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Abstract

Communities are adversely affected by heterogeneous social harm events, e.g. crime,
traffic crashes, medical emergencies, and drug use. Police, fire, health and social ser-
vice departments are tasked with mitigating social harm through various types of in-
terventions. While social harm indices have been proposed for allocating resources to
spatially fixed hotspots, the risk of social harm events is dynamic and new algorithms
and software systems capable of quickly identifying risks and triggering appropriate
public safety responses are needed. We propose a novel modulated Hawkes process
for this purpose that offers a flexible approach for both: i) incorporating spatial co-
variates and leading indicators for variance reduction in the case of more rare event
categories and ii) capturing dynamic hotspot formation through self-excitation. We
present an efficient 11-penalized EM algorithm for estimation of the model that simul-
taneously performs feature selection for spatial covariates of each incident type. We
provide simulation results using data provided by the Indianapolis Metropolitan Police
Department to illustrate the advantages of the modulated Hawkes process model of
social harm over recently introduced social harm indices and property crime Hawkes
processes.

1 Introduction

Crime is highly concentrated in urban communities and hotspot or “predictive” policing
efforts aim to apply limited resources to high intensity geographic areas and time intervals
to disrupt crime opportunities, leading to aggregate crime rate reductions [8,28,31,42]. A
number of algorithmic methods have been proposed for estimating crime hotspot risk in-
cluding multivariate models (23,25, 25,40, 40], kernel density estimation [7,9,14,20,21] and
spatio-temporal point processes [27,29]. Point processes and density estimation have the
advantage of capturing near-repeat effects and only require event data as input, whereas
multivariate models gain variance reduction through the introduction of spatial covariates
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(though variance can be increased if irrelevant covariates are included). Field trials of pre-
dictive policing using a property crime Hawkes process were conducted in [28] where patrols
directed through the Hawkes process led to statistically significant crime rate reductions
compared to analyst directed patrols [28].

However, police serve other roles in the community beyond crime response and preven-
tion, including traffic enforcement, Emergency Medical Services (EMS) response, and more
generally dealing with events related to social harm [30]. Despite these multiple and dis-
parate daily challenges, existing hotspot and predictive policing algorithms and intervention
strategies focus on single or groups of related sub-categories of social harm events. Schol-
ars have recently called for the next evolution of hotspots policing to move beyond crime
counts in space and time to the more expansive and hierarchical approach of policing “social
harm” [30] [41] [35]. A recent approach to quantify the impact of crime on society has been
the development of crime harm indices [12] [35] that attempt to weight crime offenses using
sentencing guidelines as opposed to more simple count measures of crime occurrences. In this
context, harm is operationalized as the impact upon society dependent on the qualitatively
different level of severity across incidents of crime. This approach to quantifying crime has
implications for developing more effective police interventions to reduce harm, as opposed
to reducing crime counts. With this end-goal in mind, [30] extends the idea of a crime harm
index to a social harm index that includes incidents to which police must respond that fall
outside the traditional definition of crime but still inflict harm on society — such as vehicle
crashes. The current study further progresses the notion of social harm to include additional
incidents within the police purview that affect society. Here, harm is operationalized beyond
crime impact to society to be more inclusive of the nature of police work. Put simply, a focus
on social harms builds on hotspots policing by applying similar methodological approaches,
but broadens the list of harm incidents to more accurately reflect day-to-day policing de-
mands (e.g., crime, medical emergencies, vehicle crashes, etc.) while weighting these various
incidents to reflect the degree of severity they may inflict upon society.

Preliminary findings in social harm research suggest that the inclusion, and weighting,
of various harm incidents holds substantive promise for police practice and intervention. To
date, the most common approach to weighting social harms is to map sentencing data to
specific crime offenses. This method has taken the form of actual sentencing outcomes [6]
[5] [12] as well as prescriptive sentencing guidelines often referred to as gravity or severity
scales [30] [41] [35]. This method leverages suggested sentencing lengths to rank the “harm”
of a given offense. For example, a criminal homicide may have a sentencing guideline of
24 years in prison, armed robbery may elicit a 12-year sentence, and residential burglary a
6-year sentence. In such a weighting scenario, criminal homicide would be twice as severe or
harmful as armed robbery and four times more harmful than residential burglary. Weighting
by sentencing guidelines can take many forms and the discussion presented here is limited
to the importance of weighting crimes and other incidents by severity. Indeed, “neither
criminology nor the adjacent social sciences have made a serious effort to systematically
identify, evaluate or compare the harms associated with different crimes” [19] and that
“focusing merely on counts, rather than on the severity or harm of crime is somewhat crude



and imprecise” [41]. In [35] Sherman and his colleagues provide a robust discussion of varying
weighting procedures using sentencing guidelines.

Studies employing this approach have concluded that social harm is variable across police
patrol districts [30] and that a small proportion of crime victims are exposed to greater levels
of social harm [13]. Most closely related to the current study, in [41] Weinborn et al employed
the Cambridge Harm Index (CHI) [35] wherein crimes are weighted by the number of days in
prison for a given offense as outlined in the Home Office Sentencing Guidelines to examine
the spatio-temporal concentration of crime counts versus CHI social harm. Their results
indicated social harm to be three times more concentrated when compared to crime counts
alone across 15 councils in England and Wales during a 12-month period. Interestingly, and
salient to call for scholars to consider a variety of social harms beyond traditional hotspot
policing strategies, the authors observed that only 25% of crime count hotspots overlapped
with social harm locations, or “harmspots”. Thus, while conducting spatiotemporal analyses
of crime counts alone can be insightful for focusing police strategies, it appears prudent to
account for the severity of harm crime may cause as all crimes are not created equal and more
harmful incidents may display spatiotemporal variation from less harmful events. Moreover,
as harmspots exhibit different spatiotemporal patterns than hotspots, they too may have
different corollary relationships with community structure than do hotspots; thus one focus
of the present study.

The present study further contributes to the social harm policing literature through the
inclusion of multiple harm types that have yet to be examined in a single study. The present
study includes a range of Part 1 (the most serious crimes that regularly occur across all
jurisdictions and are likely to be reported to police) and Part 2 (other crimes) criminal
offenses as well as vehicle crashes and drug overdoses — the latter of which is currently
regarded as one of the most concerning social harms to society as drug overdose deaths across
the United States have more than quadrupled since 1999 [32]. Part 1 and Part 2 criminal
offenses are defined by the Federal Bureau of Investigation (2016) as a tiered classification
system for the Uniform Crime Reporting and National Incident Based Reporting System.
Furthermore, unlike static social harm indices that are estimated over a fixed historical
window of observation, our methodology produces a dynamic harm index that incorporates
new event data each day to account for spatio-temporal fluctuations of social harm risk.

In this work we introduce a modulated Hawkes process for modeling dynamic social harm
hotspots. The model combines several advantageous aspects of both existing multivariate
regression and point process models. In particular, the model is comprised of a background
modulated Poisson process that links spatial covariates (census variables, average crime rate,
etc.) to the risk of each social harm event category. Our estimation procedure also includes
automatic variable selection to prevent over-fitting and determine important covariates for
model explanation. Secondly, the point process approach allows for the incorporation of self-
excitation present in some event categories. Because the output of the modulated Hawkes
process is a conditional intensity for each event type, a dynamic social harm index can
be easily defined through calculating the expected cost of a given spatial region and time
interval.



The outline of the paper is as follows. In Section 2, we give an overview of the data set
used in our study and the methods used to estimate the average societal cost of each event
type. In Section 3, we provide the mathematical details of the modulated Hawkes process
and a l1-penalized Expectation-Maximization (EM) algorithm for parameter estimation. In
Section 4, we describe several experiments for validating the model, including validation
tests on synthetic data and retrospective forecasts using data provided by the Indianapolis
Metropolitan Police Department and Emergency Medical Services. In Section 5, we discuss
the implications of dynamic social harm prediction and future research directions.

2 Indianapolis Social Harm Data

All crime, drug overdose, and vehicle crash data for years 2012-2013 for the city of Indi-
anapolis were provided electronically by the appropriate government agencies and include
time and date stamp as well as state-plane coordinates for each incident that were converted
to WGS84 coordinates. Crime data was provided by the Indianapolis Metropolitan Police
Department (IMPD), drug overdose from the Indianapolis Emergency Medical Services, De-
partment of Public Safety, and vehicle crash data from the Indiana State Police using the
Automated Reporting Information Exchange System (ARIES). Indiana motor vehicle col-
lisions have two key characteristics that are used to determine whether or not an incident
requires completion and submission of an Indiana crash report; if the incident resulted in
personal injury or death, or property damage to an apparent extent greater than $1,000.
Rather than relying upon sentencing guidelines as a weighting mechanism to determine
social harm, the present study employs monetary cost estimates. This decision was driven
primarily by 1) a lack of variation in Indiana’s sentencing guidelines that are restricted to four
classifications within six larger levels of offenses (as compared to the 415 categories available
used in [41]); and 2) monetary costs reflect tangible measures of harm impact on society as
opposed to the offender alone and demonstrate the potential financial gains that could be
achieved through improved interventions. Moreover, financial estimates have been argued to
demonstrate an improved understanding of the relationship between criminal justice policy
and beneficial interventions [24] [33]. Social harm weights were derived from established
crime, drug, and vehicle crash cost estimation studies. Costs for homicide, rape, robbery,
aggravated assault, arson, motor vehicle theft, residential burglary, larceny, embezzlement,
forgery, fraud, and vandalism were gleaned from estimates of crime costs to society [26].
Vehicle crashes resulting from drugs or alcohol, simple assault, and driving while impaired
costs were derived from monetary estimates of crime prevention [10]. To be clear, these
prevention estimates are the estimated costs saved from preventing an incident, and not
the cost of the intervention. Lastly, cost estimates based on per-incident occurrences in the
United States were utilized for suicide attempts [34], vehicle crashes not related to drugs or
alcohol [3], and drug overdoses [15]. Each of these latter three estimates were calculated by
dividing the total annual costs for each incident type by the total number of each incident
in a given year. Admittedly, crime cost estimates are not pristine and assume ubiquitous
impact across individuals in a society. Cost estimates also do not capture the impact on



Table 1: Summary statistics for Indianapolis social harm 2012 & 2013

Type Count  Cost Per Event Total

Simple Assault 30802  $11,000.00 $338,822,000.00
Vehicle Crash No Influence 40718  $7,864.00 $320,206,352.00
Homicide 220 $1,278,424.00 $281,253,280.00
Aggravated Assault 11797  $19,537.00 $230,477,989.00
Larceny 53241  $3,523.00 $187,568,043.00
Robbery 6386 $21,398.00 $136,647,628.00
Residential Burglary 21468  $6,170.00 $132,457,560.00
Motor Vehicle Theft 9081 $10,534.00 $95,659,254.00
Vandalism 13641  $4,860.00 $66,295,260.00
Fraud 11371 $5,032.00 $57,218,872.00
Vehicle Crash Drugs or Alcohol 1610 $30,000.00 $48,300,000.00
Rape 1160 $41,247.00 $47,846,520.00
Drug Overdose 4112 $3,922.00 $16,127,264.00
Arson 723 $16,428.00 $11,877,444.00
Embezzlement 876 $5,480.00 $4,800,480.00
Forgery 481 $5,265.00 $2,532,465.00
DWI Arrest 3546 $500.00 $1,773,000.00
Suicide Attempt 134 $5,251.00 $703,634.00
Total 211367 $1,980,567,045.00

victims and communities. However, the cost estimates leveraged in the present study are
validated to the extent they capture the financial severity of crime and harm costs to society.

In Table 1 we provide summary statistics for Indianapolis social harm including the
volume of incidents over 2012 and 2013, the estimated cost per event to society, and the
total cost over the two year period attributed to each event category. In Indianapolis, the
top three categories in terms of cost to society are simple assault, vehicle crash (no alcohol
influence) and homicide respectively.

3 Modeling and estimation framework

3.1 The modulated Hawkes process

Following [28], we consider a Hawkes process defined on a grid G with conditional intensity
determined by,
Mg () = figam + D Ot exXp(—win (t — t;)). (1)
t>t;

T;€g
m;=m



Here the intensity is defined for each category m of event type and each grid cell g € G,
where m; denotes the category (mark) of event i, ¢; the time, and ¥; the spatial location.
When viewed as a branching process, the parameter 6,, determines the expected number
of events triggered by each event and the expected waiting time between a parent-daughter
event pair is given by w;!.

To introduce spatial covariates, we define u,, as a modulated Poisson process [11,39],

Hgm = eXp(C_im ' gg)a (2)

where the background intensity pg., in grid cell g for event category m is log-linear with
coefficients @, for event type m and spatial covariates z, in each grid cell g. Here we use
zipcode level variables provided by the American Community Survey along with the average
historical number of events of each type to serve as a leading indicator. Other variables one
might consider include locations of crime attractors (liquor stores, schools, etc.), locations
of parolees, housing density, satellite imagery and other sensor data.

3.2 11-penalized Expectation-Maximization

The Model given by Eq. 1 can be viewed as a branching process [29] [38] where events occur
according to a stationary Poisson process (4, and then each event of type m generates
a Poisson process with intensity 6,,w., exp(—wp,(t — t;)). Let u;; = 1 when event i is the
direct offspring of event j and 0 otherwise and u; = 1 when event ¢ is a “background”
or “spontaneous” event generated by the background Poisson process (and 0 otherwise).
Given knowledge of w;;, the estimation problem decouples into several independent Poisson
estimation problems. In particular, the complete data log-likelihood is given by,

M
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where |g| denotes the area of grid cell g and || - ||; denotes the 11 norm that we have added

to enforce sparsity of the spatial covariate coefficients. Given an initial guess for model pa-
rameters, the EM algorithm then proceeds iteratively by alternating between the E-step of
updating the current guess of the branching structure and then the M-step of maximizing
the complete data log likelihood with respect to the model parameters. Given the estimated
branching structure #;;, maximization in the M-step is decoupled for the modulated Poisson
coefficients and the Hawkes parameters. The Hawkes MLE parameters are determined by
maximizing Equation 4 which yields estimates that are weighted sample means for exponen-
tial and Poisson random variables [28].



At each iteration of the EM algorithm, the 11 maximization problem given by Equation
3 must be solved. For this purpose we use forward-backward splitting [16] to minimize the
negative of the right hand side of 3. First we define the proximal operator for the 11 term,

- ) . 1 N N
prox(b,7) = argmameHaHl + §Ha —bl|2. (5)

Letting % denote the negative gradient of the first term in Equation 3, then forward-

backward splitting iteratively solves the minimization problem with the two-stage iteration:

dH*
"ttt =gt — 7 07 (6)

a* = prox(a**t, 7). (7)

Equation 5 is similar to LASSO [37], however the second term is simply the square error of
@ and a**1. The proximal operator in this case is given by the shrinkage operator [16],
prox(a, 7); = sign(a;) max{|a;| — x7,0}. (8)

The regularization parameter Y, is selected at each EM iteration using 10-fold cross-validation
to maximize the complete data log-likelihood conditioned on the current estimate of the
branching structure.

The branching structure u;; can be estimated in the E-step using the ratio of the back-
ground rate and triggering kernel components to the overall intensity at each event as is
done in [28]. We have included Matlab code for simulation and estimation of the modulated
Hawkes process on Github [1].

3.3 Social harm index and model evaluation

For each event type m we have a secondary mark ¢(m) representing the average societal cost
of an event of type m. Given this cost mark, we can then define a dynamic social harm index
S1,(t) in each grid cell g as the expected cost per unit time,

SIy(t) = c(m)Agm(t). (9)

m=1

The dynamic social harm index can then be used to rank hotspots over a given time interval,
where the top k hotspots are flagged for intervention. Because this type of ranking is common
in hotspot analysis and policing, a popular accuracy metric is the Predictive Accuracy Index
(PAI). The PAI is the percentage of events captured in the top k hotspots divided by the
percentage of city area that the k hotspots comprise. We therefore propose a social harm
variant of PAI for assessing social harm indices that we will refer to as S-PAI,

% societal cost captured in top k hotspots

S-PAIQk = (10)

% city area covered by k hotspots



Alternative metrics have been proposed for evaluating crime forecasts and hotspot selec-
tion methods that could also be extended to social and crime harm indices. Mean Square
Error and Mean Absolute Percent Error are used in evaluating crime forecasts over larger
space-time windows [17] and qualitative metrics measuring crime hotspot compactness and
variability are proposed in [2]. Because our goal here is to measure the potential social harm
reduction under limited resources in the highest risk hotspots, we restrict our attention to

the S-PAI.

4 Results

4.1 Synthetic Data

We first validate the EM algorithm for Equation 1 on simulated data from a modulated
Hawkes process. We define a 50x50 grid where each cell has 100 covariates and coefficients
drawn from independent uniform random variables: z ~ UJ0,1] and a ~ U[-1,1]. For
the coefficients a, we then set half equal to zero to simulate sparsity. We note that the
regularization parameter Y., is selected automatically using cross-validation within the EM
algorithm.

We simulate two examples where the parameters are chosen to be similar to the values
estimated from Indianapolis crime data. In the first example we let § = .1 and w = .1
and simulate the process for T" = 1000 time units where the expected number of events is
0(4000). In the second example we let § = .1 and w = 1 and simulate the process for
T = 100 time units where the expected number of events is O(500).

In Figure 1 we plot parameter estimates for 100 simulations of each example along with
the true parameter values in red. We find good agreement between the estimated parameters
and the true values. On the left we plot the 90% pointwise confidence range in gray for the
estimated spatial covariate coefficients. We note that there is some bias of the coefficients
towards zero, which is expected due to the 11 penalization. While in each simulation a
percentage of the coefficients are zero, over 100 simulations each individual coefficient is
estimated to be non-zero in a percentage of simulations (which is why the 90% range extends
on either side of zero). The variance of the estimators increase as the number of events in
the sample decrease.

4.2 TIMPD Social Harm Data

Next we apply our methodology to Indianapolis social harm data from 2012 and 2013. We
use a 100x100 grid to cover Indianapolis and for spatial covariates we use 46 demographic and
economic population variables from the American Community Survey at the zipcode level,
along with 18 variables defined as the grid cell crime rate over the first half of 2012 for each
of the 18 event categories. We note that the crime rate covariates are highly correlated with
the self-exciting component of the model, however this is consistent with self-exciting point
process models where the background intensity p and triggering kernel are both estimated
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Figure 1: Parameter estimates for 100 realizations of a modulated Hawkes process with true
values in red. On the left, 90% pointwise range in gray for estimated spatial covariate coefficients.
Top corresponds to simulation with O(4000) events and # = .1, w = .1. Bottom corresponds to
simulation with O(500) events and 6 = .1, w = 1.

from the same event data. While KDE is normally used to estimate the background intensity,
we have incorporated this modeling step into the regression framework along with the census
covariates. The census variables are assigned to each grid cell using the zipcode of the cell
centroid and all predictor variables are whitened to have mean zero and variance one.

For cross-validation, we first train the model over the second half of 2012. In Table 2
we list the Hawkes parameter values for each event type along with the number of non-
zero spatial covariate coefficients selected by the 11-penalized EM algorithm. For testing, we
apply the trained model to each 4-hour interval for each day in 2013. We use the social harm
Hawkes intensity given in Equation 9 to rank the top 50, 100 and 200 hotspots (0.5%, 1%
and 2% of the city) and compute the S-PAT over 2013. We note that S-PAI is not computed
for each 4-hour interval and averaged, but instead it is calculated as the percentage of harm
captured in the 4-hour interval hotspots over the course of 2013 divided by the percent area
flagged. We bootstrap the events in 2013 to estimate standard errors of S-PAI.

We compare to a social harm index of the form,

Sl, = Zc(mi), (11)
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Table 2: Hawkes parameters (w in units of days™1!)

type 0 w # non-zero a
DWTI Arrest 0.0032 10.0647 19
Drug Overdose 0.0477 0.0452 20
Vandalism 0.0522 0.1652 14
Fraud 0.0369 0.1387 34
Suicide Att 0.0237 12.000 8
Forgery 0.0105 0.5244 16
Embezzlement 0.2253 0.0221 7
Larceny 0.16561 0.074 16
Res Burg 0.0648 0.0988 13
Veh Crash No Inf 0.2018 0.0521 15
MVT 0.0294 0.1237 17
Simple Assault 0.0585 0.0867 12
Arson 0.0267 0.3322 13
Agg Assault 0.0165 0.1574 13
Robbery 0.0377 0.0537 17
Veh Crash Drug/Alc  0.0024 23.999 16
Rape 0.0106 0.0641 24
Homicide 0.0188 1.7143 39

that is the total cost in each cell over 2012, similar to recently introduced social harm indices
that sum prison sentence length. We also compare our methodology to the Hawkes process
model used in [28]. The model is a Hawkes process of the form,

Ag(t) = pig + Y fwexp(—w(t — 1)), (12)
t>t;
Ti€g
only trained on property crime (burglary, theft from vehicle and auto-theft) aggregated
together.

In Table 3 we compare the S-PAI values of the three methods for 50, 100, and 200
hotspots selected. The static social harm index is 4x better than random chance at ranking
the top 100 hotspots each day, where 4% of the cost of social harm is captured in 1% of the
city each day. However, the property Hawkes process is significantly better capturing 8% of
social harm cost in the same number of hotspots. The S-PAI for the social harm Hawkes
process is over 12, meaning that over $120 million of the total annual $1billion in social
harm cost to Indianapolis can be captured in 1% of the city.

In Figure 2, we plot an example hotspot map from a day in 2013. We color code each
hotspot by the most frequent event type occurring in the grid cell. Here we see four main
types of hotspots, namely vehicle crash, burglary, larceny, and assault hotspots. Police
interventions would need to be tailored to each event type across these disparate types of
social harm.
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Table 3: S-PAI and standard errors for varying numbers of hotspots.

# Hotspots 50 100 200

Dynamic Soc. Harm Hawkes (Eq 9) 15.0 (0.8) 12.5 (0.4) 9.9 (0.3)
Property Hawkes (Eq 12) 9.4 (0.8) 84 (0.6) 7.1(0.3)
Soc. Harm Index (Eq 11) 5.0 (0.4) 3.7(0.2) 2.7 (0.1)

39.85

39.80 -

type
Vehicle Crash No Influence

Residential Burglary

lat

Larceny

. Simple Assault

39.754

39.704

Figure 2: Example social harm hotspot map for a day in 2013 in Indianapolis. Hotspots are color
coded by the most frequent event type in the cell.

We note that while these categories are the most prevalent, all 18 categories are captured
to some degree within the top 100 hotspots. In Figure 3, we plot the number of crimes
captured by each of the three methods disaggregated by event type. As expected, the
property crime Hawkes process captures the most property crime, whereas the social harm
Hawkes process captures significantly more larceny, vehicle crashes, and assaults. Thus there
is a tradeoff when using a social harm based model for hotspot policing.

In Table 4, we display the top three spatial covariates for each event category selected as
the covariates with the largest (magnitude) estimated coefficients in the background intensity.
Here we find several patterns that emerge. Vacant housing is a strong indicator for crimes
such as vandalism, arson, and burglary. Vehicle crashes where alcohol is not involved are
strongly correlated with spatial areas where a large number of the population leaves to work
between 7 and 7:30am. Some unexpected leading indicators also emerge, for example the
average rate of motor vehicle theft in a hotspot is a good predictor for fraud, larceny and
simple assault. These covariates may provide some insight into long-term problem-oriented
solutions to social harm because they are based on census variables reflecting long-term
characteristics of a spatial region of the city.
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Table 4: Top three spatial covariates for each event type

Event type 21 29 23

DWTI Arrest DWTI Arrest White MVT

Drug Overdose Income.10k-15k Drug Overdose White

Vandalism Vacant.Housing MVT Vandalism

Fraud MVT Unemployment.Rate Embezzlement
Suicide Att Simple Assault Mean.Travel. Time.Min Asian

Forgery Forgery MVT Vacant.Housing
Embezzlement Robbery Veh Crash No Inf Leave.to.Work.7.730am
Larceny MVT Res Burg Vandalism

Res Burg Vacant.Housing Res Burg Black

Veh Crash No Inf Leave.to.Work.7.730am MVT DWI Arrest
MVT MVT Res Burg Income.75k-100k
Simple Assault MVT Res Burg Income.150k.200k
Arson Vacant.Housing MVT Res Burg

Agg Assault Income.75k-100k MVT Res Burg
Robbery Robbery Vacant.Housing Income.75k-100k
Veh Crash Drug/Alc  White DWI Arrest Veh Crash No Inf
Rape Rape Income.10k-15k MVT

Homicide Income.10k-15k Poverty.Rate Hispanic

12
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Figure 3: Number of crimes captured by each of the three methods disaggregated by event type.

5 Discussion

We showed how static models for crime prediction using crime or social harm indices may be
improved using dynamic point process models of social harm. Social harm indices suffer from
high variance, as high severity /low volume events may dominate the risk estimate of hotspots
where they occur. On the other hand, single crime type models (or those focusing solely on
property or violent crime) fail to properly weight social harm events by their severity. To
address these problems, we introduced a novel sparse modulated Hawkes process for modeling
disparate social harm event categories, incorporating spatial covariates, near-repeat effects
(self-excitation), and periodic trends. This methodology significantly improves upon existing
uses of social harm indices and single crime type point processes in terms of the S-PAI.
While this methodology shows promise, field trials are needed to assess the efficacy of
such an approach similar to predictive policing trials focusing on property crime [28]. Pre-
dictive policing trials focusing on social harm will present challenges in that a wider range of
interventions will be necessary given the wider range of event types and collaborations with
other city agencies and community stake holders may be necessary. In practice, not all event
categories may be easily prevented by police, for example fraud and embezzlement, as such
events occur largely outside the reach of day-to-day police operations. Crime deterrence can
be achieved through an offender’s increased perception of apprehension, thus police presence
and activity. As such, effective deterrence interventions should follow empirical evidence that
suggests a focus on social harm events that occur primarily “on the streets” where police
are most likely to generate crime prevention benefits. It may be plausible to assume that
increased — or focused — police activity in a high social harm risk area could translate to
crime prevention or displacement of “off the street” events such as fraud and embezzlement
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as such offenders may seek offending locations away from potential police contact. Though
this specific type of displacement has not been empirically tested, existing evidence demon-
strates that displacement and diffusion of benefits (additional deterrence gains outside of the
intervention focus) are likely to occur; however displacement is likely to occur at a lower rate
compared to the intervention focus [22]. Thus, focused police deterrence is likely to yield
a net crime prevention gain. Future research employing an operational social harm experi-
ment should seek to capture this potential crime prevention benefit. More specifically, future
inquiries should attempt to compare the displacement and diffusion of benefits from social
harm-focused police activities to those of more traditional hotspots policing approaches.

Future research may also focus on improving dynamic models of social harm. The models
considered in this work do not account for spatial auto-correlation that may be present in the
spatial covariates as well as through endogenous, self-exciting effects in the point patterns.
Methods for controlling for spatial auto-correlation in spatial regression models are discussed
in [18] and [4] and can be adapted for the Poisson regression in Equation 2. Methods for
modeling spatial correlations in Hawkes processes are discussed in [27]. Daily, weekly and
seasonal effects can also be incorporated into point process models of crime [36] and may
lead to improvements in accuracy. Cost estimates are employed in the present study and
demonstrate the potential to be incorporated with harm indices that leverage sentencing
data and guidelines. Scholars should seek methods to merge the two weighting techniques to
determine potential gains in the identification of geographic-specific harms and development
of effective interventions. Beyond point processes, machine learning methods may be able
to further improve the accuracy of dynamic social harm indices and should be tested on
historical data. Software applications will also need to be re-envisioned that effectively
communicate the information contained in dynamic social harm indices in near real time
to officers in the field. This is especially true if collaborations with other city agencies are
reflected in social harm based predictive analytics applications. These questions will be
addressed in future research.
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