presenting at lab meeting and writing
papers may still be stronger triggers for these explanatory
and sensemaking activities. As P2 noted:

...it's mostly lab meetings and then actually writing the
paper that are the only times, or like the initial plan-
ning, that are the only times where you have to sit and
be like “Why am I doing this? What am I gonna do?
What am [finding? What do I think it means?”

Page 9

CHI 2018 Honourable Mention

CONCLUSION

Computational notebooks address many fundamental chal-
lenges with performing, documenting, and sharing data
analyses. They support incremental and iterative analyses,
enabling users to edit, arrange, and execute small blocks of
code in any order. They enable explanation of thought pro-
cesses by allowing analysts to intersperse code with richly
formatted textual explanations. They facilitate sharing by
combining code, visualizations, and text in a single docu-
ment that can be posted online or emailed. Some computa-
tional notebooks are truly remarkable in the way they ele-
gantly explain complex analyses [16].

Balancing Exploration and Explanation

Yet, the three studies in this paper demonstrate a tension
between exploration and explanation that complicates con-
struction and sharing of computational notebooks. The ex-
ploratory process of data analysis tends to produce “messy”
notebooks with alternative code and duplicate cells. These
notebooks need to be cleaned before they can clearly ex-
plain the analysis to a particular audience (e.g., the analyst’s
future self, a technical colleague, a manager, or the public)
for a particular purpose (e.g., tracking provenance, support-
ing code reuse, enabling replication, presenting results).
Cleaning notebooks is often tedious, manual work, and it is
difficult to craft notebooks that serve more than one pur-
pose or address more than one audience at a time. Many
analysts simply choose to explain and share their analyses
using other, more established media, and provide a link, for
the “curious”, to the notebook where they performed the
analysis in the first place.

The issues of notebook “cleanliness” and intelligibility res-
onate with the discussion of refactoring [8, 25] and “tech-
nical debt” in software engineering. Technical debt refers to
coding strategies that save time or energy in the moment
but lead to extra costs later on [4]. Rather than calling for
the elimination of technical debt, recent work acknowledges
its inevitability and suggests better ways to manage it [1, 3].
While some lessons from this literature may apply to data
analysis, there are significant differences in the process of
iteratively writing scripts to analyze data and writing robust
source code for enterprise applications.

Limitations

We focused on Jupyter Notebook, so our results may not
reflect patterns of use typical in other varieties of computa-
tional notebook such as RNotebooks or Mathematica. How-
ever, Jupyter Notebook is currently one of the most widely
used platforms and the one with the most explicit support
for narrative. Our first study looked at notebooks shared
publicly online, some of which may have been placed there
for archival purposes, without sharing in mind. Moreover
public notebooks may look different from those reserved
for personal use or sharing with a small group. Lastly, our
final two studies focused on academic data analysis, reveal-
ing three genres of notebooks common in that community.
Future studies could broaden scope to consider other forms
of notebooks in educational or enterprise contexts.

Paper 32

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Opportunities for Design

The lack of explanation in computational notebooks may be
discouraging for those who, like us, see them as a vital tool
for promoting open science, reproducibility, and greater
engagement with data. However, our findings also highlight
opportunities for design to facilitate greater explanation in
computational media without hindering exploration. One
key challenge will be developing tools that augment ana-
lysts’ workflows to facilitate organization and annotation
without much additional effort, either by piggybacking on
existing user behavior or by providing an immediate benefit
to users’ more active annotation or organization activities.

Leverage structure. One approach could leverage explicit
annotation to aid navigation, debugging, or checking the
status of variables or processes. For example, one inter-
viewee began annotating his notebooks more after he in-
stalled an extension that would float a table of contents over
his notebook based on its markdown headers, easing navi-
gation. Such structure could also be used to automatically
generate documentation or comments [23, 34].

Encourage best practices. Notebooks could make it easier
to follow computational best practices, such as those taught
in Data Carpentry workshops, or automatically flag "code
smells" [8, 36]. For example, a notebook “clean-up” tool
could encourage moving imports to the start of the note-
book and rewriting reusable code as functions, which would
improve maintainability and legibility in the long run.

Support non-linear narrative. Notebooks’ linear structure
is elegant, but may not fully support the analytical process.
Automated version control or more sophisticated “layers”
could simplify or enrich notebooks’ narrative structure.

Social interventions. More journals could incentivize pub-
lishing well-annotated analysis code alongside results and
individual labs could develop new methods and norms of
sharing and reviewing preliminary results. As it is, one in-
terviewee noted that many of his labmates seemed “put-oft”
by seeing presentations from a notebook, possibly feeling
that the presenter had not taken any time to prepare.

In the end, it will take a combination of technical and social
factors to encourage clearer explanation of data analyses
and more structured ways of supporting explorations in
computational media. Computational notebooks are a
young media compared with paper notebooks, whiteboards,
and journal articles, or even other programmable media
such as apps or web pages. It will require time, experimen-
tation, and inventiveness to develop tools and practices sur-
rounding computational notebooks that facilitate greater
explanation and sharing of the iterative, imprecise, and
messy art that is data analysis.

ACKNOWLEDGEMENTS

We thank Regina Cheng and Nathan Hassanzadeh for their
help collecting and analyzing data for Studies 2 and 3. This
research was funded by NSF grants #1319829 and
#1735234 as well as NLM grant #T15LMO011271.

Page 10

CHI 2018 Honourable Mention

REFERENCES

1.

10.

11.

12.

Eric Allman. 2012. Managing Technical Debt. Com-
munications of the ACM, 55, 5 (May 2012), 50-55.
DOI: https://doi.org/10.1145/2160718.2160733

Mike Bostock. 2017. A Better Way to Code. (Apr.
2017). Retrieved September 11, 2017 from
https://medium.com/@mbostock/a-better-way-to-code-
2b1d2876a3a0

Nanette Brown, Ipek Ozkaya, Raghvinder Sangwan,
Carolyn Seaman, Kevin Sullivan, Nico Zazworka, Yu-
anfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim,
Philippe Kruchten, Erin Lim, Alan MacCormack, Rob-
ert Nord. 2010. Managing technical debt in software-
reliant systems. In Proceedings of the FSE/SDP work-
shop on Future of Sofiware Engineering Research
(FoSER '10). ACM Press, New York, NY, 47-52. DOI:
https://doi.org/10.1145/1882362.1882373

Ward Cunningham. 1992. The WyCash portfolio man-
agement system. Addendum to the proceedings on Ob-
ject-oriented Programming Systems, Languages, and
Applications (OOPSLA '92). ACM Press, New York,
NY, 29-30. DOI:
https://doi.org/10.1145/157709.157715

Tao Ding and Patrick Schloss. 2014. Dynamics and
associations of microbial community types across the
human body. Nature, 509, 7500 (Apr. 2014), 357-360.
DOI: https://doi.org/10.1038/nature13178

Distil. 2017. Retrieved September 11, 2017 from
https://distill.pub/

Brian Dunbar. 2010. NASA - Shuttle Computers Navi-
gate Record of Reliability. (June 2010). Retrieved Sep-
tember 15, 2017 from
https://www.nasa.gov/mission_pages/shuttle/flyout/flyf
eature_shuttlecomputers.html

Martin Fowler. 1999. Refactoring: improving the de-
sign of existing code. Addison-Wesley Professional,
Reading, MA.

Nahum Gershon and Ward Page. 2001. What storytell-
ing can do for information visualization. Commun.
ACM 44, 8 (Aug. 2001), 31-37. DOL:
https://doi.org/10.1145/381641.381653

Brian Granger, Chris Colbert, and Ian Rose. 2017. Ju-
pyterLab: The next generation jupyter frontend. Ju-
pyterCon 2017.

Philip Guo and Margo Seltzer. 2012. Burrito: Wrap-
ping your lab notebook in computational infrastructure.
USENIX Workshop on the Theory and Practice of
Provenance (TaPP ’12).

Richard Harper and Abigail Sellen. 1995. Collabora-

tive tools and the practicalities of professional work at
the international monetary fund. In Proceedings of the
SIGCHI conference on Human Factors in Computing

Paper 32

13.

14.

15.

16.

17.

18.

20.

21.

22.

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Systems (CHI ’95). ACM Press, New York, NY, 122-
129. DOL: https://doi.org/10.1145/223904.223920

Thomas Herndon, Michael Ash, and Robert Pollin.
2014. Does high public debt consistently stifle eco-
nomic growth? A critique of Reinhart and Rogoff.
Cambridge journal of economics, 38, 2 (Dec 2013),
257-279. DOI: https://doi.org/10.1093/cje/bet075

Jessica Hullman and Nicholas Diakopoulos. 2011. Vis-
ualization rhetoric: Framing effects in narrative visual-
ization. [EEF transactions on visualization and com-
puter graphics, 17, 12 (Dec. 2011), 2231-2240. DOI:
https://doi.org/10.1109/tveg.2011.255

Jessica Hullman, Steven Drucker, Nathalie Riche,
Bongshin Lee, Daniel Fisher, and Eytan Adar. 2013. A
deeper understanding of sequence in narrative visuali-
zation. [EEFE Transactions on visualization and com-
puter graphics, 19, 12 (Dec. 2013), 2406-2415. DOI:
https://doi.org/10.1109/tveg.2013.119

Jupyter. A gallery of interesting Jupyter Notebooks.
Retrieved September 11, 2017 from
https://github.com/jupyter/jupyter/wiki/A-gallery-of-
interesting-Jupyter-Notebooks

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and
Jeffrey Heer. 2012. Enterprise data analysis and visual-
ization: An interview study. I[EEE Transactions on
Visualization and Computer Graphics, 18, 12 (Dec.
2012), 2917-2926. DOI:
https://doi.org/10.1109/tvcg.2012.219

Mary Beth Kery, Amber Horvath, and Brad Myers.
2017. Variolite: supporting exploratory programming
by data scientists. /n Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI
’17). ACM Press, New York, NY, 1265-1276. DOI:
https://doi.org/10.1145/3025453.3025626

. Alison Kidd. 1994. The marks are on the knowledge

worker. In Proceedings of the SIGCHI conference on
Human Factors in Computing Systems (CHI ’94).
ACM Press, New York, NY, 186-191. DOI:
https://doi.org/10.1145/191666.191740

Donald Knuth. 1984. Literate programming. The Com-
puter Journal, 27,2 (Feb. 1984), 97-111. DOI:
https://doi.org/10.1093/comjnl/27.2.97

Robert Kosara and Jock Mackinlay. 2013. Storytelling:
The next step for visualization. Computer, 46, 5 (May
2013), 44-50. DOI: https://doi.org/10.1109/mc.2013.36

Kateryna Kuksenok, Cecilia Aragon, James Fogarty,
Charlotte P. Lee, and Gina Neff. 2017. Deliberate Indi-
vidual Change Framework for Understanding Pro-
gramming Practices in four Oceanography Groups.
Journal of Computer Supported Cooperative Work, 26,
4-6 (May 2017), 1-29. DOLI:
https://doi.org/10.1007/s10606-017-9285-x

Page 11

CHI 2018 Honourable Mention

23.

24.

25.

26.

27.

28.

29.

30.

Paul McBurney and Collin McMillan. 2014. Automatic
documentation generation via source code summariza-
tion of method context. In Proceedings of the 22nd In-
ternational Conference on Program Comprehension
(ICPC ‘14). ACM Press, New York, NY, 279-290.
DOI: https://doi.org/10.1145/2597008.2597149

Peter Medawar. 2008. Induction and Intuition in Scien-
tific Thought. Routledge.

Emerson Murphy-Hill, Chris Parnin, and Andrew
Black. 2012. How we refactor, and how we know it.
IEEFE Transactions on Software Engineering, 38, 1
(Jan. 2012), pp.5-18. DOLI:
https://doi.org/10.1109/tse.2011.41

Nature. 2017. Announcement: Transparency Upgrade
for Nature Journals. Nature, 534, 7645 (Mar 2017),
288. DOI: https://doi.org/10.1038/543288b

Roger Peng, 2011. Reproducible research in computa-
tional science. Science, 334, 6060 (Dec. 2011), 1226-
1227. DOI: https://doi.org/10.1126/science.1213847

Fernando Perez and Brian Granger. 2015. Project Jupy-
ter: Computational Narratives as the Engine of Collab-
orative Data Science. Retrieved September 11, 207
from http://blog.jupyter.org/2015/07/07/project-
jupyter-computational-narratives-as-the-engine-of-
collaborative-data-science/

Roman Radle. 2017. Codestrates: Literate Computing
with Webstrates. In Proceedings of the ACM on User
Interfaces and Systems Technology (UIST '17). ACM
Press, New York, NY.

Dan Russell, Mark Stefik, Peter Pirolli, and Stuart
Card. 1993. The cost structure of sensemaking. /n Pro-
ceedings of the SIGCHI conference on Human Factors
in Computing Systems (CHI "93). ACM Press, New
York, NY, 269-276. DOI:
https://doi.org/10.1145/169059.169209

31. Arvind Satyanarayan and Jeffrey Heer. 2014. Author-
ing narrative visualizations with ellipsis. Computer
Paper 32

32.

33.

34.

35.

36.

37.
38.

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Graphics Forum, 33, 3 (Jun. 2014), 361-370. DOLI:
https://doi.org/10.1111/cgf.12392

Edward Segel and Jeffrey Heer. 2010. Narrative visual-
ization: Telling stories with data. [EEE transactions on
visualization and computer graphics, 16, 6 (Nov.
2010), 1139-1148. DOI:
https://doi.org/10.1109/tvcg.2010.179

Slava Shirokov. 2015. GitHub + Jupyter Notebooks =
<3. (May 2015). Retrieved September 15,2017 from
https://github.com/blog/1995-github-jupyter-
notebooks-3

Giriprasad Sridhara, Emily Hill, Divya Muppaneni,
Lori Pollock, K. Vijay-Shanker. 2010. Towards auto-
matically generating summary comments for java
methods. In Proceedings of the IEEE/ACM interna-
tional conference on Automated software engineering
(ASE ‘10). ACM Press, New York, NY, 43-52. DOI:
https://doi.org/10.1145/1858996.1859006

Aurélien Tabard, Wendy Mackay, and Evelyn
Eastmond. 2008. November. From individual to col-
laborative: the evolution of prism, a hybrid laboratory
notebook. In Proceedings of the ACM conference on
Computer Supported Cooperative Work (CSCW ’08).
ACM Press, New York, NY, 569-578. DOI:
https://doi.org/10.1145/1460563.1460653

Michele Tufano, Fabio Palomba, Gabriele Bavota,
Rocco Oliveto, Massimiliano Di Penta, Andrea De Lu-
cia, Denys Poshyvanyk. 2015, May. When and why
your code starts to smell bad. /n Proceedings of the
37th International Conference on Sofiware Engineer-
ing. IEEE Press, 403-414. DOL:
https://doi.org/10.1109/icse.2015.59

John Tukey. 1977. Exploratory data analysis. Pearson.

Greg Wilson, Jennifer Bryan, Karen Cranston, Justin
Kitzes, Lex Nederbragt, and Tracy Teal. 2017. Good
enough practices in scientific computing. PLoS compu-
tational biology, 13, 6 (Jun, 2017). DOL:
https://doi.org/10.1371/journal.pcbi.1005510

Page 12

