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Abstract

Predicting the evolution of viral processes on networks is an important problem with appli-
cations arising in biology, the social sciences, and the study of the Internet. In existing works,
mean-field analysis based upon degree distribution is used for the prediction of viral spread-
ing across networks of different types. However, it has been shown that degree distribution
alone fails to predict the behavior of viruses on some real-world networks and recent attempts
have been made to use assortativity to address this shortcoming. In this paper we show that
assortativity also fails to adequately predict the spread of viruses for a number of real-world
networks. We propose using the graphlet frequency distribution in combination with assortativ-
ity to explain variations in the evolution of viral processes across networks with identical degree
distribution. Using a data driven approach, by coupling predictive modeling with viral process
simulation on real-world networks, we show that simple regression models based on graphlet
frequency distribution can explain over 95% of the variance in virality on networks with the
same degree distribution but different network topologies. Our results not only highlight the
importance of graphlets but also identify a small collection of graphlets which may have the
highest influence over the viral processes on a network.

1 Introduction

A variety of dynamic phenomena, including Youtube video views [7], Tweet resharing [32],
viral marketing campaigns [17], the spread of computer viruses on the Internet [2], and gang
retaliation [30] can be explained as evolving viral processes on networks. As such, the study of
the evolution of viral processes on networks has attracted considerable attention in recent years.
It is now well known that for a connected network, the largest eigenvalue of its adjacency matrix
is a good metric for predicting the viral process in that network [5,12,16]. The largest eigenvalue
can be roughly estimated by the average degree of the network [18], but the complete degree
distribution of the network is more expressive than the point estimate of average degree, and has
therefore also been considered for predicting these viral processes. A common approach along
these lines is to employ a mean-field analysis where independence assumptions on the nodes are
used [1,4,6,9,10]. More recently it has been shown that in some cases, including real-world
networks, these mean-field assumptions fail to predict the viral spreading [13]. Consequently,
assortativity has been proposed for addressing the limitations of the degree-based, mean-field
analyses [15,31], and through degree-preserving network rewiring procedures, it has been shown
that the spectral radius of a graph can exhibit great fluctuations across networks with the same
degree distribution and that assortativity can be used to explain this variation. While there
is a clear correlation between assortativity and the dynamics of viral processes on graphs, the
fact remains that, if we control for both assortativity and degree distribution, viral diffusions
on networks with differing topologies can still exhibit greatly different behaviors.
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We illustrate this observation with the following example. In Figure 1, we display results for
a Hawkes process [7] simulation on 2500 networks with identical degree distribution sampled via
degree preserving rewiring [22] from the Karate network [28]. In the Hawkes branching process
model, an initial event occurs at a randomly chosen node and then subsequent generations of
events occur at neighboring nodes of previous events with a fixed probability. In Figure 1, we
plot assorativity vs. the expected total number of events (at time infinity) of the Hawkes process
for each of the simulated networks. While assortativity partially explains the behavior of the
process, for the two highlighted networks with identical degree distribution and similar assorta-
tivity, the expected total number of events in the process differs by a factor of 4. So, we need
to extend our analysis beyond degree distribution and assortativity for better understanding of
the dynamics of a viral process over a network.
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Figure 1: Hawkes process simulation on 2500 rewired Karate networks. Degree distribution (far left)
is fixed for all of the 2500 networks. The Expected number of events in a cascade vs assortativity
(far right). Two example networks (middle) corresponding to large differences in virality despite
similar assortativity and identical degree distribution.

In this paper we propose using the frequency distribution of graphlets (see Figure 3 for a
preview) to explain the variation in viral processes observed in Figure 1. Specifically, we show
that graphlet frequencies are good predictors for explaining the variation of the evolution of
viral processes over a collection of networks for which the degree distribution is kept fixed. Our
results not only highlight the importance of graphlets but also identify a small collection of
graphlets that may have the highest influence over the viral processes on a network.

The rest of the document is organized as follows. In Section 2, we discuss some back-
ground materials, including graphlets and viral process models. In Section 3, we discuss the
methodologies of our proposed analysis. In Section 4 we present our results on five real-world
networks illustrating the role of graphlets in viral processes. In the final section, we discuss the
implications of these results and directions for future research.

2 Background

In this paper, we will be making several different measurements reflecting the topology of net-
works — from degree distribution to assortativity to graphlet distribution — as well as simulating
two different viral processes — the Hawkes process and Susceptible-Infected-Susceptible model
— on networks. We provide some background materials on these topics in this section.

2.1 Degree Distribution

The degree of a node is the number of connections of that node to other nodes in the network.
The degree distribution is a discrete probability distribution of degrees over the nodes in the
network. Directed networks have two different degree distributions, the in-degree and the out-
degree distributions. In this study, we restrict our attention to undirected networks for which
only one degree distribution is defined.



Figure 2: The left figure shows a graph with positive assortativity where nodes with high degree are
connected to other nodes with high degree (assortativity = 5.4). The right graph is an example of

a disassortative network,(assortativity = —0.88) where the hubs connect to low degree nodes.
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Figure 3: Undirected graphlets with 3, 4, and 5 vertices.

2.2 Assortativity

Assortativity, or assortative mixing, is defined by the tendency of a network’s nodes to be
connected to others nodes that are similar in some way. While there are several different
mathematical definitions, we will refer to assortativity as the Pearson correlation coefficient of
degrees at either ends of a network edge [21]. In this case the assortativity is given by the
formula [21],

M7UY Giki = MUY, 5 (i + k)] 1)
M=1Y, 557+ kF) — IM=1 32, 5 (i + ki)l
where the edges in a network are indexed by i = 1, ..., M and j;, k; are the degrees of the nodes
at the ends of edge i. In Figure 2, we provide examples of two social networks from the Network
Repository [28] with different assortativity, one positive and one negative.

A=

2.3 Graphlets

Graphlets can be defined as small, connected ', non-isomorphic, induced subgraphs of a large
network. In this study, we work with all possible graphlets having k € {3,4,5} vertices. If the
graphlet edges are undirected, there are 29 such graphlets as shown in Figure 3. We refer to
a graphlet with k vertices as a k-Graphlet; note that a 1-Graphlet is simply a vertex and a
2-Graphlet is simply an edge. The frequency of a graphlet g; in a graph G is the total number
of distinct embeddings of that graphlet g; in the graph G. Graphlet frequency distribution
(GFD) is the normalized frequency of the graphlets. As real life networks are generally sparse,
frequencies of larger sized graphlets shrink exponentially, so in GFD, we use a logarithm scale

Ldisconnected graphlets have also been considered in several graphlet based works, but in this work we only consider
connected graphlets because connectedness is essential for the evolution of a viral process on a network.



for comparing various frequencies so that the number of occurrences of larger-sized graphlets
against that of the smaller-sized ones are scaled appropriately.

The frequency distribution of graphlets in a network captures the local topology around the
vertices of the network and it has a number of uses in network analysis and prediction. For
example, the frequencies of various graphlets can be used for building a global fingerprint for
a network such that the fingerprints of different networks arising from a real-life domain are
almost identical [25]. Transition of graphlets over temporal snapshots of a network has also
been shown to improve link prediction models for dynamic networks [23].

A key challenge for finding graphlet frequency distribution is the high computational cost
of graphlet enumeration or counting. However, in recent years, several efficient algorithms have
become available that generate exact graphlet counting [24,25]. Yet, for very large networks
exact counting of graphlets is not feasible. So, there exist methods (such as, GUISE and its
variants [3,26,27]), which can generate approximate graphlet frequency distributions through
uniform sampling of graphlets. Sampling based methods provide very good approximations of
graphlet frequency distributions and can scale to graphs with millions of vertices. In this work,
we use GUISE algorithm for computing the graphlet frequency distributions of a network.

2.4 Hawkes process model

The Hawkes process is a specific kind of self-exciting point process whereby discrete events occur
according to a stochastic intensity A(t) that increases in response to events themselves. For a
Hawkes process on a network G, given the event observation dyads (¢;,v;), where ¢; is a time
value for an event and v; is a vertex on which the event occurred, the conditional intensity (rate)
of events at node v, \,(¢), is given by the equation

N =pt Y 0f(t-t). (2)
t>t;
v; EN(v)
In Equation 2, N(v) is the set of nodes that are neighbor of v on G (note that v € N(v) for
this process) so that the intensity is a superposition of a Poisson background intensity pu and
Poisson intensities 0f(t — t;) centered at previous event times t; such that v; is a neighbor of v
on the graph G. The triggering kernel f(t) is a probability density defined on [0, 00) and, when
the model is interpreted as a branching process, the productivity parameter  determines the
expected number of direct offspring events at node v triggered by an event at a node v; € N(v).

2.5 Susceptible-Infected-Susceptible model

The second model we consider is based on the well-known Susceptible-Infected-Susceptible (SIS)
model in epidemiology. In this model, each node of the network can be in one of two states at
any given time - susceptible or infected. Let S(t) be the set of all susceptible nodes at time
t, I(t) be the set of all infected nodes at time ¢, A\, (t) be the rate at which a susceptible node
v € S(t) becomes infected, and u. be the rate at which an infected node u € I(t) becomes
susceptible. The model is then

MWt)y= Y 6 3)

gqEN (v)UI(t)
pu=1. (4)

So, a susceptible node v switches to being infected via a Poisson process with time varying rate
equal to a parameter 6 times the number of neighbors of v that are infected at that time, and
an infected node u switches to being susceptible via a homogeneous Poisson process with rate 1
(without loss of generality). In terms of virality, one may be interested in a scenario in which all
nodes are initially susceptible except for a potentially small number of infected, then tracking
how many further infections occur as a result of these initial infections. The result will clearly
depend on which nodes are initially infected, the adjacency matrix of the newtork A, and the
parameter 6.



3 Methologies

Our primary objective is to show that graphlet frequency distribution, in addition to assorta-
tivity, is a good predictor for the virality in a network when degree distribution is controlled
for. Many earlier works use analytic approaches for finding the influence of network topology or
network based metrics on the viral process on a network [5,12]. However, such methods are very
cumbersome for graphlets, as graphlets are combinatorially complex objects and their influence
over the dynamic process is difficult to represent by a simple model that can be solved analyti-
cally. So, in this work we forgo a mathematical analysis in favor of a data science approach to
the problem. Our overall strategy is to use simulation and empirical measurement to explore
the connection between graphlet distribution and the evolution of viral processes on networks.

For this purpose we use several real-world networks as input to a simulation model. Given
a particular network and model for a viral process, we perform the following steps:

1. Generate M synthetic networks through re-wiring (explained below) with identical degree
distributions to the original real-world network.

2. For each generated network, compute the assortativity and graphlet frequency distribution.

3. For each generated network, compute the expected number of events, E[N], of the viral
process of interest running on the network.

4. Regress E[Ny] against the assortativity and graphlet distribution to assess the role that
graphlets play beyond assortativity and degree distribution.

Below we provide more details of the above steps.

3.1 Generating Simulation Graphs

We have shown in the Introduction section, degree distribution and assortativity are not ade-
quate for explaining the evolution of a viral process in a network—which motivate us to find the
influence of graphlet frequency distribution in a viral process. However, degree distribution does
provide a partial explanation of a viral process. To nullify the influence of degree distribution
in our analysis, we use degree distribution as a control variable, i.e., we generate a collection of
synthetic networks for which degree distribution is a constant.

Generating networks with a given degree distribution is a well-studied problem, specifically
for the task of network motif discovery [29]. There are two well-known approaches for solving
this problem, (i) edge swapping [14,19] and (ii) stub-matching. Edge swapping starts from a
given graph and makes local modification on the given graph to generate another graph having
the same degree sequence. One edge swapping approach that preserves the degree sequence
is the following. First, select two edges uniformly at random from the graph G; for example,
suppose these are e1 = (a,b) and ez = (¢, d). Then, replace these two edges by two new edges
where the second vertices are swapped between the original two edges, assuming those new edges
are not already present in G; in our example, these would be the two new edges es = (a,d) and
es = (¢,b). If the edge es or es (or both) already exists in G, this proposed swap is rejected
and the process is repeated with a new pair of randomly chosen edges e; and es. It is easy to
see that the degree of each vertex remains invariant under a successful edge swap process. The
edge-swapping can be continued and a sequence of graphs can be generated, such that all of
these graphs have an identical degree distribution. If we consider the sequence of graphs as a
Markov chain, then the stationary distribution of the Markov chain is a uniform distribution
over the graphs having identical degree distribution. For stub-matching, the configuration model
is very popular [20]. In this method, the algorithm creates as many stubs (dangling half-edges)
for each vertex as its degree. Then edges are created by choosing pairs of vertices randomly
and connecting their stubs. This approach may create parallel edges, which are dealt with by
restarting the process; for large graph the re-starting may become very costly.

In this work, we use the edge-swapping method, as it is easy to implement. By choosing a
sufficiently large number of steps for the Markov chain, we generate graphs which are sufficiently
different from each other with widely different graphlet frequency distributions.



3.2 Preparing Topology and Virality Data for Regression

For our study, a collection of graphs with identical degree distribution is a regression dataset in
which each graph is an instance. For each graph we compute graphlet degree distribution and
assortativity, which become the explanatory variables for our regression. Below we discuss how
we compute these values for a given graph.

Computing graphlet frequency distribution by counting each of the graphlets in a graph is
a costly task as the number of graphlet embeddings grows exponentially with the size of the
graphlets. In fact, if both connected and disconnected graphlets are considered, the number of
k-graphlets on a graph with K vertices is equal to O((Ik()) In this work, we consider graphlets
up to size 5, for which a brute-force graphlet enumeration complexity is equal to (O(K5)7 which
is not scalable for many real-life networks. An alternative to counting is uniform sampling of
graphlet embeddings, which is sufficient to obtain a graphlet frequency distribution. In an earlier
work [24], we have shown how graphlets can be sampled under uniform distribution by using
a Monte Carlo Markov Chain (MCMC) sampling algorithm. Specifically, we have proposed
a method named GUISE, which performs a random walk over the graphlet embeddings by
following a double-stochastic transition matrix; the stationary distribution of the Markov chain
is a uniform distribution over the graphlet embeddings. By counting the type of graphlets that
are traversed in this random walk and then normalizing the vector, GUISE returns a graphlet
frequency distribution vector. In this work, we use GUISE algorithm for computing the graphlet
frequency distribution. It returns a 29-size vector, in which each component represents the
logarithm of the normalized frequency of one of the graphlets in Figure 3. We also compute the
assortativity of the network using Eq. 1. The components of the graphlet frequency distribution
vector and assortativity (a 30-size vector) become the co-variates of our regression analysis.

The target value of our regression is the expected number of events — excited offspring events
in the case of the Hawkes process and secondary infections in the case of the SIS process — that
are spawned from a single initiating event placed randomly within the network. The way this
target value is computed depends on the viral process used. For the Hawkes process (7,30, 32],
we consider a simplified model where

1. a node is chosen uniformly at random
2. an initial event at time t; = 0 occurs at the chosen node

3. the Hawkes process with u = 0 is simulated and the total number of events, N, at time
infinity is observed

In the case of this simplified model, the expected number of total events is given by,

e}

BN] = 17 (32(04) 1), (5)

j=1

where K is the number of nodes in G, 1 is a column vector of ones, and A is the adjacency
matrix of G (A is symmetric because the graph G is undirected). The expected total number
of events F[Noo] will be finite up to a critical threshold value of the productivity parameter, 6..
For the SIS model, we approximate the continuous time version described in Section 2 above
with a discrete time version that allows us to more easily count the number of secondary infec-
tions arising from a single initially infected node, and which greatly simplifies the simulations.
Here, time is discretized into units of step 1, and we define a vector I(¢) such that I,(t) = 1 if
node u is infected at time ¢ and 0 if node u is susceptible at time ¢. Initially, I,,(0) is zero for all
u except for a single node chosen uniformly randomly. Then the model proceeds via iterations
of the following steps:
1. nodes v susceptible at time ¢ become infected at time ¢ + 1 with probability 1 — e **(¥),
where A, (¢) = 0(AI(t))w
2. all nodes infected at time t become susceptible at time t + 1
3. at each timestep ¢t > 0, the product 17 - 1(t) is equal to the new number of infections

4. the total new infections N are observed as time goes to infinity



For this simplified model, an approximation of the expected number of total new infections can
be found via

E[N] = %f SN Itk (6)

k=1t=1

Iv(o; k) = 5v,k (7)
L(t+1:k) = (1 — I(t: k)) [1 - e*‘)(““?k))v] . (8)

As in the Hawkes model, the value of E[Ns] is expected to be finite up until some critical
value of 6, below which the infection is expected to disappear at some finite time (is at most
epidemic), and above which the infection in expectation never leaves the network (is endemic).

3.3 Regression Model for Predicting Virality

For each real-world network we simulate M = 500 rewired networks holding the degree dis-
tribution fixed. Next, for each simulated network, we compute the assortativity, the graphlet
degree distribution, the largest eigenvalue Apmaz, as well as E[No] for the Hawkes and SIS mod-
els. When calculating E[Ny] for the Hawkes and SIS models, the value of 6 is chosen to be
a constant multiple of the largest eigenvalue of the original network. To explain the observed
variation in E[No] across the simulated networks, we run a regressions of the form

29
log(E[Nao]) = b+ coA+ > cilog(d(gi)) + € (9)

i=1

where b is the intercept, A is the assortativity, d(g;) is the frequency of graphlet g;, and ¢; are
coefficients of a linear regression where the model errors € are assumed to be normal. Note that,
although our regression is simply a linear fit, the underlying relationship between virality and
the various graph topology measures is proposed to be nonlinear due to the logarithms present
in Eq. 9. This nonlinearity is certainly plausible at least for the assortativity, given the plotted
relationship in Fig. 1. We estimate the model on 70% of the 500 simulated networks and then
evaluate the R? and mean square error (MSE) on the remaining 30% test data.

4 Data and Results

We consider four real-world networks obtained from the Network Repository [28]. The networks
include 1) a retweet network where the nodes are twitter users and edges are retweets (collected
from various social and political hashtags); 2) a karate network where the dataset contains social
ties among the members of a university karate club collected by Wayne Zachary in 1977; 3) a
social network of bottlenose dolphins where the dataset contains a list of all the links (a link
represents frequent associations between dolphins); and 4) a social network from a high tech
firm where no description is available on the network repository. The statistics for the four
networks are provided in Table 1. The 6 values used in the viral processes for the networks are:
retweet 0 = .98 A\paq, Karate 8 = .96\ qz, dolphins 6 = .95\ ,44, firm-hi-tech 6 = .99\ ,42.

In Figure 4 we plot E[N] vs. assortativity for the rewired versions of each of our four
networks. There is clearly a positive but nonlinear relationship between virality and assorta-
tivity. However, for fixed assortativity (and fixed degree distribution by design) the virality
models produce E[Ny] values differing by an order of magnitude between network rewirings in
some cases. This highlights the need for further explanatory variables to explain the virality,
such as our proposed graphlet distribution. As an important first check as to whether graphlet
distribution might play an important role, we also plot in Figure 4 the variation in graphlet
frequency across the rewired networks, observing that there can be significant differences in
graphlet distribution between network rewirings.

In Table 2 we provide the results for a nested regression predicting the Hawkes virality
statistic where assortativity is used alone compared to the full model (Equation 9) with graphlets



Table 1: Network statistics.

rt-retweet  karate soc-dolphins  soc-firm-hi-tech
Nodes 96 34 62 33
Edges 117 78 159 125
Density 0.0256579  0.139037  0.0840825 0.2358
Maximum degree 17 17 12 28
Minimum degree 1 1 1 0
Average degree 2 4 5 9.19
Assortativity -0.17917 -0.475613 -0.043594 -0.12
Number of triangles 36 135 285 455
Average number of triangles 0 3 4 13.77
Maximum number of triangles 6 18 17 89
Average clustering coefficient 0.06075 0.570638  0.258958 0.405
Fraction of closed triangles 0.0742268 0.255682  0.308776 0.296
Maximum k-core 4 5 5 8
Lower bound of Maximum Clique 4 5 5 6

Table 2: Model comparison for predicting log number of events for Hawkes.

Assort Assort+GFD
Network R? MSE R? MSE
Rt-retweet 7.22E-01 1.27E-01 8.62E-01 6.31E-02
Karate 8.14E-01 3.95E-02 9.63E-01 7.94E-03
soc_dolphins 8.65E-01 3.03E-04 9.04E-01 2.15E-04
soc-firm-hi-tech  8.54E-01 2.33E-03 9.33E-01 1.07E-03

added. We observe that the R? values increase by around 10% when graphlet distribution is
considered compared to assortativity alone, and in all cases but one, including graphlets allow
for over 90% of the variance to be explained. The mean square error also improves with the
addition of graphlets in the model, with the improvement being a factor of 2 to 4. In Table
3 and 4 we provide the analogous results for a nested regression predicting the SIS statistic
and largest eigenvalue (respectively). Here we see similar improvements when the graphlets are
added to the regression model over assortativity alone.

Next we inspect the statistical significance of the regression coefficients to better understand
which graphlets are predictive of F[Ns] and Apmaz. In Table 5, we list the independent variables
in Equation 9 that are significant at the .01 level. For the rt-retweet and soc-dolphins networks,
graphlets lower than g8 are never selected and it appears that larger graphlets are needed to
improve the model beyond assortativity. On the other hand, lower order graphlets are significant
for the soc-firm-hi-tech network, where triangles are significant across the viral process models.

Table 3: Model comparison for predicting log number of events for SIS.

Assort Assort+GFD
Network R? MSE R? MSE
Rt-retweet 8.36E-01 1.32E-02 9.28E-01 5.78 E-03
Karate 8.77E-01 2.91E-03 9.76E-01 5.59E-04
soc_dolphins 8.86E-01 1.47E-04 9.16E-01 1.08E-04
soc-firm-hi-tech  8.93E-01 5.24E-04 9.57E-01 2.09E-04
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Figure 4: Top: Hawkes E[No] vs. assortativity in the 500 rewired networks for each real-world
network. Middle: SIS E[Ny] vs. assortativity. Bottom: Box plot of graphlet frequency across the
500 simulated networks for each real-world network.



Table 4: Model comparison for predicting log of largest eigenvalue.

Assort Assort+GFD
Network R? MSE R? MSE
Rt-retweet 8.51E-01 4.21E-05 9.50E-01 1.41E-05
Karate 8.66E-01 9.74E-06 9.78E-01 1.61E-06
soc_dolphins 8.74E-01 3.98E-06 9.15E-01 2.69E-06
soc-firm-hi-tech  9.25E-01 2.82E-06 9.72E-01 1.04E-06

Table 5: Important variables along with R? values for interaction regression model.

network important variables (.01 level) R?
Hawkes rt-retweet A.g8,610,813,218,221,022 024 025 027 0.950
karate Agl,3,84,06,9,210,g11,812,13,214,216,217,218,219,228 0.983
soc-dolphins A,g10,g12,825,226,228 0.913
soc-firm-hi-tech A g1,23,g4,26,29,¢10,g11,g12,¢13,214,216,g17,218,219,223,527,228,¢29  0.977
SIS rt-retweet A,g10,g11,g14,15,216,17,219,220,g21,823,224,625 0.969
karate A g3,210,812,214,815,218,219,220,824,826,827,528 0.986
soc-dolphins A,g21,024 026 0.902
soc-firm-hi-tech  A,g3,28,210,g12,215,219,25,27,228 0.972
Amaz rt-retweet A,g10,g13,g18,821,222,024, 025 227 0.940
karate A,g10,g12,¢13,814,215,218,219,220,223,524,825,226,227,228 0.984
soc-dolphins A,g10,g12,g14,821,26 0.929
soc-firm-hi-tech A ,gl,23,e4,26,29,210,g11,212,¢13,214,216,g17,218,219,23,228 0.977

To improve the regression model in Eq. 9, we consider an interaction model where the
statistically significant variables from Table 5 are used and interaction terms of the form A -
log(d(g:)) are added. In Table 5 we display the R? values for this interaction model. In some
cases we see large improvements, for example in the case of the retweet network and the Hawkes
model the R? value increases from .86 to .95 (the R? for assortativity alone is .72). In the
majority of cases the R? value of this interaction model is above .95 and for the karate model is
above .98. The R? value for the soc-dolphins network is slighly lower, .9 to .92. Given that only
high order graphlets are selected in the soc-dolphins network, it may be the case that graphlets
beyond g29 are needed to achieve R? values close to 1 for that network.

5 Discussion

Our results show that Hawkes and SIS processes on networks with the same degree distribution
and assortativity can exhibit very different levels of virality. With the inclusion of graphlets
in predictive models of virality, R? values improve by 10-20% depending on the network and
specific process. These results have implications for prediction of real network viral processes,
as current methods are generally based upon degree distribution alone [7,32] and predictive
accuracy may improve with graphlet based features. Here it may be beneficial to consider local
graphlet statistics [8] around the source node of the process. For example, the local graphlet
frequency around a Tweeter may help predict the number of re-shares of that user’s Tweet.
The statistically significant graphlets for a given network may also provide useful information
for network optimization. When the goal is to reduce the spread of viruses, for example to
mitigate fake news [11], one may wish to remove nodes in a way that leads to the greatest
reduction in viral spreading. While degree may be used to make such selections, further gains
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may be made by considering assortativity and graphlet frequency. For example, in the case of
the dolphins-SIS simulation, choosing nodes that reduce the frequency of graphlets 21, 24, and
26 may provide a better mitigation strategy than other metrics like centrality or degree. These
questions will be addressed in future research.
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